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Abstract: The use of photocatalysts to enhance the performance of construction materials with
large surfaces exposed to sunlight has become an increasingly common practice in recent decades.
Although construction material durability is of crucial importance and is extensively studied when
incorporating new additions, very few studies have specifically addressed the effects when adding
photocatalysts. This paper discusses the effect of TiO2-based photocatalysts on pavement durability
(porosity, time of transmission of ultrasonic pulses, freeze-thaw resistance and capillary water
absorption) and safety (slip resistance and roughness) by comparison of commercial photocatalytic
materials of different families and twin materials without the photocatalyst added. The analysis
covers concrete tile pavements and porous asphalt treated with photocatalysts in the form of sprayed
emulsions, slurry admixtures or built-in during casting. The findings show that changes in the
properties of a construction material induced by photocatalytic functionality depend primarily on
the porous structure of the matrix and the properties of the resulting photocatalytic surface.

Keywords: TiO2; nanoparticles; photocatalytic; durability; slip resistance; pavements; asphalt; concrete

1. Introduction

Photocatalytic oxidation has been proposed in the last few years as a possible solution
to reduce the level of air pollution. This technique was first applied to energy generation
in the 1970s by Fujishima and Honda [1] and Wrighton et al. [2]. Given the huge area
exposed to sunlight in construction materials, they have been one of the objects of choice
of the technology for applications such as self-cleaning [3–7], decontamination [7–14],
self-sterilisation [15,16], anti-fogging [17], pollen and allergen degradation [18–21] and soot
elimination [22]. The photocatalytic functionality is implemented through the addition of a
semi-conductor, usually nanoparticles of TiO2.

In light of the crucial importance of construction material durability, the use and
effects of new components are usually extensively researched. Scientific portal Scopus
reviewed for this study returned a total of 10,507 documents in a search using the key-
words ‘durability’ and ‘construction material’. Only 47 were identified when the word
‘photocatalytic’ was added. While some of those deal with the advantages and drawbacks
of nanotechnology applied to construction materials [23–25], most address the durability
and performance of photocatalytic coatings. Examples include studies of resistance to
peeling and water under pressure in limestone coatings [26], leaching of the photocatalytic
pavements [27], mechanical and chemical durability of photocatalysts on exposed aggre-
gates [28], durability of self-cleaning TiO2 coatings on fired clay bricks exposed to UV
radiation and wet/dry cycles [29], TiO2 coating abrasion and wear resistance and its effect
on the environmental impact of the coatings [30–32], cyclic weathering in photocatalytic
glass-reinforced concrete panels [33] bonding in a number of coatings [34], TiO2-cement
mortar bonded to asphalt pavement with an epoxy resin [35] and durability of photocat-
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alytic activity on different cement-based materials exposed to abrasion and freeze-thaw
stress [36].

Papers have also been published on the effects of TiO2 on the properties of hardened
cement pastes, particularly when the photocatalyst is added during casting. Nano-TiO2
has been reported to act as a catalyst in cement hydration reactions [37] and hydration and
drying shrinkage [38], whilst its effect on the mechanical properties of cement mortar [39,40]
and microstructure [41] have likewise been studied. Other authors have explored the
impact of cement chemistry [42–44] and the behaviour in expansive concretes [45].

Very little research has been conducted on the specific effects of photocatalytic ad-
mixtures or emulsions on the durability of the construction material itself. The areas
studied include chloride penetration in TiO2-additioned concretes [46] and the durability
of photocatalytic concrete determined with accelerated carbonation [47]. A study of the
effects of TiO2 nanoparticles on ordinary portland cement (OPC) and slag-blended mortar
resistance to sulphate attack [48], in turn, concluded that the addition made the materials
more vulnerable. Rheological properties, mechanical strength and carbonation have also
been analysed [49]. All those studies were conducted on cementitious materials in which
nano-TiO2 was mixed in during casting and most dealt with particulars of the effects
of the photocatalyst in isolation. No comprehensive papers were found on the effect of
photocatalysts on the intrinsic behaviour of construction materials related to durability
and safety parameters, as slip resistance is crucial in pavements.

Both types of considerations are analysed here for different matrixes with different
photocatalysts applied (porous asphalt intruded with photocatalytic slurries and sprayed
with TiO2-based coatings, concrete paving tiles sprayed with emulsions and with built-
in photocatalysts) in comparison with the same materials without the photocatalytic
functionality. The experimental setup consists of pilot scale outdoor exposed slabs of
at least 1 m2. The durability and safety tests were performed both in the lab, on cores
extracted from the slabs, and on the slabs themselves.

This study has been made in the framework of the life project life-photoscaling [50].
The composition and characteristics of the photocatalysts cannot be disclosed here for
confidentiality reasons. However, as the objective of this paper is the evaluation of the
intrinsic effects due to the addition of the photocatalysts on the material itself, this does
not devalue the interest of this research.

2. Materials and Methods
2.1. Materials

A pilot scale demonstration platform with slabs of at least 1 m2 each makes up the
experimental setup. Fourteen different paving materials were used, 10 of which had
photocatalytic functionality and 4 were the corresponding reference materials without
the photocatalyst. They were stored outdoors at IETcc-CSIC headquarters, located in
Madrid, Spain. The photoactive material in all of them was a TiO2-based photocatalyst, and
several configurations were chosen to cover the main commercially available photocatalytic
solutions in construction materials. This includes in-situ applications of slurries and
emulsions over two different matrixes: open-graded asphalt (24.6 percent of air voids as
measured by UNE-EN 12697-08:200) and/or urban concrete tiles), as well as tiles in which
the photocatalyst was incorporated when casting. The emulsion coatings were sprayed
on both asphalt and tiles, the cementitious slurries were spread on open asphalt substrate
using a cleaner wiper, and the photocatalytic tiles were glued to a concrete basis. All of
them were applied by the producers of the materials or by staff of the IETcc following the
instructions given by the producers. More details on the experimental setup configuration
are given in [14,27,51].

Table 1 shows the labelling of the materials, as well as their initial efficiency in NOx
degradation (RNOx (%)) measured on laboratory samples according to ISO 22197-1:2007.
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Table 1. Material description and labels.

Substrate Commercial Photocatalytic Material Initial RNOx (%) Label

Asphalt (A)
- - Ref-A

Slurry 1 26.91 S1-A
Slurry 2 7.22 S2-A

Emulsion 1 2.78 E1-A
Emulsion 2 6.36 E2-A
Emulsion 3 13.63 E3-A

Paving tile (T) - - Ref-T
Emulsion 1 10.84 E1-T
Emulsion 2 18.97 E2-T
Emulsion 3 29.71 E3-T

Untreated paving tile 1 - - Ref-T1
Paving tile 1 Incorporated in tile 4.6 T1

Untreated paving tile 2 - - Ref-T2
Paving tile 2 Incorporated in tile 22.93 T2

2.2. Methods
2.2.1. Characterization

The asphalt (Ref-A) and the paving tile (Ref-T) references were fully characterised
for physical-chemical and mechanical properties. The characteristics of the untreated
precast paving tiles likewise used as references (Ref-T1 and Ref-T2) cannot be disclosed
for reasons of industrial confidentiality. The penetration of the slurries into the porous
asphalt, the layer depths formed after deposition of the emulsions of photocatalysts and the
distribution of the TiO2 in the already incorporated tiles were studied after three months
by Backscattered Scanning Electron Microscopy (BSE) coupled to an Energy Dispersive
Spectroscopy (EDS) detector.

Porosity, pore size distribution and density were determined by mercury intrusion
porosimetry (MIP) on 1 × 1 × 1 cm samples. The mercury was intruded across the surface
layer with a Micromeritics porosimeter at a contact angle of 130◦ and a penetrometer
constant of 10.79 µL/pF. The pulse velocity for concrete and paving materials defined
in ASTM C597 was used to assess ultrasonic pulse transmission time. Measurements
were conducted using the indirect procedure, positioning the transducers directly on slab
substrates with the inner ends spaced at 10 cm.

2.2.2. Freeze-Thaw Resistance

In order to evaluate the freeze-thaw resistance, a modified version of the test described
in CEN/TR 15177:2006 was applied. In this method, specimens are exposed to freeze-thaw
cycles with demineralised water as the freezing medium. The modifications introduced
relative to the standard procedure primarily affect specimen size, casting and conditioning.
The tests were conducted on approximately 15 × 8 cm cores removed from the outdoor
exposed slab materials. All but the test surfaces of the specimens were sheathed in rub-
ber secured to the material with silicone. The top edge of the rubber sheath protruded
20 ± 1 mm over the test surface. The sheathed samples were pre-saturated for 3 days. The
test surface of the paving tiles was covered with a mean 3 mm deep layer of liquid protected
from evaporation with a thick polyethylene film. In the asphalt samples, as the liquid
water seeped into the specimen rather than remaining on the surface, a soaked sponge
positioned on the surface of the cores was used as the freezing medium. The specimens
were insulated with white cork on all but the test surfaces (Figure 1a).
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Figure 1. (a) Freeze-thaw resistance test setup and (b) freeze-thaw temperatures of 3 different cycles.

After 3 days of preconditioning prior to freezing, water was removed from the speci-
men surfaces and the first ultrasonic reading, defined as the reference value, was taken.
Since some of the samples were so narrow that the ultrasonic sensors protruded beyond
the sides of the specimen, readings were taken with the sensors spaced at 4 cm on the
active surface. The specimens were subsequently exposed to successive freeze-thaw cycles.
During thawing, air temperatures of up to 35 ◦C were reached, for such values are readily
reached in the air in Madrid in summer. The temperature of the freezing medium at the
centre of the test surface was continuously recorded on one specimen in each freezing
chamber. The data for three cycles are graphed in Figure 1b. The excess freezing medium
was poured off and the scaled material collected after 7, 14, 28, 42 and 56 cycles. The
ultrasonic pulse transmission times (UPTT) were then measured, the scaled material was
weighed, and new freezing medium was poured onto the test surface, or the sponge was
replaced, before returning the samples to the freezing chamber. The results were assessed
against RILEM TC 176-IDC [52], calculating relative UPTT, γ, as defined in Equation (1):

γ =

(
tn

t0

)
× 100 (1)

where tn is the transmission time measured after i freeze-thaw cycles (µs) and t0 the initial
transmission time (µs).

The RILEM classification of concrete by relative UPTT is listed in Table 2. As explained
in the aforementioned publication, the damage levels given in the table should not be
mistaken for acceptance criteria.

Table 2. Concrete classification by relative UPTT (γ) [52].

Relative UPTT, γ <100% 100%~110% 110%~120% >120%

Test finding Not deteriorated Possibly
deteriorated Deteriorated Severely

deteriorated

Resistance class Good Intermediate Poor Very poor

2.2.3. Capillary Water Absorption

A modified version of the Fagerlund method [53] was used. The test specimens
were preconditioned to an equilibrium moisture of around 75% RH with a saturated NaCl
solution. All but one of the surfaces were sealed with self-adhesive tape to prevent the
penetration of water vapour into the test specimens during the absorption experiment. The
specimens were weighed to an accuracy of 0.1 g immediately prior to testing. The unsealed
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side of the samples (the coated surface in the sprayed photocatalytic specimens) was
positioned on the surface of the water (instead of being soaked in the medium to a depth
of 5 mm as specified in the method) in light of the scant depth of some of the specimens.
Water was added throughout the duration of the test to offset evaporation. Capillary
absorption-induced water intake was measured by periodically weighing the specimens
until weight remained constant. The surface in contact with the water was wiped with a
moist sponge or non-absorbent cloth to remove excess water prior to weighing. Data for T1
and Ref-T1 are not available as they were too thin to be tested (1 cm depth).

The mass of water absorbed vs. square root of time curves exhibited two different
trends, one ascending, indicative of absorption, and the other flat, denoting saturation.
The parameters associated with capillary absorption (m, resistance to water penetration
(s/m2); k, the capillary absorption coefficient (kg/m2·s0.5); and εe, effective porosity) were
calculated from these curves.

2.2.4. Slip Resistance (Standard EN-14231) and Surface Roughness

Slip resistance was determined on all the slab surfaces analysed with a pendulum
tester as described in standard EN-14231. Slip resistance is closely related to surface
roughness [54]. Three-D surface roughness profiles for all the materials studied were
generated from photographs with ImageJ software [55]. The pixel values represent the
distance or depth into the coating. Roughness parameter Ra (pixels) was subsequently
calculated from the roughness profiles with Equation (2) [56]:

Ra =
1

nx ny

nx

∑
i=1

ny

∑
j=1
|Z(i, j)− Zave| (2)

where Z(i,j) represents the surface topography after image tilt-correction (surface-levelling),
Zave is mean surface height, i is intensity in pixels in the x direction and j in the y direction,
nx is maximum number of pixels in the x direction and ny in the y direction.

3. Results
3.1. Characterization

The results corresponding to the characterisation of Ref-A and Ref-T are given in
Tables 3 and 4, respectively.

Table 3. Physico-chemical and mechanical characteristics of the asphalt (Ref-A).

Parameter
Procedure or Standard Value

Bitumen binder referred to total mix (%) 4.9
Bitumen binder referred to aggregate (%) 5.1
Gravel 6 mm–12 mm (%)/type of aggregate 18.4/porphyry
Sand 0 mm–2 mm (%)/type of aggregate 76.7/limestone-based
Filler-Contribution (%)/type of aggregate 3.9/limestone-based
Filler-Recovering (%)/type of aggregate 1/limestone and siliceous-based
Soluble bitumen binder content referred to total mix (%)
Centrifuge extraction 4.25

Soluble bitumen binder content-aggregate (%)
Centrifuge extraction 4.44

Filler/bitumen binder ratio
Centrifuge extraction 0.79

Bitumen binder content (%)
UNE EN 12697-6:2003 4.25

Bitumen binder density (g/m3)
UNE EN 12697-6:2003

1.03

Air voids
UNE EN 12697-08:2008 24.6
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Table 3. Cont.

Parameter
Procedure or Standard Value

Bitumen binder-filled voids
UNE EN 12697-08:2008 32.5

Aggregate-filled voids
UNE EN 12697-08:2008 24.16

Compressive strength (kPa) 394.68
Indirect tensile strength ratio (ITSR) (%) 82.3
Air WTS * (rolling) (%) 0.049
Air PRD ** (rolling) (%) 17.802
RD (rolling) (mm) 10.681
Particle loss (%)
UNE EN 12697-17:2006+A1:2007 91.4

* Wheel tracking slope; ** Proportional rutting depth.

Table 4. Physicochemical characteristics of the concrete paving tiles (Ref-T).

Parameter
Procedure or Standard Results

Length (mm)
UNE EN 1339:2003 150

Width (mm)
UNE EN 1339:2003 10

Thickness (mm)
UNE EN 1339:2003 33

Bending strength (MPa)
UNE EN 1339:2003 8.3

Failure load (N)
UNE EN 1339:2003 8995

Height of first fissure (mm)
UNE EN 127748-2:2006 >1000

Height of failure point (mm)
UNE EN 127748-2:2006 800

Abrasion test track length (mm)
UNE EN 1339:2004 70.0

Abrasion test track width (mm)
UNE EN 1339:2004 15.5

Figure 2a shows BSE images of the different materials with the corresponding elemen-
tal mapping images for Ti, for each of the photocatalytic materials. Images for E1-A, E2-A
and E3-A are not given as no Ti could be detected in the transversal cut after 3 months of
the application.

In Figure 2a it can be seen that the sample Ref-A presents high open porosity, in
agreement with the results in Table 3 (24.6% of air voids). With the photocatalytic slurries
embedded, the area of penetration gets much more compact. In the case of S1-A the
compaction layer is present throughout the sample’s surface with non-homogeneous depth,
having found denser layers with high amount of Ti between 25 µm and 150 µm. The mean
penetration of the slurries has been (naked eye measurement) around 7 and 5 mm (see
Figure 2b) for S1-A and S2-A respectively. When looking at the BSE transversal cut of the
samples E1-A, E2-A and E3-A, no Ti could be detected (not shown in Figure 2), having
equivalent images than those of Ref-A. As expected, reference tiles (Ref-T) exhibited a more
compact aspect, typical of a precast concrete. When applying the photocatalytic emulsions,
the distribution and conformation of the layers is different for the different photocatalysts.
E1-T presents a quite irregular, and in some parts discontinuous, layer on the surface, with
an average of 3.7 µm and a standard deviation of 2.2 µm. No Ti has penetrated the sample.
E2-T presents a different feature. There is not a well-defined layer on the surface; only
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isolated spots with Ti having penetrated into the material. E3-T has formed a compact
and continuous layer on the surface of the tile with an average of 5.1 µm and a standard
deviation of 2.4 µm. T1 is a very compact tile and the photocatalyst is present in a layer
(average of 1.7 µm and standard deviation of 0.22 µm) that is weakly bonded to the surface
as during the processing of the samples for the analysis, the layer has been detached. In T2,
Ti is present homogeneously in the bulk of the sample.
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3.2. Mercury Intrusion Porosimetry (MIP)

Table 5 gives the MIP findings for total porosity (volume per cent), mean pore diameter
(4 V/A) and matrix bulk density for pore sizes in the 400 µm to 0.007 µm range. Before
analysing the results, it has to be considered that a cube of approximately 1 cm3 was used
for MIP, intruding the Hg through the photocatalytic layer. Then, the results are taking into
account the photocatalytic layer and the bulk of the matrix. Thus, the absolute values in
Table 5 have only comparative purposes but cannot be considered as “real” values. Much
more informative are the results given in Figure 3a–d that presents the differential pore size
distributions for the samples. Additionally, Figure 3a shows the pore sizes ranges along
with their classification into both IUPAC categories [macropores (>50 nm), mesopores
(50 nm to 2 nm) and micropores (<2 nm)] and the conventional categories for concrete [air
voids (>10 µm), large capillaries (50 nm to 10 µm), medium capillaries (10 nm to 50 nm)
and gel pores (<10 nm)].

From results from MIP (Table 5) and the data in Table 2, it can be deduced that most
of the porosity in the asphalt pavement lay outside the MIP pore size range being these a
mere 0.73% of the total. Imbibition of the slurries filled the voids, generating a finer pore
system with different pore size distributions for each of the slurries, as detected by MIP.
Pore size in the S1-A peaked at around 12 µm and no pores < 0.015 µm were detected.
Finer porosity is found in S2-A, with one of its two peaks positioned in the air voids zone
while the other was wide and lay in the medium capillary pore area, at around 0.03 µm.

Emulsion coatings do not significantly influence the pore distribution of asphalt,
almost all located in the macropores range for two of the emulsion coatings on asphalt
(Figure 2b). The greater porosity in E1-A than the other emulsion asphalt samples was
concentrated primarily in a (narrow peak) in the large capillary pore range. Concerning
emulsions on tiles, E1-T presents a significant fraction in the air void fraction (wide peak).
The rise in the fraction of mesopores (around 0.02 µm) in the three emulsion-coated paving
tiles relative to the Ref-T reference might also be attributed to the emulsion. T1 exhibited
nearly negligible porosity, lower even than in Ref-T1, in the range studied. The curves for
Ref-T2 and T2 exhibited three modes, at 70 µm, 1 µm and 0.03 µm, with a predominant
peak at the first value in sample T2.

Table 5. Mercury intrusion porosimetry parameters for samples (samples outside the 400 µm to
0.007 µm range not detected) and mean ultrasonic pulse transmission time UPTT (µs) between the
two transducers spaced on the slab surfaces at a distance of 10 cm.

Sample Porosity (% Vol)
Mean Pore Diameter

(4 V/A)
(µm)

Bulk
Density
(g/mL)

UPTT
(µs)

Ref-A 0.73 7.337 2.64 82.8
S1-A 2.64 0.583 2.46 73.1
S2-A 4.92 0.065 2.28 47.6
E1-A 1.10 5.287 2.53 87.9
E2-A 0.82 9.403 2.50 71.0
E3-A 0.84 6.408 2.58 147.2

Ref-T 10.75 0.140 2.25 44.2
E1-T 12.70 0.071 2.19 64.5
E2-T 8.87 0.072 2.27 61.9
E3-T 9.62 0.062 2.26 57.9

Ref-T1 0.45 0.948 2.34 27.0
T1 0.24 0.788 2.37 16.7

Ref-T2 10.09 0.103 2.25 26.3
T2 12.50 0.084 2.19 39.8
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Figure 3. (a–d) Differential pore size distribution in the samples.

3.3. Ultrasonic Pulse Transmission Time (UPTT)

The mean ultrasonic pulse transmission time (µs) between the two transducers spaced
on the slab surfaces at a distance of 10 cm are also given in Table 5. As expected, the slurries
densified materials S1-A and S2-A rendering them more compact, which translated into
shorter time and then higher ultrasonic pulse velocity. No pattern could be discerned for
the emulsion-coated asphalt materials, as some of the samples exhibited higher values
(E1-A and especially E3-A) and some other lower values (E2-A) than the reference. The
three emulsion-sprayed paving tiles and the T2 exhibited higher UPTTs than the respective
references, whereas in T1 the value was lower than in Ref-T1. As noted earlier, the different
tendency in the two tiles with built-in photocatalysts were attributable to the differences
between their physical-chemical characteristics, loading and mode of implementation.

3.4. Freeze-Thaw Resistance

The relative UPTT (%) vs. number of freeze-thaw cycle curves for asphalt samples are
plotted in Figure 4a and for paving tiles in Figure 4b. All the reference samples qualified
for classification as RILEM ‘good’ resistance materials [52]. Photocatalytic samples S2-A,
E1-A, E2-A, E3-A and T2 were also so qualified, albeit with some scatter, whilst S1-A
exhibited ‘intermediate’ resistance. The poorest performance was observed in emulsion-
coated paving tiles E1-T, E2-T and E3-T, which has been attributed to the photocatalytic
layer cracking. The cracks might also explain the wider scatter observed for these materials.
Even though there are a small number of samples, no clear deterioration can be seen in the
bulk of any of them as no continuous rise in the relative UPTT has been observed in any
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case. The apparent inconsistent decline in relative UPTT after more cycles might denote
peeling away of the photocatalytic layer that makes the matrix arise in the surface. E1-T
exhibited the lowest resistance of all the photocatalytic samples, followed by E3-T and T1,
in that order. Scaling was detected in only four samples (Figure 5), most severely in E2-T
and S1-A. After a single slight rise early in the test, the weight of the scaled material in
samples Ref-A and E3-T flattened.
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Even to the naked eye, the photographs of the photocatalytic specimens reproduced in
Figure 6 clearly revealed that the coatings had worn away after freeze-thaw testing. When
the asphalt was coated, the samples initially turned light grey, whilst after the cycles the
colour reverted to the original black. The same effect was observed on the paving tiles,
although the difference was less dramatic. The slurries also disappeared from the surface,
especially in sample S2-A, in which the pre-test whiteness vanished, unveiling the black
asphalt across the entire surface after the cycles.
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The optical micrographs in Figure 7 show that in addition to the change in colour,
the slurry-based samples, showed some cracks, whilst the white photocatalytic layer was
missing altogether in the emulsion-coated materials. Most of the samples bore an obvious
resemblance to the reference materials.
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3.5. Capillary Water Absorption

The water absorption curve for specimen E2-T in Figure 8, reproduced by way of
example, can be clearly divided into two areas (intake and saturation). The intersection
between the two is marked on the graph.
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Figure 8. Water absorption curve for specimen E2-T.

The percentage absorbed by the photocatalytic materials less the percentage recorded
for the respective references is depicted in Figure 9. Curves lying above zero denote greater
absorption by the photocatalytic material than the reference and vice-versa. The absorption
parameters for all the materials are summarised in Figure 10: effective porosity, εe, in
Figure 10a and the capillary absorption coefficient, k (kg/m2 min0.5), in Figure 10b.
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Figure 10. (a) Effective porosity (εe), and (b) capillary absorption coefficient (k) for all the samples studied.

Figures 9 and 10 show that the use of photocatalytic slurries raised the amount of
water absorbed by specimens S1-A and S2-A relative to Ref-A. The change in behaviour
induced by emulsion coatings clearly depended on the type of TiO2 photocatalytic material:
emulsion E2 was the most resistant to water penetration both in asphalt and in paving
tiles (E2-A and E2-T), being E1 the least resistant. Concerning sample T2, the differences
between photocatalytic and reference samples are not significant.

3.6. Slip Resistance and Roughness

The slip resistance (SR) findings delivered by the pendulum tester are graphed in
Figure 11. No meaningful differences were detected between the asphalt mix containing
photocatalytic slurry S1 (S1-A) and the asphalt reference sample (Ref-A). In contrast, slip
resistance declined significantly in asphalt mix S2-A relative to the reference. Resistance
was slightly lower in emulsion-coated asphalts E1-A to E3-A than in the reference sample.
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SR values were slightly higher in all the photocatalytic paving tiles, whether coated (E1-T
to E3-T) or built-in (T1 and T2) than in their respective references.
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The surface profiles for samples Ref-A and S2-A generated from photos with ImageJ
software are reproduced in Figure 12. The figure reveals the obvious difference between
surfaces for the plain asphalt (Ref-A) and sample S2-A, where slurry S2 filled the voids,
generating a smooth surface.
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Figure 12. 3D roughness profiles and images for (a) reference asphalt (Ref-A) and (b) photocatalytic slab S2-A.
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The profiles were subsequently translated into Ra (pixels), a parameter that charac-
terises surface roughness. The respective values are shown in Figure 13 for all the materials
studied. The most significant effect was the decline in roughness in the slurry-bearing
porous asphalt materials. Ra is plotted against SR in Figure 14. Further to the findings, slip
resistance rose with roughness only in the samples with low roughness values (Ra < 13),
after which it remained flat. That apparent discrepancy may be attributable to the limited
applicability of pendulum testers to rough surfaces [56]. The SR values observed for the
rougher samples (Ra > 13) must therefore be interpreted with caution.
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roughness, Ra.

4. Discussion

Table 6 summarises the major findings of this study, expressed as the percentage
variation in each photocatalytic-treated material relative to its reference. The beneficial
effects for durability or safety of adding TiO2 to the materials are shaded in green and un-
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derlined, whereas the adverse effects are shaded in red with a bold typeface. Even though
this a rough simplification, shorter ultrasound transmission time, less effective porosity
and a smaller capillary absorption coefficient were deemed to be beneficial, whilst lower
slip resistance and roughness values were regarded as adverse. No shading means that
the experimental material and the reference exhibited approximately the same behaviour
(difference = ±10%).

Table 6. Summary of findings for photocatalytically treated material.

Sample Freeze-Thaw Resistance
[52]

Ultrasounds
∆t (%)

Cores Slabs

Intake of Water
∆εe (%) ∆k (%)

Slip Resistance
∆SR (%) ∆Ra (%)

S1-A Intermediate 46.3 11.7 −825 −1020 −0.39 50.16
S2-A Good 66.0 42.5 −494 −619 33.73 80.26
E1-A Good −23.1 −6.1 −267 −295 6.51 1.52
E2-A Good −8.2 14.3 −85 −14 5.33 −1.90
E3-A Intermediate/Good −50.6 −77.7 −156 −104 5.13 27.38
E1-T Poor/Very poor 32.4 −45.9 4 −9 −3.44 25.98
E2-T Poor 21.8 −40.0 41 64 −10.97 −0.62
E3-T Poor 25.0 −30.9 14 10 −9.68 12.63
T1 Intermediate/Poor 18.8 38.2 ----- ------- −10.83 −5.74
T2 Good −9.9 −51.2 −27 −28 −1.78 34.52

Note: green shaded cells, values underlined: better performance than the respective reference; red shaded cells, values in bold typeface:
poorer performance than the respective reference; unshaded cells: approximately the same performance as the reference (±10% difference).

These findings preclude any sweeping statement on the variation in durability and
slip-safety of construction materials after photocatalytic treatment. The effect of adding
TiO2-based photocatalysts on the durability of the substrates analysed here does not seem
to be related to the photocatalytic properties themselves but derived mainly from the
physical effect of the addition of a coating to the material, the inclusion of a filler in the
mass of the tiles, or to the effect of compaction of the asphalt in the case cementitious
slurries, with the resulting changes in the pore structure and surfaces of the matrixes.

Pore structure is related to liquid and gas transport in porous solids. In damp envi-
ronments, one of the forces driving aggressive agent ingress is the capillary absorption
resulting from the surface tension generated in capillary pores. Absorption, which is related
not only to pore structure but also to sample moisture, is a significant durability indicator.
The amount of water that can be absorbed is determined by effective porosity (capillary
and gel pores). Air voids, in turn, which adsorb the increase in volume induced by freezing
water, are beneficial in the event of frost. Indeed, entrained air is one of the approaches for
enhancing concrete freeze-thaw resistance. Unlike capillary pores, large air voids do not
contribute to capillary absorption.

In the materials containing slurries, the ultrasound transmission time was shorter in
both the slabs and the cores than in the respective references, signifying greater compaction
and mechanical strength, for the slurries filled the air voids in the asphalt. As a consequence,
instead of drain water, it remains retained in the capillary porous structure of the slurry,
increasing uptake of water and therefore, the effective porosity and coefficient of capillary
absorption. Due to filling of the voids, roughness decreases greatly, which is not detected
by the slip resistance measured by the pendulum in the case of S1-A. Whilst effect on
freeze-thaw performance varied with the material: S2-A lay in the ‘good’ range and S1-A
in the next lower category, in keeping with its greater water intake.

Emulsion-sprayed asphalt resisted frost well, as expected, although its mechanical
strength was not enhanced leading to similar ultrasound times and slip resistance. Similarly,
the smaller mean pore diameter induced by the emulsions raised water intake to the
detriment of durability.

In the paving tiles, the TiO2-based emulsions generated a more refined pore system
on the tile surface, with a predominance of mesopores. The direction of the variation
in ultrasound transmission time relative to the reference differed in the paving tile slabs
and the cores in all three emulsions. In the cores, where the readings were taken with
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the transducers spaced at 4 cm (initial data for freeze-thaw tests), the time was shorter
than in the reference, inferring that the former material was more compact and homo-
geneous. Conversely, UPTT was longer in the photocatalytic than in the reference slabs.
This discrepancy has been attributed to the difference in transducer spacing. When the
sensors were very close, the signal travelled across the continuous, compact layers of
the emulsion, whereas when they were spaced farther apart, the likelihood of finding
discontinuities in the photocatalytic layer is higher. In the latter setup the ultrasonic waves
would penetrate the concrete, crossing the photocatalytic layer-substrate interface twice.
A schema explaining this difference is given in Figure 15. Further to that premise, the
decline in freeze-thaw resistance observed in all the E-T materials could be attributed to
deterioration in the photocatalytic layer only whilst tile integrity would remain unaffected,
a postulate consistent with the optical microscope findings. Capillary porosity accessible to
water would also decline, raising the resistance to water penetration, especially in E2-T
and E3-T, as borne out by the MIP values. Although the pendulum tester showed a pattern
of higher slip resistance, no general trend could be determined for surface roughness in the
emulsion-coated paving tiles.
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Figure 15. Schema of ultrasonic pulse travel in 15 × 8 cm core specimens and whole slabs with
differently spaced transducers.

The differences between the intrinsic characteristics of built-in photocatalyst paving
tiles T1 and T2 determined visible differences in their behaviour. Dense, compact T1 had
no air voids and scantly any capillary porosity. With the inclusion of a photocatalyst
its durability-related properties remained unaltered or varied slightly and for the better
with one exception. Its freeze-thaw resistance declined, a finding consistent with the
delamination of the photocatalytic surface observed in the freeze-thaw test. Conversely, in
paving tile T2 the photocatalyst had an adverse effect on all the parameters indicative of
durability except freeze-thaw resistance, which has been attributed to the increase in the
air porosity of the photocatalytic sample.

5. Conclusions

The impact of three types of TiO2 photocatalysts (slurries emulsions, and built-in) on
the durability and safety of pavements (tiles and asphalts) has been studied. According to
the results, the effects do not seem to be related to the photocatalytic properties themselves
but derived mainly from the physical effects of the additions. The slurry solutions on the
open-grade asphalt increase the mechanical strength by compacting the asphalt substrate.
This filling implies a reduction in surface roughness, which could lead to a decrease in
slip resistance. Capillary pores in the cementitious paste were introduced, resulting in
an increase in water intake by capillary absorption and reduction of the resistance to
freeze-thaw. Photocatalytic emulsions sprayed on pavements should not be detrimental
to the freeze-thaw resistance of the substrate itself, although most of the photocatalytic
layer would be worn away or damaged in the process. A compact photocatalytic coating
reduces capillary porosity accessible to water and consequently raises the resistance to
water ingress if it converts the large capillary pores in the matrix into small capillary pores,



Appl. Sci. 2021, 11, 11277 19 of 21

refining porosity. In contrast, if it generates more capillary pores than initially present,
water intake increases. The behaviour of the tiles with built-in photocatalysts is dependent
on their differences between their physical-chemical characteristics, loading and mode of
implementation. These results indicate the importance of carrying out specified studies of
the pavements prior to the application of photocatalytic solutions.
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