
SEA ICE CONCENTRATION AND SEA ICE EXTENT MAPPING WITH THE FSSCAT 

MISSION: A NEURAL NETWORK APPROACH 
David Llaveria1, Juan Francesc Munoz-Martin1, Christoph Herbert1,3, Miriam Pablos2,3, Adriano Camps1,3, Hyuk Park1 

 

1 CommSensLab Unidad María de Maeztu - Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya and IEEC/CTE-UPC 
2Physical and Technological Oceanography Group, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC) 

3 Barcelona Expert Centre (BEC) on Remote Sensing 
Email: david.llaveria@upc.edu. 

 

ABSTRACT 

Knowledge about sea ice concentration and extent in polar 

regions is of great interest both for economic interests, and as 

a proxy of the climate change. Retrieved maps are based on 

data from microwave radiometers, which are currently 

provided by large satellite missions. Nowadays, CubeSats 

have proven to be a cost-effective alternative. Due to their 

low cost, they can be launched in large constellations to 

obtain high spatial coverage and daily revisit. This study 

presents a neural network approach to generate sea ice 

concentration and sea ice extension maps using the L-band 

microwave radiometer, and the GNSS-Reflectometer data 

from the FMPL-2 instrument onboard 3Cat-5/A, one of the 

two CubeSats of the FSSCat mission. The results obtained 

during the first 2 months of the mission are presented. 

 

Index Terms— CubeSat, Sea ice concentration, Sea ice 

extent, Neural Networks 

 

1. INTRODUCTION 

 

Polar sea ice is declining due to the global temperature 

increase. Although this evidences a real global problem, it 

also opens new commercial routes through the Arctic Ocean. 

There are obvious commercial interests as the North route 

from China to Western countries, which is about two weeks 

shorter than that through the Indian Ocean and the Suez canal. 

Therefore, knowing the actual ice extension to either define 

these routes or to monitor the effects of climate change is a 

major concern. Today’s maps are generated by different 

Earth Observation missions using large satellites, such as 

microwave radiometers, synthetic aperture radars, or even 

optical imagers in cloud-free conditions. As a cost-effective 

alternative, the FSSCat demonstration mission [1,2] was 

launched in September the 3rd, 2020 in the Vega Proof of 

Concept (PoC) for Small Satellite Mission Service (SSMS). 

The main objective of this mission is to monitor the sea ice 

over the poles. FSSCat is composed by two 6U CubeSats. 

One of them embarks the FMPL-2 payload [3,4], a dual 

instrument with an L-band Microwave Radiometer (MWR), 

and a Global Navigation Satellite System-Reflectometer 

(GNSS-R), both implemented using a Software Defined 

Radio. 

Previously, the use of matched filters to obtain the Delay 

Dopler Maps (DDM) [5] in combination with Neural 

Networks (NN)-based algorithm [6] has proven to be a fast 

and reliable approach to retrieve sea ice concentration using 

data from the TechDemoSat-1 (TDS-1) satellite. This study 

proposes a NN-based methodology to estimate Sea-Ice 

Concentration (SIC) and Sea Ice Extension (SIE) maps using 

data from the two FMPL-2 sensors: the L-band MWR, and 

the GNSS-R.  

 

2. SEA-ICE MAPPING 

 

In order to generate the SIC and the SIE maps, a two-step 

methodology is used. Firstly, full maps of the Arctic and the 

Antarctic seas are generated at a coarse resolution using 

MWR brightness temperature data. Later, the corresponding 

GNSS-R data points are superimposed to the resulting maps 

of the first step to improve their spatial resolution. In both 

steps, similar NN are used to process the data and generate 

the outputs, either the continuous SIC or the binary SIE. 

FSSCat mission is delivering data since early October. In this 

research, data acquired during October and November (2 

months) have been processed using this methodology.  All 

NNs have been trained using SIC maps provided by Ocean 

and Sea Ice Satellite Application Facility (OSI SAF) as 

ground truth [7]. A percentage of the available data has been 

used to train the NNs; less than 2% of the MWR data (roughly 

20,000 samples), and a 70% of the samples for the GNSS-R 

case due to the smaller dataset available. 

 

2.1. Microwave radiometer maps 

 

The NN employed to produce the SIC maps from the MWR 

data includes a regression fit network with 3 hidden layers 

composed by 5, 10 and 5 neurons, respectively. It has 5 inputs 

consisting of:  

 

i) the brightness temperature (Ta) measured by 

the MWR; 

ii) the standard deviation of Ta; 

iii) the bidimensional gradient of Ta; 

iv) the percentage of Land Cover within the 

antenna footprint (350 x 500 km2); 

v) the land and sea surface temperature (skin 

temperature) from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) 

model [8].  



To generate the sea ice extension maps, a binary 

classification NN is used. The network is composed by a 

single hidden layer with 10 neurons. The inputs are the same 

as in the sea ice concentration case. 

Brightness temperature maps are obtained based on 

previously averaged daily tracks of MWR data, which are 

spatially interpolated according to the MWR antenna pattern 

and projected on a 12.5 km Equal-Area Scalable Earth Grid 

(EASE-Grid 2.0) [9]. 

 

2.2. GNSS-R maps 

 

The GNSS-R maps are generated using the identical NN used 

for MWR, except for the inputs. In that case, 6 Inputs are 

used:  

i) the DDM integrated in the delay dimension the 

standard deviation of Ta; 

ii) the reflectivity; 

iii) the signal-to-noise ratio of the measurement; 

iv) the elevation angle during the capture; 

v) the azimuth angle during the capture; 

vi) the temperature measured with the MWR. 

In this case, the GNSS-R resolution is finer (i.e., the size 

of the Fresnel zone ~500 m) thanks to the very short 

integration time [4]. Thus, the data is delivered in a scattered 

format instead of gridding it into a 12.5 km grid in order to 

preserve the high resolution. The MWR measurements and 

the OSI SAF data are scattered into the specular point 

location using a 2D linear interpolation.  

 

3. RESULTS 

 

The performance of each model was analyzed over the 

Arctic and the Antarctic seas. In Figure 1, a weekly composite 

of Arctic SIC maps from November 6 to 12, 2020 is 

presented, using MWR data (a) and OSI SAF (b). In general, 

both SIC maps display similar spatial patterns. Nevertheless, 

most of the discrepancies are located at the lower-

concentrated sea ice margin along coastal areas. Table I 

shows the errors between the estimated SIC using the MWR 

data and the OSI SAF reference. The mean absolute error is 

lower than 6% for the Arctic, while for the Antarctic it is 

lower than 5%. The error standard deviations are around 13% 

and 11%, respectively. Therefore, errors in Arctic are always 

larger than those in Antarctic. This can be explained because 

there are more land-ice-sea transitions in the Arctic than in 

the Antarctic, where the ice is forming a huge mass 

surrounding the land.   

Regarding the SIE maps, the accuracy using the MWR 

data is larger than 93% in the Arctic, and larger than 96% in 

the Antarctic. For the GNSS-R data the accuracy depends on 

the quality of the included data points. Lower average SNR 

in the track reduces the estimation accuracy. However, the 

number of points decreases as the track average SNR 

increases due to filtering out some of the data. The accuracy 

ranges from 95% to 97%, selecting the tracks with an 2.5 dB 

or 3.2 dB averaged SNR, respectively. 

The Antarctic SIE maps generated from MWR data are 

presented in Figure 2, showing the estimations (a) and the 

ground truth (b) obtained in a three-day period from 

November 19 to 21, 2020. Similar to the results obtained 

during the estimation of SIC, it can be seen that the 

classification errors usually occur in the borders of the ice. 

Although the grid size is 12.5 km, as mentioned in section 2, 

the real footprint of the radiometer antenna is 350 x 500 km2. 

Therefore, the generated maps using MWR data are blurrier 

than the OSI SAF ones used as ground truth. 

 

 
(a) 

 
(b) 

Figure 1. Arctic SIC map: a) Generated using FSSCAT 

MWR data, b) OSI SAF Ground Truth 

 

 



  

 
(a) 

 
(b) 

Figure 2. Antarctic SIE map: a) Generated using FSSCAT 

MWR data, b) OSI SAF Ground Truth. Blue indicates open 

water and yellow refers to sea ice. 

 
Figure 3 shows the GNSS-R tracks after being processed 

by the classification NN. The points in orange are the ones 

detected as ice, and the points in turquoise color are those 

detected as water. Ground truth SIC data are highlighted in 

blue color. Brighter tones represent SIC ranges between 15% 

and 30% and values larger than 30%, respectively, and dark 

blue indicates the sea. It can be seen that the GNSS-R clearly 

detects some transitions that are not captured in MWR-based 

model due to the coarse resolution, as the sea lake located at 

the top center part of the image (inside the red square). As in 

the MWR case, the errors are given in some of the transitions 

due to the heterogeneity of the ice in the lower concentration 

areas, although these uncertainties might also be introduced 

by the poorer spatial resolution of the OSI SAF product (10 

km). 

 

 

Figure 3. GNSS-R tracks superposed to OSI SAF ground 

truth. 

The total areal extension of sea ice at both poles is 

determined from the SIE maps, and the corresponding time 

series are presented in Figure 4 from the beginning of October 

to mid-November 2020. The difference with respect to the 

total extension area from OSI SAF is similar to the 

differences between existing sea ice extension products [10].  

 

4. CONCLUSIONS 

 

In this work, a new method to generate full SIC and SIE maps 

of the Arctic sea and Antarctic ocean is presented. This 

methodology uses data from the FMPL-2, a payload carrying 

a combined microwave radiometer, and a GNSS-

Reflectometer onboard the 3Cat-5/A satellite of the FSSCat 

mission. SIC and SIE maps are constructed using a two-step 

approach. Coarse maps are first generated based on MWR 

brightness temperature data. These maps are then 

complemented by high-resolution GNSS-R data in areas, 

where specular reflection occurs, and values can be provided. 

In all cases, the error is under 6%. Looking at the total 

extension area, the errors are similar to those obtained from 

existing sea ice products. 

TABLE I 

MWR SEA-ICE CONCENTRATION ERRORS COMPARED TO GT 

 Mean absolute Error  Error STD 

Arctic 5.8%  13.2% 

Antarctic 4.9%  11.1% 



 

 
(a) 

 

(b) 

Figure 4. Total SIE of a) the Arctic and b) the Antarctic. 
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