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ABSTRACT: Optical spectromicroscopies, which can reach
atomic resolution due to plasmonic enhancement, are perturbed
by spontaneous intensity modifications. Here, we study such
fluctuations in plasmonic electroluminescence at the single-atom
limit profiting from the precision of a low-temperature scanning
tunneling microscope. First, we investigate the influence of a
controlled single-atom transfer from the tip to the sample on the
plasmonic properties of the junction. Next, we form a well-defined
atomic contact of several quanta of conductance. In contact, we
observe changes of the electroluminescence intensity that can be
assigned to spontaneous modifications of electronic conductance,
plasmonic excitation, and optical antenna properties all originating
from minute atomic rearrangements at or near the contact. Our observations are relevant for the understanding of processes leading
to spontaneous intensity variations in plasmon-enhanced atomic-scale spectroscopies such as intensity blinking in picocavities.
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Modern nanoscale spectroscopies routinely reach single-
molecule sensitivity1,2 and are even capable of achieving

contrast within individual molecules.3−5 These methods, such
as surface-enhanced Raman spectroscopy (SERS),6,7 tip-
enhanced Raman spectroscopy (TERS),1,3,4,6,8,9 tip-enhanced
photoluminescence (TEPL),10 and scanning-tunneling-micros-
copy-induced luminescence (STML),2,5,11−17 owe their
excellent resolution to the local enhancement of the electro-
magnetic field at a local hotspot of a metallic film, a
nanoparticle, or a sharp tip, further boosted by the tunneling
current localization in STML. Such enhancement originates
from the lightning rod effect amplified by collective oscillations
of charges, i.e., plasmons. Both phenomena bolster the
coupling of local electromagnetic fields to the far-field, which
results in an increased signal detected at a macroscopic
distance from the investigated structure. Because the cavity
geometry is intrinsically of atomic scale, the atomic arrange-
ment and stability of the plasmonic antenna can play a crucial
role in the enhancement mechanism. In the extreme case, the
electromagnetic field is confined at the scale of a single atom,
constituting a so-called picocavity,18 which enables addressing
optical signals with submolecular resolution.3,10,13,19−21 The
role of the atomic structure becomes apparent also in the
blinking signal attributed to atomic-scale fluctuations of the
plasmonic cavity6,18,22 irrespective of additional chemical or
adsorption site modifications of the investigated system. The
significance of both the static and fluctuating atomic structure
on plasmonic properties has been studied both theoret-

ically23−32 and experimentally,10,22,33−36 the latter, however,
lacking precise characterization at the single-atom level.
Here, we address this issue using the well-controlled atomic-

scale environment in a low-temperature scanning tunneling
microscope (STM) in ultrahigh vacuum (UHV). We build the
plasmonic structures of interest by depositing single Au atoms
from a Au tip on a clean Au(111) surface and approaching
them again with the tip until a single-atom contact is formed.
Applying a voltage bias across such a contact results in
electroluminescence due to the decay of the plasmonic modes
excited in the junction by the current. The resulting light
emission signal can be temporally monitored.12,14,37−41 We
observe irreversible changes in the plasmonic properties of the
junction as well as light intensity fluctuations on the temporal
scale of seconds, both of which are correlated with the
transport properties of a single-atom contact. Our results agree
with theoretical predictions23,28 and show that minute changes
in the atomic structure at or near the junction substantially
modify the properties of the plasmonic antenna.
The experiments have been performed in a home-built low-

temperature (4 K) UHV STM with optical access.42 We
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couple its outputs to a single-photon avalanche photodiode
(SPAD, MPD-PDM) and an optical spectrograph (Acton SP
300i, CCD camera: PI-MAX 4). The spectra presented in this
work have not been corrected for the detector sensitivity. The
Au(111) crystal is cleaned by repeated cycles of Ar+ sputtering
and annealing (up to 850 K). We used electrochemically
etched43 Au wires for tips.
First, we study the influence of a single-atom transfer on the

plasmonic properties of the junction. Figure 1(a) shows an
STM image recorded from top to bottom in constant current
mode. During acquisition, the scanning is interrupted at the
position marked by the arrow, where a single atom is deposited
by closely approaching the surface with the tip (see the
Supporting Information for procedural details).10,44 The scan
is then continued as before. The spectrally integrated light
intensity is simultaneously recorded during the scan, Figure
1(b), revealing that the deposition of an atom changes the
observed photon yield. In the lower part of Figure 1(b), the
intensity averaged over an area of homogeneous electro-
luminescence is 22% lower than in the upper part for the same
tunnel current. Over several measurements with different tips,
we find that the electroluminescence changes in the range of
3−22%. However, the shape of the spectra obtained before and
after atom deposition (Figure 1(c)) are similar, suggesting that
the excited plasmonic modes in the STM junction do not
change significantly. Spatially, we observe a reduced electro-
luminescence intensity (Figure 1(b)) on top of the deposited
atom and on a surface defect (marked by a dashed circle),
which can be assigned to the local variation of the density of
electronic states of the sample that modulates the electro-
luminescence.15,16 However, the overall reduction of the
plasmonic signal can be interpreted as a change of a local
cavity structure due to a single-atom transfer, which affected
both the plasmonic enhancement and the local density of
states of the tip.
Next, we employ atomic contact experiments to increase the

sensitivity for tip apex changes (Figure 2(a)). Generally, single-
atom contacts manifest their quantum nature through
conductance (G) quantization. For each fully open current
transmission channel, the conductance is 1 G0 = 77.48 μS, as
derived in quantum transport.45 In the case of Au, a

conductance of 1 G0 indicates that the contact is formed
between two atoms only and the conductance is dominated by
one transmission channel.46 To reduce heat dissipation at high
currents in our experiment, we apply a rather low voltage (on
the order of 1 V) and operate the junction in an overbias light
emission regime that leads to geometrically more stable
junctions that undergo changes only on a time scale of seconds
and remain intact over extended measurement times. Overbias
emission occurs when the energy of the emitted photons
exceeds the potential difference U seen by the transmitted
electrons, hν > eU.47−53 The underlying mechanism is strongly
debated in the literature and has either been assigned to
plasmon-mediated coherent interaction between elec-
trons50,54−56 or photon emission from a hot electron gas.49,51,57

The stability at low bias condition, supported by a low-
temperature (4 K) environment, enables maintaining a single-
atom contact for several minutes using the constant current
feedback loop of an STM. After a single-atom contact has been
formed, we turn on the feedback loop to stabilize the
conductance at 1 G0 by adjusting the tip height z.
Simultaneously, we monitor the optical spectrum (Figure
2(b,c)), the integrated light intensity measured by the SPAD
(Figure 2(d)), and the relative change of the z position (Figure
2(e)) as a function of time. During the measurement, we
observe electroluminescence intensity variations, while the
shape of the normalized spectra (Figure 2(c)) remains
unchanged within our experimental precision. This is
remarkable, since even minor voltage pulses of only a few
milliseconds can modify tips enough to affect the spectral
shape substantially. Such pulses can shift plasmon lines by
tenths of an eV and usually affect the relative intensities of
different spectral modes by modifying the mesoscopic tip
structure,58−61 but these changes are not seen here. As
observed, the constant current and constant voltage condition
is unable to induce such strong tip modifications.
Upon starting the measurement of Figure 2, one can

immediately observe a tip retraction of more than 0.5 nm
(Figure 2(e)), due to a tip elongation while the feedback loop
is set to keep a constant current (77.48 μA, corresponding to 1
G0) condition. The tip elongation can be linked to thermal
expansion due to power dissipation (see Supporting

Figure 1. (a) STM topographic image of the Au(111) surface recorded under electron tunneling conditions, U = −2.5 V, I = 1 nA. During the scan
(from top to bottom), a single atom was deliberately deposited from the tip apex onto the surface by atomic manipulation at the position marked
by the arrow (for details, see text). Scale bar: 1 nm. (b) Light intensity map recorded simultaneously with (a). The values in the bottom and upper
part of the image indicate the average light intensity before and after tip modification. (c) Optical spectra recorded on the position marked by the
small circles at the bottom right of (a) and (b) before (yellow curve) and after (red curve) atom deposition; U = −2.5 V, I = 1 nA, integration time:
50 s.
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Information). In our study, we use bias voltages on the order of
1 V, which are necessary to drive the light emission, in contrast
to bias voltages in the range of a few mV usually applied to
study atomic contacts for which power dissipation effects are
negligible. Remarkably, a measurement in contact results in
only minor modifications to the surface, reflecting the fact that
it is mostly the structure of the tip that is altered (see
Supporting Information for more details).
In addition to a continuous relaxation of geometry, rapid

steps of the emission intensity can also be identified even
though the light emission in Figure 2 is driven by a constant
current. With respect to the latter, we find three different types
of behavior: At t = 195 s, an extremely small alteration of
geometry (Δz = 6 pm) is accompanied by a significant rise of
intensity (+40%), at t = 335 s, a major decrease of z (Δz =
−170 pm) leads to a small increase of intensity (+8%), and at t
= 470 s, a large increase of z (Δz = 180 pm) leads to a drastic
reduction of emission (−47%). These events are marked by
arrows in Figure 2(d,e). Every such irreversible intensity
modification is assigned to a geometry change at the tip or,
more generally, in the junction; however, their relative size and
even relative sign seem to be completely arbitrary. We also

observe that fluctuations of the current due to reversible
junction instabilities (noise in Figure 2) counteracted by the
feedback loop translate into reversible fluctuations in the light
emission. Additionally, we observe that the intensity
modifications do not show any significant emission angle
dependence, as evidenced in Figure 2(b,d), where these
changes are of the same order and sign while the light is
recorded in two different emission directions by two
independent detectors.42 The results of Figures 1 and 2
together show that single-atom changes to a tip apex and its
repositioning on the order of a single-atom length do not
modify the spectral envelope of the electroluminescence but do
vary its intensity drastically.
Monitoring the geometry changes without the interference

of a feedback circuit allows us to probe the relation between
the optical and transport properties in more detail. We follow
the rupture process of the junction by retracting the tip at a
constant speed of 5 pm/s while simultaneously monitoring
light intensity and conductance (Figure 3). In contrast to the
experiment in Figure 2, here the junction is deliberately put
under increasing mechanical tension that provokes successive
modifications to the junction. As expected from such a break-

Figure 2. (a) Illustration of the experiment in which the tip of an STM forms a single-gold-atom contact. The current passing through the junction
excites the luminescence. During measurements, the current, position, and light emission are monitored. (b) Time-trace of optical overbias
emission spectra measured for a single-atom contact with a conductance of 1 G0. The plot consists of 100 spectra, each recorded with 5 s of
integration time. (c) Spectra from (b) normalized to the maximum. (d,e) Simultaneously recorded light intensity measured by the SPAD (d) and z
position (e) with a 20 ms integration time per point. The current feedback was enabled during the measurement to maintain 1 G0, U = 1 V, I =
77.48 μA.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.1c02207
Nano Lett. 2021, 21, 7221−7227

7223

https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.1c02207/suppl_file/nl1c02207_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.1c02207/suppl_file/nl1c02207_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02207?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02207?fig=fig2&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.1c02207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


junction experiment,45 we observe steps in the conductance
that are often close to multiples of G0, indicating that our
junction consists of more than one atom. Note that the total
displacements in Figure 3(a−c) are only 200 to 400 pm, which
is no more than 1 to 2 times the nearest neighbor distance of
two Au atoms. Apart from large conductance steps, which can
be attributed to a reduction of transport channels resulting
from the removal of atoms from the narrowest constriction,
fractional steps in the conductance are also observed. Again,
conductance and light intensity changes occur together, but no
clear correlation in relative magnitude and sign can be
determined. Under these experimental conditions, minimal
changes of conductance can have strong consequences for
emission intensity (Figure 3(b)). The optical spectra recorded
at high conductance values (see the Supporting Information)
reveal the expected and reversible blue-shift of the plasmonic
modes due to the modifications in local charge density
distribution.23,28,62 However, the result remains broadly
consistent with changes at the very tip apex being primarily
expressed in the electroluminescence intensity and not the
optical spectral envelope. These observations point at the
occurrence of a number of different processes.
Our results show that a junction operated under steady-state

or dynamic conditions will incur electrical, mechanical, and
thermal fluctuations that modify its electroluminescent proper-
ties. In general, the rate of light emission (R) excited by the
current in an STM junction can be expressed as50,63

R h U P h T h U( , ) ( ) ( , )ν α ν ν= (1)

with P(hν) being the spectral plasmonic enhancement factor
depending on the optical density of states,63 T(hν, U) dictating
the energy- and bias-dependent charge transport, which excite
the plasmonic modes in the junction, and α being an
experimental scaling parameter. Both P(hν) and T(hν, U)
depend on the geometry of the junction, which affects the
spectral shape through the local plasmonic density of states
and electronic transport, respectively.
First, we consider the effect of the current on the emission.

At higher currents, more photons can be emitted by increasing
T(hν, U). Upon decreasing conductance, we expect a more

than proportional reduction of light emission due to the
higher-order overbias emission mechanism. Examples can be
seen in Figure 3(a) at z = 25 pm, z = 70 pm, and z = 170 pm,
where a conductance decrease leads to a decrease in emission.
Focusing on the intensity behavior around 1 G0 conductance
(Figure 3(d)), we find an emission minimum due to shot noise
minimization at integer multiples of G0, which has been shown
to result in a minimum of light emission.48 Such minima are
often obscured in the experiment, because more than one
conduction channel may be involved in the charge transport.
Next, we consider the apical atoms that form the tip antenna

and their reorganization due to mechanical rupture-induced
processes. Comparing Figure 3(a) and 3(b) suggests that while
in (a) conductance steps reduce emission, but the slow
relaxation tends preferentially toward higher values of light
intensity, in (b) the tip jumps to higher emission but relaxes
mostly toward lower values of light intensity. Similarly to the
discussion of the steps in Figure 2, also for the relaxation
processes in Figure 3, there appears to be no preferred sign of
change in emission when the conductance reduces or increases.
Conductance changes can be related to modifications in the
atomic structure of the junction.23,45,46,51 Variations on the
order of 1 G0 can be assigned to a removal/addition of single
atoms at the narrowest constriction.45,64 Finer changes may
occur due to atomic rearrangements near the junction, such as
an atom at the tip moving while breaking and forming bonds
with its neighbors.23,46 Rearrangements influence the trans-
mission coefficients of the channels involved in the transport
(T(hν, U)),45 and as a consequence, the luminescence
changes. Similar effects can occur when the tip is expanding
thermally, as in Figure 2(d,e). In addition to mechanical
rupture due to either tip displacement or thermal effects, the
atomic structure may spontaneously rearrange as a result of the
current flow that induces electromigration,65 which is efficient
for gold and has often been employed to fabricate single-atom
junctions.51

The changes in the plasmonic properties of the junction
described by P(hν) in eq 1 are also related to the modifications
of atomic structure,18,23,24,26−30,66 and are observed in
photoluminescence,10 that is, without current excitation. In

Figure 3. (a−c) Conductance (dark gray) and overbias light intensity (red) recorded during tip retraction with a constant speed of 5 pm s−1. The
three different point contacts in (a−c) were formed by approaching the tip toward the same surface area until a conductance of 5 G0 was reached. U
= −0.8 V. (d) Light intensity vs conductance curve extracted from the data marked by the gray rectangle in (c). Note the existence of a local
minimum at 1 G0. Further data sets can be found in the Supporting Information.
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particular, Rossi23 et al. and Marchesin28 et al. calculated that
in point contacts the plasmonic mode intensity is sensitive to
the atomic-scale structure and the modifications of the modes
coincide with changes in the conductance with the sign
depending on the mode. Our results agree remarkably well
with these theoretical predictions regarding the total emitted
intensity and confirm the occurrence of simultaneous
conductance and luminescence steps. The impact on the
charge flow in a slightly modified atomic structure, regardless
of the plasmon excitation T(hν, U) results in the local
modification of polarizability that is reflected in the intensity of
the plasmonic response P(hν). In our experiments, we monitor
a higher-order overbias emission that depends on higher
powers of both P(hν) and T(hν, U),50 and thus, even a subtle
change in the atomic structure may result in a substantial
modification of the luminescence intensity. This explains the
significant changes in the light intensity (as at z = 190 pm in
Figure 3(b)) observed in our experiments and demonstrates
that overbias electroluminescence is an intrinsically sensitive
probe to changes of the atomic structure in point contacts.
Indeed, occasionally, a step change in the light intensity occurs
with an insignificant change in the conductance as in Figure
3(a) at z = 115 pm or z displacement (Figure 2(c,d), t = 195
s), which can be attributed to an atomic rearrangement further
away from the narrowest constriction.
In summary, we have investigated and characterized

spontaneous variations of plasmonic luminescence output in
response to different current or tip displacement control
parameters at the single-atom limit. This study was carried out
for electroluminescence from Au single-atom contacts in UHV
at cryogenic temperature in an exceptionally well-defined
environment, profiting from the precision achievable by STM.
We can ascribe the observed fluctuations to current changes as
well as to mechanical stress and thermal effects that modify the
atomic structure of the tip apex and reproduce key theoretical
predictions correlating modifications of conductance with
modifications of plasmonic properties,23,28 both originating
from the modified electronic structure. Even under well-
controlled conditions, we observe a large variety of
modifications of the intrinsic plasmonic response of the system
P(hν) and the plasmon excitation efficiency T(hν, U), which
call for detailed calculations on their atomistic mechanisms.
Our results have stark implications in spectroscopies other
than STML that leverage plasmonic enhancement such as
SERS, TEPL, and TERS. These atomic-scale phenomena are in
particular critical for picocavities10,13,18−20 and measurements
in the contact regime9,47,67 above cryogenic temperatures or
when significant currents are employed. When local optical
enhancement at the junction is considered, single-atom
manipulation and stabilization of the junction may be
employed to stabilize the output signal,10 facilitating studies
with submolecular resolution. We observe the effects of slightly
elevated temperature (ca. 50 K). At higher temperatures (e.g.,
room temperature) or under laser illumination, spontaneous
atomic rearrangements are even more probable and thus result
in undesired intensity blinking that would modulate the
desired optical signal during investigations of more compli-
cated systems. Such fluctuations may also affect the efficiency
and stability of optical antenna devices based on the emission
of plasmonic light excited by inelastic tunneling.51,68−71 In this
respect, further investigations and development of stabilization
strategies will be of significant interest.
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