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Explicit and implicit network connectivity:
Analytical formulation and application to transport processes
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Connectivity is a fundamental structural feature of a network that determines the outcome of any dynamics
that happens on top of it. However, an analytical approach to obtain connection probabilities between nodes
associated with to paths of different lengths is still missing. Here, we derive exact expressions for random-walk
connectivity probabilities across any range of numbers of steps in a generic temporal, directed, and weighted
network. This allows characterizing explicit connectivity realized by causal paths as well as implicit connectivity
related to motifs of three nodes and two links called here pitchforks. We directly link such probabilities to
the processes of tagging and sampling any quantity exchanged across the network, hence providing a natural
framework to assess transport dynamics. Finally, we apply our theoretical framework to study ocean transport
features in the Mediterranean Sea. We find that relevant transport structures, such as fluid barriers and corridors,
can generate contrasting and counterintuitive connectivity patterns bringing novel insights into how ocean
currents drive seascape connectivity.
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I. INTRODUCTION

Connectivity is a key feature of network’s structure [1,2]
that determines how strongly and quickly different nodes can
be linked by consecutive edges [3–5]. Indeed, for any dynam-
ics running over a network, connectivity strongly influences
the temporal and spatial evolution of the associated processes
and patterns [6]. This has been proven in several contexts,
such as epidemic or information spreading [7,8], biological
interactions [9], neural networks [10], social systems [11],
and fluid transport [12]. Globally, connectivity is determined
by topological properties of the network: link density, degree
and weight distributions, clustering, modularity, reciprocity,
etc. However, these metrics describe statistical features of the
network and do not inform about local patterns of connectivity
between specific pairs of nodes [3,13].

The conventional approach to characterize pairwise con-
nectivity consists in studying random walks and their
trajectories. In fact, random walkers can be seen as agents that
navigate through the network drawing paths between pairs of
nodes [14–16]. Each of these pathways can be thus defined
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by the sequence of nodes visited by a random walker and, by
multiplying the node-to-node single-step transition probabil-
ities, one can obtain the probability of occurrence of any of
them [17–20].

In this way, connectivity can be characterized within a solid
probabilistic framework. Moreover, when a given quantity,
such as people [21], fluid [12], goods [22], or information
[23], is transported across the network, random walker tran-
sition probabilities can be related to fractions of exchanged
quantities between node pairs. More concretely, this means
that it is possible to calculate the probability that an amount of
quantity that has been tagged or sampled in a given node will
reach another specific destination node forward- or backward-
in-time, respectively. As a result, random walks can also
mimic transport, dispersion and mixing processes across a
network [18,24]. Eventually, this could permit to rigorously
establish a quantitative link between the structural features
of a network and the dynamics of any transported quantity
across it. Such connection would also be relevant in temporal
networks, especially under mixing regimes in which network
connectivity patterns and random walks unfold on comparable
time scales [25,26].

However, to our knowledge, analytical expressions for
connectivity probabilities between any pair of nodes that
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FIG. 1. Sketch of the different connectivity probabilities consid-
ered. The sections introducing each quantity are indicated within
brackets while greek letters correspond to their mathematical
expressions.

take into account connections realized by paths of different
lengths (i.e., paths composed of different number of steps)
in a “cumulated” manner are, to our knowledge, still lacking.
Indeed, while the probabilities of connection realized by paths
of the same lengths (i.e., imposing a prescribed number of
steps) are readily obtained with simple matrix products, the
cumulated probabilities across generic ranges of path lengths
(i.e., across different numbers of steps) has not been derived
yet. This is mainly due to the fact that connection events
between two nodes realized by paths of different lengths are
not mutually-exclusive from a probabilistic point of view,
making the calculations to obtain them quite convoluted. It
is worth noting that this shortcoming holds for both static
and temporal network. As such, the current approach to study
pairwise connectivity is through Monte Carlo numerical sim-
ulations. Specifically, it consists in releasing large numbers of
random walkers in a given starting node and in estimating the
connection probability with any other destination node from
the proportion of walkers that ended up there after a given
number of steps.

Moreover, also the concept of connectivity by itself could
be extended. Indeed, the explicit connectivity probabilities de-
scribed above are conceptually associated with the pathway of
a random walker that joins two nodes, symbolizing a kind of
“parent-child” relationship between starting and ending node.
Nevertheless, we can also be interested in looking contempo-
raneously at the entire network in a synoptic fashion. This is
the case, for instance, when modeling a transport or spreading
phenomena on a network [27] or when tracking differentiation
across a phylogenetic tree [28]. In such processes, each pair
of nodes could be simultaneously influenced by a third node
(or more than one) and such “sibling-sibling” relationships
can determine similarities between nodes pairs that we could
regard as a form of implicit connectivity. These connectivity
patterns, at one step, are realized by a particular kind of three-
nodes motif, here called pitchfork, composed of a node acting
as common source (or destination) for two other nodes (see
Fig. 1). Examples of such kind of interactions can be found in

ecological networks when two species compete for the same
resource [29] or in social systems when two agents are both
influenced by a third one [30]. Thus, implicit connections
associated with pitchforks are in this sense complementary to
the aforementioned standard explicit patterns and, despite be-
ing mostly overlooked, could play a major role in determining
network dynamics.

In this paper, we derive exact analytical expressions for
explicit and implicit random-walk connectivity probabilities
across any range of numbers of steps in a generic temporal,
directed and weighted network. First, in Sec. II we set the the-
oretical background and delineate the relationships between
random walk transition probabilities and the transport dynam-
ics of a given quantity across the network. In Secs. III and IV,
we introduce the concept of cumulated connectivity that per-
mits to calculate connection probabilities not only for a fixed
number of steps but also across an arbitrary range of possible
numbers of steps, allowing probability values to eventually
saturate toward an asymptotic value. Such approach is adopted
to provide exact formulas for: (i) explicit connectivity patterns
associated with causal paths among two nodes and (ii) implicit
connectivity patterns realized by multistep pitchforks (see a
summary of the different connectivity patterns in Fig. 1).
Moreover, if a given quantity Q is transported across the
network, then we can relate random walk probabilities to pro-
cesses of tagging and sampling such quantity in specific nodes
of the network. This allows linking the probabilistic view of
connectivity with an interpretation in terms of transport and
diffusion. In Sec. V, we calculate connection probabilities for
two simple networks and we numerically confirm our analyt-
ical results highlighting significant differences between static
and temporal network connectivity. In Sec. VI, we further
apply our theoretical approach to characterize connectivity
probabilistic features of a network describing the transport of
surface water masses across the Mediterranean Sea [12,31–
33]. From probabilistic estimations of connectivity we provide
both specific site-to-site and global basin-scale statistics. We
find very relevant differences among explicit and implicit
probabilities and across different ranges of number of steps.
We also show that such probabilities, in average, saturate to
different, nontrivial values. Finally, we discuss the implica-
tions of such results.

II. RANDOM WALKS AND TRANSPORT PROCESSES

A. Network adjacency matrix and its normalizations

We consider a generic directed, weighted, and temporal
network of N nodes. Hence, each of its links is directed
and characterized by a positive weight that measures the
“intensity” of the connection realized between two nodes.
Moreover, due to the temporal character of the network, such
weights can change in time. Given a discrete time sequence
{t0, t1, . . . , tM−1, tM}, the time-dependent structure of the net-
work can be thus described by a set of adjacency matrices in
which each element Atl → tl+1

i j is the weight of the link from
node i to node j during the time interval [tl , tl+1]. For con-
vention, links are hereafter established forward-in-time across
different layers representing consecutive discrete times [34].
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We define the out-strength and in-strength of node i as

SO
i (tl → tl+1) =

∑
j

Atl → tl+1
i j , (1)

SI
i (tl → tl+1) =

∑
j

Atl → tl+1
ji . (2)

Assuming that SO and SI are always positive, two normaliza-
tions for the matrix Atl → tl+1

i j are possible:

Ftl → tl+1
i j = Atl → tl+1

i j

SO
i (tl → tl+1)

, (3)

Btl+1 → tl
ji = Atl → tl+1

i j

SI
j (tl → tl+1)

, (4)

obtaining the following conservation conditions:∑
j Ftl → tl+1

i j = 1 and
∑

i Btl+1 → tl
ji = 1.

B. Random walk transition probabilities
and transport dynamics

Once the adjacency matrices of the network Atl → tl+1 are
normalized, a random walk can be defined on it. Indeed,
in the [tl , tl+1] time interval, Ftl → tl+1

i j is the forward-in-time
transition probability for a random walker to jump from node
i to j while Btl+1 → tl

ji is the backward-in-time transition prob-
ability to go from j to i. Hence, the direction of the links
is always associated with the forward-in-time direction but
still, for a given link, we are able to define both the forward-
and backward-in-time transition probabilities. If we assume
a Markovian dynamics, then the probability for a random
walker to visit a given sequence of nodes will be given by the
product of the associated single-step transition probabilities.

If link weights can be associated with a generic transported
quantity Q across the network, random walk transition prob-
abilities can be related to processes of tagging and sampling
the transported quantity. Indeed, imagining to tag a portion
of Q inside i at tl , Ftl → tl+1

i j is the probability that such tagged

quantity will arrive to j at tl+1. Consequently, Btl+1 → tl
ji is the

probability of sampling a portion of Q in j at tl+1 that was in
i at tl . Pushing forward this analogy, we can quantify the frac-
tion of transported quantity between the pair of nodes i, j in
the time interval [tl , tl+1] by means of transition probabilities
[18,24]. Indeed, Ftl → tl+1

i j is the fraction of Q present in i at tl
that arrives to j at tl+1. Similarly, Btl+1 → tl

ji is the fraction of Q
present in j at tl+1 that was in i at tl .

C. Paths in temporal weighted networks

We denote a path μ of M-steps between nodes i and
j as a (M + 1)-tuple {i, k1, . . . , kM−1, j} corresponding to
the sequence of nodes visited by a random walker at times
{t0, t1, . . . , tM−1, tM}.

Thus, assuming a Markov process, the forward-in-time
probability for a random walker to take the M-steps path
μ under the condition of starting in i and ending in j is
[18,20,24,35]

Ft0 → t1
ik1

Ft1 → t2
k1k2

. . . FtM−2 → tM−1

kM−2kM−1
FtM−1 → tM

kM−1 j . (5)

Conversely, the backward-in-time probability to take the
M-steps path μ under the condition of starting in j and

ending in i is

BtM → tM−1

jkM−1
BtM−1 → tM−2

kM−1kM−2
. . . Bt2 → t1

k2k1
Bt1 → t0

k1i . (6)

Note that, due to the temporal dependence of the network,
the above probabilities depend not only on the number of steps
(as in the static case) but also on the specific initial or final
time considered.

III. EXPLICIT CONNECTIVITY

In this section we provide exact analytical expressions for
random walk probabilities associated with paths. Depending
on the number of steps considered, we can define single-step
(M = 1) or multistep (M > 1) connectivity. First, we intro-
duce connectivity for the case of a fixed number of steps M
(noncumulated connectivity). Then, we extend this conven-
tional concept by considering connections occurring over a
given range of number of steps spanning 1 to M (cumulated
connectivity). Hence, the noncumulated connectivity is asso-
ciated with the probability that a random walker joins two
nodes in a specific number of steps. Note that, for the temporal
case, since the network is time-dependent, we should also
specify the initial time. This probability does not include the
possibility of reaching the destination node before or after
the exact number of steps chosen. Cumulated connectivity
overcomes this limitation by considering the probability that a
random walker reaches the destination in an arbitrary number
of steps as long as it is comprised within a given range of
numbers of steps. When a generic quantity Q is transported
across the network, we can also find a relation between the
above probabilities and portions of Q (see Sec. II B).

A. Single-step explicit connectivity

Single-step explicit connectivity is associated directly with
the elements of the F and B matrices (see Sec. II B). Consider-
ing the [tl , tl+1] time interval, we define the single-step explicit
connectivity calculated forward-in-time from node i to j as

γ f (tl , tl+1) = Ftl → tl+1
i j . (7)

Similarly, we define the backward-in-time single-step explicit
connectivity as

γ b(tl , tl+1) = Btl+1 → tl
i j . (8)

If some generic quantity Q is transported across the network
and one tags an amount of it that is present in node i at time
tl , then the probability that will arrive in node j at time tl+1 is
exactly Ftl → tl+1

i j . Analogously, if one samples an amount of Q
in i at time tl+1, then the probability that was in j at time tl is
Btl+1 → tl

i j .

B. Noncumulated multistep explicit connectivity

To obtain the total probability of connection among any
given pair of nodes in exactly M steps, we need to sum the
probability of each of the paths that connect that pair. Hence,
using the Chapman-Kolmogorov equation, we define, given a
fixed number of steps M, the noncumulated multistep explicit
connectivity calculated forward-in-time as

γ f (t0, tM ) = Ft0 → t1 Ft1 → t2 . . . FtM−2 → tM−1 FtM−1 → tM . (9)

042309-3



ENRICO SER-GIACOMI et al. PHYSICAL REVIEW E 103, 042309 (2021)

t0 tM-1 tM...

...t0 t1 tM

Ft0   t1

Ft0   t1 FtM-1   tM...

BtM   tM-1

BtM   tM-1 Bt1   t0...

FIG. 2. Several consecutive multistep windows are used together
to calculate cumulated connectivity matrices. Each window is de-
fined by an initial time, a final time and a certain number of steps
in between. One of the two times is kept fixed (either the initial or
the final one) while the other is moving while it draws windows
with a progressively larger number of steps. Specifically, in the
forward-in-time case, the initial time t0 is fixed and we increase the
number of steps ending at larger tl ’s up to tM (top panel). Going
backward-in-time, we instead end always at tM but starting from
decreasing tl ’s until reaching t0 (bottom panel).

Similarly, we define the noncumulated multistep explicit con-
nectivity calculated backward-in-time:

γ b(t0, tM ) = BtM → tM−1 BtM−1 → tM−2 . . . Bt2 → t1 Bt1 → t0 . (10)

In both definitions above we used the fact that summing
probabilities over all the paths corresponds to performing the
matrix product of the associated adjacency matrices. There-
fore, γ f is a matrix whose element i − j is the probability
for a random walker to reach j starting from i after M-steps
forward-in-time. Similarly, γ b is a matrix whose element i − j

is the probability for a random walker to reach j starting
from i after M-steps backward-in-time. It is straightforward to
prove that the matrix elements of both γ f and γ b are always
bounded in between 0 and 1.

C. Cumulated multistep explicit connectivity

We now consider the case of multiple numbers of steps
together to introduce the novel concept of cumulated connec-
tivity (see Fig. 2). We still refer to the discrete time sequence
{t0, t1, . . . , tM−1, tM} introduced before and we provide the
probability for a random walker to connect two nodes in a
finite range of possible number of steps. In the forward-in-
time case, the initial time t0 is fixed and the number of steps
increases progressively ending up at larger tl ’s. Backward-in-
time, we instead end always at tM but starting from decreasing
tl ’s while increasing the number of steps. Without loss of
generality, we consider in the following multistep connectivity
realized in a range of number of steps comprised between 1
and M.

1. Deriving up to three-steps cumulated multistep
explicit connectivity

Let us start considering the forward-in-time connectivity.
Keeping fixed the initial time t0, we focus on a starting node i
and a destination node j and we aim to find an expression for
the union of the multistep explicit probabilities of one, two,
and three steps. We start defining the following three events:

(1) A: reaching j from i in one step,
(2) B: reaching j from i in two steps,
(3) C: reaching j from i in three steps.
Since the events connecting i to j in different numbers of

steps are not mutually exclusive, we cannot obtain the three-
events union probability BY simply summing their individual
probabilities. Such union probability, which will be used to
define the cumulated multistep explicit connectivity, can be
written as

P(A ∪ B ∪ C)i j = P(A) + P(B) + P(C) + P(A ∩ B ∩ C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C)

= P(A) + P(B) + P(C) + P(A)P(B|A)P(C|A ∩ B) − P(A)P(B|A) − P(A)P(C|A) − P(B)P(C|B). (11)

Following Eq. (9), the multistep connectivity probabilities of the events A, B, and C are

P(A) = Ft0 → t1
i j , (12)

P(B) =
∑

k

Ft0 → t1
ik Ft1 → t2

k j , (13)

P(C) =
∑
k,l

Ft0 → t1
ik Ft1 → t2

kl Ft2 → t3
l j . (14)

Using Eqs. (12), (13), and (14) into Eq. (11) we obtain

P(A ∪ B ∪ C)i j = Ft0 → t1
i j +

∑
k

Ft0 → t1
ik Ft1 → t2

k j +
∑
k,l

Ft0 → t1
ik Ft1 → t2

kl Ft2 → t3
l j + Ft0 → t1

i j Ft1 → t2
j j Ft2 → t3

j j

− Ft0 → t1
i j Ft1 → t2

j j −
∑

l

Ft0 → t1
i j Ft1 → t2

jl Ft2 → t3
l j −

∑
k

Ft0 → t1
ik Ft1 → t2

k j Ft2 → t3
j j . (15)
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Developing the second and the third terms in Eq. (15), we find

P(A ∪ B ∪ C)i j = Ft0 → t1
i j +

∑
k �= j

Ft0 → t1
ik Ft1 → t2

k j +
∑
k �= j

∑
l �= j

Ft0 → t1
ik Ft1 → t2

kl Ft2 → t3
l j

= Ft0 → t1
i j +

∑
k

Ft0 → t1
ik (1 − δk j )F

t1 → t2
k j +

∑
k,l

Ft0 → t1
ik (1 − δk j )F

t1 → t2
kl (1 − δl j )F

t2 → t3
l j . (16)

From a geometrical point of view, impeding the indexes k and l from taking the value of j means excluding the contribution to
the union probability of all the paths that visit j more than once.

Denoting with a circle the Hadamard (or element-wise) product, we can write Eq. (16) for any pair i- j in a compact form and
define the matrix:

� f (t0, t3) = Ft0 → t1 + Ft0 → t1 (L ◦ Ft1 → t2 ) + Ft0 → t1{L ◦ [Ft1 → t2 (L ◦ Ft2 → t3 )]}, (17)

where L is the all-ones matrix minus the identity matrix, i.e., L = J − I and Li j = (1 − δi j ).

2. Generalizing up to M-steps cumulated multistep explicit connectivity

To generalize the result from the previous section, we consider the probability of the union of M different events A1, . . . , AM

and, using the inclusion-exclusion formula, we can write such probability as

P

(
M⋃

i=1

Ai

)
=

M∑
i1=1

P(Ai1 ) −
M∑

i1<i2

P(Ai1 ∩ Ai2 ) + · · · + (−1)M−1
M∑

i1<···<iM

P(Ai1 ∩ Ai2 ∩ · · · ∩ AiM )

= P(A1) + P
(
Ac

1 ∩ A2
) + P

(
Ac

1 ∩ Ac
2 ∩ A3

) + · · · + P
(
Ac

1 ∩ · · · ∩ Ac
M−1 ∩ AM

)
. (18)

Expanding Eq. (18) we find an expression for the probability union that is a generalization of Eq. (17) to the generic case of
M-steps. Keeping fixed the initial time t0, we define thus the cumulated multistep explicit connectivity calculated forward-in-time
as

� f (t0, tM ) = Ft0 → t1 + Ft0 → t1 (L ◦ Ft1 → t2 ) + Ft0 → t1
{
L ◦ [

Ft1 → t2 (L ◦ Ft2 → t3 )
]}

+ · · · + Ft0 → t1
{
L ◦ [

Ft1 → t2 . . . (L ◦ FtM−1 → tM ) . . .
]}

. (19)

Similarly, keeping fixed instead the final time tM , we derive the cumulated multistep explicit connectivity calculated backward-
in-time:

� b(t0, tM ) = BtM → tM−1 + BtM → tM−1 (L ◦ BtM−1 → tM−2 ) + BtM → tM−1
{
L ◦ [

BtM−1 → tM−2 (L ◦ BtM−2 → tM−3 )
]}

+ · · · + BtM → tM−1
{
L ◦ [

BtM−1 → tM−2 . . . (L ◦ Bt1 → t0 ) . . .
]}

. (20)

Hence, � f and � b provide the expected probabilities for a random walker to connect pairs of nodes in a range of possible
number of steps comprised between 1 and M, forward- and backward-in-time respectively. Consequently, � f corresponds also
to the probability that a portion of quantity Q tagged in node i arrives into node j, forward-in-time. Similarly, � b corresponds to
the probability that a portion of sampled quantity Q in node i comes from node j, backward-in-time.

3. Bounding M-steps cumulated multistep explicit connectivity probabilities

Let us consider the forward-in-time dynamics (the same argument holds for the backward-in-time case) and write down
Eq. (19) for a specific matrix element associated with the origin node i and destination node j, we have

Ft0 → t1
i j +

∑
k1 �= j

Ft0 → t1
ik1

Ft1 → t2
k1 j +

∑
k1 �= j

∑
k2 �= j

Ft0 → t1
ik1

Ft1 → t2
k1k2

Ft2 → t3
k2 j +

∑
k1 �= j

. . .
∑

kM−1 �= j

Ft0 → t1
ik1

. . . FtM−1 → tM
kM−1 j

= Ft0 → t1
i j +

∑
k1 �= j

Ft0 → t1
ik1

{
Ft1 → t2

k1 j +
∑
k2 �= j

Ft1 → t2
k1k2

[
. . .

(
FtM−2 → tM−1

kM−2 j +
∑

kM−1 �= j

FtM−2 → tM−1

kM−2kM−1
FtM−1 → tM

kM−1 j

)
. . .

]}
. (21)

Recalling that
∑

j Fi j = 1 and Fi j � 1, we note that the
quantity in the inner parenthesis is bounded to 1. This au-
tomatically bounds to 1 the quantity in the more external
parenthesis. Recursively, we can finally see that all the ex-
pression is bounded to 1 too.

IV. IMPLICIT CONNECTIVITY

Paths are not the only connectivity patterns that can be
found in a network. In general, one can identify different
network motifs composed of an arbitrary number of links

and nodes. Such motifs are expected to be associated with
different dynamical processes depending on their geometry.
In particular, we focus here on the so-called pitchforks mo-
tifs and their associated random walk connectivity pattern
that we call implicit connectivity. We define pitchforks as a
particular subgroup of motifs composed of three (sometimes
two) nodes and two links. We call converging pitchfork a
motif of three (or two) nodes and two links pointing to one
of them; we call instead diverging pitchfork a motif of three
(or two) nodes and two links emanated from one them (see
Fig. 3).
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FIG. 3. Schematic representation of converging (left) and diverg-
ing (right) pitchforks. Black dots represent network nodes, arrows
symbolize directed temporal links.

We relate such motifs to an implicit relationship between
two nodes i- j that are somehow influenced (or influencing) by
a third node k. If “third-party” nodes k’s are more than one for
a given pair i- j, then we consider them together summing over
k. The strength of these implicit relationships can be associ-
ated with the probability that two random walkers starting (or
arriving) in k end up (or come from) one in i and the other in
j. Similarly, the probability can be summed over k to obtain
the global implicit connection probability for i- j. As for the
explicit case (Sec. III), we can derive (see below) both non-
cumulated and cumulated implicit connectivity probabilities
and, consequently, relate these probabilities with portions of a
quantity Q transported across the network (see also Sec. II B).

Note that implicit connections studied here happen “syn-
chronously.” For the temporal case, it means that both random
walkers ensuring connections start from (or end up in) node k
at the same time. It is also the same time at which they reach
(or start from) node i and j, respectively. For static networks,
it means that we consider for each single noncumulated con-
nection two random walks of the same number of steps. From
a physical perspective, this is tantamount to sampling/tagging
a transported quantity at the same time. This requirement is
consistent with the fact that, for any dynamics running on the
network, the states of each node would change in time so that
it would be difficult to interpret nonsynchronous relationships.
More generally, if we look for a correct synoptic view of a
system, then we need to consider comparable snapshots of
the associated network, i.e., matching time intervals (temporal
case) or the degrees of separation (static case). This would
be the case, for instance, when studying indirect interactions
between competitors for the same resource in food webs,
shared “influencers” of opinions in social systems or common
sources of pollutants in fluid transport networks.

A. Pitchfork motifs and the implicit connectivity concept

1. Single pitchfork motifs

From now on, let us focus on diverging pitchforks (an
analogous approach can be used for the converging ones) over
a time interval [t0; t1]. Both links composing the pitchfork
emanated from the “source” node k and point to nodes i and j.
We look for the probability that two random walkers, released
simultaneously in i and j at t1, moving backward-in-time,
arrive together into k at t0. Such probability can be related to a
sampling process on the pair i − j. Indeed, if we take a sample
of the quantity Q in i at time t1, the probability that such
sample was in k at time t0 is Bt1 → t0

ik . Similarly, the probability
for j would be Bt1 → t0

jk . Hence, if we sample simultaneously in

FIG. 4. Degenerate pitchforks composed of two nodes instead of
three, i.e., when k = i or k = j respectively. Black dots represent
network nodes, arrows symbolize directed temporal links.

i and j at t1 the probability that both samples were in k at t0 is

Bt1 → t0
ik Bt1 → t0

jk . (22)

Note that in the particular case (called here degenerate
pitchfork) for which k = i or k = j the formulation is con-
ceptually consistent. For instance, for k = i the probability of
Eq. (22) becomes Bt1 → t0

ii Bt1 → t0
ji and the node i acts as source

as well as destination (see Fig. 4).

2. Summing over pitchforks

We now address a more general question: if one samples
a quantity in nodes i and j at t1, then what is the probability
that both samples share the same origin at t0 (regardless of the
origin nodes)? This is equivalent to looking for the probability
that two random walkers, released simultaneously in i and j
at t1, arrive backward-in-time into the same node at t0. By
generalizing Eq. (22), such probability is the simple sum over
all the k nodes that form a pitchfork with i and j. This is
because (i) the probability that a sample in i comes from k
is independent from the probability that a sample in j comes
from k and (ii) sampling quantities coming from different
k’s inside a single node are mutually-exclusive events. We
associate this backward-in-time total probability with what we
call as implicit connectivity and we define it as:

It1 → t0
i j = It1 → t0

ji =
∑

k

Bt1 → t0
ik Bt1 → t0

jk = (Bt1 → t0 TBt1 → t0 )i j,

(23)
where with TBt1 → t0 we denote the transpose of Bt1 → t0 .

Note that when i = j we have It1 → t0
ii = ∑

k (Bt1 → t0
ik )

2
that

corresponds to the probability that two random samples of
the quantity in i came from the same origin (assuming a
sampling with replacement). This measure corresponds to
the backward-in-time Rényi-entropy for q = 2 of the node i
defined in Ref. [12]. Interestingly, It1 → t0

ii is also related to
the definition of the well known Simpson index and could
be interpreted thus as a measure of diversity of origins of the
quantity contained in i.

For the case of converging pitchforks an analogous devel-
opment can be done. Indeed, when the two links converge to
a common “destination” node k, we can calculate the prob-
ability that two random walkers, released simultaneously in
i and j at t0, moving forward-in-time arrive together into k
at t1. Such probability corresponds also to the chance that
given portions of tagged quantity in i and j at t0 will reach
simultaneously k at t1.
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3. Bounding implicit connectivity probability

We want to prove that It1 → t0
i j � 1 for every i, j. Using

that Bt1 → t0
jk � 1 and Bt1 → t0

ik � 1 and that
∑

k Bt1 → t0
ik = 1 and∑

k Bt1 → t0
jk = 1 one can easily find the following relationship:

It1 → t0
i j �

∑
k

Bt1 → t0
ik = 1, (24)

It1 → t0
i j �

∑
k

Bt1 → t0
jk = 1. (25)

B. Noncumulated multistep implicit connectivity

Here, analogously to what we did for explicit connectivity
(Sec. III), we first define the noncumulated multistep implicit
connectivity by focusing on a fixed number of M steps (in-
stead of single links). We develop only the case of backward
implicit connectivity but the same reasoning can be used for
forward-in-time dynamics.

For M = 2, the multistep implicit connectivity between
node i and j is denoted as

∑
k

( ∑
l

Bt2 → t1
il Bt1 → t0

lk

∑
m

Bt2 → t1
jm Bt1 → t0

mk

)

= [(Bt2 → t1 Bt1 → t0 ) T(Bt2 → t1 Bt1 → t0 )]i j . (26)

We can generalize Eq. (26) formula to M steps to define
the noncumulated multistep implicit connectivity calculated
forward-in-time in matrix form as

λ f (t0, tM ) = (
Ft0 → t1 . . . FtM−1 → tM

) T(
Ft0 → t1 . . . FtM−1 → tM

)
(27)

and the matrix form of the noncumulated multistep implicit
connectivity calculated backward-in-time as

λ b(t0, tM ) = (
BtM → tM−1 . . . Bt1 → t0

) T(
BtM → tM−1 . . . Bt1 → t0

)
.

(28)

C. Cumulated multistep implicit connectivity

Similarly to Sec. III C, we now further consider the case
of multiple numbers of steps to introduce the cumulated mul-
tistep implicit connectivity (see Fig. 2). We refer gain to the
discrete time sequence {t0, t1, . . . , tM−1, tM} introduced before
and, without loss of generality, we consider multistep connec-
tivity realized in any number of steps comprised between 1
and M. In other words, we look for a generic analytical expres-
sion to obtain the probability of linking two nodes by implicit
connections occurring over a range of possible number of
steps. For forward-in-time dynamics, the initial time t0 is fixed
while the number of steps considered increase successively
up to largest tl ’s. Backward-in-time, the final time tM is fixed
while the number of steps considered starts from the lowest
tl ’s and increases successively.

1. Deriving up to 3-steps cumulated multistep implicit connectivity

We consider in the following the forward-in-time implicit
connectivity and, as before, all the derivations are similar
for the backward-in-time case. Keeping fixed the initial time
t0, we focus on the nodes i and j and we want to find an
expression for the union of the multistep implicit probabilities
increasing progressively the number of steps from 1 to M.
Since the probabilities at different numbers of steps are not
mutually exclusive, we cannot use the simple probability sum.
First, we evaluate the probability union from one to three steps
and then we generalize it up to a generic M. We define the
three events:

(1) A: taking a sample from i and j with the same origin
in one step,

(2) B: taking a sample from i and j with the same origin
in two steps,

(3) C: taking a sample from i and j with the same origin
in three steps.

The union of the probabilities of the above three events,
which we call cumulated multistep implicit connectivity, is
derived from Eq. (11). Following Eq. (27), we have

P(A) =
∑

k

Ft0 → t1
ik Ft0 → t1

jk , (29)

P(B) =
∑

k

( ∑
l

Ft0 → t1
il Ft1 → t2

lk

∑
m

Ft0 → t1
jm Ft1 → t2

mk

)
, (30)

P(C) =
∑

k

( ∑
l, f

Ft0 → t1
il Ft1 → t2

l f Ft2 → t3
f k

∑
m,g

Ft0 → t1
jm Ft1 → t2

mg Ft2 → t3
gk

)
. (31)

Consequently, the remaining terms of Eq. (11) are

P(A)P(B|A) =
∑

k

(∑
l

Ft0 → t1
il Ft1 → t2

lk Ft0 → t1
jl Ft1 → t2

lk

)
, (32)

P(B)P(C|B) =
∑

k

( ∑
l, f

Ft0 → t1
il Ft1 → t2

l f Ft2 → t3
f k

∑
m

Ft0 → t1
jm Ft1 → t2

m f Ft2 → t3
f k

)
, (33)

P(A)P(C|A) =
∑

k

( ∑
l, f

Ft0 → t1
il Ft1 → t2

l f Ft2 → t3
f k

∑
g

Ft0 → t1
jl Ft1 → t2

lg Ft2 → t3
gk

)
, (34)

042309-7



ENRICO SER-GIACOMI et al. PHYSICAL REVIEW E 103, 042309 (2021)

P(A)P(B|A)P(C|A ∩ B) =
∑

k

(∑
l, f

Ft0 → t1
il Ft1 → t2

l f Ft2 → t3
f k Ft0 → t1

jl Ft1 → t2
l f Ft2 → t3

f k

)
. (35)

Developing properly the sum
∑

m in Eq. (30) and the sums
∑

m,g in Eq. (31), the contributions from Eqs. (32)–(35) cancel out
inside Eq. (11) and we finally find

P(A ∪ B ∪ C)i j =
∑

k

Ft0 → t1
ik Ft0 → t1

jk +
∑

k

( ∑
l

Ft0 → t1
il Ft1 → t2

lk

∑
m �=l

Ft0 → t1
jm Ft1 → t2

mk

)

+
∑

k

( ∑
l, f

Ft0 → t1
il Ft1 → t2

l f Ft2 → t3
f k

∑
m �=l,g�= f

Ft0 → t1
jm Ft1 → t2

mg Ft2 → t3
gk

)
. (36)

From a geometrical point of view, preventing the indexes m and g from taking the values of l and f corresponds
to excluding the paths starting from i and j that converge to any common destination node more than once. Re-
calling the definition of the matrix L as the all-ones matrix minus the identity matrix i.e., L = J − I, we can write
Eq. (36) as

P(A ∪ B ∪ C)i j =
∑

k

Ft0 → t1
ik Ft0 → t1

jk +
∑

k

( ∑
l,m

Ft0 → t1
il Ft1 → t2

lk LlmFt0 → t1
jm Ft1 → t2

mk

)

+
∑

k

( ∑
l, f ,m,g

Ft0 → t1
il Ft1 → t2

l f Ft2 → t3
f k LlmL f gFt0 → t1

jm Ft1 → t2
mg Ft2 → t3

gk

)
. (37)

By using the Hadamard product and performing some transpositions, we can finally find an expression for Eq. (37), for every
pair i − j, in a compact form and define the matrix:

� b(t0, t3) = Ft0 → t1 TFt0 → t1 + Ft0 → t1 [L ◦ (Ft1 → t2 TFt1 → t2 )] TFt0 → t1

+ Ft0 → t1 (L ◦ {Ft1 → t2 [L ◦ (Ft2 → t3 TFt2 → t3 )] TFt1 → t2}) TFt0 → t1 . (38)

2. Generalizing up to M-steps cumulated multistep implicit connectivity

To generalize the result derived in the previous section, we consider the probability union of M different events A1, . . . , AM

using the inclusion-exclusion formula of Eq. (18). Keeping fixed the initial time t0, we derive thus the cumulated multistep
implicit connectivity calculated forward-in-time:

� f (t0, tM ) = Ft0 → t1 TFt0 → t1 + Ft0 → t1 [L ◦ (Ft1 → t2 TFt1 → t2 )] TFt0 → t1

+ Ft0 → t1 (L ◦ {Ft1 → t2 [L ◦ (Ft2 → t3 TFt2 → t3 )] TFt1 → t2}) TFt0 → t1 . . .

+ Ft0 → t1 [L ◦ (Ft1 → t2{L ◦ [. . . (FtM−1 → tM TFtM−1 → tM ) . . . ]} TFt1 → t2 )] TFt0 → t1 . (39)

Similarly, keeping fixed instead the final time tM , we derive the cumulated multistep implicit connectivity calculated backward-
in-time:

� b(t0, tM ) = BtM → tM−1 TBtM → tM−1 + BtM → tM−1 [L ◦ (BtM−1 → tM−2 TBtM−1 → tM−2 )] TBtM → tM−1

+ BtM → tM−1 (L ◦ {BtM−1 → tM−2 [L ◦ (BtM−2 → tM−3 TBtM−2 → tM−3 )] TBtM−1 → tM−2}) TBtM → tM−1 . . .

+ BtM → tM−1 [L ◦ (BtM−1 → tM−2{L ◦ [. . . (Bt1 → t0 TBt1 → t0 ) . . . ]} TBtM−1 → tM−2 )] TBtM → tM−1 . (40)

Hence, � f and � b provide the expected probabilities for two
random walkers released at the same time in two nodes of the
network of arriving both into the same node in over a range of
steps comprised between 1 and M, forward- and backward-
in-time respectively. Consequently, � f corresponds also to
the probability that two portions of tagged quantity Q from
a node pair will arrive to the same node forward-in-time.
Similarly, � b corresponds to the probability that two portions
of sampled quantity Q from a node pair come from the same
node backward-in-time.

V. EXAMPLE APPLICATIONS BASED ON
SIMPLE NETWORKS

We now study the performance of our novel connectivity
metrics when applied on two simple, static networks repre-
sented in Fig. 5. To start simple, we compare the analytical
and the numerical results for the forward-in-time cumulated
multistep explicit and implicit connectivity assuming no time-
dependence (Table I). In Table I we report the values of � f

and � f with M = 1, 5 and 100 for every pair of nodes in both
networks. We then perform numerical experiments releasing
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TABLE I. Tables reporting connectivity values of � f and � f with M = 1, 5, and 100 for every pair of nodes of the two example networks
shown in Fig. 5. The left table reports values for the network A and the right table reports values for the network B.

� f � f � f � f

M = 1 M = 5 M = 100 M = 1 M = 5 M = 100 M = 1 M = 5 M = 100 M = 1 M = 5 M = 100

a → a 0 0.855 1 0.52 0.84976 1 a → a 0 0.7 0.7 0.58 0.706 1
a → b 0.6 0.9856 1 0.3 0.67607 1 a → b 0.7 0.7 0.7 0 0.153 1
a → c 0.4 0.58 1 0.42 0.755562 1 a → c 0.3 0.51 1 0.3 0.51 1
a → d 0 0.9275 1 0 0.6402272 1 a → d 0 0.7 0.7 0 0.2601 1
b → a 0 0.9375 1 0.3 0.67607 1 b → a 0 1 1 0 0.153 1
b → b 0.5 0.94 1 0.5 0.73775 1 b → b 0 0.7 0.7 1 1 1
b → c 0 0.35 1 0.5 0.73775 1 b → c 0 0.3 1 0 0.3 1
b → d 0.5 0.96875 1 0 0.57058 1 b → d 1 1 1 0 0.153 1
c → a 0 0.9125 1 0.42 0.755562 1 c → a 0 0 0 0.3 0.51 1
c → b 0.7 0.964 1 0.5 0.73775 1 c → b 0 0 0 0 0.3 1
c → c 0 0.33 1 0.58 0.77971 1 c → c 1 1 1 1 1 1
c → d 0.3 0.95625 1 0 0.58398 1 c → d 0 0 0 0 0.51 1
d → a 1 1.0 1 0 0.6402272 1 d → a 1 1.0 1 0 0.2601 1
d → b 0 0.952 1 0 0.57058 1 d → b 0 0.7 0.7 0 0.153 1
d → c 0 0.52 1 0 0.58398 1 d → c 0 0.51 1 0 0.51 1
d → d 0 0.855 1 1 1 1 d → d 0 0.7 0.7 1 1 1

thousands of random walkers across the networks verifying
that their encounter probabilities match perfectly the values
of � f and � f . As highlighted in Fig. 6, we clearly see that
explicit and implicit connectivity present marked differences.
Moreover, the results show that, while explicit connectivity
is not necessarily symmetric with respect to i and j, implicit
connectivity is symmetric by definition (i.e., � f

i j = � f
ji).

We note also that, for explicit connectivity with M = 100,
the probabilities saturate to one only for the network A of
Fig. 5. This can be explained by the fact that the network A
is strongly connected while the network B is not, for such
reason the node c in the network B acts as an absorbing
state for random walkers impeding the saturation to one of
all probabilities.

To include the effect of temporal dynamics and highlight
its relevance for connectivity patterns, we also study the case
of a temporal network. To this aim, we consider the network A
of Fig. 5 and we cyclically modify some of its weights while
keeping the average equal to the original static network. In this
way, we can properly assess the differences between a tempo-

a

c
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0.4

a b

c

d

0.

a
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d

0.3

a b

c

d

0.

0.7

1

1

1

0.5

1

0.30.6

0.7

0.5

(a) (b)

FIG. 5. Examples of two small static networks: a strongly con-
nected network A (left panel) and a weakly connected network B
(right panel). Black dots represent network nodes, arrows symbolize
directed static links. Small letters label different nodes and numbers
are forward-in-time probabilities of transition associated with each
link. Note that while the network A is strongly connected, the net-
work B is not.

ral network and its aggregated static counterpart. Specifically,
we use the following temporal weights sequences:

a → b : (0.6, 0.5, 0.4, 0.7, 0.8),

a → c : (0.4, 0.5, 0.6, 0.3, 0.2),

c → b : (0.7, 0.6, 0.5, 0.8, 0.9),

c → d : (0.3, 0.4, 0.5, 0.2, 0.1),

where each sequence describes the weights of a link for five
time intervals and then is repeated, the other weights are kept
constant in time as in network A. In Table II we report the
values of � f and � f with M = 1, 5, and 100 for every pair of
nodes in both networks. We note that, consistently, for M = 1

TABLE II. Table reporting connectivity values of � f and � f

with M = 1, 5, and 100 for every pair of nodes of the temporal
version of the network A shown in Fig. 5.

� f � f

M = 1 M = 5 M = 100 M = 1 M = 5 M = 100

a → a 0 0.865 1 0.52 0.8705 1
a → b 0.6 0.9952 1 0.3 0.7102 1
a → c 0.4 0.52 1 0.42 0.7829 1
a → d 0 0.9325 1 0 0.6438 1
b → a 0 0.9375 1 0.3 0.7102 1
b → b 0.5 0.94 1 0.5 0.766 1
b → c 0 0.4 1 0.5 0.766 1
b → d 0.5 0.96875 1 0 0.5581 1
c → a 0 0.9125 1 0.42 0.78296 1
c → b 0.7 0.964 1 0.5 0.766 1
c → c 0 0.319 1 0.58 0.80344 1
c → d 0.3 0.956 1 0 0.5869 1
d → a 1 1.0 1 0 0.6438 1
d → b 0 0.95 1 0 0.5581 1
d → c 0 0.55 1 0 0.5869 1
d → d 0 0.87 1 1 1 1
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FIG. 6. Schematics highlighting the differences between explicit
and implicit connectivity metrics applied to both aggregated and
temporal descriptions of the network A of Fig. 5. The four upper
panels represent explicit and implicit connections for M = 1 and 5
with arrows colored according to their probabilities (see also Table I).
The two lower panels show the probability differences (i.e., the
aggregated case, Table I, minus the temporal case, Table II) of both
explicit and implicit metrics of connectivity for M = 5.

and 100 the probabilities coincide with the static case. Indeed,
on the one hand, in the first time interval the static network
A coincide with its temporal version while, on the other hand,
for M = 100 probabilities saturate to 1 driven by links geome-
try rather than weight’s values. As shown in Fig. 6, for M = 5
we can find instead significant differences between the static
and aggregated case that are a clear signature of the temporal
dynamics.

All in all, the above results suggest that � f and � f can
provide different and complementary information about the
connectivity processes occurring across a network. Moreover,
as already pointed out by several studies [2], connectivity
patterns can change significantly between a full temporal net-
work description and its aggregated counterpart and this is
well reflected in our simple examples.

VI. APPLICATION TO OCEAN TRANSPORT

We now apply our theoretical framework on a real-case
network representing the dynamics of fluid elements by geo-
physical transport processes (e.g., oceanic or atmospheric
circulation). Network approaches have demonstrated great ef-
fectiveness in assessing transport and mixing of fluid parcels
in both theoretical and geophysical settings [12,24,36–40].
Studying the connectivity of such networks consists in esti-

mating the probability of exchanging fluid parcels among dif-
ferent geographical locations. Since water (air, respectively)
parcels carry numerous particulate and dissolved substances,
connectivity is tantamount to evaluating how any almost-
passive tracer is transported and dispersed by the oceanic
(atmospheric, respectively) circulation. As such, relevant ap-
plications of transport networks already include studying the
spread of oceanic tracers [41,42], microplastics [43], biologi-
cal propagules [44–47] and of atmospheric pollutants [48].

Focusing on the ocean, network-based studies recently
reported the presence of both preferential corridors and
semipermeable barriers of transport within realistic oceanic
flows [12,18], as documented also by alternative methods
developed from dynamical systems theory [49,50]. These
dynamical features, which were associated with relatively per-
sistent fronts [51] (jetlike currents [52], respectively) tend to
prevent (facilitate, respectively) the chaotic advection of water
parcels across (within, respectively) them. Their existence
determines the magnitude of connectivity among distinct
oceanic subregions [53] and results in the emergence of broad-
scale transport patterns [31,42,44]. However, this view of
ocean connectivity has been mainly described by only consid-
ering explicit connections associated with a precise transport
duration. Hence, the cumulated and implicit approaches in-
troduced in the previous sections can bring new insights into
how different places of the ocean can be connected by water
parcels dispersal. In the following, we apply our previous
analytical results to provide a broader and more general per-
spective of the connectivity of a realistic transport network
in the Mediterranean Sea. In particular, we illustrate how our
new metrics allow extracting novel and relevant information
(that is well explained by current oceanographic knowledge)
from a state-of-the-art oceanic flow field but we by no means
intend to assess the reliability of the hydrodynamical model
that generated it.

Adopting the Lagrangian flow network approach [12], we
define a set of N = 967 oceanic nodes representing small,
equal-sized subregions of the Mediterranean Sea surface.
Links and weights between such set of nodes quantify water
parcels exchanges driven by ocean currents over a time-
interval of 30 days forward-in-time. To construct the network,
we use a reference horizontal flow fields produced by an op-
erational data-assimilating ocean model whose outputs have
been validated [54]. More specifically, we exploit realistic
daily currents at 10 m depth over a 30-day period spanning
01/06/2012–01/07/2012 [top-left insert in Fig. 7(a)]. The
examination of M-steps on this network corresponds to the
concatenation of M-times transport events of 30 days under
the approximation of negligible diffusion and vertical dis-
placements [18,24]. Explicit forward-in-time connectivity, in
this case, is associated with the probability for a fluid parcel of
traveling from one node to another and thus, to the probability
that tagging a volume of water in one region of the ocean
it will arrive to another given destination (after 30 days).
Implicit connectivity represents instead the probability for two
water parcels, belonging each of them to different nodes, of
ending up in a third specific node. Again, this can be seen as
the probability that two tagged volumes of water will meet
together at a different common place in the ocean afterwards
(after 30 days).
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FIG. 7. Maps of the study area covering the western Mediterranean Sea. (a) Horizontal currents direction (thin white arrows) and mean
modulus (background colors, in m s−1) of the 10 m flow field averaged over one month (01/06/2012–01/07/2012). The top-left insert displays
the whole model domain covering the entire Mediterranean basin. (b) Streamlines of the 10 m flow field averaged over one month (01/06/2012–
01/07/2012). The red dot indicates the studied coastal site located south of Cartagena. Other annotations highlight the main transport features,
adapted from [57,58]. Transport Barriers (TB) are depicted in black dotted lines with the Almeria-Oran front (TB1), the Cartagena-Tenes
front (TB2), the Balearic front (TB3), and the meandering barrier associated with the northern Tyrrhenian gyres (TB4). Mean positions of the
preferential Transport Corridors (TC), associated with the main geostrophic jetlike currents, are represented as plain red lines with the Algerian
current (TC1), the Atlantic-Ionian jet (TC2), and the Northern current (TC3).

We first investigate how the conventional appraisal of
ocean connectivity (i.e., single step explicit) changes when
computing our connectivity metrics at a few different time
steps. To do so, we arbitrarily select a coastal site located
to the south of Cartagena [see the red dot in Fig. 7(b)] in
the Alboran Sea and we analyze the evolution of a dispersal
plume starting from this reference site using both � f and
� f for M = 1, 2, and 5 (Fig. 8). Assigning the index i to
the targeted location and by considering all the nonvanish-
ing indexes j, we can map all the nodes, along with their
associated probabilities, which are explicitly or implicitly
connected with the reference coastal site. Next, we briefly
review the main transport barriers and conduits documented
by previous research in the study-area and we highlight
how explicit connectivity conforms with previous findings

while implicit connectivity brings new insights to ocean
connectivity.

In the western Mediterranean Sea, previous research high-
lighted, on the one hand, the presence of several Transport
Barriers (TB, black annotations in Fig. 7) associated with
major oceanographic fronts: the Oran-Almeria front [44,55],
the Carthagena-Tenes front [56] and the North-Balearic front
[42,44,57]. On the other hand, preferential Transport Corri-
dors (TC, red annotations in Fig. 7) are associated with the
main geostrophic jetlike currents such as the Algerian current,
the Atlantic-Ionian jet and the Northern current [18,58,59].

When M = 1 in the explicit case (Fig. 8) (e.g., equiva-
lent to single-step explicit estimates), the dispersal plume is
spatially inhomogeneous with two cores of medium to high
probabilities (∼10−1 to 10−2) which are well-explained by

042309-11



ENRICO SER-GIACOMI et al. PHYSICAL REVIEW E 103, 042309 (2021)

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Forward-in-time dispersal plumes for a tracking-time of 30 days starting from Cartagena, as derived from the explicit (left panels
a, c, and e) and implicit (right panels b, d, and f) connectivity metrics using different number of steps (from upper to lower panels: M = 1,
2, and 5). Each node is colored according the probability of connection starting from our reference site (red dot) located south of Cartagena.
White nodes indicate no connectivity (null probability).

the pre-identified transport features [Figs. 7(a) and 7(b)]. The
Almeria-Oran and Cartagena-Tenes fronts, likely associated
with an intense quasi-stationary eddy [Fig. 7(b)] trap water
parcels south of Cartagena while the nearshore pathway of
the Algerian current [Fig. 7(b)] allows some parcels to flow
across TB2 and thus to disperse eastward into the Algerian
basin (up to 5◦E only, Fig. 8). The single-step implicit con-
nectivity plume is much larger, extending from the strait of
Gibraltar to about 10oE, and associated with more homo-
geneous probabilities than in the explicit case. While both
cores of high probabilities (ranging from ∼10−2 to 10−1)
are similar in both cases, the implicit plume exhibits mod-
erate to low probabilities (∼10−3) in the western Alboran
Sea and in the north-eastern Algerian basin. These implicit
patterns are counter-intuitive and more difficult to interpret
as they involve indirect connections ensured by “third-party”
nodes. The reference site appears to be connected to the
western Alboran Sea despite the presence Oran-Almeria front
(TB1) and the continuous entrance of Atlantic waters (surface
transport is mostly eastward) because they send waters to
common downstream locations. Similarly, the low probabili-
ties found in the north-eastern Algerian basin are probably due
to recirculation processes and indirect connections ensured
by coastal (counter-) currents and the meandering Algerian
current. It suggests that, while the Cartagena-Tenes transport
barrier constrains strongly the explicit plume [55], it becomes
permeable in the case of the implicit plume.

For M = 2, the explicit connectivity dispersal plume ex-
tends north-eastward, reaching 10o E [Fig. 8(c)]. The cores of

high probabilities (∼10−1) match those revealed by the single-
step (M = 1) plumes, corroborating the cumulative property of
our methodology. Less probable connections (∼10−2 to 10−4)
are found in most of the Algerian basin after approximating 60
days of advection, whereas they were absent for M = 1. Act-
ing as a transport barrier, the Balearic front [TB3, Fig. 7(b)]
might explain why the plume does not extend further north.
As such, explicit two-step connectivity suggests that our ref-
erence site remains disconnected from the French and Italian
coastlines and from the Alboran Sea. Conversely, the implicit
connectivity plume spreads substantially across the western
Mediterranean, connecting our reference site to most shore-
lines until ∼10◦E and ∼45◦N [Fig. 8(d)]. Probabilities are
larger or equal than ∼10−2 south of TB3 while they drop down
to 10−4 north of the barrier [Figs. 8(c) and 8(d)]. It indicates
that weak implicit connections across the Balearic front occur
at M = 2 despite the large distances and the supposed trans-
port barrier effect. This can be explained by the fact that, in the
vicinity of the front, water parcels coming from the reference
site can encounter parcels coming from north of the barrier,
realizing thus such implicit connections [Fig. 7(b)].

For M = 5 (i.e., surface transport over 150 days), the mul-
tistep explicit connectivity plume [Fig. 8(e)] spreads across
most of the western Mediterranean basin and penetrates the
Ionian Sea. These connectivity patterns are well-explained
by the mean circulation highlighted in Figs. 7(a) and 7(b).
The northern Tyrrhenian meanders (the Almeria-Oran and
Cartagena-Tenes fronts, respectively) prevent effective con-
nections with the northern Tyrrhenian Sea (the Alboran Sea,
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FIG. 9. Mean probabilities of connection (left panel) and the associated standard deviations (right panel) for all possible pairs of nodes in
our ocean network for steps ranging M = 1 to M = 1000. Black plain (dotted, respectively) lines stand for the cumulated multistep explicit
(implicit, respectively) connectivity.

respectively). The Northern current (the Atlantic-Ionian jet,
respectively) ensure rare connections (∼10−4; 10−3) with the
northern shorelines (with the eastern Ionian Sea, respectively).
The multistep implicit connectivity plume [Fig. 8(f)] is larger:
it covers the entire western Mediterranean basin and spreads
over the Ionian Sea as well as the southern Adriatic Sea,
despite the presence of the previously mentioned transport
barriers. In comparison with the two-step implicit connectiv-
ity, the core of elevated probabilities extends further north,
suggesting that the barrier effect of the Balearic front vanishes
when longer transport durations are considered. For M = 5
and using both explicit and implicit methods, our reference
site is weakly but consistently connected to most distant coast-
lines, except the northern Adriatic shores.

Finally, we analyze the global statistical distribution of our
explicit and implicit proxies as a function of the number of
steps. To do so, we compare the forward-in-time cumulated
multistep explicit (� f ) and implicit (� f ) connectivity met-
rics for different M spanning 1–1000 by computing mean
probabilities of connection, and their associated standard de-
viations, for all pairs of nodes (i.e., N × N = 935 089 pairs)
of our flow network (Fig. 9). We find that the mean � f

probabilities grow sublinearly with the number of steps until
reaching a plateau at around 0.1 after about M = 800 steps.
Mean � f probabilities grows almost-linearly with the number
of steps until reaching a plateau at around 0.5 after approxi-
matively M = 500 steps. For both metrics, saturation does not
reach 1, as it was shown for one of the theoretical cases (see
Sec. V), due to the presence of strongly disconnected com-
ponents in our realistic ocean network. At saturation, explicit
probabilities are spread-out over a wide range of values since
the standard deviation tend to overcome the means. Implicit
probabilities are more homogeneous and closer to the mean,
even at saturation.

All in all, the newly introduced “implicit connectivity”
proxy suggests thus that the connectivity of the surface ocean
could have been substantially underestimated by previous
methods, providing novel possible directions for the study
of dispersion and transport patterns of any tracer across the
ocean.

VII. CONCLUSIONS AND PERSPECTIVES

Our theoretical approach can be applied to study any
kind of temporal, weighted and directed network in which
a random walk can be defined. This should guarantee a
broad applicability to various fields such as ecology, epi-
demics spreading, mobility, genetics and fluid-dynamics. By
introducing the cumulated connectivity formalism, we pro-
vide exact analytical expressions for random walk connection
probabilities between any pair of nodes and across arbitrary
ranges of number of steps. This framework could constitute a
first step for future modeling efforts to characterize network
connectivity from a probabilistic perspective. We first focused
on explicit connectivity patterns realized by paths and then for
a novel implicit connectivity concept associated with network
pitchforks. Such implicit view of connectivity highlighted net-
work topological features overlooked until now. Future stud-
ies could indeed investigate how different network topologies,
such as random, small-world or scale free, would be reflected
in implicit connectivity patterns and how the latter would be
related to different network dynamical regimes. Moreover,
when random walk single-step transition probabilities can be
mapped to fractions of a given quantity exchanged across the
network, it is possible to link the probabilistic connectivity
interpretation to transport dynamics. Indeed, we showed that
explicit connection probabilities correspond to probabilities
related to processes of tagging or sampling the transported
quantity in a node forward- or backward-in-time, respectively.
Analogously, implicit connection probabilities are also related
to tagging or sampling processes but in two nodes simultane-
ously. These relationships can be further developed both the-
oretically and for practical applications, such as tagging and
sampling experiments on spatial systems, discovering indirect
interactions in complex ecological networks or further char-
acterize diseases spreading and opinion dynamics in social
systems. Possible extensions of our approach can also include
nonconservative dynamics such as production, consumption
and transformation of a transported quantity by modulating
the probabilities at node scale. We finally illustrated an ex-
ample of how our results can be applied to characterize fluid

042309-13



ENRICO SER-GIACOMI et al. PHYSICAL REVIEW E 103, 042309 (2021)

transport driven by ocean currents in the Mediterranean Sea.
We showed that our approach extends and generalizes the way
physical connectivity in the ocean was understood until now
and unveils hidden connections between different regions of
the Mediterranean Sea. Consequently, this changes also our
understanding of the role of some oceanographic features,
such as transport barriers and transport corridors, in control-
ling fluid connections across the seascape. Applications of
this methodology to geophysical flows could provide novel
insights on the spreading of drifting organisms, pollutants and,
more generally, any tracer that is transported by the flow.

The Python codes used to compute connectivity probabili-
ties are available online [60].
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