MARÍA ROSA CAÑADA TORRECILLA

Résumé.—L’Atmosphère d’Élisée Reclus constitue une vraie synthèse du développement des divers champs scientifiques auxquels l’Science à la moitié du xixe siècle. Dans ce sens il ne fut pas un vrai investigateur, mais un compilateur de la connaissance scientifique et de ses découvertes des principes avants de son époque. Cette œuvre est composée d’une étude sur les diverses parties de l’atmosphère, ainsi que sur le système de la circulation des vents; la formation des cyclones et les lois qui dirigent leur mouvement; les nuages, la pluie et la température, même que son écrot aux diverses parties du monde. Les contrastes entre les deux hemisphères, entre les côtes orientales et occidentales, entre les côtes et l’intérieur et entre la plaine et les montagnes.

GRAMÁTICA DE COMUNICACIÓN
CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA

POR

JUAN A. CEBRIÁN

Introducción

En este artículo de homenaje a Julia López Gómez pretendiendo cerrar un capítulo pendiente, iniciado en 1988 (Cebrián, en prensa). En las conclusiones de aquel trabajo nos expresábamos en los siguientes términos: «En estas páginas hemos abordado dos de los problemas conceptuales de utilización de la tecnología informática en Geografía... El primero, la aclaración de la terminología... El segundo..., la gramática de comunicación con Sistemas de Información Geográfica (SIGs). De alguna manera, la presentación de este segundo aspecto ha sido esquemática... Esta circunstancia deja una puerta abierta a publicaciones futuras sobre este aspecto.» Nos encontramos, por tanto, ante una segunda parte, que esperamos no confirme las predicciones del refrán. Por ello, aún a sabiendas de que se puede asimilar el contenido de este texto sin recurrir a su precedente, recomendamos vivamente el estudio de los dos artículos en el orden en que han sido redactados.

En aquella ocasión analizábamos, fundamentalmente, los aspectos gramaticales relacionados con la definición de objetos espaciales o geográficos. En estas páginas, en cambio, describimos el conjunto de

Estudios Geográficos
Tomos LV, n.º 169-180, abril-septiembre 1990

--- 380 ---

--- 381 ---
funciones que un geógrafo debe, habitualmente, encontrar en un SIG. Dicho de otra manera, presentamos ahora las normas de composición, y los resultados genéricos, de las instrucciones de manipulación de objetos geográficos. La lista de funciones no pretende, no puede, ser exhaustiva, pero sí puede, y pretende, iniciar un proceso de clarificación y estandarización de las herramientas incluidas en los SIGs.

No deja de sorprender que los geógrafos, que tan familiarizados están con la manipulación de objetos espaciales, hayan encontrado dificultades a la hora de acceder a las prestaciones que todo SIG proporciona. Independientemente del mayor o menor interés personal por el uso de medios informáticos, la razón fundamental de esta paradoja se encuentra hasta hace pocos años en el aparato complejidad de los lenguajes de comunicación usuario-sistema. La situación actual, en cambio, es totalmente distinta. Los medios de comunicación han mejorado ostensiblemente, no siendo ya necesario dedicar un tiempo desmesurado al aprendizaje de su gramática.

En sistemas de última generación, si se desea, se pueden emplear a la vez varios monitores —cada uno de los cuales tiene la posibilidad de presentar información sobre muy diversos aspectos en diferentes «ventanas» de la pantalla—, para presentar simultáneamente distintos mapas de la zona en cuestión. Estos mapas, a su vez, pueden utilizarse como índices espaciales para extraer información geográfica más detallada, o más generalizada, sin más que apuntar a los objetos de interés. También se puede visualizar información temática relacionada con los individuos presentes en los mapas.

Actualmente, para facilitar la utilización de sus recursos, se puede configurar un SIG para que ofrezca menús (listas de opciones) y formularios (a rellenar), que ayudan al usuario en la definición del tipo de tratamiento requerido. Además, con vistas a atender las necesidades de los usuarios habituales de un SIG, se debe disponer de un sublenguaje estructurado, lo más estándar posible, para expresar adecuadamente, en pocas palabras, cualquier demanda al sistema. Este lenguaje tendrá normalmente una estructura funcional, que prescribe, en cada caso, el momento de la información original (input), el de la transformación a llevar a cabo (función) y el del resultado final (output). Dado que f(a) = b, se puede escribir f(a,b) o (f,a,b) o (f, a,b). «Diferenciar topografía pendientes» podría ser perfectamente una frase del lenguaje en cues-

Un sistema de información geográfica es un archivo de información espacial que permite una selección y una visualización eficaces. Si el sistema no resulta maneable para un geógrafo, después de un período razonable de familiarización con él, se puede garantizar que es un sistema deficiente, aunque su capacidad analítica sea más que notable. Los sistemas de información geográfica deben estar al servicio de todos sus usuarios, geógrafos o no, al revés.

La vertiente analítica de un sistema debe ser muy flexible, para que se pueda adaptar a objetivos diversos. Pero no se puede pretender que un SIG incluya la funcionalidad de todos los modelos de análisis espacial definidos y por definir. La analítica de un SIG debe ser _ad hoc_.

Recientemente, muchos SIGs están incorporando módulos «inteligentes» (Kubo, 1986). En dichos módulos se contiene un bagaje de datos y/o reglas que se actualizan periódicamente, para facilitar el uso del sistema en general, y el de cada usuario habitual. Así, es muy frecuente que cada sesión de trabajo se registre y se analice para descubrir cuáles son los datos y las funciones que cada usuario utiliza normalmente, para hacerse cada vez más accesibles en sesiones posteriores. De esta manera, todo usuario habitual tiene su propio perfil, que es un conjunto de valores por defecto que sólo se modifican si sus intereses cambian, o si voluntariamente él lo decide.

Sustantivos, adjetivos y paráfrasis verbales

Gracias a la aplicación del principio de abstracción, que ha sido adoptado paulatinamente por todos los productores de software, el proceso de comunicación hombre-máquina ha experimentado una modificación drástica. En el momento presente, para utilizar medios informáticos, no es necesario ya conocer los detalles de la ejecución de instrucciones ni de la representación interna de datos (a no ser que la profesión de uno consista en desarrollar procedimientos informáticos). Así, un único procesador se presenta a su usuario como si se tratara de una colección de máquinas distintas, tantas como programas de control haya disponibles.
Las nuevas técnicas de diseño de sistemas se ciñen cada vez más a la simulación de herramientas que el hombre estaba ya acostumbrado a manejar y a las que el ordenador puede sustituir con ventaja (la máquina de escribir, por ejemplo, en el tratamiento de textos). Así las cosas, abstracción significa acercamiento al usuario. Cuanto más abstracta (en sentido informático) sea una función, más accesible resultará para el profesional que la va a utilizar.

En esta línea, no es de extrañar que los lenguajes de comunicación entre el hombre y la máquina se asemejen cada vez más al lenguaje humano. Ya que un programa capaz de dialogar con la persona que lo utiliza en esos términos (palabras estructuradas en frases y párrafos), resulta mucho más flexible y fácil de manejar. Por ello, todo sistema informático al día, junto a otros medios de comunicación específicos, está dotado de un módulo conversacional, que es capaz de interpretar una amplia gama de instrucciones redactadas en lenguaje estructurado, semejante al lenguaje natural, aunque mucho más limitado que él.

Los cimientos del discurso humano son los sustantivos y los verbos que los relacionan. Los sustantivos se refieren siempre a entidades que, desde algún punto de vista, tienen estructura y existencia propias. Si se prescinde de los sujetos cognocentes, los sustantivos hacen referencia a los objetivos reales y conocidos, que son las piezas del puzzle que el entendimiento humano pretende componer.

El término objeto tiene raigambre científica —pues los objetos de estudio definen en mayor o menor grado las ciencias que los consideran—, y, además, está de moda —debido a la influencia reciente, pero virulenta del uso de técnicas de programación mediante objetos (Egenhofer y Frank, 1987 y 1988)–. Éste es el término que utilizaremos en lo sucesivo.

Tsichritzis y Lochovsky (1982) han identificado los siguientes componentes básicos de cualquier modelo de datos (o sistema de información): conceptos, sucesos, características y valores. El paralelismo entre conceptos y objetos es evidente. De igual manera, todo suceso puede reducirse a una relación entre objetos, cuyo núcleo es una acción verbal, transitiva o no. Finalmente, todo objeto presenta características que son comunes a otros objetos de la misma clase y que se expresan normalmente por el par (característica, valor), en el que el primer elemento es el nombre de la característica y el segundo un valor determinado, el que corresponde a dicho objeto. Este valor puede ser un nombre, un rango ordinal, un valor en una escala real de cero relativo, o un valor en una escala real de cero absoluto, dependiendo del tipo de la característica y del procedimiento empleado para medirla. En todos los casos, la información clasificada bajo el epígrafe de características y valores desempeña una función adjectiva, afectando al significado de un concepto u objeto en un sintagma nominal.

Los elementos de un sistema de información son los valores, que se agrupan en dominios.1 Las características se agrupan a su vez de manera que cada combinación única de características representa a un tipo o clase de objetos. Un objeto individual se reconoce por una combinación única de características, la que corresponde a su clase y, dentro de su clase, por una combinación única de valores.

Volvamos, de nuevo, a considerar la afirmación central de este apartado: -Los cimientos del discurso humano son los sustantivos y los verbos que los relacionan- (vid. supra). Si se suprimen las licencias lingüísticas relativas al orden de palabras en la frase, se facilita enormemente la representación de perifrases mediante distintos tipos de gráficos. El grafó más utilizado es el árbol ordenado, que, de paso, permite representar la jerarquía de los elementos de una frase (Liu, 1977).

Frase: La niña enferma come manzanas verdes.

<table>
<thead>
<tr>
<th>Sujeto</th>
<th>Verbo</th>
<th>Objeto directo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sintagma nominal</td>
<td>Sintagma nominal</td>
<td></td>
</tr>
<tr>
<td>Determinante Nombre Adjetivo</td>
<td>Nombre Adjetivo</td>
<td></td>
</tr>
<tr>
<td>La niña enferma come manzana verdes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Algunos autores consideran que no existe diferencia alguna entre dominios y características. Otros consideran que toda característica, formalmente hablando, es una función que hace corresponder a todo objeto un, y sólo un, valor de un dominio determinado.
En una frase enunciativa, normalmente, la descomposición inicial reconoce el sujeto de la acción, la acción propiamente dicha y el objeto de la misma. Las frases de comunicación hombre-máquina son, por lo común, de tipo imperativo, lo que facilita su análisis, pues desaparece el sujeto de la expresión. Así Kubo (1986) puede afirmar que, en el sistema que describe, toda frase introducida por el usuario es descompuesta en objeto y verbo. Los objetos son comparados con los nombres propios de lugar que el sistema reconoce; si no coincide con ninguno de ellos, se considerará que es un nombre genérico y se le someterá a un tratamiento posterior, que incluye la consulta al usuario de si se trata de un nuevo nombre propio a añadir a la lista del sistema. El verbo en imperativo es comparado con los nombres de los comandos (o funciones, u órdenes) que el sistema es capaz de ejecutar. En el caso más favorable se incluirá la función a la que se debe algún objeto en cuestión. En otros casos, por ejemplo, aunque tanto los objetos como el verbo en imperativo sean identificados por el sistema, no se llevará a cabo la operación deseada, si en la tabla de objetos tipo y funciones consta que los objetos y función de ese hipotético caso no son compatibles.

Es habitual que determinadas secuencias de comandos sean pasos comunes a distintos procedimientos analíticos. Cuando esto ocurre, se procede a la definición de supercomandos, o macros; de igual manera que en el lenguaje natural se construyen párrafos, se eliminan por conectores.2 Se genera así una estructura de comandos que tiene su base en los comandos elementales, o primitivos, y que culmina en los macros más sofisticados. No obstante, el usuario no tiene por qué conocer los detalles de semántica estructura, ya que si el sistema está bien diseñado, no existirá diferencia de estilo alguna entre las frases que se refieren a comandos triviales y las que incluyen funciones de gran potencia.

Antes de terminar esta sección nos parece oportuno resaltar una vez más el carácter estructural de la comunicación humana, y, todavía más,

2 Los conectores de frases más comunes son la conjunción copulativa «y» y la conjunción discursiva «a». En el seno de una misma frase también pueden requerirse conectores, proponiéndose en este caso, para comunicarse inequívocamente con la máquina, que conectores utilizar, y cómo, es algo que dependerá del estilo del módulo decodificador de mensajes. En todos los casos se trata de detalles que los manuales de SIGs exponen en sus primeras páginas.

de la comunicación hombre-máquina. Cada acción complicada (o párrafo) se descompone en una serie de acciones específicas (o frases) que se llevan a término incondicionada o condicionalmente. Cada frase, se ve, es una estructura o red de relaciones entre objetos. Todo objeto es una colección única de adjetivos, o sea, de valores correspondientes a diferentes características que definen su clase.

Las funciones geográficas

Como cualquier otro sistema, un SIG está constituido por un conjunto de datos estructurados y una serie de funciones definidas sobre ellos. Toda función es una regla de combinación de datos pertenecientes a determinados grupos para la obtención de un resultado que siempre debe ser único (por la propia definición de función) y puede pertenecer al mismo grupo que alguno de los datos de partida o a otro distinto. Para mantener la estructura y la calidad de la información residente en el sistema, todo SIG debe, además, incluir un módulo de comprobación de determinadas propiedades que debe satisfacer cualquier dato que se pretenda introducir en el sistema. Finalmente, es necesario considerar el entorno de trabajo habitual del sistema, configurado por sus diseñadores.2

Partimos de la noción de objetos tipo o clase de objetos: conjunto de individuos que tienen propiedades comunes y que pueden ser manipulados por las mismas funciones. A continuación, definimos el grafo denominado retículo de clases. Este grafo está orientado, de manera tal que el origen de cada arco del grafo es siempre la clase de objetos más genérica y su destino la clase más específica. En la mayoría de los casos este grafo es un árbol; cuando la estructura de clases de objetos es una jerarquía. El retículo de clases culmina en la clase universo, que en el caso de un SIG es lógico denominar objeto geográfico.

Para definir una clase es necesario que ésta incluya, al menos, como
propiedades de todos sus elementos, las de nombre, localización y fecha, que son las propiedades de todo objeto geográfico.

Inmediatamente inferiores a la clase objeto geográfico, en nuestra propuesta, se encontrarán las clases variable geográfica y entidades geográficas. Entendemos por variable geográfica cualquier conjunto de datos que represente valores de una determinada característica en un conjunto de celdas espaciales. La variable puede ser resultado de la codificación de observaciones empíricas, variable primitiva, o de sofisticados procedimientos de cálculo. En todos los casos, en la medida que esa matriz tenga un nombre propio y una localización y fecha precisos, se trata de un objeto geográfico, sin duda.

La clase entidades geográficas se refiere a grupos de individuos espaciales registrados como tales. En todo paisaje se reconocen individuos que tienen personalidad propia, independientemente de los atributos que los caracterizan. Paralelamente, un SIG puede desarrollar otra estructura, que es también un grafo, para representar relaciones entre los componentes de un SIG. Este grafo tiene dos ramas fundamentales: el grupo de relaciones espaciales y el grafo de relaciones aespaciales.

Si los objetos estructurados son del tipo de los que acabamos de describir, cuáles son las funciones que se definen normalmente entre ellos. Normalmente, insistimos, porque la relación no va a ser exhaustiva.

Para la presentación de funciones utilizamos la notación más comúnmente extendida, que consiste en especificar su nombre y la naturaleza de su input y de su output, es decir, los nombres de los conjuntos a los que input y output pertenecen.

En todos los casos se asume que el SIG ya está diseñado y dotado de un cierto contenido. Además, se da por supuesto que sólo el administrador de la base de datos puede crear un nuevo objeto tipo, o autorizar hacerlo a un usuario previamente familiarizado con el sistema. También se asume que, en todo momento, la persona que está trabajando con el sistema puede contemplar simultáneamente, en diversos monitores o en diversas porciones de un único monit or, el mapa de los objetos con los que se está trabajando (y de su contexto espacial) y un diagrama que representa las clases de los objetos en cuestión y su entorno, tanto en el retículo de clases, como, si es el caso, en el subgrafo de relaciones aespaciales.4 Es un hecho que la tecnología actual de generación y manipulación de gráficos por computadora permite con crescer un entorno como el que asumimos.

Las primeras funciones que consideramos actúan tanto sobre variables como sobre entidades, por ese motivo las definimos a nivel de objeto geográfico. Comentábamos hace un momento que asumimos que las clases de objetos (variables y entidades) han sido ya definidas. Los nombres a la derecha de la flecha representan el output de la función.

ARCHIVAR (Objeto, CLASE) → CLASE
MODIFICAR (Objeto, CLASE) → CLASE
DESTRUIR (*Objeto, CLASE) → CLASE
SELECCIONAR (*Objeto, CLASE) → CLASE5

Cada vez que un objeto es manipulado por alguna de las funciones anteriores, su representación cartográfica en el monitor queda resaltada, recurriendo a un color determinado, a un brillo especial, a un parpadeo, etc.

Si no se puede ejecutar alguna función, es porque la clase que se supone definida no lo está, o porque el objeto no se corresponde estructuralmente con la clase. En el primer caso, el sistema responderá con un mensaje de error, presentará al usuario la lista de nombres de clase alfabéticamente más próximos y facilitará al usuario la posibilidad de visualizar el retículo de clases, nodos a nodo sí es necesario. En el segundo caso, el sistema responderá con un aviso de que se ha cometido un error y ofrecerá al usuario un formulario que le ayude a definir su objeto adecuadamente.

En el subgrafo de relaciones aespaciales son aplicables las mismas funciones, aunque en este caso tendrán un parámetro más. Se trata de hecho, de funciones distintas y es necesario dedicarles nombres propios.

ARCHIVAR (Objeto, Objeto, RELACIÓN TIPO) → RELACIÓN TIPO.

4 El subgrafo de relaciones espaciales debe ser transparente para el usuario.
5 *Objeto, en nuestra notación, significa: identificador inequívoco de objeto, es decir, su clave.
RMODIFICAR (*Objeto, Objeto, RELACIÓN TIPO) → RELACIÓN TIPO.
RDESTRUIR (*Objeto, *Objeto, RELACIÓN TIPO) → RELACIÓN TIPO.
RSELECCIONAR (*Objeto, *Objeto, RELACIÓN TIPO) → Relación.

Hasta ahora hemos considerado la selección de objetos o relaciones a partir de su nombre propio, y único (clave, en el lenguaje técnico). Pero en la realidad serán mucho más frecuentes las selecciones de relaciones y objetos a partir de determinadas propiedades. Dichas propiedades se reducen a distancias a o desde un lugar de interés en el espacio de la base de datos.

La selección más simple consiste en seleccionar el objeto más próximo a un punto determinado (que se define en la pantalla del monitor situando el cursor sobre el objeto de interés).

ESTE (CLASE, Localización) → Objeto

Una vez seleccionado un objeto, por su clave o por su localización espacial, resulta muy frecuente el interesarse por los objetos geográficos que están próximos a él. Esta demanda puede satisfacerse implementando algún tipo de función que investigue los alrededores del objeto en cuestión. En este caso, nos parece interesante considerar dos procedimientos distintos. Ambos son complementarios y dependen en su utilización de la definición formal de objetos espaciales y de su apariencia en cada SIG.

VECINDAD (*Objeto, CLASE) → Objeto

COINCIDENCIA (*Objeto, CLASE) → Objeto

En el primer caso, al no especificarse qué tipo de vecindad, se asume que el sistema seleccionará los objetos, pertenecientes a CLASE, más próximos al objeto previamente singularizado. Este tipo de función suele utilizarse en los SIGs que han sido definidos de manera que los objetos geográficos son como las teselas de un mosaico, que no se solapan y que tienen un número de vecinos finito, con los que com parten una porción de su frontera. A su vez, la función COINCIDENCIA incluirá en su output los objetos de CLASE que compartan algún fragmento de su interior con el objeto en cuestión. Estas funciones pueden ser utilizadas recursivamente, para generar un espacio de interés alrededor de un objeto determinado.

La función PSELECCIONAR que analizamos a continuación permite recuperar objetos por su localización, total o parcial, en una zona definida previamente por un polígono (un rectángulo normalmente), o por un objeto y una distancia. Además, tal como la consideramos en estas páginas, permite recopilar objetos en función de los valores de sus características o atributos.

PSELECCIONAR (CLASE, D, C) → (Objeto)

En donde D es un polígono, o un par (punto, distancia) (línea, distancia) o (polígono, distancia), y C es una función booleana compuesta, definida sobre atributos temáticos de objetos geográficos:

D ∈ Polígono | (Punto | Línea | Polígono, Distancia)

{ 1 ⇒ el objeto reúne las condiciones
 C ⇒ Cond. (At.) y/o Cond. (At.) y/o...
 ...Cond. (At.) y/o Cond. (At.)
 0 ⇒ el objeto no reúne las condiciones

Hasta aquí, las funciones básicas, que no pueden faltar en ningún SIG. A partir de ahora analizamos aquellas funciones que muy probablemente, pero no necesariamente, estarán incluidas en un SIG de última generación.

* Tratando cada atributo como una dimensión, las condiciones que se expresan equivalentemente a la definición de polígonos (hiperpolígonos) en el espacio dimensional. En un escenario como éste, cada objeto viene representado por un punto. Así las cosas, los objetos que cumplan las condiciones de partida son aquellos cuyos puntos son interiores al polígono en cuestión.

7 Resulta obvio que las transformaciones geométricas (en principio, cualquier tipo de isomorfismo) son los elementos de todo SIG. Entre los más populares se encuentran: los cambios de escala (ampliaciones y reducciones), los giros, las simetrías, las proyecciones, los cambios de proyección, las deformaciones continuas de imágenes, etc. No obstante, todas estas funciones son transparentes, o deberían serlo, para el usuario de SIGs. Esta es la razón por la que no les dedicamos especial atención en estas páginas.
Distinguiéramos a partir de ahora entre variables y entidades. Las variables, que son imágenes digitales, pueden someterse a cualquier tratamientos estándares de éstas (filtrado, clasificación, visualización, etc.). A todos los efectos, los modelos topográficos digitales son una imagen más, ya que toda imagen se puede interpretar como una muestra de una superficie continua en un espacio tridimensional. El conjunto origen de todas las funciones de tratamiento digital de imágenes es el conjunto de imágenes, o cualquiera de sus potencias; el conjunto imagen es el de imágenes, a secas. El software de tratamiento de imágenes puede constituir un módulo más del sistema o tener entidad propia. En el segundo caso, la comunicación entre el SIG y el segmento de tratamiento digital de imágenes se realizará mediante ficheros.

Existen funciones que actúan sobre ambos dominios, variables y entidades, a la vez. Por ejemplo, la función

EXTRACCIÓN DE ENTIDADES (Variable) \rightarrow (Entidad)

permite, en una de sus posibles implementaciones, digitalizar entidades espaciales sobre el monitor, situando correlativamente el cursor sobre los puntos que se estime necesario para definirlas.

A su vez, la función

INTERPOLAR ((Entidad), Atributo) \rightarrow Variable

permite «rellenar» los vacíos existentes en un conjunto de entidades, calculando los valores más probables de un determinado atributo de aquéllas en puntos del espacio distribuidos según un patrón preconcebido.

La función

COLOREAR ((Entidad), Variable) \rightarrow (Entidad)

permite asignar atributos a entidades, a partir de los valores de la variable en cuestión, cuantificando el efecto óptico que produciría la superposición de un mapa de entidades y de la variable en la pantalla del monitor de la estación de trabajo.

La expresión

SUPERPONER (Entidad) \rightarrow (Entidad)

pone en marcha el procedimiento de construir todas las entidades espaciales que se originan por intersección de dos conjuntos de tales objetos. Es ésta la función de SIG más popular, porque permite la síntesis cartográfica. Se la conoce técnicamente como OVERLAY.

De igual manera que al hablar de variables dijimos que por ser imágenes podían ser sometidas a cualquier tratamiento digital estándar, las entidades y sus atributos espaciales constituyen una matriz geográfica (Berry, 1964) que puede ser manipulada por cualquier método de análisis estadístico al uso. Si un SIG no contempla este tipo de funcionalidad, basta con que sea capaz de exportar los datos que el análisis requiere.

Dado el carácter espacial de las entidades geográficas se requiere una serie de funciones para calcular la extensión de las entidades a partir de la descripción de su localización. Nos referimos fundamentalmente al cálculo de la longitud de las entidades lineales y al cálculo del perímetro y área de las entidades superficiales. Un caso particular del cálculo de la longitud de una línea o del perímetro de un polígono lo constituye el cálculo de la longitud de la frontera común a dos entidades, que puede considerarse un indicador del grado de interacción de ambas. Algunos autores incluyen el cálculo de indicadores de forma dentro de las funciones básicas de un SIG, pero por el momento no parece que esas funciones hayan tenido mucha aceptación en la comunidad de usuarios de este tipo de sistemas.

Consideremos ahora las funciones de continuidad. Es cierto que, sin restricciones, el espacio geográfico es continuo porque, como dice el refrán, «por todas partes se va a Roma». No obstante, si se imponen determinadas condiciones (si se considera, por ejemplo, la red de carreteras, o la de ferrocarriles, o se tienen en cuenta las divisiones político-administrativas) ocurre que determinadas entidades espaciales no son accesibles desde otras. Normalmente, lo que realmente interesa conocer es la continuidad inmediata o vecindad —no la transitiva—, como suceda en modelos de regionalización que evalúan la proximidad temática y la inmediata vecindad.

Conociendo que dos entidades forman parte del mismo ámbito, que se puede uno desplazar de la primera a la segunda y viceversa, entra en juego el concepto de norma o distancia, que permite medir el esfuerzo
necesario para conectar realmente esas dos entidades. Existen muy distintos tipos de distancia:

La distancia en línea recta, la distancia por carretera, la distancia medida en unidades de tiempo, la distancia medida sobre un modelo topográfico digital, son ejemplos reales de distancias que un SIG debe ser capaz de calcular eficientemente. La función distancia podría enunciarse de la siguiente manera:

DISTANCIA (Ent. Espacial, Ent. Espacial, MARCO) —— R: U[0],

en donde MARCO es una red de comunicaciones o una variable espacial (un modelo topográfico digital, por ejemplo).

Por otra parte, es necesario postular cuál va a ser el criterio para medir la distancia si una al menos de las dos entidades tiene extensión. ¿Es la distancia de un punto a un polígono la distancia del punto al centroide del polígono? ¿O la distancia al vértice más próximo?

La información residente en el SIG, ya sea primitiva —por ejemplo, características de entidades— o derivada —por ejemplo, matriz de distancias, matriz de continuidad—, puede alimentar una amplia gama de modelos, espaciales primordialmente. Localizaciones, continuidad, distancias, características de las entidades espaciales y diversos tipos de relaciones, como los flujos (por ejemplo, la relación migración entre distintas áreas consolidadas), serán utilizados con frecuencia por estos modelos.

El análisis de recorridos óptimos en un grafo de comunicaciones es ya de uso común para asignar recursos, para determinar la accesibilidad de un área (Nystuen, 1968) y para localización de servicios. En estos casos, para determinar la accesibilidad de un área (Nystuen, 1968) y para localización de servicios. En estos casos, junto a la restricción espacial de la red vial, puede ocurrir que una variable espacial, original o derivada, actúe como integrador de determinadas ventajas o desventajas territoriales.

La información necesaria para resolver problemas de optimización de recursos mediante técnicas de programación lineal se puede encontrar, en su mayor parte, en un SIG: tamaños de objetos, distancias, flujos entre entidades espaciales, etc.

--- 394 ---

GRAMÁTICA DE COMUNICACIÓN CON SISTEMAS...

El tratamiento de la variable temporal, de gran interés en el desarrollo de SIGs, es bastante complejo. Por este motivo hemos preferido prescindir de él en esta ocasión. Es ésa una puerta abierta para subsecuentes estudios y formalizaciones.

BIBLIOGRAFÍA

RESUMEN.— Gramática de comunicación con sistemas de información geográfica. En este artículo resumimos los aspectos fundamentales para el uso de Sistemas de Información Geográfica.

Hemos estudiado los diferentes modelos de datos espaciales y las relaciones entre los SIGs y los sistemas generales de manipulación de información, subrayando los aspectos teóricos más importantes.

PALABRAS CLAVES.— Información geográfica. Lenguajes formales. Bases de datos.

ABSTRACT.— GIS Dialog Grammar. A review of the most important aspects of Geographic Information Systems use is given.
The different spatial data models, the relationships between GIS and general database management techniques, as well as several GIS procedures are discussed. The aim is a clear explanation of the concepts treated and a presentation of some elements for a theoretical framework in the field.

Key Words.—Geographic information. Structured languages. Databases.

Résume.—*Le Dialogue avec les Systèmes d'Information Géographique.* Dans cet article nous revisons les principaux aspects de l'usage des Systèmes d'Information Géographique.

Nous étudions les différents modèles des données spatiales, les relations entre SIGs et les systèmes généraux de manipulation de l'information, ainsi que plusieurs procédures de SIGs. Les aspects théoriques sont particulièrement soulignés.

Mots clé.—Information géographique. Langues structurés. Bases de données.