Ru, Pd, Pt as dopants of carbon nanofibers-supported Ni catalysts for onepot cellobiose conversion

E. Frecha, D. Torres, A. Pueyo, I. Suelves, J.L. Pinilla

Instituto de Carboquímica, CSIC. C/ Miguel Luesma Castán, 4. 50018. Zaragoza, Spain

jlpinilla@icb.csic.es

Introduction

The reduction of sugars to their hydrogenated forms (sorbitol) emerges as an effective chemical route for enhancing the productivity of cellulose depolymerization process [1]. Whereas nickel does not fulfill the activity and selectivity criteria at low metal contents, its doping with noble metals could represent an economical trade-off.

Experimental

A series of carbon nanofibers (CNF) supported Ni-noble metal (Ru, Pt, Pd) catalysts, with intended metal loadings of 3.0 and 0.5 wt.%, respectively, was prepared by wet co-impregnation of the precursor salts, followed by thermal decomposition and H₂-reduction. The samples were characterized by different techniques (ICP-OES, XRD, TPR and HRTEM) and tested in the hydrolytic hydrogenation of cellobiose (180°C, 4.0 MPa of H₂, 3h).

Results and discussion

The Ni-noble metal alloy formation induced changes on the size and dispersion of the Ni

phase and favored its reductive properties, which was translated into an enhancement on the catalytic 100_____

performance. A remarkable synergic effect was noticed for Ni-Pt/CNF and Ni-Pd/CNF, since the yield of hydrogenated products (96.0 and 61.2 %, respectively) exceeded the sum of the activity of their pure constituents separately (32.9, 0.44 and 25.9 % for Ni/CNF, Pd/CNF and Pt/CNF) (Figure 1). In turn, Ru/CNF enabled the practically total hydrogenation of cellobiose, making unnecessary the Ni-Ru alloy formation.

Conclusions

The Ni selectivity towards targeted compounds was enhanced upon alloying it with Pt, Pd and Ru. TPR-H₂ results and the analysis of the morphology of the metal particles helped to understand the origin of this improved catalytic behavior.

Acknowledgements

The authors are grateful for the financial support by FEDER and the Spanish Economy and Competitiveness Ministry (MINECO) (ENE2017-83854-R).

References

[1] A. Cabiac, E. Guillon, F. Chambon, C. Pinel, F. Rataboul, N. Esayem Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations Applied Catalysis A: General 402 (2011) 1-10.

CESEP'19 CONFERENCE

8th International Conference on Carbon for Energy Storage and Environment Protection

October 20 - 24th

Alicante (Spain)

ISBN: 978-84-1302-058-7