

Comparison of a full range of oxygen carrier materials for Chemical Looping Coal Combustion

<u>Pilar GAYÁN</u>

A. ABAD, T. MENDIARA, I. ADANEZ-RUBIO, R. PEREZ-VEGA, F. GARCIA-LABIANO,

L. F. de DIEGO, M.T. IZQUIERDO, J. ADANEZ

cb ISTITUTO DE

Interconnected reactors

- \checkmark fluidized beds scale-up is easier
- ✓ moving/fluidized
- \checkmark fixed bed

developed to operate under pressure

Interconnected fluidized beds

- Different configurations are possible
- High and stable solid circulation
- Stable temperature
- ✓ Commercial technology (CFB boilers)
- Some difficulties for pressure operation \checkmark

Unburnt carbon

CSIC

Unburnt carbon

CSIC

CLC Main Challenges

CLC Main Challenges

Unburnt gas products

CLC Main Factors

Oxygen carrier material is a key point in CLC development

Oxygen carrier properties can affect CLC performance on several areas, such as oxygen demand, carbon capture efficiency, operating costs, environmental issues...

- - \checkmark It is the cornerstone of the process and transport oxygen and heat between reactors.
 - \checkmark Different redox pairs have been used for CLC

STITUTO DE

NiO/Ni, CuO/Cu, Fe₂O₃/Fe₃O₄, Mn₃O₄/MnO, CaSO₄/CaS, mixed oxides

Selection criteria

- Thermodynamic suitability
- High redox reactivity
- Sufficient oxygen transport capacity
- Resistance to attrition (lifetime)
- Low tendency for agglomeration
- Complete conversion to CO_2 and H_2O
- Negligible carbon deposition
- Environmentally friendly
- Low cost (production and operation)
- Resistant to sulphur

Synthetic

Metal Oxide + Support

Minerals or wastes based on Fe, Mn

in-situ gasification CLC (*i*G-CLC)

1. Coal is dried and devolatized

Coal \longrightarrow **H**₂**O** + **Volatile matter** + **Char**

2. Remaining solid char is gasified to give $H_2 + CO$ Char + $H_2O \longrightarrow H_2 + CO$ Char + $CO_2 \longrightarrow 2CO$

3. Volatiles and gasification products react with oxygen carrier by a gas-solid reaction

Volatile matter $H_2 + CO + n Me_xO_y \longrightarrow CO_2 + H_2O$ $+ n Me_xO_{y-1}$

CLC options for solid fuels

Chemical Looping with Oxygen Uncoupling (CLOU)

1. Coal is dried and devolatized

Coal \longrightarrow H₂O + Volatile matter + Char

2. Oxygen-carrier with capacity to release gaseous OXYGEN (O₂)

$$2 \operatorname{Me}_{x}O_{y} \longrightarrow 2 \operatorname{Me}_{x}O_{y-1} + O_{2}$$

3. Volatiles and Char react with OXYGEN (O₂) as in common combustion with air

Volatile matter Char + $O_2 \longrightarrow CO_2 + H_2O$

Key properties Oxygen carriers

iG-CLC

- OC reactivity is not a key factor because char gasification is a slow reaction
- Low cost material are very interesting

Natural ores and waste materials

Iron based OC Ilmenite Iron ores Bauxite residues Industrial wastes	Fe ₂ O ₃ /Fe ₃ O ₄
Manganese ores	Mn ₃ O ₄ /MnO
Anhidrite (CaSO ₄)	CaSO₄/CaS

CLOU

- Appropriate thermodynamic for oxygen uncoupling at temperature of interest
- Metal oxides Cu, Mn, Co
- Mixed oxides CaMnO₃, Cu-Mn, Mn-Fe

The objective of this work is to analyse the performance of different oxygen carries on the CLC process

STITUTO DE

- 8 different materials ranging from iG-CLC to CLOU properties
 - Coal combustion in a 1.5 kW continuous CLC unit

- Experiments were conducted in the 1.5 kWth continuously operated plant at ICB-CSIC where operating conditions were varied: temperature, solids inventory in the fuel reactor, solids circulation rate.
- The effect on the carbon capture efficiency and the oxygen demand of the process were analysed.

Low Cost OCs + iG-CLC

Natural Minerals and Industrial Residues

Oxygen carrier	Thermal treatment (°C/h)	Active phase Composition	R _{oc} (wt.%)	Porosity (%)	BET area (m²/gr)	Crushing Strengh (N)
Ilmenite	950 / 24	55% Fe₂TiO₅ 10% Fe₂O₃	4.0	1.2	0.8	2.2
Bauxite waste (Redmud)	1200 / 18	71% Fe ₂ O ₃	2.0	10	0.1	2.8
Tierga Iron Ore	950 / 12	76% Fe ₂ O ₃	2.0	25.4	1	4.6
Gabon Mn ore	800 / 2	68% Mn ₃ O ₄ 10.6% Fe ₂ O ₃	5.0	38.7	12	1.8

All materials crushed and sieved to 100-300 μm

Materials characterization

Reactivity tests in TGA at 950 °C

- 5% H_2 + 40% H_2O
- 15% CO + 20% CO₂
- 15% CH₄ + 20% H₂O
- 21% O₂

Rate index (%/min) from TGA tests at 950°C

	CH ₄	СО	H ₂	O ₂
Ilmenite	5.0	2.5	7.9	9.7
Redmud	3.4	3.9	10.5	4.1
Tierga Fe-ore	3.3	3.4	12.4	5.5
Mn ore	9.2	6.4	19.2	8.6

Mn ore has the highest oxygen transport capacity and the highest *rate index* than other Fe-based materials

Synthetic Mn-Fe mixed oxides

CLaOU = Chemical Looping Combustion assisted by Oxygen Uncoupling

Combustion of fuel by iG-CLC + limited CLOU behaviour that allows to reduce unburnt gases

Oxygen carrier preparation

• $Mn_3O_4 (77 \%) + Fe_2O_3 (24 \%)$ $(Mn_{0.77}Fe_{0.23})_3O_4$ • $Mn_3O_4 (60 \%) + Fe_2O_3 (33 \%) + TiO_2 (7 \%)$ $(Mn_{0.66}Fe_{0.34})_2Ti_{0.15}O_{3.3}$

Spray drying + calcination (2 hours 1350 °C or 1200 °C with Ti) TiO₂ addition to increase mechanical strenght of the oxygen carrier

	Mn77Fe[SD1350]	Mn66FeTi7[SD1200]
Time (h)	4 + 2	4 + 2
Temperature (°C)	950 + 1350	950 + 1200
	1.7	2.0
$(Mn_xFe_{1-x})_2O_3$	13.6	81.0
(Mn _x Fe _{1-x}) ₃ O ₄	86.4	13.4
TiO ₂	-	5.6
	20	24
K _m (-)	2.5	1.6
	Time (h) Temperature (°C) (Mn _x Fe _{1-x}) ₂ O ₃ (Mn _x Fe _{1-x}) ₃ O ₄ TiO ₂	$\begin{tabular}{ c c c c } \hline Mn77Fe[SD1350] \\ \hline Time (h) & 4+2 \\ \hline Temperature (°C) & 950+1350 \\ \hline 1.7 \\ \hline (Mn_xFe_{1-x})_2O_3 & 13.6 \\ \hline (Mn_xFe_{1-x})_3O_4 & 86.4 \\ \hline TiO_2 & - \\ \hline 20 \\ \hline X_m (-) & 2.5 \\ \hline \end{tabular}$

Magnetic properties for recovery from ashes

Mn66FeTi7 (SD1200)

Materials characterization

Materials characterization

Rate indexes of low cost oxygen carriers

Mn77Fe[SD1350] has highest oxygen transport capacity and reactivity.

Experimental

High Cost OCs 👄 CLOU

Synthetic Cu-based oxides

Oxygen Carrier	Cu60MgAl	Cu34Mn66
Preparation method	Spray Drying	Granulation
Composition	60 % CuO 40% MgAl ₂ O ₄	66.6 % Mn ₃ O ₄ , 33.3 % CuO
XRD main phases	CuO MgAl ₂ O ₄	Cu _{1.5} Mn _{1.5} O ₄ Mn ₃ O ₄
Oxygen capacity (%)	6.0	4.0
Particle size (μm)	100-250	100-300
Crushing strength (N)	2.4	1.9

Fluidized Bed Granulator

$$Cu60MgAI \Longrightarrow 2 CuO \longleftrightarrow Cu_2O + 0.5 O_2$$

 $Cu34Mn66 \implies 2 Cu_{1.5}Mn_{1.5}O_4 \iff 3 CuMnO_2 + O_2$

Coals

	Anthracite	LV Bitum.	MV Bitum_Russia	MV Bitum. South african	HV Bitum. Pretreated	Subbitum. Chile	Lignite Spain
Proximate analysis (wt %)							
Moisture	1.0	2.0	5.8	4.2	2.3	14.2	12.6
Volatile	7.5	17.1	32.0	25.5	33.0	34.6	28.6
Fixed carbon	59.9	68.8	52.1	55.9	55.9	35.9	33.6
Ash	31.6	12.1	10.1	14.4	8.8	15.3	25.2
Ultimate analysis (wt %)							
С	60.7	75.8	65.8	69.3	65.8	52.4	45.4
Н	2.1	3.7	4.6	3.9	3.3	5.24	2.5
Ν	0.9	1.9	2.0	1.9	1.6	0.77	0.6
S	1.3	0.4	0.5	0.9	0.6	0.2	5.2
O*	2.4	4.1	11.3	5.4	17.6	11.9	8.5
LHV (kJ/kg)	21900	28950	26600	25500	21900	18900	16250

* by difference

Particle size +200 – 300 μm

0.5 kW_{th} iG-CLC /1.5 kW_{th} CLOU unit

CSI

Western An Automation for

ATTRICATIONETS CONVERS

Operating conditions in the CLC unit

	iG-CLC	CLaOU	CLOU
Hours of combustion (fuel feeding)	300	85	200
Solids inventory in FR (kg/MW _{th})	1000-2000	850-1500	500-1000
FR Fluidizing agent	H ₂ O/CO ₂	N ₂	N ₂
FR temperature (ºC)	890-955	900-950	800-960
AR temperature (°C)	950	800-950	800-900

Data Evaluation

Total oxygen demand

 $\Omega_{\rm T} = \frac{\text{Ox. required combustion of unburnt products}}{\text{Ox. Required for complete combustion of biomass}}$

CO₂ capture efficiency

 $\eta_{CC} = \frac{\text{Carbon converted to gas in the FR}}{\text{Carbon introduced in the FR}}$

Char conversion

 $X_{char} =$

Char gasified in the FR

Char introduced with the fuel feed

Low Cost $OCs \iff iG-CLC$

Natural Minerals and Industrial Residues

CO₂ capture increased with the coal reactivity: Lignite > Bituminous > Anthracite \checkmark

 CO_2 capture increased with the FR temperature \checkmark

Results on CO₂ Capture

Low Cost OCs iG-CLC

Natural Minerals and Industrial Residues

 \checkmark The reactivity of the oxygen carrier barely affected to the CO₂ capture

Low Cost OCs + iG-CLC

Natural Minerals and Industrial Residues

 \checkmark The oxygen demand decreased by using more reactive oxygen carriers.

Low Cost OCs + iG-CLC

Natural Minerals and Industrial Residues

 \checkmark The oxygen demand decreased by using more reactive oxygen carriers.

Synthetic Mn-Fe mixed oxides

Low Cost $OCs \iff iG-CLC+CLOU \iff CLaOU$

Synthetic Mn-Fe mixed oxides

 Synthetic low cost materials with CLOU properties allowed to reduce unburnt gases.

Low Cost $OCs \iff iG-CLC+CLOU \iff CLaOU$

Synthetic Mn-Fe mixed oxides

 \checkmark Optimization of operating conditions allows to improve CLOU effect.

 \checkmark Lowest oxygen demand ($\Omega_{\rm t}$ =0.5 %) obtained with low cost oxygen carriers.

Results

- \checkmark CO₂ capture efficiency depends on FR temperature and coal reactivity.
- Zero oxygen demand (100% combustion efficiency) was obtained at temperatures > 800°C with CLOU oxygen carriers.

Results

Comb

Lignite MVB_SA

MVB_R

Capture

0 Δ

High Cost OCs 👄 CLOU

Synthetic Cu-based oxides

 ✓ CO₂ capture efficiency decreases with the increase of oxygen carrier to fuel ratio due to a decrease in the solid residence time.

✓ Full combustion efficiency was always obtained independently of the solid circulation rate for CLOU oxygen carriers.

Effect on CLC performance of the oxygen carrier reactivity and CLOU properties

 CO₂ capture efficiency mainly dependent on the coal char reactivity, and FR temperature

The oxygen demand in iG-CLC decrease with the increase of oxygen carrier reactivity
Mn ores > Fe ores > ilmenite

Significant decrase of the oxygen demand by using oxygen carriers with CLaOU behaviour (combined CLC and limited CLOU)

 $(Fe_{0.34}Mn_{0.66})_2Ti_{0.15}O_{3.3}$ $\Omega_T = 0.5 \%$

When oxygen carriers with high oxygen generation rates (CLOU) are used oxygen demand is always cero using coals of any rank.

 $(Cu60MgAl) - (Cu_{1.5}Mn_{1.5}O_4) \quad \Omega_T = 0$

Zaragoza, September 21-24, 2020

الديشيديا

COME TO 6TH INTERNATIONAL CONFERENCE ON CHEMICAL LOOPING !

THANK YOU FOR YOUR ATTENTION !

