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Abstract In this paper we shall consider spherically sym-
metric spacetime solutions describing the interior of stel-
lar compact objects, in the context of higher-order curvature
theory of the f(R) type. We shall derive the non-vacuum
field equations of the higher-order curvature theory, with-
out assuming any specific form of the f(R) theory, specify-
ing the analysis for a spherically symmetric spacetime with
two unknown functions. We obtain a system of highly non-
linear differential equations, which consists of four differen-
tial equations with six unknown functions. To solve such a
system, we assume a specific form of metric potentials, using
the Krori—Barua ansatz. We successfully solve the system of
differential equations, and we derive all the components of
the energy—momentum tensor. Moreover, we derive the non-
trivial general form of f(R) that may generate such solutions
and calculate the dynamic Ricci scalar of the anisotropic star.
Accordingly, we calculate the asymptotic form of the func-
tion f(R), which is a polynomial function. We match the
derived interior solution with the exterior one, which was
derived in [1], with the latter also resulting to a non-trivial
form of the Ricci scalar. Notably but rather expected, the exte-
rior solution differs from the Schwarzschild one in the context
of general relativity. The matching procedure will eventually
relate two constants with the mass and radius of the compact
stellar object. We list the necessary conditions that any com-
pact anisotropic star must satisfy and explain in detail that
our model bypasses all of these conditions for a special com-
pact star Her X—1, which has an estimated mass and radius
(mass = 0.85 £ 0.15Mg and radius = 8.1 = 0.41 km).
Moreover, we study the stability of this model by using
the Tolman—Oppenheimer—Volkoff equation and adiabatic
index, and we show that the considered model is different
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and more stable compared to the corresponding models in
the context of general relativity.

1 Introduction

Apart from the great successes of Newtonian gravity, itutterly
failed in certain cases where strong gravitational effects were
considered, such as the advances of Mercury in addition to the
Michelson Morley experiment [2]. In 1915, Einstein devel-
oped the general theory of relativity (GR), which enabled
the resolution of the issue with Mercury [3]. Thereafter,
GR is considered as the cornerstone theory for gravitational
physics. However GR has several shortcomings that indi-
cate GR not being the most fundamental theory of gravity,
such as the dark energy issues [4-9]. In addition, the GR
violates the Chandrasekhar mass-limit for white dwarfs of
super-Chandrasekhar, and sub-Chandrasekhar limiting mass
[10-17].

Moreover, GR shows inconsistency in the regime of strong
gravitational field and recent observations [4, 18-20]. Thus
seeking for an appropriate modification of GR, is a well moti-
vated task. The most successful modification of GR is the
higher-order-curvature theory, and specifically f(R) gravity,
which is successful in explaining the presence of dark mat-
ter and confronting gravitational theories with observations
[21]. Moreover, the f(R) gravitational theory when quan-
tized results to a renormalizable gravitational theory [22].
Thus, f(R) gravitational theory certainly is an appealing and
well-motivated extension of GR. Modified gravity theories
are divided into different categories such as those containing
some four second-order curvature invariants and other that
involve the invariants as a function of the Ricci scalar-like
f(R) gravity model [23-39]. The f(R) gravitational theory
avoids the Ostrogradsky’s instability [40] which is a com-
mon limitation of general higher-derivative theories [41].
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Numerous applications of f(R) can be found in the con-
text of theoretical cosmology [31,42—48] and in astrophysics.
Spherically symmetric vacuum black hole solutions in f(R)
have been derived in [1,49-58]. In the frame of a strong
gravitational background in local objects, numerous spheri-
cally symmetric black holes are derived [59-66]. Recently,
the study of compact stars in amended gravitational theo-
ries has become popular. Compact stars result from the col-
lapse of massive stars and there are several types of com-
pact objects of interest, including white dwarfs, neutron stars,
strange stars and black holes. Various models describe neu-
tron stars in f(R) [67-79]. Moreover hypernuclear compact
stars is studied for stellar models constructed on the basis of
covariant density functional theory Hartree and Hartree-Fock
Methods approximation [80]. In the present work we aim to
apply the non-vacuum field equations of f (R) to a spherically
symmetric spacetime without assuming any specific form of
f(R), and to derive a compact anisotropic model. The result-
ing model shall be confronted with real compact anisotropic
stars, and specifically the star Her X—1.

The article is organized as follows: In Sect. 2, we give a
brief summary of the f(R) gravitational theory. In Sect. 3, we
apply the non-vacuum field equations of f (R) to a spherically
symmetric line-element that has an unequal metric poten-
tial. We derive a system of differential equations, having six
unknown functions. In order to derive an analytic solution
for the differential equations in closed form, we assume a
specific form of the metric potential, using the Krori—-Barua
ansatz. We derive the remaining unknown functions, all the
components of the energy—momentum tensor, and the asymp-
totic form of the polynomial f(R) which generates such a
solution. This solution is characterized by four constants of
integration, and one of them differentiates our model from
the corresponding GR description. In Sect. 4, we match the
model derived in Sect. 3, with the exterior solution presented
in [1], which has a spherically symmetric solution different
from the Schwarzschild one, and successfully match two con-
stants with the mass and radius of the compact stellar object.
In Sect. 5, we list the necessary conditions that any realis-
tic theoretical model must satisfy in order for it to become
compatible with a realistic star. We show that our model sat-
isfies all of these conditions that are required for any realistic
compact stellar object. In Sect. 6, we study the stability using
the Tolman—Oppenheimer—Volkoff (TOV) equation and adi-
abatic index and show that the present model satisfies these
requirements implying its stability. In the final section, we
present our concluding remarks.

2 Summary of the f(R) gravitational theory

In this section, we consider recall the essential features of
four-dimensional higher-order curvature f(R) gravity. f(R)

@ Springer

gravity serves as a modification GR and coincides with it
when f(R) = R. When f(R) # R, we have a theory different
from Einstein’s GR. The action of f(R) gravity can take the
following form (cf. [81-88]):

1 1
7= Z/d4x./—gf(R)+§/d4Xv —8LMm(guv, &),
ey

where k = 8w G, G is Newton’s gravitational constant, g is
the determinant of the metric, £a((g.v, &) is the action of
matter fields, and & is minimally coupled to the metric g..

Upon varying the gravitational action with respect to the
metric tensor g, we obtain the non-vacuum field equations
of f(R) gravitational theory as follows [89]:

1
Zuv = R;wfR - Eg,u,vf(R) + [guvD - Vuvv]fR — kT = 0,
2

where [ is the d’Alembertian operator, fr = % and the
matter energy—momentum tensor 7, is defined as,

2 5L
V=g dgh

The trace of Eq. (2), takes the following form,

T;w = (3)

T =30 +Rfg —2f(R) —«T =0, where T = T}".
4

From Eq. (4), f(R) can be isolated to obtain the following
form,

f(R) = %[3DfR FRfg — KT]. (5)

Using Eq. (5) in Eq. (2) we obtain the following [90],

1 1
Ty = R;wfR - Zg;waR + Zg;waR - vuvva

1
—K (T,w — Zg,wT> . (6)

In this study, we shall assume that the energy—momentum
tensor, 7, has the following specific form in order to
achieve anisotropic form,

T," =(pL+puuu’”+pr8,” +(pr—pL)cut’, (7

where u, is the timelike vector defined as u* =[1, 0, 0, 0],
and ¢, is the unit spacelike vector in the radial direction
defined as ¢* = [0, 1,0,0] such that u*u, = —1 and
¢"&, = 1. In this study, p represents the energy-density, and
pr and p, are the radial and tangential pressures, respec-
tively.

In the following sections, we apply the field equations,
namely, Egs. (4) and (6) to a spherically symmetric spacetime
having two unknown functions.
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3 Stellar equations in the f(R) gravitational theory

To study the non-vacuum field Egs. (4) and (6) we use the
following form of a spherically symmetric spacetime having
two unknown functions,

where

dr?
—e*dr* 4+ —— +r2d3,

P
d¥ = (d6? + sin® d¢?),

ds* =

®)

where « (r) and 8 (r) are unknown functions. The Ricci scalar
for the metric (8) takes the following form:

e Prird/ B —2ra’ —ra’? — 4o’ + 48 — 4] + 4
R(r) = ,

2r2
9

wherea = a(r),8 = B(r),a’ = ‘fj‘;‘,a” _ %andﬁ’ _ %
For the line-element (8) the non-vanishing components of the

field Eqs. (4) and (6) have the following forms:

e e P{Fr2Qa" —o'B' +a?) +4rFlra’ +rf —

1+ r2[3«'F' —

4 Matching conditions

Given that solution (12) has a nontrivial Ricci scalar as shown
in Eq. (31), we must match it with an exterior solution that has
a non-constant Ricci scalar. In order to exemplify our study
and confront it with a realistic physical system, we shall use
the pulsar Her X-1, which has well known mass and radius,
whose estimated mass and radius are M = 0.85 = 0.15M,
and b = 8.1 &+ 0.41 km, respectively [92].

Thus, we match solution (11), considering b» = by, with
the uncharged one presented in [1]. The spherically symmet-
ric uncharged solution [1] takes the following form

1 oM 1 oM\
ds? = —(5 = =5 )dt+ (5= =) drt 4749,
r 2 r
(13)

where M is the total mass of the stellar compact object and
4M < r. We have to match the interior spacetime metric

2F" + F'B'l — 4rF'} + 4¢“F]

jtt = 2 - 877)07
r
. e PIFriQa’ —oa'B +a?) —4F[rd' +rp + 11— r?[@'F' — 6F" +3F'B'] — 4rF' + 4¢*F]
r = }"2 + 8w Pr’
Fl4—e P4 —2r%a" 4+ r?d' B — rPa®)] + e Plria'f + 2rF" — r*F'g' — 4r F']
~0 _~ ¢ _ _
Jo7 =Tp% = s 8 Py,
e Plr2(6F" —2Fa” — Fa'®) + r[rFB' + 3rF' —A4Fa' + rB'[4F —3rF'1 + 12rF' —4F) + 4(F — f)

J=[P+2PL —pl+

8mr?

(10)

_ df dr P
where F' =f, = dR ar ar - The system of equations in

(10) includes four nonlinear differential equations with six
unknown functions, «, 8, F p, P, and P;; therefore, we must
impose two constraints to transform the equations in (10)
into a closed system. In this study, we use the Krori-Barua
ansatz that has the following form [91]:

B = byr?, (11)

where b, and by are the dimensionful parameters with the
inverse unit of 2, and by is a constant. Using Eq. (11) in
Eq. (10), we obtain the following:

o =b0r2 + by

e~bor? [boct (bo — ba)r® + [ag® + (6¢1

— ba)bo + 3c1balr* + (2by — 4cp + 3bo)r? — 1]+ 1+ ¢1r2

(11) with the exterior spacetime given by Eq. (13) at the
boundary of the star » = b. The continuity of the metric
functions across the boundary r = b yields the following
conditions,

-1
a(r:b):(l—%) IB(;»:b);(l_%) )

2 b
(14)

Using the above conditions we get the constraints on the
constants bg, b;. The functional form of these constants takes
the form,

)

P 167272 ) +cire,
» e=D2[1 4 (bo + 2b2)r2 — r4(bo® — bo[2¢1 + ba] — Shacy) + boct (by — bo)r® — e (1 + ¢172)]
,«(}”) = T ’
14 c1r2 — e~ [1 4+ r2(2¢) — bg) — r*[bo(bo + 2¢1 — by) — baci] + bocir®(by — bo)]
P (r) = (12)

1612

@ Springer
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Fig. 1 Schematic plot of the radial coordinate r in Km versus the potentials of the metric (11) using the constants constrained from RX J 1856-37
from where we put bg = 0.0259974 and b = —3.7654625. These values of the two constants by and b will be use throughout this study
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Fig. 2 Plot of boundary matching of a g;; and b g, of (12)

5 Terms of physical viability of the solution (12)

2b

) ln(b—4M) _ <b2—8bM+16M2)

=, =in .
0 b2 ! 41?2

In Figs. 1 and 2 we plot the metric potentials and matching

metric, respectively.

15 . . o . L
{1s) To investigate whether the interior solution (12) is suitable to

describe a physical system, several criteria must be satisfied,
thus, we explore these criteria in this section.
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Fig. 3 Plots of density, radial, and transverse pressures. All the plots show that the components of the energy—momentum tensors are positive as

required by any real stellar
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Fig. 4 Anisotropy A(r) and anisotropy force. Plot a shows that we have a repulsive force due to the positivity of the anisotropy

5.1 Energy—-momentum tensor

For a realistic interior solution, positive values of energy-
density, radial, and transverse pressures are needed. Further-
more, all these quantities have finite values at the center of
the star. These energies gradually decrease toward the sur-
face of the star, and P» > P, . Figure 3 shows the portraits of
the martial energy, density, radial, and transverse pressures.
The figure shows that, p(r = 0)¢;=0 = 0.003104779987,
p(r = 0)¢;=—0.01 = 0.003701913745, p,(r = 0)¢j=0 =
0.001034926662, p,(r = 0)¢,=—0.01 = 0.001233971248,
pL(r = 0)e=0 = 0.001034926662, p,(r = 0)c;=0 =
0.001233971248. Figure 3 also displays that all the com-
ponents of the energy—momentum tensor gradually decrease

toward the surface of the star. From Fig. 3, values of energy-
density, radial and transverse pressures at the center in the
case of ¢; = 0 are smaller than those when ¢; # 0. More-
over the components of the energy—momentum proceed to
the surface of the star more rapidly at c; = —0.01 than
at c; = 0 and P, = P_L at the center. However, as we
approach the surface of the star p; > P,. This behavior is
illustrated in Fig. 4a, which also shows anisotropy behavior
that is defined as A(r) = p, — p,. Figure 4b also reveals
that the anisotropic force is positive, which means that it is a
repulsive force because P} > P.

Moreover, the gradient of the density, radial, and trans-
verse pressures must be negative inside the stellar body, i.e.,

@ Springer
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o - 0,47 < 0and 2L < 0[93]. Using (12), we calculate

the derivative of density, radial, and transverse pressures as,

o

p_dr_

5.3 Energy conditions

e=D0r [1 = bobacy (by — bo)r® — rO([3ct — bolba2 + [8bocy + bo21by — 2¢1bo2) — r(2by? + (4bg — Te1)by — bo® — 6bge)] — 1

2
e =D [bobycy (bg — bo)r® — rO((bg + 511022 — [boby — 2bgci1bg) — r*(bo® — Sbacy + 2by% — 2bgey) — bor? — 1]+ 1

Pr/ _ d Py _
dr
3
dP|
P = =
L dr

D0 [1 — bobae (bo — by)r® + (121 — bylbo® — [4et — bylby + by2cr) + r(bo® — 2bolb + c1]+ bycy) + byr?] — 1

)

3

The behavior of the gradients of density, radial, and trans-
verse pressures are shown in Fig. 5, where it can also be seen
that o', p;. and p| have negative values as required by a real
stellar compact object.

5.2 Causality

To show the behavior of sound velocities, we must calculate
the gradient of energy-density, radial, and transverse pres-
sures with the form given by Eq. (17). Using Eq. (17), we
obtain the following:
2 _ P

L =

0

Ur

(16)

For the non-vacuum solution, the energy conditions are con-
sidered important tools. Therefore, the dominant energy con-
dition (DEC) implies that the speed of energy should be less
than the speed of light. To fulfill the DEC, we must have
p— P.>0and p — P, > 0. We show that the DEC is ful-
filled in Fig. 7 moreover, we study the weak energy condition
(WEC), p + P- > 0 and p 4+ P, > 0, and the strong energy
condition (SEC), p — P- — 2P > 0, and show in Fig. 8 that
both are satisfied.

5.4 Mass-radius-relation

b7 [bobac (by — ba)r8 — rO([bg + 5¢11622 — [boba — 2boct 1bg) — r*(bo2 — 5bacy + 2022 — 2bgcy) — bar? — 1]+ 1

e=bor*[1 — bobacy (bg — by)r® — r0([3c) — bolba2 + [8bocy + bo21by — 2¢1b02) — r4(2ba2 + (4bg — ey )by — bo2 — 6bgc)] — 1

/
2_PJ_ _
V] ==
0

=D [1 Z bobacy (o — by)r® + r0([2¢1 — balbo? — [4ct — balby + by2et) + r*(bo? — 2bolby + 1] + byey) + bar?] — 1

e=bor®[1 — bobacy (bg — ba)r8 — r6([3cy — bolba2 + [8bocy + bo21by — 2¢1b02) — r4(2by2 + (4by — Tc1)by — bo® — 6boe)] — 1

a7)

To ensure that the causality condition is satisfied both for
radial and the transverse sound speeds, we must show that
the values of v,2 and v, 2 are less than the speed of light.
To this end, we plot them in Fig. 6 to ensure that both of
variables have values less than the speed of light, provided
that the speed of light is unity in relativistic units.

Herrera assumed the cracking condition of a stable
anisotropic compact star that results when equilibrium is
disturbed could be due to local anisotropy. This condition
is depend on the radial and tangential sound speeds, v, and
v;. Using Herrera condition [94,95] that demonstrated that a
simple requirement in order to avoid gravitational cracking
is —1 < v,2 — vr2 < 0. In Fig. 6¢, we show that solution
(12) is stable against cracking for c; = 0 and ¢; = —0.01.

@ Springer

For a spherically symmetric spacetime the compactification
factor u(r) is defined as the ratio between its mass and radius.
In the compact stellar object, the compactification factor
plays an important role in understanding its physical prop-
erties. Using solution (12), the gravitational mass takes the
following form:

M(r) = 4n / pE2dE = {2e—b0r2b23/2
0

326,72
X |:{4 + dbocrrt 4+ 2r%[by — 3c11}b2?

—bob2r2[2boclr2 +9¢1 + 2bg]
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—3b0261r2:| + r/Thy er f(y/bar)[16b3° + 10b2% (b — ¢1)

+boby (2by + 9¢1) + 3bo>ci] + 8by A (c1r? — 1)}, (18)

where er f (x) is the error function defined as follows:

fo) = — / e (19)
erf(x) = — e .

Vv Jo
The compactification factor u(r) is defined as follows:

M) 1
ro 3207252
+2r2[by — 3c11}b22 — bobar[2bgcir® + 9¢y + 2bo]

u(r) = {2e_b0’2b23/2[{4 + dbyeyr?

—3b02c1r2:| + r/mhy erf (\/bor)[16b23 + 10by% (b — c1)

+boba(2bg + 9¢1) + 3bo2ci 1+ 862 /2 (17 — 1)}. (20)

Figure 9 shows the behaviors of the gravitational mass and
compactification factor. As it is shown in Fig. 9a the grav-
itational mass increases as the radial coordinate increases,
contrary to Fig. 9b which reveals that the compactification
factor decreases as the radial coordinate increases.

where the constant ¢ has no effect on the nonlinearity of the
EoS. The effect of nonlinearity originates from the contribu-
tion of the constant bg.

6 Stability of solution (12)

We now discuss the most critical condition which determines
how realistic is a compact stellar object, i.e., the stability
condition. Here we investigate this issue from the viewpoint
of the TOV equation and adiabatic index.

6.1 Equilibrium analysis through TOV equation

In this subsection, we discuss the stability of the derived
model. Accordingly, we assume a hydrostatic equilibrium
governed by the TOV equations. Using the TOV-equation
[97-99], we obtain:

2APL = Pl MgOlp(r) + Plel* POV dp,

r r r

(23)

where M, (r) is the gravitational mass confined in a radius
r that is defined from the Tolman—Whittaker mass formula
using the following equation:

1 r
5.5 Equation of state (EoS) My(r) = 4 / (th T T T¢¢)r2 a+BN/2 g,
0
Das et al. [96] derived the EoS for a neutral compact stellar ra el B—a()1/2
object and showed that it is almost linear; however, in this R S— (24)
study the EoS is nonlinear. This condition can be explained
by calculating the radial and transverse EoS that respectively
have the following form:
P,
Wy = —
P
e[ bor? 4 2r*bocy — rbo® — ¢1r%g? + bobar* + c1bobar® + 2b2r® 4 Shycir* — e (1 + ¢1r?)]
e~ [bocy (bo — b2)r® + [ag? + (6¢1 — ba)bo + 3cibalr* + (2by — dey + 3bo)r2 — 1]+ 1 + ¢ 72
w)
_ P _ 1+ C]r2 — e_bzrz[l + 2r261 — r2b0 — 261r4b0 + b0b2r4 + bob261r6 — b02r4 — b0261r6 + r4clb2] 21

p e [byey (bo — ba)r® + [ag? + (6¢1 — ba)bo + 3e1balr* + (2by — ey + 3bo)r2 — 1]+ 1+ c1r2

Figure 10 illustrates the behavior of the radial and trans-
verse EoS. Figure 10a, b show that the EoS is nonlinear. The
nature of the metric potential given by Eq. (15) and perhaps
indicates the reason for the nonlinearity of the EoS. This
phenomena can be explained as follows, with the asymptotic
forms of Eq. (21) assuming the form:

Wy =~ % — %lﬂyob())rz + 00,
1 bo(4c1 — bo) 4

~ -t o, 22
oL+ T 00 (22)

@ Springer

Using Eq. (24) in Eq. (23), we obtain the following:
2(PL—P) dP,  d[p(r) + Pl

=F,+F,+F,=0, (2
r dr 2 g+ a+h 0,(5)

’ P, 2(PL—P, ;
_le@4R] g 2API=P) ang F = 4P

where F, = -
are the gravitational, anisotropic, and hydrostatic forces
respectively. The solution of the TOV equation represented
by model (12) is depicted in Fig. 11.

The three different forces are plotted in Fig. 11, which
shows that the hydrostatic and anisotropic forces are positive
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Fig. 8 WEC and SEC of solution (12). Figures 6, 7 and 8 show that the energy conditions of our model are satisfied
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(a) Gravitational mass of (12).

Fig. 9 Gravitational mass and compactification factor of solution (12)

and dominated by the gravitational force which is negative,
to maintain the hydrostatic equilibrium of the system.

Figure 11b shows that for ¢y = —0.01, the three different
forces converge more rapidly than for ¢; = 0. Thus, in the
non-vanishing ¢ case of the higher-order curvature case, the
system tends to be more stable than in the linear curvature
case.

6.2 Adiabatic index

The adiabatic index y is defined as, follows:

_pt+PdP
P dp’

(26)

0.101

0.08 | ~el

0.06- iN.
MR(M,{ km) '~

©

0.04

0.02

7 (km)
| 61:0—'-01:‘0-01|

(b) Compactification factor of (12).

This index allows us to link the structure of a spherical sym-
metric static object and the EoS of the interior solution, and
it helps in the study of the stability of a stellar compact object
[100]. In order for the interior solution to be stable, its adia-
batic index must be greater than 3/4 [101] and when y = %,
the isotropic sphere will be in neutral equilibrium. Accord-
ing to the work of Chan et al. [102] the condition y > T’
for the stability of a relativistic anisotropic sphere should be
satisfied, where I' is determined as follows:

in‘_{w} ’
3 max

27
31P/] @D

Figure 12 shows that the stability condition of model (12) is
verified according to the analysis of two adiabatic indexes
because both have values greater than %. Figure 12b shows

@ Springer
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Fig. 11 TOV of solution (12)

that the adiabatic index y at ¢; = —0.01 has a greater value
than that at ¢; = 0, which means that the case that differs
from GR is more stable than the case of GR itself.

In Table 1 we present different pulsars to calculate the
two constants, by and by, that characterized our model. In
Tables 2 and 3 we use the values of the constants by and b
that are calculated in Table 1 to calculate the energy-density,
radial and tangential velocities strong condition at the center

@ Springer

TOV

04
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(b) TOV Equation when ¢; = —0.01

and at the boundary of the pulsars presented in Table 1 for
the GR and f(R).

7 Concluding remarks

In this study, we studied compact stellar objects in f(R) grav-
ity. We have applied the non-vacuum field equations of f(R)
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Table 1 Values of model parameters

(b) Adiabatic index of (12) when ¢; = —0.01

Pulsar Mass (M) Radius (km) bo by

EXO 1785-248 1.3+0.2 8.849 + 0.4 0.03034302235 —4.332109774
Cen X-3 1.49 +0.08 9.178 £0.13 0.03971381998 —6.502447317
RX J 1856-37 0.9+0.2 ~6 0.05184675045 —3.732966031
4U1608-52 1.74 £ 0.14 9.524+0.15 0.04899708732 —9.163327477
Her X-1 0.85+0.15 8.1+0.41 0.02481137166 —2.934495513
Table 2 Values of physical quantities at c; = 0

Pulsar Ply o, v W, W, =P -2PDI (=P -2P), g,
EXO 1785-248 0.3624 x 1072 0.593 x 1073 —1 0.2935 —0.06667 0.3532 9.952 x 10~13 1.1x 1071 7.724
Cen X-3 0.4743 x 1072 0.3868 x 1073 —1 0.1363 —0.6 04319  7.962 x 10713 2x 10713 24.822
RXJ1856-37 0.61919 x 1072 0.1266 x 1072 0.6 0.326 0.36 0337 0 0 5.4656
4U1608-52 0.5851 x 1072 0.261 x 1073 —1 —0.14778 0 0.57389 0 0 96.68
Her X-1 0.2963 x 1072 0.828 x 1073 —0.3333 0.3632 0.6667 0318 0 —2x 10713 3.337
Table 3 Values of physical quantities at c; = —0.01

Pulsar ol pl, &, ElL, ZH, L), (o= P —2PD)| (p— P —2PD), zl,
EXO 1785-248 0.4221 x 1072 0.4045 x 1074 —1 —0.2163 —0.6667 x 107! 0.6081 9.952 x 10~13 7 x 10713 7.724
Cen X-3 0.534 x 1072 0 —1 —1.021 —06 1.0106 7.9618 x 10°13 1.1 x 10713 24.822
RX J 1856-37 0.6789 x 1072 0.6724 x 1073 0.6 0.1503 .0.36 0.4248 0 —1x 10713 5.4656
4U1608-52 0.645 x 1072 0 -1 —1.794 0 1.3972 —=7.962 x 10713 —2 x 10714 96.68
Her X-1 0.356 x 1072 0.2068 x 1073 —0.3334 0.141 0.6667 0429 0 —3x 10713 3.337
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after rewriting them in terms of fr = % to a spherically

symmetric spacetime. We obtained a system of four non-
linear differential equations comprising six unknown func-
tions, the three components of the energy—momentum tensor,
(p(r), Pr, P1), the two components of the metric potentials,
and the form fr = %. To solve such a system we have
assumed the form of the metric potentials, given by Krori—
Barua ansatz that contain three constants. As a result the
system was rendered easy to be solved analytically. We have
derived the three components of the energy—momentum and
the form of f(R). We have shown that the form of the Ricci
scalar associated with this compact star is not trivial and the
asymptotic form of f(R) behaves as a polynomial function.
This solution contains four constants of integration. One of
these constants caused the deviation of our solution from
the GR models, leading to the higher-order curvature terms.
When this constant was set equal to zero, we recovered the
GR compact star solution. In order to further simplify the
system, we have assumed two constants of the metric poten-
tial to be equal and have applied the matching condition to
the metric derived in [1], which has a nontrivial form of the
Ricci scalar; the metric is also different from a Schwarzschild
one and determines the relation between two constants and
the mass and radius of a compact star, leaving the constant
responsible for the deviation from GR to be arbitrary.

We have listed the necessary conditions that any non-
vacuum solution must satisfy in order to become compati-
ble with a real compact star. We have shown that the three
components of the energy—momentum tensor satisfied the
listed conditions for a real star. Moreover, we have studied
the energy conditions, namely, the WEC, DEC and SEC and
have shown that the present solution satisfied all of these con-
ditions. In addition, we have investigated the stability of the
derived solution by calculating adiabatic index and showed
that it is greater than 4/3 as required [102]. It is interest-
ing to discuss our solutions in the context of more compact
objects like neutron stars, to make contact with events like
the GW190814. These solutions have been studied in [103]
in the context of f(R) gravity. In our case, extra caution is
needed since our approach applies to inhomogeneous solu-
tions. Nevertheless, pulsars with spin less than 3ms or even
the product of the merging of two neutron stars if it is a neu-
tron star, can initially be quite inhomogeneous, so during the
ring-down, our solution could be relevant. We hope to address
this issue in future work since such a study would require the
implementation of a numerical recipe appropriately tailored
to our solutions.

In conclusion, we have succeeded for the first time to
derive a nontrivial anisotropic compact star in f (R) by assum-
ing a specific form for the metric potential. This study can be
continued by searching for a constraint other than the form
of the metric potential to achieve a closed form of the system
of field equations of f(R), like to assume a specific form of

@ Springer

the EoS. We expect that the physics of the resulting model
will be entirely different from that presented in this study.
We hope to address this issue in the future.
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Appendix A
The form of f(r)

Using the fact that F' = % = dj;(rr) dl;f.” , we can get the form of

f(r) by solving the following differential equation:

1
8(1 — (1 + bobar + r2[bg — 2b21)(1 + r2[by — bal)e—t2r%)’

x {rf’[er”’z’2 (4b02b22r16[b0 — by (bo? — 4boby — 3b2%) — 68

+2boba[24bo* — 21bgba> — T0b%by? + 47bo> by — 4bg?]
x[bo — balr'™* + 4(be® — 125, — 24by by

—158b9>ba> + 30boby>

+107bo*b2% + 50b02br )12 + 2(9b° — 28b,°

—95by*by + 286boba* + 364by by — 564by>by>)r 10
—4r8(bo* + 144boby>

—8bo>by — 57by* — 47by%by2) — 2r%(351bgby? — 234bob,
+6bo> — 37ar%) — 4(109b,% — 124bgby + 31bo%)r*

—6(21by + bo)rz)

420 (33 — bo’ba2(bo — b2)*r'?

—bobr%(3bg + 5b2) (by — b2)r'0 — 4(11bo>by — 84by2bs2
—14[)24 — b04 + 95b0b23)r8

+4(3by> — 109b5° — 149by%by + 296bobs2)r°

+4(32bo% — 131bobs + 95b2°)r*

+12(bo + 9b2)r2> — 1202 (30
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—dboba (by — by)r® — 2(bo? + 4by% — Thoby)r*
~3(3by — bz)r2>:| —6r2f" [ﬂbﬂz
x ([1 + bobar* + (2by — bo)r?]

x[1 4 (bo — b2)r?1[8 + boba(bo + 3b2)(bo — bo)r®
—(bo> + 3bo%by — 14byby? + 6b2°)r®

+by(bo + 3b2)r* + (b + 7b2)r2]>
_em2r? <16 — 2boba (2 — bo2)r® + (10692by — 2bo>
—4by2) 0 — (14by° — 8by> + 34boby)r* + 2(by + 7b2)r2>

e (8 + 12 (bg — bz)}] - 6r3f”’[(1 + bobyr*

11265 — bolr?)2(1 + [bo — balr?)?e=302
—e™2027% (2 _ 2boba[by — bolrS + 2[bo> — 4boba

+2b2% 0 = 2byr?) + e"’ﬂz]} =0. (28)

The above differential equation is not easy to analytically
solve therefore, we are shall find some approximate asymp-
totic solutions. Asymptotically and by putting b, = by we
get,

3" 4+ 16bo £ + 8bo f — 4by> f =0 (29)

The solution of the above differential equation is lengthy and
here we write its asymptotic that takes the following form,

f(r) =c2 4+ c3sin <@) + ¢4 cos <@> . (30)

In order for the solution (30) to be compatible with the form

of F(r) = % = %j—% up to leading order, we must
assume ¢3 = 0, and ¢4 = —% = 2?;'

which results in
by = 94ﬂ. Equation (12) shows that when ¢; = 0 we return
to the case of GR because F = 1, which results in f(R) =
R. Thus, the terms that contain ¢; make the solution (12)
different from GR. Henceforth, we assume b, = b to make
the calculations more easy to handle. Using Eq. (11) and
constraints by = bg, we obtain the Ricci scalar up at leading
order, which has the following form,

R
which leads tor = :b\;—_. 31
0

R~ b()zrz,

Using Eq. (31) in Eq. (30) we obtain the following form of
f(R):

v/ 24R c1
f(R)y=cr+c cos( )wc +c ~|—R——R2
R)=c2+ 4 W 2+ ¢4 b

(&) 3
— R3I_.... 32
45b¢3 (32)

Equation (32) represents GR plus higher-order corrections so
with corresponding choices of parameters such theory eas-
ily pass cosmological and astrophysical tests being realistic
theory.
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