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Abstract: The quantitative prediction of hydrological components through hydrological models could
serve as a basis for developing better land and water management policies. This study provides a
comprehensive step by step modelling approach for a small agricultural watershed using the SWAT
model. The watershed is situated in Petzenkirchen in the western part of Lower Austria and has
total area of 66 hectares. At present, 87% of the catchment area is arable land, 5% is used as pasture,
6% is forested and 2% is paved. The calibration approach involves a sequential calibration of the
model starting from surface runoff, and groundwater flow, followed by crop yields and then soil
moisture, and finally total streamflow and sediment yields. Calibration and validation are carried
out using the r-package SWATplusR. The impact of each calibration step on sediment yields and total
streamflow is evaluated. The results of this approach are compared with those of the conventional
model calibration approach, where all the parameters governing various hydrological processes are
calibrated simultaneously. Results showed that the model was capable of successfully predicting
surface runoff, groundwater flow, soil profile water content, total streamflow and sediment yields
with Nash-Sutcliffe efficiency (NSE) of greater than 0.75. Crop yields were also well simulated with a
percent bias (PBIAS) ranging from −17% to 14%. Surface runoff calibration had the highest impact on
streamflow output, improving NSE from 0.39 to 0.77. The step-wise calibration approach performed
better for streamflow prediction than the simultaneous calibration approach. The results of this study
show that the step-wise calibration approach is more accurate, and provides a better representation
of different hydrological components and processes than the simultaneous calibration approach.

Keywords: SWAT; SWATplusR; soil erosion model; step-wise calibration; HOAL; soil moisture; crop
yields; sediment yield; streamflow; sequential calibration

1. Introduction

Hydrological models are becoming increasingly popular and necessary in hydrolog-
ical studies because they serve as important time and cost-effective tools for simulating
hydrological processes [1]. Models highlight the main drivers of hydrologic systems and
therefore improve our understanding of the watersheds and contribute to the improvement
and development in hydrologic management decisions. Moreover, models make it possible
for users to manipulate system variables and provides a safe environment for testing
different scenarios and management strategies which can play a major role in prevention
of water-related natural disasters [2–5]. Since it is often not possible to acquire data at the
required temporal and spatial scale, hydrological models provide a quick tool for estimat-
ing stream flow, sediment yield, nutrients and other parameters, thereby complementing
field experiments and observations [6].
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A variety of models have been successfully utilized in hydrological and soil erosion
modelling. Among these models are the Water Erosion Prediction Project (WEPP) model [7],
Agricultural Non-Point Source Pollution (AnnAGNPS) system [8] Areal Nonpoint Source
Watershed Environment Response Simulation (ANSWERS) [9], Soil and Water Assess-
ment Tool (SWAT) [10], MIKE-SHE [11] and Hydrological Simulation Program-Fortran
(HSPF) [12]. These models are capable of representing appropriately spatial-temporal
heterogeneity through a distributed or semi-distributed spatial discretization [13].

The Soil and Water Assessment Tool (SWAT) model [10] has been applied on a wide
range of scales and watershed conditions to simulate streamflow and water yield across
the world [14,15], and has proven to be an effective tool for assessing water resources and
non-point source pollution problems [16–18]. The model has effectively been applied to
simulate crop growth [19,20], river basin and hydrological modelling [21,22], sediment
yields modelling [23,24], and soil water content assessment [17,25]. The SWAT model has
been used extensively in hydrological modelling due to its computational efficiency and
ability to predict long-term impacts [13].

The applicability of hydrologic models for the purpose of operational predictions
depends on how well the model is calibrated [26]. Since hydrologic systems vary in time
and space, calibration and validation processes are an integral part of hydrologic modelling.
Model calibration attempts to adjust model parameters in such a way that the watershed
response is closely and consistently approximated [2]. Model calibration and validation
improves the model’s ability to correctly and reliably simulate hydrological processes.
Various methods have been applied in model calibration and validation. Simultaneous and
step by step calibration are the two most common ways of model calibration when there is
more than one output and variable to be modelled [27].

Simultaneous flow calibration, which involves adjustment of multiple parameters
concurrently, is by far the most commonly applied method. In this procedure, parame-
ters influencing different flow components (groundwater flow, surface runoff, soil water
movement and plant water uptake) are adjusted simultaneously in the ultimate stream
flow output. Several studies have used simultaneous calibration for overall stream flow
calibration [28–30]. The measure of fitness in the simultaneous calibration is therefore the
model’s ability to correctly simulate the flow, and in that, an assumption is made that all
the other hydrological processes are well estimated. On the other hand, in step-wise model
calibration, parameter adjustment for hydrological components such as surface runoff,
groundwater flow, crop yields and soil moisture are done separately in a sequential manner.

Amidst its widespread application, only a few studies have focused on step by step
calibration of different hydrological components for the SWAT model. Santhi et al. [18] used
an automated digital filter technique to separate groundwater flow from surface flow in
their calibration process. Even though important in estimating surface runoff and nutrients
cycling, crop yields are usually ignored in model calibrations [16,31]. Nair et al. [32] applied
a four-stage approach in calibrating SWAT model. Their study found that including crop
yields in the calibration process yielded better model performance. Sinnathamby et al. [19]
also underlined the importance of plant growth parameter calibration in minimizing
hydrological modelling errors. However, simulating crop yield remains a great challenge
due to the limitations in the input data [33]. Rajib et al. [34] reported an improvement in
streamflow prediction by the SWAT model when root zone soil moisture was used as a
criterion for calibration.

Several parameter combinations from the optimized range can potentially produce
behavioral solutions that are considered equally satisfactory in comparison with the ob-
served data [35]. Data availability is a major limiting factor on the intensity and complexity
of model calibration. Baseflow, soil moisture and crop yields data have therefore rarely
been collectively used in a single calibration approach. Owing to the availability of robust
and high-quality data, the objectives of this study are, therefore, to: (i) conduct a step-wise
model calibration and validation procedure for SWAT model by considering runoff, ground-
water flow, soil moisture, streamflow and sediment yield data, (ii) perform a simultaneous
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calibration and validation procedure for SWAT model by considering only the hydrology
and sediment yield components, and (iii) compare the two calibration techniques.

2. Materials and Methods
2.1. Study Area

The study area is comprised of the Hydrological Open Air Laboratory (HOAL)
catchment located in Petzenkirchen, Lower Austria (Figure 1). The basin has an area
of 66 hectares. The elevation ranges from 257 m to 323 m above sea level with a mean slope
of 8% [36]. Agricultural land is the primary land use in the area occupying 87% of the total
watershed [37]. The average annual rainfall is 700 mm, and the mean annual temperature
is 9 ◦C [38]. The remaining 13% of the catchment area is covered with pastures and paved
surfaces. Winter wheat, winter barley, maize, and rapeseed are the primary crops cultivated
in the catchment. The agricultural land is divided into 37 fields with different agricultural
management practices. The field sizes range from less than a hectare to 12 hectares, with an
average field size of 1.5 hectares. Crop rotation is associated with green manure to ensure
natural fertilization of the soil. However, nitrogen fertilizers and natural fertilizers are also
applied before sowing.
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2.2. Soil and Water Assessment Tool (SWAT) Model Description

SWAT is a physically based, catchment scale, continuous model developed by the
USDA Agricultural Research Service (ARS) to quantify the impact of land management
practices on water, sediment, and agricultural chemical yields in large, complex water-
sheds with varying soils, land use, and management conditions over a long period of
time that runs on a daily time step [10]. The major components of the model include
hydrology, weather, soil erosion, plant growth, nutrients, pesticides, land management,
and stream routing.

Spatial variability is integrated in the watershed by delineating the watershed into a
number of sub watersheds based on the topography. Each sub-watershed is further dis-
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cretized into hydrologic response units (HRUs) based on threshold percentages. HRUs are
distinctive combination of categorized land uses, soil types and slope in a sub-watershed.
Surface runoff, sediment yield, soil water content, nutrient cycles, crop growth and agri-
cultural management practices are simulated for each HRU and then aggregated for the
sub-basin. Channel routing is simulated using the variable storage or Muskingum method.

The hydrologic cycle in the SWAT model is based on the water balance equation;

SWt = SW0 +
t

∑
i=1

(
Rday − Qsur f − Ea − Wseep − Qgw

)
i

(1)

where SWt is the final water content(mm), SW0 is the initial soil water content (mm), t is
the time(days), Rday is the amount of precipitation per day(mm), Qsurf is the amount of
surface runoff per day(mm), Ea is the amount of evapotranspiration per day (mm), Wseep in
the amount of percolation and bypass flow exiting in the soil profile bottom layer (mm),
and Qgw is the amount of baseflow per day (mm).

Erosion and sediment yield in SWAT are estimated at the HRU and sub-basin level
using the Modified Universal Soil Loss Equation (MUSLE) [39] and surface runoff from
daily rainfall is estimated using a modified Soil Conservation Service-Curve Number
(SCS-CN) method. Using the SCS-CN method, the model allows the user to quantify the
relative impact of management, soil, climate, and vegetation changes at the sub watershed
level [40]. The MUSLE equation uses runoff as an indicator of the rainfall erosivity (R), as
opposed to rainfall in the USLE equation, which makes it suitable for application at daily
time scale [41]

Plant growth in SWAT is simulated using a simplified version of the generic crop
growth model from EPIC [42]. Crop growth is based on the accumulation of heat units.
Once the cumulative heat units required to reach crop maturity is surpassed, the crop
growth stops. The daily biomass production is simulated by using static radiation use
efficiency of the crop, LAI and absorbed photosynthetically active radiation [32].

2.3. Input Data

The basic data sets required to build the model input include: the digital elevation
model (DEM), climate data, land use/cover and soils. The data for the HOAL catchment
was obtained from the Federal Office of Water Management, Lower Austria.

A DEM of 1 m resolution was used for this study. The land use map was derived
from the orthophoto maps, field surveys and farmer records. For each of the 37 fields,
detailed information about date and type of land management, planted crops and crop
yields as well as fertilizer applications were available for the period from 2008 to 2016.
Approximately 200 kg/ha of nitrogen is applied per year. A soil map containing 27 soil
units was used for soil classification (Figure 2). Soil physical and chemical properties of the
catchment were determined from soil samples collected from a soil survey campaign of
300 cores, sampled on a 50 × 50 m grid in the catchment. The soil survey results contain
information about saturated hydraulic conductivity [37], soil organic matter content (om),
clay (cl), silt (si), and sand (sa) percentages at multiple depths. The soil properties from the
soil samples were averaged for each respective soil unit in the soils map. Soil erodibility
factor (K), was calculated using the erodibility equation by Williams [43]. Soil albedo
was calculated using an equation proposed by Baumer [44]. Soil available water capacity
was calculated as the difference between water held at field capacity and water present at
wilting point [45].
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Us = sandy silt, Ut3 = medium clayey silt, Ut4 = highly clayey silt [46]) and the 50 × 50 grids used for establishing
soil properties.

The weather station is located in approximately the center of the catchment, and
records data including: precipitation, air temperature, air humidity, wind speed and
direction, and incoming and outgoing solar radiation. The meteorological measurements
are taken at one-minute resolution. Discharge at the catchment outlet is monitored by an
H-flume at 1-min resolution, while turbidity sensors installed at the catchment outlet are
used for sediment monitoring. Discharge and turbidity data were available from 2012 to
2016. For purposes of comparison with SWAT simulated output, the model verification data
including discharge and sediment was converted into daily averages. This was achieved
by calculating the mean of all the recorded data points per day (1440 min).

Profile water content is monitored in the catchment by sensors installed at a number
of sites in the watershed as shown in Figure 1. The sensors measure soil water content at
four depths below ground surface (5 cm, 10 cm, 20 cm and 50 cm) using the time domain
reflectometry (TDR) technique [47]. In this method, the dielectric permittivity of soil is
measured and converted to the volumetric moisture content at different soil depths. The
soil water content data was available from 2014 onwards and the measurements are taken
at hourly intervals. The hourly values were converted to daily means and, thereafter, the
mean daily profile water contents were calculated as weighted averages of the sensors up
to a depth of 50 cm.

2.4. Model Setup

SWAT2012 rev 670 was used in this study to estimate all the components of water
balance. Sub-basin and stream definition were undertaken with the automatic delineation
tool incorporated in ArcSWAT. The tool uses DEM information to define basin boundaries
and streamflow direction. Using a threshold drainage area of about 10 hectares a total
of three sub-basins were delineated for the study area. These sub-basins were further
subdivided into 212 HRUs by fixing a threshold value of 0% for land use, soil type and
slope. Slopes were divided into two classes of 1% to 10%, and greater than 10%.

Agricultural management practices including crop rotations, planting and harvest
dates, dates and implements used for tillage operations, and amounts and timing for
fertilizer application were scheduled and used to build the management file for each field
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at HRU level. The primary crops grown in the HOAL catchment include corn, winter
wheat, winter barley and rape seed. Corn is usually planted in mid-April and harvested
in September, paving the way for winter wheat or winter barley in October or November,
completing a yearly crop rotation schedule. Management operations were scheduled by
dates as opposed to the default heat units.

The Hargreaves method [48] was used to simulate the potential evapotranspiration
(PET). The model was run from 2008 until 2016. Model input data were available from
2008 to 2016 while observation data were available from 2012 to 2016. To account for
initial conditions, the first four years were used as warm-up period. Daggupati et al. [49]
recommends a warm-up period of between one to four years.

2.5. Model Evaluation

Successful application of hydrologic models is highly dependent on the sensitivity
analysis and calibration of the model parameters [33,50]. The match between simulated and
observed results were assessed via graphical and statistical techniques. The SWATplusR
package [51], was applied for sensitivity analysis, calibration and validation of the model.
The package provides tools for linking SWAT project with R, thereby enabling the execution
of SWAT simulations and controlling changes in model parameters, simulation periods
and time steps.

The goodness of fit between the simulated and measured data was evaluated by the
coefficient of correlation (R2), the Nash-Sutcliffe efficiency (NSE) [52], percent bias (PBIAS)
and root mean square error (RMSE). The equations representing these relationships are as
shown below [53,54].

R2 =

 ∑
(
Qm − Qm

)(
Qs − Qs

)√
∑
(
Qm − Qm

)2
√

∑
(
Qs − Qs

)2

2

(2)

NSE = 1 − ∑i(Qm − Qs)
2

∑i
(
Qm − Qm

)2 (3)

PBIAS = 100 ∗ ∑n
i=1(Qm − Qs)

∑n
i=1 Qm,i

(4)

RMSE =

√
1
n

n

∑
i=1

(Qs − Qm)
2 (5)

where Qm and Qs are the measured and simulated daily values, Qm and Qs are the average
measured and simulated values.

Model performance was evaluated by a criteria suggested by [55] as shown in Table 1.
The RMSE was evaluated by calculating the scatter index (SI) [56] (Equation (6)). SI less
than one implies acceptable model results, while SI greater than one signifies unacceptable
model results.

SI =
RMSE

Qm
(6)

Table 1. General performance ratings for Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R2), percent bias (PBIAS)
and root mean square error (RMSE), adopted from [55,57].

Performance Rating R2 NSE PBIAS RMSE

Very good >0.85 >0.80 <± 5% -
Good 0.75 < NSE ≤ 0.85 0.70 < NSE ≤ 0.80 ±5% ≤ PBIAS ≤ ±10% -

Satisfactory 0.60 < NSE ≤ 0.75 0.5 < NSE ≤ 0.70 ±10% ≤ PBIAS ≤ ±15% SI < 1
Unsatisfactory ≤0.60 ≤0.5 >±15% SI > 1

Acceptable >0.60 0 < NSE ≤ 1 <±15% -
Unacceptable ≤0.60 <0 >±15% -
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2.6. Sensitivity Analysis

Quantifying model sensitivity to parameter changes is an important step before con-
ducting model calibration [40]. Sensitivity analysis identifies parameters which contribute
the most to model output variance due to variability in the input, therefore enabling
modelers to calibrate only the most influential parameters while reducing the number of
parameters to be calibrated [58]. SWAT has a huge list of parameters from different pro-
cesses ranging from runoff, groundwater, soil crop yields, nutrients and soil loss. Sensitivity
analysis for all these parameters would be exhausting and time-consuming [59]. However,
several researchers, have investigated and documented the most important parameters for
SWAT model calibration [33,45]. These studies were used as basis for selecting parameters
for sensitivity analysis.

For this study, 18 parameters governing streamflow, sediment yield, and soil mois-
ture were chosen for sensitivity analysis. Crop yields parameter sensitivity analysis
was conducted manually via the SWAT model. The Fourier amplitude sensitivity test
(FAST) [60–63], a variance based global sensitivity analysis method was used for sensitiv-
ity analysis. FAST uses a periodic sampling procedure and a Fourier transformation to
decompose the variance of a model output into partial variances contributed by model
parameters [64]. Model sensitivity analysis was carried out with the R package FAST [65].

2.7. Model Calibration and Validation

During winter, temperatures drop to below 0 ◦C and therefore it is essential to consider
the effect of snow on the hydrological cycle, even if the watershed is not strictly snow
dominated [66]. After a successful model run with initial parameters, snow parameters;
SFTMP (snowfall temperature), SMTMP (snow melt base temperature), SMFMX (melt
factor on 21 June), and TIMP (snow pack temperature lag time) were first adjusted by
running 500 simulations and the best parameter range fixed. This approach of fixing some
parameters before starting model calibration is recommended by Hu et al. [67] because it
makes simulations more reliable and physically meaningful. These parameters were not
modified any further during the calibration process. This model is henceforth referred as
the default simulation.

Relevant parameters selected after model sensitivity analysis were automatically
adjusted within SWATplusR during the calibration and validation periods. The SWATplusR
algorithm attempts to find the best combination of parameter values that give the best fit
between the observed and simulated values. After every run, the results were evaluated
using dotty plots and parameter ranges adjusted accordingly. Upon successful calibration,
the same parameter range was used for model validation. The parameters adjustment was
done until the best fit between the observed and simulated data was obtained. Two separate
model calibration projects were set up. One project followed the step-wise calibration
procedure while in the second, the simultaneous flow calibration method was applied. The
Nash-Sutcliffe efficiency (NSE) [52] was used as the objective function for both calibration
and validation.

In step-wise calibration method, different hydrological components were calibrated
separately, whereby parameters governing surface runoff, groundwater flow, crop yields
and soil water content were adjusted independently in a sequential manner. The step-wise
calibration approach is illustrated in Figure 3. After successful calibration in each stage,
the best parameter range was fixed and used for subsequent calibration steps. After that,
these parameter ranges were applied for streamflow and sediment yields calibration. On
the other hand, all flow-related hydrological components were calibrated concurrently in
the simultaneous calibration approach. Soil moisture and crop yields were not calibrated
in the simultaneous calibration method.



Water 2021, 13, 2238 8 of 26
Water 2021, 13, x FOR PEER REVIEW 9 of 28 
 

 

 

Figure 3. Step-wise model calibration and validation flow procedure. 

 

Figure 3. Step-wise model calibration and validation flow procedure.



Water 2021, 13, 2238 9 of 26

2.7.1. Step-Wise Model Calibration
Surface Runoff and Groundwater Flow Calibration

Groundwater flow analysis is a valuable approach in understanding groundwater
movement to and from streams [68]. Groundwater flow calibration was achieved by
iteratively adjusting groundwater parameters that govern the movement of water into
and out of the aquifer systems. Since there are no measured data for groundwater flow
in the catchment, the groundwater flow and runoff were extracted from the total flow. A
recursive digital filter method based on the Lyne and Hollick [69] algorithm was used to
remove the high-frequency quick flow signal to derive the low-frequency baseflow signal.

q f (i) = αq f (i−1) +
(1 + α)

2

(
q(i) − q(i−1)

)
(7)

The baseflow is then computed as:

qb(i) = qi − q f (i) (8)

where qf(i) is the filtered quick flow for the ith sampling instant, q(i) is the original streamflow
for the ith sampling instant, α is the filter parameter that enables the shape of the separation
to be altered, and qb(i) is filtered baseflow response for the ith sampling instant.

The groundwater flow obtained from the recursive digital filter method includes
both groundwater flow and sub-surface flow. Groundwater flow and sub-surface flow are
simulated separately in the SWAT model. In order to calibrate the SWAT output against
the separated groundwater flow, the groundwater and lateral flow columns were added
up in the SWAT output.

Crop Yields Calibration

Three plant growth parameters namely, radiation use efficiency (BIO_E), maximum
potential leaf area index (BLAI) and harvest index (HVSTI) were adjusted to calibrate crop
yields for corn, winter wheat and rapeseed. These parameters were selected based on
manual sensitivity analysis and previous published studies [19,67]. The selected plant
growth parameters were adjusted manually to fit the observed harvest. Due to the robust
crop rotation practiced in the catchment, a spatial method for crop yields calibration
was adopted. Yields for each individual crop in each of the three sub-watersheds (S1,
S2, and S3) as shown in Figure 1 were averaged for the period 2012 to 2016 and these
data used for model calibration and validation. The long-term average for crop yields
calibration was also used by Abbaspour et al. [33] at a continental scale, while Sinnathamby
et al. [19] applied the spatial calibration/validation method. Parameters governing plant
growth were optimized in S1 in the calibration procedure. On satisfactory performance, the
adjusted parameters were further implemented in S2 and S3 without any further changes
for crop yields validation.

Soil Moisture Calibration

Soil moisture measurements from two selected sensors were used for model cali-
bration by comparing the measured data with the simulated profile water content at the
specific HRUs where the sensors were placed. An assumption was made that the point
measurements were representative of the average simulated values in the respective HRUs.
Since SWAT simulates soil moisture content as plant available water (PAW) in millimeters,
the simulated and observed soil water storage could not be compared directly. To overcome
this discrepancy in data structure, water held at wilting point was calculated at each layer
and added to the SWAT simulated soil moisture. Rajib et al. [34] applied a similar approach
for the Upper Wabash and Cedar Creek watersheds by deducting water content held at
wilting point from the soil moisture measurements.

The averaged soil water measurements, taken at a depth of 50 cm, were calibrated
against simulated soil water storage at the third soil profile which ranges from 50–70 cm in
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depth. The comparisons between the measured and observed data were not, therefore, of
the same exact depth.

Thereafter, streamflow and sediment yield calibration and validation followed. Stream-
flow and sediment calibration was done for three years from 2012 to 2014 on a daily time
step, while validation was carried out from 2015 to 2016. Dedicated flow and sediment
monitoring in the catchment were initiated in the year 2012, which explains the choice of
calibration and validation periods.

2.8. Uncertainty Analysis

SUFI-2 program [70] was used for uncertainty analysis. The program predicts model
uncertainty with the bandwidth between 2.5% and 97.5% levels of cumulative distribution
output otherwise known as 95PPU band. The procedure is applied to parameter sets
resulting from Latin hypercube sampling, which means any interactions between param-
eters are explicitly considered [70]. The model uncertainty is quantified by R-factor and
P-factor. The P-factor is the percentage of measured data bracketed by the 95PPU while the
R-factor is the average thickness of the 95PPU band divided by the standard deviation of
the measured data. A P-factor greater than 0.7 and an R-factor of less than 1.5 are loosely
suggested as measures of good model performance [45].

3. Results and Discussion

The investigated period for this study was between 2012 and 2016. The mean annual
precipitation for the HOAL catchment during this period was 737 mm. The maximum
annual precipitation was 915 mm (2013) while the minimum was 569 mm (2015). The mean
flow for the stream was 3.6 L/s with the maximum recorded event of 115.5 L/s. The mean
maximum daily temperature was 14 ◦C and the mean minimum daily temperature was
4 ◦C. Model sensitivity analysis, calibration and validation are presented in this section, as
well as evaluations made through statistical coefficients and visual inspection of plots.

3.1. Sensitivity Analysis

Sensitivity analysis results showed SCS runoff curve number for moisture condition II
(CN2), threshold depth for return flow of water in the shallow aquifer (GWQMN), available
water capacity of soil layer (SOL_AWC) and peak rate adjustment factor (PRF) as the most
sensitive parameters for surface runoff, groundwater flow, soil moisture and sediment yield
respectively. Sensitivity analysis results are shown in Figure 4. A total of 12 parameters
were selected for flow and soil moisture calibration, while three parameters (Table 2) were
chosen for sediment calibration based on the sensitivity analysis results.
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Table 2. Soil and Water Assessment Tool (SWAT) parameters modified during both simultaneous and step-wise calibra-
tion methods.

Parameter Definition
Simultaneous Step-Wise

Final Range Value Final Range Value

Surface runoff

CN2 p Initial soil conservation service (SCS) curve
number for moisture condition II −10–10 −3 −10–0 −1.2

CANMX a Maximum Canopy Storage (mm) 0–5 4 0–5 2
SURLAG a Surface runoff lag coefficient 0–10 0–10 0.9
CH_N2 a Manning’s ‘n’ value 0.01–0.15 0.06 0.01–0.15 0.01

Groundwater flow

ESCO a Soil evaporation compensation factor 0.5–1 0.86 0.5–1 0.88
GW_REVAP a Groundwater ‘revap’ coefficient 0.02–0.2 0.15 0.02–0.2 0.15

GWQMN a Threshold water level in shallow aquifer for
baseflow (mm) 100–1500 478 100–800 369

EPCO a Plant uptake compensation factor 0.5–1 0.9 0–0.5 0.3
SOL_K p Saturated hydraulic conductivity (mm/hr) −20–20 12 −20–20 5

RCHRG_DP a Deep aquifer percolation fraction 0–1 0.69 0.05–0.25 0.05

Soil Moisture

SOL_AWC p Available water capacity −20–20 15 −30–0 −2/−24

Sediment

SPCON a
Linear parameter for calculating the maximum

amount of sediment that can be reentrained
during channel sediment routing

0.001–0.01 0.005 0.001–0.01 0.006

PRF a Exponent parameter for calculating sediment
reentrained in channel sediment routing 0–2 1.5 0–2 1.5

SPEXP a Peak adjustment factor 1–1.5 1 1–1.5 1.2

Plant growth

Corn W. wheat Rapeseed

HVST I a Harvest index [(kg/ha)/(kg/ha)] 0.4–0.7 0.35–0.5 0.2–0.5
BIO_E a Radiation use efficiency [(kg/ha/(MJ/m2)] 35–45 25–35 30–45

BLAI a Maximum potential leaf area index
[(kg/ha)/(kg/ha)] 5–8 3.5–7 3–5

p Percent change, a Absolute change.

The parameters identified as the most influential during sensitivity analysis were also
identified by other researchers as important parameters for SWAT model calibration in
various studies across varying catchments [21,30,71–73].

The parameters used for model calibration and validation for both step-wise and
simultaneous methods with the final adopted parameter ranges are shown in Table 2.
Most of the parameter ranges were similar except that of GWQMN which showed a wider
range for the simultaneous method (100–1500) mm compared to the step-wise method
(100–800) mm. The CN2 parameter was also fine-tuned in the step-wise method. These
parameters’ range differences are a result of runoff and groundwater flow calibration steps
carried out during step-wise calibration. The SOL_AWC parameter also showed a clear
trend in the step-wise method compared to simultaneous calibration. This is because the
SOL_AWC parameter was adjusted based on soil moisture data for the step-wise calibration
as opposed to streamflow in the simultaneous calibration approach.

3.2. Step-Wise Calibration and Validation

For model predictions to be valid and reliable, the model parameter values need
to accurately reflect the hydrological systems they represent. However, not all model
parameters can be measured directly. In this case, the parameter values can only be
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obtained through model calibration [2]. The parameters selected during sensitivity analysis
were used for model calibration and validation.

The default model satisfactorily reproduced the hydrograph pattern of measured
daily streamflow as shown in Figure 5. The R2 value of 0.69 and PBIAS of 16.3% further
suggest a good model performance. However, an NSE value of 0.39 indicates unsatisfactory
model performance even though the results are within the acceptable range according
to the criterion shown in Table 1. Furthermore, RMSE of 5.24 L/s translates to a scatter
index (SI) of 1.29 pointing to unsatisfactory model performance. The mean simulated
discharge during the calibration period was 4.71 L/s while the observed mean was 4.05 L/s;
furthermore, the standard deviation for the simulated and observed discharge was 9.20 L/s
and 6.74 L/s respectively.
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The default model performed better than the results obtained by Van Liew and
Garbrecht [74] who reported the NSE value of −3.24. They attributed this poor model
performance to model’s overestimation of peak flows and underestimation of groundwater
flows. These results are similar to our findings as visual inspection of our default model
points to overestimation of peak flows. The low flows, however, do not show a clear trend.
Low flows are overestimated in wet year (2013) and underestimated in the dry year (2014).
Fukunaga et al. [21] also reported an NSE value of −0.38 and PBIAS of −24%. The better
performance can be attributed to the dedicated catchment monitoring initiated in 2012
which provided high quality and quantity of data for model set up.

The high peak flows could be due to the fact that the initial curve number values
calculated by the model were too high. Strauch et al. [75] and Fukunaga et al. [21] also
reported high CN2 values in their default SWAT models. This challenge was solved by
decreasing the CN2 value during model calibration.

3.2.1. Surface Runoff and Groundwater Flow Calibration

To understand groundwater contribution into streamflow, analysis of the stream hy-
drograph which involves separating baseflow from quickflow is critical [68]. Groundwater
flow and surface runoff components are constantly interacting within a watershed, which
means changing one component will influence the others. Due to this interaction, it is
common practice during model calibration to parameterize groundwater parameters and
surface runoff parameters concurrently [45,71]. However, in our study, the parameters
governing groundwater flow and surface runoff were adjusted separately to better un-
derstand the model’s simulation of flow components. This approach was also used by
Santhi et al. [18]. Moriasi et al. [55] stressed the importance of calibrating all the hydrologi-
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cal constituents to be evaluated in watershed modeling. Hence, when the objective of the
hydrological model is to be applied for predicting discharge, it would be sufficient to only
calibrate the model for streamflow. However, if the model was to be used for evaluation of
different land use scenarios and management strategies, for example, it becomes necessary
to calibrate different flow components. Furthermore, Pinto et al. [76] reported that SWAT
was unable to properly capture discharge during low flow periods in the simultaneous
calibration approach in a baseflow dominated watershed. They attribute this to the type
of objective function selected during calibration process as some functions, e.g., sum of
square of the residuals, strongly influence peak discharges.

CN2 is the most influential parameter for surface runoff [73]. This parameter was,
therefore, the basis for surface runoff calibration. The curve number estimates runoff based
on the relationship between precipitation, hydrologic soil group and land uses [71]. The
curve number is adjusted every day according to the prevailing moisture conditions in
the watershed [74]. Maximum canopy storage (CANMX), surface runoff lag coefficient
(SURLAG), plant uptake compensation factor (EPCO) and soil evaporation compensation
factor (ESCO) were the other parameters adjusted for surface runoff calibration. Threshold
water level in shallow aquifer for baseflow (GWQMN), groundwater revap coefficient
(GW_REVAP), deep aquifer percolation fraction (RCHRG_DP), saturated hydraulic conduc-
tivity (SOL_K) parameters were adjusted for groundwater flow calibration. The parameter
description and the final parameter ranges are shown in Table 2. The NSE and R2 val-
ues (Table 3) denote a good model performance in predicting surface runoff. The PBIAS
shows satisfactory results while an SI of 3 indicates an unsatisfactory RMSE value. The
model performance in groundwater flow simulation was good as shown in Table 3 and
Figure 6. The good fit between the observed and simulated surface runoff and ground-
water flow is a good indicator that hydrologic processes in the HOAL catchment were
modelled realistically.

Table 3. Model performance for surface runoff and groundwater flow.

NSE R2 RMSE (L/s) PBIAS (%)

Surface runoff 0.79 0.79 2.87 −12.50

Groundwater flow 0.82 0.82 0.85 −0.3
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The simulated runoff showed very high uncertainty with a P-factor of 0.11 and R-
factor of 0.49. On the other hand, good P-factor and R-factor values of 0.82 and 1.0 were
achieved for groundwater flow.

3.2.2. Crop Yields Calibration

For efficient application of hydrological models in catchment assessment, it is essential
that crop yields are appropriately simulated. This is due to the fact that integrating crop
growth in hydrological models enables correct representation of biomass characteristics
which are important in many hydrological processes [19].

Corn, winter wheat and rapeseed yields were underestimated by 17%, 24%, 57%
respectively while winter barley yields were overestimated by 14% in S1. The model
simulation for winter barley was considered satisfactory. For corn, winter wheat and
rapeseed, a manual calibration procedure was adopted. The plant growth parameters
considered for calibration were harvest index (HVSTI), radiation use efficiency (BIO_E)
and maximum leaf area index (BLAI) as recommended by [19,53].

Model calibration significantly improved the simulation results for crop yields as
shown in Table 4 and Figure 7. The harvest index (HVSTI) for corn was increased from the
default 0.5 to 0.6, while that of winter wheat was increased from 0.4 to 0.45 and rapeseed
from 0.23 to 0.4. Validation performed well in S2 but there was a bigger discrepancy
between simulated and observed corn and rapeseed yields in S3. Whereas S1 and S2 have
several fields under different management practices and cropping patterns, S3 is made
up of one large field with similar agricultural practices. This could explain the difference
in crop yields simulation. Overall, the long-term crop yields calibration and validation
are satisfactory.

Abbaspour et al. [33] also used the long-term crop yield averages for model calibration
and reported good model performance. However, they highlighted the challenge of
simulating crop yields due to limitations of obtaining input data at farm scale. It is
worth noting that their study was a large-scale application covering an area of around
10.18 million square kilometers whereas our study was small-scale application. This
challenge was also identified by Srinivasan et al. [77]. Their study suggested that more
information on crop management practices could improve SWAT models performance
for crop yields simulation. Sinnathamby et al. [19] reported an overestimation of corn
yields for the default model contrary to the results of this study where initial corn yields
were underestimated. This could be attributed to the geographical location and climatic
conditions of the study areas as well as differences in management practices.

Table 4. Crop yield calibration results for S1 and validation results for S2 and S3 for the period (2012–2016).

Calibration (S1)

Crop Default Model
(t/ha)

Observed
(t/ha)

Simulated
(t/ha)

PBIAS
(%)

Winter wheat 4.8 6.25 6.1 −2.4
Winter barley 6.2 5.4 6.2 14

Corn 8.9 10.8 11.2 3.7
Rapeseed 1.9 4.6 3.8 −17

Validation (S2)

Winter wheat 6.4 6.2 −3
Winter barley 5.7 5.8 2

Corn 11 11 0
Rapeseed 3.7 3.6 −3

Validation (S3)

Winter wheat 7.1 6.5 −8
Winter barley 6.1 6.2 2

Corn 9.4 7.4 −21
Rapeseed 4.9 6.6 35
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Even though the long-term average crop yields were well simulated, the annual vari-
ability especially for corn was not well captured. These findings are similar to Hu et al. [67],
who reported poor model results in calibrating annual corn yields with NSE of −0.49. This
study obtained a better NSE value of −0.07, although this value is unacceptable. Although
we had detailed management practices data in our research, the inconsistencies in seasonal
crop yield variability still persisted.

3.2.3. Soil Moisture Calibration

Soil moisture plays an important role in the energy and water balance in the hy-
drological cycle. The antecedent moisture conditions determine the potential for surface
runoff and deep percolation to occur [17,78]. Ensuring accurate accounting of soil mois-
ture in hydrologic models can, therefore, improve the model’s ability to simulate other
hydrologic processes.

The calibrated parameter ranges for groundwater flow, surface runoff and crop yields
calibration were used during soil moisture calibration without any further adjustment.
Available water capacity (SOL_AWC) was the most sensitive parameter for soil moisture.
The calibration procedure, therefore, involved adjusting this parameter. The mean mea-
sured soil profile water for the entire catchment was 183 mm for the top 50 cm, while the
average simulated soil water content was 181 mm for approximately top 60 cm of the soil.
The soils had high water content in winter periods and low water content during summer.
Calibration was done on two locations hereby referred to as Hoal_04 and Hoal_10. Hoal_04
is located upstream with sensors positioned in pasture HRUs whereas Hoal_10 is located
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near the catchment outlet and the sensors are located in agricultural HRUs (Figure 1). In
both locations, calibration results showed a good fit between the simulated and measured
soil moisture content as shown in Figure 8. The NSE and R2 values were both greater than
0.75 indicating a good model performance. Both sensors show a similar soil moisture trend,
although Hoal_04 (Figure 8a) soil water profile values are slightly higher. This could be
due to the aforementioned positioning of the Hoal_04 sensors in pasture grounds. Due to
the small size of the study area, there are no big differences in soil properties across the
whole catchment.
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The soil moisture calibration in this study performed better than some previous
published studies. Rajib et al. [34] calibrated the SWAT model for soil moisture for the top
60 cm for Cedar Creek watershed and reported R2 value of 0.23 and PBIAS of −8.7. They
attributed the bad model performance to limitations in model ET depletion mechanism
which led to errors in model simulation during summer months. Even though the soil
profile water content in our study was also underestimated during summer, the margin of
error was much less than that reported by Rajib et al. [34]. The good performance of soil
moisture calibration in this study can be attributed to high-quality soil data and extensive
agricultural management practices data used during the model set-up.

Uncertainty analysis for the calibrated soil moisture obtained a P-factor of 1.0 in both
calibration sites while R-factor value was 1.8 for Hoal_04 and 2.4 for Hoal_10. Whereas
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the P-factor falls within the acceptable range, the R-factor values were beyond the recom-
mended threshold as shown in Table 1. Uniyal et al. [79] conducted uncertainty analysis
for SWAT soil moisture calibration and obtained P-factor values ranging from 0.6 to 0.83
and an R-factor of between 0.5 to 1.3. Their study considered the top 30 cm of the soil
profile as opposed to 50 cm in our study. Their study also implemented auto irrigation in
the SWAT model while that was not the case in our study, as there is no irrigation in the
HOAL catchment. Nevertheless, the results of model uncertainty analysis agree well in
both studies, although our model performed worse. A reason for a poor model uncertainty
results could be because soil moisture is simulated at the HRU level in SWAT compared to
TDRs point measurements.

3.2.4. Streamflow Calibration

Streamflow was checked after every calibration step to evaluate the effect of each
calibration step on total flow. The calibrated parameters for surface runoff, groundwater
flow, crop yields and soil moisture were used for total stream flow calibration. Furthermore,
after each calibration step, stream flow simulation was evaluated to ascertain the influence
of calibration steps on the models’ streamflow simulation. The results of streamflow
simulation in every step of calibration are shown in Table 5. The final streamflow calibration
results showed a good fit between the simulated and observed flow, with NSE, R2, PBIAS
and RMSE of 0.83, 0.83, 6.5 and 2.8 L/s. The R-factor was found to be 0.56 while the P-factor
was 0.74. 74% of the observed data was therefore bracketed by the 95PPU band and the
average distance between the 2.5th and 97.5th percentiles was smaller than the standard
deviation of the measured data implying a good simulation as suggested by [80]. These
results are shown in Figure 9.

Table 5. Effect of each calibration step on streamflow, soil moisture and sediment yield. OBS = Ob-
served data, DM = Default model, ARC = After runoff calibration, AGC = After groundwater
flow calibration, ACC = After crop yields calibration, ASC = After soil moisture calibration and
ASEC = After sediment calibration.

Streamflow (L/s)

Calibration Step Mean s.d NSE R2 RMSE (L/s) PBIAS

OBS 4.1 6.8
DM 4.7 9.2 0.39 0.69 5.24 16.3
ARC 3.1 6.8 0.77 0.80 3.25 −31.40
AGC 4.0 5.1 0.78 0.80 3.15 −2.70
ACC 4.2 6.0 0.79 0.81 3.10 −4.40
ASC 4.2 6.0 0.79 0.81 3.10 −4.40

ASEC 4.2 6.0 0.79 0.81 3.10 −4.40

Profile soil water content (mm)

OBS 23
DM 181 29 0.69 0.83 12.89 −1.8
ARC 188 35 0.48 0.87 16.81 1.7
AGC 187 34 0.51 0.85 16.36 1.0
ACC 187 34 0.51 0.85 16.36 1.0
ASC 183 26 0.86 0.87 8.72 0.3

ASEC 183 26 0.86 0.87 8.72 0.3

Sediment yield (t/ha)

OBS 0.01 0.08
DM 0.01 0.08 0.82 0.84 0.03 25
ARC 0.008 0.03 0.55 0.87 0.05 −24.8
AGC 0.005 0.02 0.35 0.89 0.06 −55.6
ACC 0.005 0.02 0.35 0.89 0.06 −55.6
ASC 0.004 0.02 0.45 0.89 0.06 −60.5

ASEC 0.010 0.07 0.88 0.89 0.03 −1.9
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Malagó et al. [13] applied a step-wise calibration approach using the SWAT model in
the Danube river basin at multiple gauging stations and reported acceptable PBIAS value
of ±25% in 70% of the gauging stations. However, they reported that some stations showed
unsatisfactory PBIAS value. Furthermore, their study did not consider soil moisture
calibration. Their model obtained better surface runoff results by increasing the CN2 value
by 10% as opposed to our model, where decreasing the curve number by 1.2% produced
better results. However, they state that because of no exact information about land use, a
misrepresentation of agricultural practices in their study may be possible, which could
explain the differences in the CN2 value. Based on the PBIAS value, our model performed
better; however, our study area was much smaller and we used only one gauging station
for model calibration whereas multiple gauging stations were used for calibration in the
study by Malagó et al. [13].

3.2.5. Flow Validation

The model was validated for total streamflow at the outlet. The model performance
was good for the validation period as shown in Figure 9 with NSE and R2 greater than
0.65. The PBIAS was −4.4 while the RMSE was 1.38 L/s. However, the model performed
poorly during validation compared to calibration. These findings are in agreement with
Fukunaga et al. [21], who reported an NSE of 0.75 during calibration and which dropped
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to 0.67 during validation. This is expected because the parameters are optimized for
the calibration period, therefore varying climatic and hydrological conditions and land
management practices in the validation period may render the parameters obtained during
calibration less optimal.

Furthermore, a P-factor and R-factor of 0.73 and 0.93 respectively shows a good model
performance for streamflow during the validation period.

3.2.6. Sediment Yield Calibration and Validation

Since it is a small catchment, significant sediment yields are only observed during
high-intensity rainfall. Sediment calibration was, therefore, highly dependent on the
models’ capability to simulate these high flow events. The default model performed
very well for sediment yield, with NSE of 0.82. Surface runoff had the highest impact on
sediment yield, as shown in Table 5. This was expected because quick runoff is majorly
responsible for detachment and transport of sediment in catchments. Sediment yields’
calibration included adjusting three parameters which included the exponent parameter
for calculating sediment reentrained in channel sediment routing (PRF), linear parameter
for calculating the maximum amount of sediment that can be reentrained during channel
sediment routing (SPCON) and peak adjustment factor (SPEXP). Pinto et al. [76] also found
SPCON and SPEXP parameters sensitive to sediment yields generation. Adjusting sediment
yield parameters improved the model’s performance for sediment yield, obtaining a good
NSE, R2 and PBIAS as shown in Table 5.

3.2.7. Effect of Calibration Steps on Hydrological Components

The results of streamflow simulation after each calibration step are shown in Table 5.
The most significant improvement in streamflow results is observed after runoff calibration
(ARC). The NSE value improved from 0.39 to 0.77, while R2 value was 0.80 from the
previous 0.69. A poorer PBIAS value was, however, obtained while the RMSE value
improved by 2 L/s. Since the curve number (CN2) was the most sensitive parameter for
streamflow, these results suggest that adjusting CN2 value is sufficient to obtain a good
flow calibration for the HOAL catchment. These results are similar to Széles et al. [36] who
applied the Hydrologiska Byråns Vattenbalansavdelning (HBV) model [81] in the HOAL
catchment. They noted that the model was able to produce very good streamflow results
after runoff calibration, whereby their model obtained a logarithmic NSE value of 0.81.

Groundwater flow calibration (AGC) did not significantly affect the total flow, the
R2, NSE and RMSE values were 0.80, 0.78 and 3.15 respectively. These values are similar
to those obtained after runoff calibration (Table 5). However, the PBIAS value showed
a significant improvement from −31.40 to −2.7. This is because the runoff calibrated
model underestimated groundwater flow especially in 2014, which was corrected after
groundwater flow calibration. These results, therefore, emphasize the need for groundwater
flow calibration as a model could obtain good statistical values for streamflow while
misrepresenting other hydrological processes. Good results achieved after surface runoff
and groundwater flow parameters calibration indicate that these two steps are sufficient
for streamflow calibration.

Crop yields (ACC) and soil moisture (ASC) parameter adjustment did not have any
statistically significant change to streamflow output. This could be due to the fact that the
initial model estimated fairly the soil moisture and crop yields and no major parameter
alterations were required in the calibration. The NSE and R2 values for the default model
for soil moisture was 0.69 and 0.83 respectively as shown in Table 5. This shows good
ability of the initial model to predict soil moisture.

Azimi et al. [82] assimilated satellite soil moisture data in their SWAT model for small
watersheds in Italy and observed a slight improvement of NSE by around 0.1. Although
they did not show results for soil moisture calibration, it can be concluded that assimilating
soil moisture data in the streamflow calibration does not have a significant impact on
streamflow simulation, especially when good quality soil data are used in modelling.
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Arias et al. [83] reported an underestimation of peak flows which they attributed to the
models’ inability to simulate soil moisture conditions during high rainfall periods. High-
quality soil data used during model set-up in our study can, therefore, be attributed to
the good soil moisture simulation and, therefore, the negligible impact of soil moisture
calibration on streamflow. Széles et al. [36] also did not report any significant improvement
in streamflow prediction for the HOAL catchment after incorporating soil moisture data
in their research; however, they reported an improved soil moisture prediction by the
model. Rajib et al. [34] used in-situ soil moisture estimates for top 60 cm of soil profile in
their multi-objective approach and reported an improvement of R2 from 0.69 to 0.72 in
streamflow calibration after soil moisture calibration.

Since streamflow is simulated on a daily time-step while crop yields are calibrated
on seasonal basis, crop yields would not be expected to significantly alter the daily water
budget. Nair et al. [32] also found only a slight improvement of the SWAT model’s ability
to predict discharge upon calibration of plant growth parameters.

Step-wise model calibration had a negative impact on the NSE and PBIAS for sediment
yield simulation, whereas the R2 value improved slightly throughout the calibration steps.
This shows that it is possible to have a well-calibrated model for streamflow which poorly
represents the sediment yield in the catchment. Therefore, these results advocate for the
step by step approach in model calibration.

3.3. Simultaneous Calibration and Validation

The simultaneous calibration procedure was performed with the same parameters
used in the step-wise calibration method, with their default range. This calibration, there-
fore, produced different parameter ranges as shown in Table 2. This calibration method
obtained good model results for streamflow with NSE, R2, PBIAS and RMSE of 0.78,
0.79, −1.5, and 3.2 L/s respectively. The P and R factors were 0.97 and 0.9, respectively.
The results suggest a good agreement between the simulated and observed data for the
simultaneous calibration process.

SWAT simulations from previous studies have produced reasonable results using the
simultaneous calibration approach for both annual and monthly scales [67,72,77,84,85] but
some poor results for daily time-step [86]. Arias et al. [83] applied the SWAT model for
Corbeira catchment in Spain on a daily time-scale and obtained an R2, NSE and PBIAS of
0.80, 0.80 and −1.8, respectively, which points to a good model performance, even though
they reported underestimation of peak flows during high flow periods. Their study area
was also dominated by forest which occupied 65% of the total area, as opposed to the 87%
agricultural area in our study. These results show that availability of high-quality data is key
to god model performance. Pinto et al. [76] applied the shuffled complex evolution (SCE)
method for SWAT model calibration for streamflow in the Lavrinha Creek watershed in
Brazil and also reported very good model results. Contrary to Arias et al. [83], their model
overestimated peak flows and underestimated low flows. Van Liew and Garbrecht [74]
obtained an NSE value of between 0.40 and 0.60 for daily streamflow simulation. Rivas-
Tabares et al. [87] also demonstrated that the SWAT model is capable of producing good
results for streamflow in agriculture dominated watershed when high-quality soil data and
crop management is used during model set-up. These results show that the SWAT model
can be successfully applied in watersheds with different sizes, management practices and
climatic conditions.

The NSE and R2 were greater than 0.60 for the validation period, the PBIAS was −5.6
while RMSE was 1.680 L/s. A P-factor of 0.82 and R-factor of 1.50 was achieved for the
validation. Abbaspour et al. [33] applied the SWAT model on a continental scale for Europe
on a monthly time step and reported a P-factor ranging from 0.39 to 0.76 and R-factor
ranging from 0.54 to 0.99.
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3.4. Comparison between Step-Wise and Simultaneous Calibration and Validation Methods
3.4.1. Flow Calibration and Validation

Both calibration methods showed good results in streamflow simulation as shown in
Table 6. The step-wise calibration method performed slightly better than the simultaneous
calibration method. Therefore, it can be concluded that calibration of different hydrological
components leads to a better model performance. The simultaneous calibration results
showed an overestimation of soil profile water content during the calibration period as
shown in Figure 10 while the groundwater flow was underestimated as shown in Figure 11.
Based on these results, we can deduce that it is possible for the model to produce good
streamflow results with incorrect representation of runoff, groundwater flow, crop yields
and soil water content. One of the main achievements of the groundwater flow calibration
step was rectifying the underestimated groundwater flow in late 2013 and early 2014 as
discussed in Section 3.2.5. However, this issue persisted with the simultaneous calibration
method. On the downside, the step-wise calibration method is time-consuming as also
mentioned by Brighenti et al. [27], because of the number of simulations run in every
calibration step, whereas in simultaneous calibration, only one calibration step is required.

Table 6. Comparison between model performance for both simultaneous and step-wise calibration
approaches for streamflow and sediment yield.

Method Calibration Validation

NSE R2 RMSE PBIAS NSE R2 RMSE PBIAS

Sediment yield

Step-wise 0.89 0.89 0.03 5.50 0.79 0.79 0.01 12.40
Simultaneous 0.87 0.88 0.03 18.60 0.83 0.84 0.01 −7.90

Streamflow

Step-wise 0.83 0.83 6.5 2.80 0.74 0.75 −4.4 1.38
Simultaneous 0.78 0.79 −1.5 3.20 0.62 0.64 −5.6 1.68
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The statistical figures for the validation for both methods are shown in Table 6. Both
validation techniques show a good performance; however, better results were obtained
through the step-wise method. The validation results are, therefore, consistent with the
results from model calibration, implying the step-wise method to be a more reliable option
for model calibration. An R-factor of 1.51 for the simultaneous validation method compared
to 0.93 for stepwise calibration also indicates poor model uncertainty results.

3.4.2. Sediment Yield Calibration and Validation

Sediment results were better for the step-wise method for the calibration period and
simultaneous method for the validation period (Table 6). Since the default model was
capable of predicting correctly sediment yield before calibration, it can be concluded that
both methods do not show any significant difference. Alibuyog et al. [88] attained an
R2 of between 0.58 to 0.82 and NSE of −5.52 to 0.80 in simulating sediment yields in the
Manupali River watershed. Therefore, this study obtained slightly better calibration results
for sediment yields as shown in Table 6.

4. Conclusions

This study investigated the impact of incorporating runoff, groundwater flow, crop
yields and soil moisture data during SWAT model calibration and validation, and compared
the step-wise calibration method with the widely used simultaneous calibration method.
The calibration process was carried out through SWATpluR package. The differences
between the two methods are presented statistically and also graphically.

The results of this study show that both methods can be successfully used in SWAT
model calibration for streamflow and sediment yields, but with some differences. In both
calibration methods, R2 and NSE values were greater than 0.75. In addition, the model was
capable of correctly simulating crop yields, soil moisture, groundwater flow and surface
runoff. Due to the comprehensive nature of the step-wise calibration method, there is better
partitioning between surface runoff and groundwater flow components and also better soil
moisture prediction accuracy. The step-wise calibration method performed slightly better
for streamflow and sediment yields prediction. The simultaneous calibration method only
relies on good correspondence between the observed and simulated streamflow and sedi-
ment yield, without necessarily checking surface runoff, groundwater flow or soil moisture.
This implies that wrong parameter combinations could bring out a desirable output.

This study also demonstrated that data quality and quantity play a significant role in
hydrological models performance. Since this research was undertaken on an extensively
monitored catchment, high-resolution input data (DEM, soils, weather and land use data)
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were available, which led to good performance of the default model with initial parameters
for streamflow, soil moisture, crop yields and sediment yield. The default model output for
flow, soil moisture and sediment yield were acceptable. One-minute resolution weather
data, high-quality DEM, detailed land and soil management practices and high-resolution
calibration data contributed to the good initial model performance.

The step-wise calibration method can be time consuming compared to the simulta-
neous calibration method. If the main focus of the research is to study the hydrology
of the catchment, simultaneous calibration would be recommended since it is fast and
gives similar results to the stepwise method. For sub-surface water, land use and soil
management scenarios, the step-wise method is recommended because it provides a better
prediction of most hydrological components in catchments. Our study was conducted on a
small experimental watershed with homogeneous weather, data availability and quality
was, therefore, not a challenge. There were also no huge differences in soil physical and
chemical properties and 87% of the catchment was used for agriculture. It would, therefore,
be important to evaluate the impact of applying a similar calibration approach to large,
heterogeneous watersheds.
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