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It is known fiom previous work that tau is the main

component ofpaired helical filaments (PHFs) and that it
can assemble in vitro into polymers resemblng PBfFs
when high concentrations of protein are used. In the
search for molecules that can fadlitate tau polymeriza-
tion, a component of neuroflbrillary tangles, heparan
sulfat (or its more sulfated form, heparin), and other
glycosamnoglycans have been tested. Glycosaminogly-
cans, in the sulfated but not in the unsulf form,

dlitate not only tau assemblybut also the formadon of
polymers resembling PBFs. Conversely, PHFs were

found to contain heparan sulfate and chondroitin sul-
fate. Heparinase or chondroidnase tratment of PHFs

results in the formation of straight stuctues. AU of
these resuls suggest a role for sulfated glycosaminogly-

cans in determining the helicity ofPHFs. (AmJPatbol
1997, 151:1115-1122)

Alzheimer's disease (AD) is a senile dementia character-
ized by the presence of two aberrant structures: senile
plaques and neurofibrillary tangles (NFTs). As the sever-

ity of dementia has been correlated with accumulation of
NFTs in different brain regions,1 it is of interest to under-
stand the mechanism of NFT formation.

In a pioneer work, Kidd2 described that NFTs are

composed of bundles of paired helical filaments (PHFs).
The structure and morphology of these filaments have
been analyzed,34 and by using atomic force microscopy,
it was suggested that PHFs are composed of two 10-nm
filaments that are wound into a helix with a maximal
diameter of 20 nm and a half period of 65 to 80 nm.4 Also,
a lower proportion of another type of filament, termed
straight filament (SF), was detected (see for example Ref.
5). SFs, in contrast to PHFs, did not show the variations in
width (along their length) found in PHFs. In later studies at
a molecular level, the microtubule-associated protein tau
was shown to be a major component of both PHFs and
SFs.6-13 Subsequently, tau was shown to be able to
polymerize, in vitro, yielding fibrillar polymers that can
resemble SFs or even, in some cases, PHFs.10.14-22 The
region of tau involved in self-aggregation corresponds to

the microtubule-binding region of the protein, 14,19,22-24
and the formation of fibrillar polymers can be achieved
with only an 18-residue-long peptide corresponding to
the third motif of the microtubule-binding region of tau
protein, if anionic compounds are added.24
As the in vitro polymerization of tau usually requires

a large amount of protein and because such quantities
are usually not present in physiological condi-
tions,1014,16-18,20,22 it has been suggested that in vivo
there are probably other molecules that facilitate tau
assembly into fibrillar polymers. Likely candidates are

sulfated glycans, as these molecules have been shown
to be present in NFTs.25-29 Glycosaminoglycans
(GAGs) are sugar molecules that are usually covalently
linked to proteins to form proteoglycans, components
of the extracellular matrix.30 Four major GAGs have
been described: the unsulfated hyaluronic acid, chon-
droitin sulfate (and dermatan), heparan sulfate (and its
more extensively sulfated form, heparin), and keratan
sulfate.30 Sulfated glycans are also present in senile
plaques.31-33 Additionally, one of these sugars (hepa-
rin) facilitates the in vitro assembly of tau protein.24'26

In this work we have analyzed the characteristics of the
heparin-tau interaction or that of tau with other sulfated
glycans to test for the possible involvement of GAGs in
the formation of structures such as SFs or PHFs.

Materials and Methods

Materials
Two monoclonal antibodies, against heparin and chon-
droitin sulfate, were obtained from Seikagaku Corp. (Ja-
pan). Calmodulin was a generous gift of Dr. Dfaz Nido.

Heparinase and chondroitinase ABC were purchased
from Sigma Chemical Co. (St. Louis, MO). These en-
zymes did not show protease activity when they were
tested on recombinant tau.
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Isolation of Paired Helical Filaments
Brain samples, supplied by Dr. Ravid (Netherlands Brain
Bank), from AD patients were used as a source to isolate
PHFs by following the procedure of Greenberg and
Davies.34

Protein Isolation
Recombinant human tau, or fragments (N, 3RC, 4R, and
3R, containing the amino-terminal region, the tubulin-
binding domain, and the carboxyl-terminal region or the
tubulin-binding domain of tau, respectively) were purified
as previously indicated.24'35

The proteins were characterized by gel electrophore-
sis as described.24

Polymerization of Tau into Filaments

Recombinant tau protein or its fragments were polymer-
ized in hanging drops by the vapor diffusion often used
for protein crystallization.15 The protein concentration
and buffer conditions used in the assay have been de-
scribed previously.24 The assay was done in the pres-
ence of increasing amounts (0.5 to 5 mg/ml) of heparin or
chondroitin sulfate.

Heparin-Sepharose Chromatography
Twenty micrograms of tau protein or its fragments N,
3RC, 4R, or 3R were chromatographed on a heparin-
Sepharose column (with a volume of 0.5 ml), equilibrated
in 0.01 mol/L MES, pH 6.4, 0.05 mmol/L MgCI2, 0.2
mmol/L EGTA (buffer A:10 or binding buffer). In the same
conditions, calmodulin was also chomatographed. The
absorbed protein was eluted stepwise by washing the
column with 0.1, 0.2, 0.5, and 1.0 mol/L NaCI in buffer
A:10. The fractionated protein was characterized by gel
electrophoresis.

In some experiments, solutions of 1 mg/ml heparin
or hyaluronic acid in buffer A:10 were used as elution
buffers.

Treatment of PHFs with Heparinase or
Chondroitinase
A solution of PHFs (0.5 mg/ml) was incubated in the
presence of increasing amounts (25 to 100 U/ml) of he-
parinase or chondroitinase for different times from 2.5 to
24 hours at 370C. After the treatment, the PHFs samples
were visualized by electron microscopy.

Electron Microscopy
Samples were incubated on a carbon-coated grid for 2
minutes and then stained with 2% (w/v) uranyl acetate for
1 minute. Transmission electron microscopy was per-
formed in a JEOL model 1200EX electron microscope
operated at 100 kV. Electron micrographs were obtained

at a magnification of 40,000 on Kodak SO-163 film. Mi-
crographs were digitized using an Eikonix IEEE-499 cam-
era with a pixel size equivalent to 7 A in the specimen
plane. Processing and measurements were performed
using the Digital Micrograph 2.1 software from Gatan.
Several standards were used for the control of measure-
ments.

Immunoelectron microscopy was performed after ab-
sorption of the samples to electron microscopy grids and
incubation with the first antibody (anti-heparan or anti-
chondroitin) for 1 hour at room temperature. After exten-
sive washing, the grids were incubated with the second-
ary antibody conjugated with 10-nm-diameter gold
particles. Finally, the samples were negatively stained as
described above.

Results

Tau Filaments with Variable Width Are Formed
in the Presence of Glycosaminoglycans
Heparin has been demonstrated to facilitate the assem-
bly of tau into filaments, some of which resemble
PHFs.2426 As not only heparin27 but also other GAGs,
such as chondroitin,25 have been described in NFTs,
other glycans were tested for their ability to promote tau
polymerization. Figure 1A shows that chondroitin sulfate
promotes polymerization, but hyaluronic acid, an unsul-
fated glycan, is unable to promote polymerization (Figure
1B).
These results are compatible with a physiological role

for glycans not only in facilitating tau aggregation but also
in facilitating the formation of PHF-like structures. Thus,
heparin or chondroitin sulfate could be present in PHFs.

Paired Helical Filaments Contain Heparin Sulfate
and Chondroitin Sulfate
In a previous report,27 an association between heparin
sulfate (HS) proteoglycan and the neurofibrillary (inter-
and extracellular) tangles of Alzheimer's disease was
demonstrated. As PHFs are the major components of
NFTs, the presence of HS in dispersed PHFs was tested
using an antibody raised against that glycan. Figure 2A
shows that this antibody reacts with some of the PHFs.
This reaction appears to be specific as no reaction was
observed when the antibody was previously mixed with a
heparin solution (10 mg/ml) for its adsorption (Figure 2B).
Additionally, a reaction was also observed when an an-
tibody raised against chondroitin sulfate was tested (Fig-
ure 3A). No reaction was found when the filaments were
previously treated with chondroitinase (Figure 3B). A sim-
ilar result was obtained for heparinase-treated filaments
when the reaction with anti-heparan was tested (data no
shown). Nevertheless, it should be indicated that not
every filament reacts with anti-chondroitin or with anti-
heparan antibodies.
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Figure 1. Effect of chondroitin sulfate and hyaluronic acid in the assembly of tau protein. A: Tau polymers assembled in the presence of chondroitin sulfate (0.5
mg/mi). B: In the presence of hyaluronic acid (0.5 mg/ml), tau protein (1 mg/mif) is unable to form fibrillar polymers. Bar, 200 nm.

Treatment of PHFs with Heparinase or

To test whether HS (or its more extensively sulfated form,
heparin) plays a role in PHFs morphology, samples of PHFs
were treated with heparinase and their morphology ob-
served by electron microscopy. Figure 4 shows that, on
exhaustive heparinase treatment, an increase in the straight
filaments (or a decrease of twisted polymers) was ob-
served. This effect was observed at different heparinase or
chondroitinase concentrations (Figure 4) and quantified
(Table 1), indicating how the increase in enzyme concen-

tration added to the PHFs preparation correlates with the-II Ep
decrease in the twisted (or paired) structures.

Figure 5 shows the effect of increasing incubation
times in the presence of heparinase (Figure 5, A-C) or
chondroitinase (Figure 5, D-F) on the morphology of
PHFs. It shows how, in the presence of either glycanase,
PHFs became straight filaments in which their width was
essentially constant along their length. Using short treat-
ment times (2.5 hours), the increase in the pitch (a mea-
surement of untwisting PHFs) correlated with glycanase
concentration. Also, a dependence on incubation time in
the presence of enzyme was observed (Table 1). At the
highest concentration (125 U) tested and at the longest pWI P,
incubation time (24 hours), mainly straight filaments of 10
nm width were found. This suggests that, in these condi-W
tions, untwisting of PHFs has occurred. This untwisting
could be followed by the state of events depicted in .
Figure S in which the presence of two unrolled filaments
is suggested (see Figure SD). Also, it was observed that-
the action of chondroitinase appears to be more efficient
than that of heparinase on the untwisting of PHFs. Figure 2. Labeling of PHFs with heparan sulfate antibody. A: Samples uf

Figure 6, A and B, indicates, at higher magnification, PHFs were layered on an electron microscopy grid and were labeled with a
the morphology ofunrete ad hheparan sulfate antibody for 45 minutes, followed by incubation with the

the morphology of untreated and chondroitinase-treated secondary antibody conjugated with 10-nm-diameter gold particles for an-
PHFs. The arrows show filaments with a similar length. In other 30 minutes. The electron micrograph of the incubated sample is shown.
Figure 6A, a PHF is shown, whereas in Figure 6B, the Bar, 200 nm. B: A sample of PHFs was analyzed as in A, but the heparansulfate antibody was previously mixed with a heparin solution (10 mg/ml).
arrow indicates a straight filament. The presence of heparin could also favor the integrity of the PHFs structure.
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Figure 3. Labeling of PHFs with chondroitin sulfate antibody. A: A sample of
PHFs was layered on an electron microscopy grid and labeled with a chon-
droitin sulfate antibody as indicated in Figure 3. Bar, 200 nm. B: Chondroiti-
nase-treated PHFs were analyzed as in A using a chondroitin sulfate anti-
body. In this case no gold labeling was observed.

Heparin Binding Sites in Tau Molecule
The presence of heparin (or HS) in PHFs could be due to
the interaction of the glycan with tau, the major compo-
nent of PHFs. To test whether this was the case, tau
protein was chromatographed on a heparin-Sepharose
column to analyze whether the protein binds to it. Figure
7 shows that, indeed, the whole tau protein, but not
calmodulin (tested as a negative control), binds to the
column and is eluted by adding 1 mol/L NaCI to the
binding buffer (see Materials and Methods). Alternatively,
tau was eluted from the heparin-Sepharose column by

Figure 4. Effect of heparinase concentration on the helicity of PHFs A
Control PHFs sample. B to D: PHFs samples incubated with hepaninase (25
to 100 U) for 2.5 hours at 370C. Polymers containing a twisted and an
untwisted region can be found (B). In the same preparation, twisted and
untwisted polymers are observed (see the arrows in C') This can he also
observed in D. Bar, 200 nm.

the addition of heparin (1 mg/ml) but not by the addition
of hyaluronic acid (1 mg/mI; data no shown). These data
suggest that tau preferentially binds to sulfated GAGs.
To determine the localization of heparin-binding sites

on the tau molecule, different fragments of the protein
(see Figure 8) were chromatographed on heparin-Sepha-
rose. Figure 7 shows that those fragments containing the
tubulin-binding region of the tau protein and also those
containing the amino-terminal half of the molecule were
able to bind to heparin, implying that tau protein contains
at least two heparin-binding sites (see Figure 9).
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Table 1. Width of PHFs on Heparinase and Chondroitinase Treatment

Sample Pitch (A) Observation

A Untreated PHF 645 ± 60
Heparinase, 25 U 696 ± 50
Heparinase, 100 U 788 ± 70

B Untreated PHF 648 ± 60
Chondroitinase, 25 U 766 ± 40
Chondroitinase, 125 U 803 ± 60 Many SFs with a constant width

C Untreated PHF 660 ± 60
Chondroitinase, 2.5 hours 792 ± 40
Chondroitinase, 5 hours 890 ± 70 Many SFs
Chondroitinase, 24 hours SFs

PHFs usually have a width that alternates from 10 to 20 nm with a periodicity (pitch) of -650 + 50 A. In the table, the average pitch values for
untreated or glycanase-treated PHF samples are shown. The samples were incubated 2.5 hours at 370C, in the case of A and B. In C, 50 U of
chondroitinase was used for each treated sample, at the incubation times indicated.

Discussion
The molecular characterization of the two major aberrant
structures present in AD, senile plaques and NFTs, has
indicated that, despite the differences between the two
major components (AP and tau) present in these struc-
tures, there are common molecules, such as negatively
charged GAGs present in both types of structures.27
29,32 These GAGs could facilitate, in the case of the tau
protein, the formation of fibrillar polymers resembling SFs
and PHFs24,26 in a way similar to that indicated for neg-
atively charged sugars in the formation of fibrillar poly-
mers from other proteins, such as type VI collagen.36

The influence of negatively charged carbohydrates,
such as heparin, in the assembly of tau into fibrillar poly-
mers, is probably due to the anionic nature of these
sugars as uncharged carbohydrates such as hyaluronic
acid did not facilitate tau assembly. Additionally, the
presence of anions other than GAGs can mimic the effect
of the negatively charged glycans.24 However, the fact
that these anionic carbohydrates and not other anions

are located in NFTs25'27 and in PHFs suggests that these
sugars could also play a role in vivo, a role that has been
suggested could be related to AD pathogenesis.37 Ad-
ditionally, the morphological changes observed in PHFs
from AD patients on heparinase or chondroitinase treat-
ment also support a role for heparin, chondroitin sulfate,
or negatively charged carbohydrates in facilitating PHFs

1111-

Figure 5. Effect of time of incubation with heparinase and chondroitinase on
the helicity of PHFs. A: to C: Samples incubated with heparinase (100 U) for
5, 7, and 24 hours at 37°C, respectively. D to F: Samples incubated with
chondroitinase (50 U) in the same conditions for 5, 7, and 24 hours. In the
inset, the arrow shows the beginning of untwisting of one PHF in more
detail. Bar, 250 nm and 125 nm (inset).

Figure 6. Treatment of PHFs with chondroitinase. PHFs were incubated in
the absence (A) or the presence (B) of chondroitinase (50 U) for 12 hours,
and the morphology of the samples was visualized by electron microscopy.
The arrows show filaments with similar length. Bar, 160 nm.
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HEPARIN BINDING SITES

50 N
KKAK

*Z IJ I C
GNIHHK

Figure 9. Heparin-binding sites on the tau molecule. The possible localiza-
tion of two heparin-binding sites on the tau molecule are indicated. One,
located at the amino-terminal half of the molecule, contains the sequence

KKAK (residues 141-14442) and follows the consensus motif indicated in Ref.
41. The other one, present in the third tubulin-binding motif of tau protein,42
shows a partial homology with that described for A133l (see text).

loid peptide, the sequence RHDSGYEVHHQKLV has
been proposed as a heparin-binding site.31 Comparison
of this sequence with the putative heparin-binding site
VTSKCGSLGNIHHKPGGG located in the tubulin-binding
region of tau24 reveals some similarity.

In every case, the binding of heparin (an anion) to tau
could be through basic (positive) protein residues. A
possible role for heparin (or sulfated glycans) in the for-
mation of extracellular NFTs could be proposed as sul-
fated glycans are components of the extracellular matrix.
However, heparin sulfate has been also reported to be
present in intracellular NFTs.27 29 The formation of these
intracellular structures requires further analysis, as PHFs
formation may require components other than tau.

It is not known whether tau can bind to GAGs in the cell
cytoplasm. However, the possibility that tau binds to hep-
arin (or other sulfated GAGs) in the cytoplasm could be
similar to that of the binding of apolipoprotein E (apoE) to
tau in the same compartment. Indeed, apoE-enriched
lipoprotein could first be associated with cell surface
proteoglycans and subsequently transferred to low-den-
sity lipoprotein (LDL)-receptor-related protein (LRP).23
This complex could then be internalized via the endocytic
pathway that normally leads to lysosomal degradation.43
However, it has been suggested that part of apoE (and
perhaps GAGs) could escape that pathway43 and accu-

mulate, little by little, in the cytoplasm44 where it could
bind to tau. If this process also occurs with GAGs, these
compounds could slowly accumulate in the cytoplasm
until a critical GAG concentration is reached, and then
glycans could bind to tau and promote its aggregation,
yielding intracellular NFTs. This possibility is consistent
with the presence of GAGs, such as HS, in intracellular
NFTs.27,29

It is also interesting to note that GAGs show different
interactions with the different molecules implicated in the
pathology of AD; for example, the binding of HS to
Af331,37 or that of GAGs to tau have been reported (this
work and Refs. 24-27). Additionally, the heparan sulfate
proteoglycan-LDL receptor could be involved in apoE
binding45 or APP binding.46 Finally, the synthesis of these
glycans takes place in cellular compartments (Golgi
complex)47 where presenilins (related with the early on-

set of AD) may play a role.
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Figure 7. Heparin binding of tau or fragments of tau protein. Twenty micro-
grams of the whole recombinant tau molecule (tau), or the fragments (see
Figure 7) containing the amino-terminal region (tau N), three tubulin-binding
motifs and the carboxyl-terminal region (tau 3RC), four or three tubulin-
binding motifs (4R or 3R), and calmodulin (CaM) (tested as negative con-
trol), were chromatographed on a 0.5-mi heparin-Sepharose column under
the conditions indicated in Materials and Methods. The protein absorbed to
the column was eluted stepwise by increasing the NaCl concentration. The
eluted protein was characterized by gel electrophoresis, and the proportion
of eluted protein at each step was measured.

formation and influencing the helicity of these filaments.
With respect to this point, it is noteworthy that tau from
PHFs is glycosylated and deglycosylation results in the
formation of SFs.33

The presence of heparin or chondroitin sulfate associ-
ated with PHFs has been observed in this work by using
antibodies raised against these GAGs. However, not ev-
ery filament reacts with anti-heparan or anti-chondroitin
antibodies. A possible explanation for this observation is
that GAGs associated with PHFs bind to other additional
tau subunits that then mask these GAGs. This would not
be surprising as PHFs are sticky structures that could
bind to different proteins, including unmodified tau39 or
other microtubule-associated proteins.40

PHF-like polymers have been obtained in vitro by using
only recombinant tau. 1422'24 However, a large amount of
recombinant tau is required for polymer formation. Thus,
in vivo heparin or other sulfated glycans could favor tau
polymerization at lower concentrations by interacting with
the protein. At least two putative binding sites of heparin
on the tau molecule are indicated by our data: one lo-
cated at the amino-terminal half of the protein and the
other one in the tubulin-binding region of the tau protein
(Figure 9).
A motif for heparin-binding sites with the consensus

sequence BBXB (B for basic amino acid) has been pro-
posed by Cardin and Weintraub.41 On examination of the
tau protein sequence,42 residues 140 to 143 (present in
the amino-terminal half) were observed to contain a he-
parin-binding motif (KKAK). Interestingly, in the f3-amy-

tau fragment

TAU

N

3RC

4R l

3Rl

Figure 8. Schematic diagram of tau fragments. The structure of the different
fragments used in Figure 7 is shown. Extra exons at the amino region are
shaded and the tubulin-binding repeats are shown as open boxes.
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