Ecología y crecimientode *Cardium edule* L.
en el estuario del río Miño (N. W. de España)

por

A. FIGUERAS *

En las playas de las orillas y en la barra central de la desembocadura del río Miño, en las proximidades de La Guardia, existe una población considerable de *Cardium edule*, que junto con algunos individuos de *Scrobicularia plana*, forman casi los únicos componentes de la macrofauna presente en las referidas playas. El substrato es de tipo arenofangoso, existiendo una distinción neta entre el de las playas batidas, de arenas más bien gruesas, sueltas y lavadas, y el de las abrigadas en las que el grano de arena es menor con una proporción creciente de fango.

En una de estas últimas, situada en la orilla derecha del río (fig. 1), aparece casi todos los años en primavera o principios de verano, una gran cantidad de cría de *Cardium* que luego desaparece, por lo que la cosecha de ejemplares adultos no corresponde, ni con mucho, a la cantidad de semilla presente en la estación de cría. Sin embargo, en la barra central del río y en su orilla izquierda, frente a la población portuguesa de Caminha, la cosecha de berberecho suele ser abundante.

Al comienzo de nuestros trabajos fue prohibida por la Autoridad de Marina la recolección de estos moluscos, con lo que se nos facilita extraordinariamente nuestro trabajo, en el sentido de que podemos: a) seguir la marcha evolutiva de la población natural a través de un muestreo periódico y b) dilucidar si la extraordinaria escasez de *Cardium* adulto en dicha playa se debe a mortalidad natural o se producen desplazamientos de población; para ello se han tomado muestras de agua para la valoración de salinidad y se llevó registro de temperaturas.

Fig. 1. — Mapa de la situación de la zona estudiada. El rayado horizontal corresponde a la de las playas que se mencionan.
I. ECOLOGÍA

Después de examinar los resultados que se desprenden de las exploraciones previas parece deducirse que no existe tal migración sino que más bien la desaparición de Cardium obedece a estas tres causas principales que enumeramos por orden cronológico: 1) mortalidad de una buena parte de la cría por efecto de la depredación de que son objeto por las aves marinas, fenómeno que previsiblemente también se produce en la barra y orilla izquierda del río; 2) a esto se añade la mortalidad debida a condiciones microecológicas adversas sobre todo de substrato; y 3) la total desaparición sería completada por el marisqueo de la reducida cantidad de supervivientes. Los resultados de salinidad y temperatura (fig. 2) junto con la discusión de los resultados confirmarán esta apreciación.

a) Causasprobablesdela disminución de la población

1. Depredación:

Al examinar el terreno detenidamente —en esta temporada en que la Autoridad de Marina ha prohibido el marisqueo— se ha observado una gran concentración de aves marinas que, como es sabido, apetecen de la semilla de Cardium porque además de proporcionarles un alimento bastante rico en proteínas, les suministra en abundancia el calcio tan necesario en un terreno silíceo como es Galicia. Además de ésta, hasta ahora suposición, tenemos el hecho de que en las observaciones siguientes se ve que la semilla va desapareciendo sin que al mismo tiempo aparezcan en la misma proporción las conchas vacías que deberían quedar si la cría de Cardium hubiera muerto por otras causas (baja salinidad, altas temperaturas, etc.). Queda la posibilidad de una emigración hacia otros fondos; sin embargo, no parece verosímil que esto ocurra ya que parte de la semilla queda «in situ» —y en circunstancias bastante adversas por cierto— como lo demuestra la pervivencia de una población autóctona de adultos en la playa.

2. Condiciones microecológicas adversas:

Al tratarse de la desembocadura de un río caudaloso, sujeto a la acción de las mareas, se da la paradoja de que los niveles que presentan mayor salinidad son precisamente los más altos. En efecto: al subir la marea, el agua oceánica de salinidad elevada invade las zonas más altas de la playa, mientras que la parte baja de la misma sigue sujeta a la influencia del agua salobre de origen fluvial. Debido a la mayor densidad de la pri-
mera, cabría pensar que con la bajamar se habría producido ya una estra-
tificación: que el agua más salada habría descendido mientras que la
más dulce estaría en la parte superficial y por tanto afectaría al nivel
de la zona sujeta a la acción de las mareas; sin embargo, y a pesar de

![Gráfico de amplitud de marea, temperatura y salinidad en pleamar y bajamar durante el periodo de junio a noviembre de 1965.](image)

que en la época estudiada (de junio a noviembre) la temperatura del agua
en pleamar (agua oceánica) es más fría que en bajamar (agua fluvial), no
obstante tanto la semilla como Cardium adulto se encuentran en los ni-
veles altos de marea. Hasta qué punto esta distribución en el terreno es
debida a la salinidad se va a ver a continuación.
Existe un fenómeno muy relevante en esta playa, que ya habíamos observado con anterioridad (FIGUERAS, 1956, pág. 68). En los estuarios de los ríos más importantes de la ría de Vigo (Verdugo u Oitabén y Miñor) señalábamos que «la producción marisquera se encontraba concentrada en las proximidades de los canales fluviales y en el lecho de los mismos». En aquellas zonas no buscamos explicación al hecho, ya que no entraba, de momento, en nuestro propósito, más que dar una impresión general de la distribución de los principales moluscos comerciales en relación con determinados factores macroecológicos, tales como el tipo de substrato, riqueza en materia orgánica, posición de la playa, grado de abrigo, perfil de la misma, riqueza en pigmentos clorofílicos, etc. En el caso presente nos parece muy importante destacar que la existencia de Cardium en la playa de Camposancos de la desembocadura del río Miñor, está casi exclusivamente supeditada a la presencia de estos canales que no son precisamente fluviales sino de escorrentía de aguas salobres. En efecto, en dicha playa sólo se encuentra Cardium, tanto en su fase juvenil como adulta, en dichos canales y además en relativa abundancia. Fuera de los mismos su ausencia es prácticamente absoluta. Dichos canales presentan además una disposición peculiar; se forman al nivel donde el perfil de la playa deja de ser inclinado (los 3-4 m superiores) para adoptar un declive más suave casi llano. La parte superior de la playa con una inclinación de unos 10-15° presenta un substrato de arena gruesa y limpia y bruscamente cambia la inclinación de la misma y la arena es más fina y fangosa. En el límite de las dos zonas separadas por el nivel del agua en la pleamar de las mareas muertas, es donde nacen los canales de escorrentía; dichos canales van, poco a poco, confluyendo hasta que al llegar a una cuarta parte de la distancia desde el límite del nivel de la pleamar en aguas muertas hasta el nivel de la bajamar en aguas vivas (parte inferior más llana), forman un canal colector más grueso y único que va a desembocar a la orilla del río en bajamar. Los límites de altura de los diversos niveles vienen condicionados no sólo por la altura de marea sino también por el caudal del río, que al parecer no ofrece grandes variaciones. El substrato de las zonas circundantes a estos canales, sobre todo en la parte del tronco único colector, es de naturaleza distinta al de los lechos de los mismos. Aun siendo el grano de la arena de tamaño parecido, sin embargo ésta es más compacta y presenta en bajamar una capa superficial de un limo fino, coloidal y siempre húmedo formando un manto impermeable que impide la oxidación del substrato subyacente: a pocos milímetros de la superficie la arena es negra. En cambio, en los lechos de los canalículos y canales de escorrentía el substrato tiene un aspecto diferente por completo: la arena presenta un aspecto limpio, está suelta y forma un lecho de espesor bastante considerable donde viven enterrados los ejemplares de Cardium.

El agua de escorrentía, que en su mayoría es salobre y de salinidad
muy baja, es de origen doble: por un lado el agua dulce que escurre de las laderas del monte cercano denominado Santa Tecla y por otro el agua salada que en la pleamar ha penetrado por los intersticios de la parte alta de la playa, constituida por arena suelta. Sin embargo, hay que hacer constar que nos hemos encontrado con el hecho sorprendente de que uno de estos canales procedía de un regato de agua dulce que provenía de los campos que limitan con la playa en su parte alta; en este canal, *Cardium* también se presentaba en abundancia.

Hasta ahora no hemos estudiado con detalle el grado de salinidad del agua de los canales y canalillos de escorrentía, pero nos proponemos hacerlo en el futuro porque nos parece de sumo interés el esclarecimiento del grado de euríhalinidad de *Cardium* en condiciones naturales. Esta especie presenta el grave inconveniente para su desarrollo en masa, según hemos podido comprobar en otras playas, de que la semilla —por su poco peso— es arrastrada hacia los niveles más altos de las playas por el flujo de marea, en donde se deposita o fija por su bajo rudimentario a los granos del substrato, pero no vuelve en el refujo a los primitivos niveles. Ello explicaría su gran mortalidad. La desecación en verano y el agua dulce en invierno serían los principales responsables de la misma si no se la trasplanta a niveles más bajos de marea.

Al objeto de aumentar la producción de berberecho en la playa de referencia, podría pensarse en producir artificialmente un lavado del substrato, impidiendo la confluencia de los mismos o, por lo menos, multiplicando la formación de canales colectores, mediante un canal provisto de perforaciones y situado a lo largo del límite de separación entre la parte baja llana de la playa y la parte superior inclinada de la misma (nivel de la pleamar en aguas muertas). Dicho canal se llenaría con las plemares de las mareas muertas de coeficiente más alto y en todas las de las mareas vivas y durante la bajamar iría soltando paulatinamente tanto el agua embalsada como la de escorrentía del nivel superior de la playa, provocando así la formación de gran cantidad de canalillos que irían lavándose uniformemente, tal como se hace ahora en parte, todo el substrato de la playa y poniéndola en condiciones de habitabilidad para *Cardium*. Habría que evitar al mismo tiempo la confluencia de los mismos a cierta distancia de su formación (unos dos o tres metros) lo cual se podría conseguir, bien con canales paralelos a los del nivel superior o con pequeños resaltares a modo de presa en su recorrido. Además hay que advertir que los canalillos no se presentan en toda la extensión de la playa sino sólo en ciertas zonas donde hay escorrentía.

Estas ideas puramente teóricas habría que confirmarlas, 1.° con la experimentación a pequeña escala en un trozo de la playa y 2.° con el estudio de la salinidad del agua intersticial en los distintos niveles para ver hasta qué punto puede alcanzarse hacia el nivel inferior de la playa.

También se podría tratar de valorar el efecto de la depredación por
las aves marinas, mediante protecciones de tela metálica a cierta altura del suelo.

3. Mortalidad por pesca:

No conocemos todavía la influencia que puede tener el marisqueo sobre la disminución o casi desaparición de la población adulta de Cardium, debido a que como se ha dicho anteriormente, en la actual temporada está prohibido el marisqueo y a que nuestras observaciones han empezado en septiembre sin que sepamos el estado de la población en años anteriores en los que la playa estaba sujeta a explotación comercial. Sin embargo, teniendo en cuenta la escasa abundancia de la población actual y las circunstancias mencionadas, es razonable suponer que si dicha población hubiera estado sujeta al marisqueo al abrirse la veda —como normalmente sucede el 1 de octubre— estaría ya a estas horas (diciembre de 1965) reducida prácticamente a cero, por lo que sólo se verificaría su recuperación en la temporada siguiente a base de los reproductores que quedaran en aguas más profundas.

b) Estudio de los factores ecológicos más importantes

1. Salinidad:

Para ver hasta qué punto podía influir en el desarrollo de la población los distintos grados de salinidad se han tomado periódicamente muestras de agua en pleamar y en bajamar, en principio cada semana. Los resultados expuestos gráficamente en la figura 2 nos indican:
— Que en general la salinidad del agua en pleamar es mucho más elevada que en bajamar. Sin embargo, se presentan dos excepciones (la del 9 de agosto y la del 22 de noviembre) en que además las salinidades del agua en bajamar son excepcionalmente altas. Las del segundo día aún podrían explicarse por una mezcla de aguas ya que la salinidad en pleamar para dicho día es de valor parecido, pero la primera no tiene explicación de momento ya que no disponemos de la muestra de agua en bajamar del mismo día.
— Ordinariamente también, la salinidad del agua en pleamar se mantiene alta hasta principios de octubre cuando empiezan las lluvias y en un período de aguas muertas en que por tanto el aporte de agua oceánica es menor. Lo mismo vuelve a ocurrir a fines de noviembre.
— Salvo las excepciones indicadas podría afirmarse que la salinidad en pleamar oscila entre 30 y 35 ‰, mientras que en bajamar van de 5 a 20 ‰.
— Como ya se ha dicho que precisamente en bajamar Cardium no está en la orilla del río sino en niveles mucho más altos de la playa o en la barra central, no sabemos de momento hasta qué punto lo afectan estas
bajas salinidades, hasta haber estudiado con detalle la salinidad del agua en los canales de escorrentía, aunque ya se puede presumir, por los hechos apuntados, que *Cardium* en este ambiente presenta una euribál

2. Temperaturas:

En los meses estudiados la temperatura del agua cambia bastante de la pleamar a la bajamar. Según se ve en la gráfica de la figura 2, la temperatura del agua en bajamar es siempre superior en unos 3-4°C a la del agua en pleamar, si exceptuamos la de la última muestra del mes de noviembre en que se presenta una inversión (lo mismo ocurre en las salinidades de este día). Lo más probable es que continúe así durante los meses de la estación fría cuando la influencia del ambiente marino se deja sentir más que la de las aguas continentales. No sabemos la influencia de estos cambios de temperatura en el agua sobre el desarrollo de *Cardium*, pero no parece que le pueda afectar mayormente por lo menos de un modo directo.

II. CRECIMIENTO

a) *Deducido de la frecuencia de tallas*

Al examinar los histogramas de frecuencias de la figura 3 podemos observar que en la muestra de septiembre aparecen hasta cuatro grupos de población: tres en la parte izquierda de la gráfica con los valores modales de 6, 11 y 14 mm y otro más separado a la derecha de valor modal de 25 mm. En los meses siguientes (octubre y noviembre) los tres primeros van desapareciendo hasta formar uno solo en noviembre de moda 16 mm. Suponemos que el primer grupo de septiembre va disminuyendo hasta casi desaparecer a causa de la mortalidad que se aprecia en el histograma correspondiente al mes de octubre con una moda de 10 mm.

Es difícil deducir de estas primeras observaciones si el grupo 1.º de noviembre de moda 16 mm procede del 1.º, 2.º o 3.º de septiembre (modas de 6, 11 y 14 mm). Ahora bien, si nos fijamos en el desplazamiento que experimenta el grupo 4.º de septiembre (moda de 25 mm) que en noviembre aparece con un valor modal de 27 y si aceptamos por consiguiente que los de 25 mm en septiembre crecen en estos dos meses 2 mm no es probable que los del 3.º grupo de septiembre de 14 mm de valor modal crezcan lo mismo sino algo más. Por tanto, descartado el 1.º grupo de septiembre que probablemente desaparece por mortalidad (depredado-
res y conchas vacías que aparecen en octubre) y además porque supon-
ría un crecimiento exagerado; y el 3.º de septiembre por ofrecer un
crecimiento exiguo (igual al de los de 25 mm en el mismo mes), lo más

![Histogramas de frecuencias de las tallas de *Cardium edule* de los meses de septiembre a noviembre.](image)

Fig. 3. — Histogramas de frecuencias de las tallas de *Cardium edule* de los meses de septiembre a noviembre.

probable es que el grupo 1.º de noviembre (16 mm) proceda del 2.º de
septiembre (11 mm) que ha crecido 5 mm en dos meses.

De modo provisional, por tanto, podemos admitir que los de talla
modal de 11 mm en septiembre hayan crecido 5 hasta noviembre y los de talla modal de 25 mm crezcan 2 en el mismo intervalo de tiempo.

Como ésta no es sino una pequeña parte del ciclo de crecimiento, nos permite sacar conclusiones definitivas que por otra parte deberían ir acompañadas del estudio de la producción primaria en el substrato, producción que podemos suponer a priori que será mayor en primavera que en otoño según dedujimos en trabajos anteriores (FIGUERAS, 1960).

b) Deducido de los anillos de crecimiento

Para tratar de esclarecer o confirmar lo que antecede se han considerado las medidas del primer anillo de crecimiento y las de la talla total en cada mes. Al hallar la regresión $1/L_T$ de la figura 4, resultan cuatro rectas (dos para el mes de noviembre y una para cada mes de septiembre y octubre) que a primera vista parecerían indicar que el anillo crece en longitud con la talla; sin embargo, al examinarlas con más detención se ve que corresponden cada una a individuos que aún nacidos en época diferente formaron el anillo al mismo tiempo: al formar el primer anillo tenían tallas que dependían de la época de crecimiento. Esto indicaría que la puesta estaría bastante escalonada a lo largo del año, si bien
ECOLOGÍA Y CRECIMIENTO DE «CARDIUM EDULE» L.

habría determinadas épocas en que la puesta sería más abundante. Las dos rectas del mes de noviembre corresponderían a individuos nacidos en épocas diferentes. ¿Cuál sería esta época del año tanto la de la puesta o puestas masivas como la o las de formación del anillo? Esto se tratará de averiguar en el futuro siguiendo la distribución de tallas en la población a lo largo del año y haciendo la distribución de los incrementos desde el último anillo al borde.

En el caso, muy probable, de que el primer anillo no apareciera, bien porque se hubiera borrado con el roce de la concha del animal con la arena al enterrarse, o porque no fuera lo suficientemente claro como para advertirse, podría suceder que tomáramos como primer anillo uno que en realidad fuera ya el segundo, lo cual nos explicaría la presencia en la gráfica de puntos como los que aparecen en la figura 4 y que corresponden a tallas diferentes del primer anillo para individuos de la misma talla total. Es decir, esto explicaría, en parte, la anomalía de que individuos de 23-26 mm de talla total hayan formado el anillo unos a los 11-15 mm y otros a los 20-23 mm. Si el anillo fuera anual, cabría pensar que estos últimos fueran individuos nacidos poco después de la época de formación del anillo o sea que en la época de formación del anillo siguiente tendrían ya una talla de 20-23 mm. Esto nos indicaría que dicha época sería más o menos a finales de verano o principios de otoño (antes dedujimos que en estos dos meses de septiembre a noviembre los individuos de 25 mm crecían unos 2 mm). Este es otro punto a aclarar en la continuación de este trabajo.

III. RESUMEN Y CONCLUSIONES

Consideramos que quedan muchos y muy interesantes puntos por esclarecer en lo que respecta a la ecología y crecimiento de Cardium en la playa de Camposancos, no obstante del presente estudio pueden deducirse de momento las siguientes conclusiones:

1.ª Cardium edule en esta zona se nos presenta como una especie ampliamente euríoca. A parte de unas exigencias mínimas de salinidad y aireación del substrato y de producción primaria en el mismo puede soportar grandes variaciones de salinidad y temperatura, cosa que no le ocurre en otras playas de ambiente menos continental. Aquí puede soportar salinidades que van desde 2,9‰ a 35,2.

2.ª La supervivencia de la población de Cardium se ve seriamente amenazada por la depredación de que es objeto por parte de las aves marinas.

3.ª Las condiciones microecológicas adversas de una playa del tipo que se considera y que se quiera dedicar al semicultivo de Cardium pue-
den remediarse mediante dispositivos que corrijan artificialmente el subs-
trato poniéndolo en condiciones de habitabilidad, para lo cual basta con
imitar lo que sucede en la naturaleza misma.

4. Aunque es prematuro dar datos de crecimiento sin haber estu-
diado uno o varios ciclos completos, de los que se poseen actualmente
parece deducirse que en esta zona Cardium de 25 mm crece 2 mm en
dos meses de otoño, mientras que el de 11 mm crecería en el mismo
intervalo 5 mm.

Nos es grato manifestar nuestro reconocimiento a don Juan Carlos
Bellas Montenegro, ayudante de Marina de Tuy por habernos dado la
ocasión y toda clase de facilidades para llevar a cabo este estudio. A los
señores Andreu y Fraga por la crítica del manuscrito y acertadas suge-
rencias, y a las señoritas Mouriño y Hermo por la confección de los grá-
ficos que lo ilustran.

SUMMARY

In the present paper, the ecology and growth of Cardium edule L. in a beach
of the «Miño» river (NW of Spain) is studied. The author arrives at the following
conclusions:

a) C. edule, in that habitat, is a very curious species, principally in relation
with the salinity and temperature. It can support from 2,9 to 35,2 per thousand
salinites.

b) Depredation by sea and shore birds is a menace to its survival.

c) It is not difficult to amend the adverse ecological conditions of the bottom
by means of several mechanisms conducing to wash artificially the mud of the beach.

d) It seems that from September to the end of November, Cardium edule
specimens of 11 mm grow 5 mm, and those of 25 mm grow 2 mm.

BIBLIOGRAFÍA

FIGUERAS, A. — 1956. Moluscos de las playas de la ría de Vigo. I, Ecología y dis-