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Abstract

Metabarcoding of DNA extracted from community samples of whole organisms (whole organism

community DNA, wocDNA) is increasingly being applied to terrestrial, marine and freshwater

metazoan communities to provide rapid, accurate and high resolution data for novel molecular

ecology research. The growth of this field has been accompanied by considerable development

that builds on microbial metabarcoding methods to develop appropriate and efficient sampling

and laboratory protocols for whole organism metazoan communities. However, considerably less

attention  has  focused  on  ensuring  bioinformatic  methods  are  adapted  and  applied

comprehensively in wocDNA metabarcoding. In this study we examined over 600 papers and

identified 111 studies that performed COI metabarcoding of wocDNA. We then systematically

reviewed the bioinformatic methods employed by these papers to identify the state-of-the-art.

Our results show that the increasing use of wocDNA COI metabarcoding for metazoan diversity

is characterised by a clear absence of bioinformatic harmonisation, and the temporal trends show

little  change  in  this  situation.  The  reviewed  literature  showed  (i)  high  heterogeneity  across

pipelines, tasks and tools used, (ii) limited or no adaptation of bioinformatic procedures to the

nature  of  the  COI  fragment,  and  (iii)  a  worrying  underreporting  of  tasks,  software  and

parameters. Based upon these findings we propose a set of recommendations that we think the

wocDNA metabarcoding community should consider to ensure that bioinformatic methods are

appropriate, comprehensive and comparable. We believe that adhering to these recommendations

will improve the long-term integrative potential of wocDNA COI metabarcoding for biodiversity

science. 

Keywords:  metabarcoding,  COI  barcode,  animal  communities,  high-throughput  sequencing,

bioinformatics, community ecology
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Introduction

Metabarcoding  of  DNA  extracted  from  community  samples  of  whole  organisms  (whole

organism  community  DNA,  wocDNA)  is  a  reliable  and  cost-efficient  tool  to  study  the

biodiversity of metazoan communities (Bush et al., 2019; Ji et al., 2013; Porter & Hajibabaei,

2018). This approach, which has also been referred to as community DNA (e.g. Andújar et al.,

2018b; Deiner et al., 2017) or bulk sample DNA (e.g. Braukmann et al., 2019; Yu et al., 2012)

metabarcoding, primarily differs from other approaches such as eDNA (environmental or extra-

organismal DNA; Taberlet et al.,  2012) or iDNA (vertebrate DNA ingested by invertebrates;

Schnell et al., 2012) in that the source material is a community of whole organisms collected

through direct trapping or collection (e.g. malaise traps Ji et al., 2013, canopy fogging Creedy et

al., 2019) or separated from an environmental sample (e.g. from soil Arribas et al. 2016 or water

Suter et al., 2020). As a consequence, compared with eDNA and iDNA, wocDNA samples are

characterised by (i) a comparatively low level of DNA degradation in the target species, (ii) a

low proportion of non-target species, and (iii) the possibility for complementing, refining and/or

validating metabarcoding-derived community data against other conventional morphological and

molecular methods.

Metabarcoding  of  wocDNA  samples  is  increasingly  employed  in  community  ecology,

evolutionary  ecology,  biogeography,  conservation  biology,  environmental  management,  and

policy and decision-making  (e.g.  Bush et al., 2020;  deWaard et al., 2019;  Leese et al., 2018).

Metazoan wocDNA metabarcoding has been adapted from pioneering approaches developed to

inventory and characterise microbial diversity (e.g. Gilbert et al., 2010; Sogin et al., 2006).  The

majority  of  these  adaptations  have  focused  on  sampling,  and  molecular  laboratory  steps,

including adapted protocols to (i) sample, separate, enrich and/or clean animal wocDNA samples

(Creedy et al., 2019; Fonseca et al., 2010, 2011), (ii) perform wocDNA extractions (Marquina et

al.,  2019;  Nielsen  et  al.,  2019),  (iii)  design  and evaluate  primers  (Braukmann  et  al.,  2019;
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Elbrecht  & Leese,  2017,  Elbrecht  et  al.  2019),  optimise  amplification  (Krehenwinkel  et  al.,

2017) and prepare libraries (Yang et al., 2020). There is a growing consensus on the use of the

mitochondrial cytochrome oxidase subunit I (COI) barcode, rather than other markers widely

used  for  metabarcoding  of  non-metazoan  communities,  as  the  standard  for  wocDNA

metabarcoding due to the range of COI primers with demonstrated efficiency (Braukmann et al.,

2019; Elbrecht & Leese, 2017), and the potential of COI to improve the utility, resolution and

reliability of wocDNA metabarcoding data (Andújar et al., 2018a; Turon et al., 2020). 

However, in contrast to these advances in sampling and molecular processing, there has

been limited effort to review and evaluate how bioinformatic processing has been adapted to

metazoan wocDNA samples and the COI barcode, nor to examine consistency in bioinformatic

approaches across the field.  Broadly,  bioinformatic tasks involve the computational cleaning,

filtering and analysis of raw sequence data to produce biodiversity data comprising taxonomic

units and their incidence across samples, implemented in a particular order (a ‘pipeline’). There

are a wide array of software tools available for performing different bioinformatic tasks, from

standalone  tools  to  catch-all  software  packages  (e.g.  OBItools Boyer  et  al.,  2016;  QIIME

Caporaso  et  al.,  2010;  USEARCH/UPARSE Edgar,  2013;  and  its  open-source  derivative

VSEARCH Rognes et al., 2016). This software has been largely developed for metabarcode loci

other  than  the  COI  region,  with  very  few  tools  explicitly  developed  for  protein  coding

metabarcodes (although see Andújar et al., 2021; Nugent et al., 2020; Ramirez-Gonzalez et al.,

2013).  To fully  capitalise  on  the  COI  barcode  for  metabarcoding,  bioinformatics  should  be

specifically tailored to its evolutionary properties, such as the ability to interrogate the amino

acid translation, and accounting for established patterns of sequence variation in protein coding

genes for strict filtering. Additionally, metabarcoding employs a  number of key bioinformatic

tasks for which multiple alternative algorithms have been developed (e.g. denoising algorithms),

with considerable variation in outcomes depending on parameters and thresholds applied.
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The structure  of  a  bioinformatic  metabarcoding pipeline will  depend strongly on the

research  aim,  amplification  and  sequencing  protocols,  target  locus,  and  target  biodiversity

fraction. The diversity of bioinformatic tasks and the software approaches to implement them is

of course beneficial for designing appropriate pipelines, but such heterogeneity may also restrict

integrated,  standardised  and  synergistic  growth  in  the  field.  As  metazoan  wocDNA

metabarcoding becomes more accessible to researchers from a range of fields and backgrounds,

harmonisation of bioinformatic approaches is important to ensure (i) high-quality, reproducible

data amenable to qualitative or  quantitative reviews and meta-analysis across studies, and (ii) a

reliable,  consistent  methodology  for  wider  implementation,  development  and  expansion  of

wocDNA metabarcoding. We consider harmonisation not to mean strict prescription of the tasks

and software to use, nor their order. Instead a harmonised field would recognise the diversity of

approaches available, while recording key steps and establishing the effects of parameter choice

on the outcome of metabarcoding studies. This approach could be enabled by the adoption of

universal aligned standards for data generation and processing, while allowing for flexibility in

implementation to adapt to varying research goals and take advantage of novel methodological

development. 

Harmonisation requires comprehensive examination of current practice to understand the

aims  and  approaches  of  prior  work,  and  a  synthesis  of  the  successes  and  failures  in  past

implementations for the purposes of elaborating a framework to guide future research. Therefore

it is our aim to summarise the state of the art for bioinformatic processing of metazoan wocDNA

COI metabarcoding, and in doing so assess the potential for  harmonisation. To this end, we

performed a systematic review of peer-reviewed studies, collating information on the different

bioinformatic pipelines, tasks and tools used in wocDNA COI metabarcoding in >100 recent

studies  (2011-2020).  We  use  this  data  to  (i)  describe  the  diversity,  heterogeneity  and

reproducibility  of the bioinformatic procedures followed, (ii) identify the extent to which these
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procedures are compatible with the evolutionary properties of the COI marker, and (iii) identify

the key bioinformatic tasks, provide a framework for successful metabarcoding bioinformatics

and  make  recommendations  towards  harmonised  bioinformatic  procedures  for  metazoan

wocDNA COI metabarcoding.

Materials and Methods

Bibliographic search and screening

We  focused  this  work  on  studies  using  whole  organism  community  DNA  (wocDNA)

metabarcoding. In general,  we define wocDNA samples as those where the target organisms

were: (i) likely alive at the time of sampling, (ii) present as a largely complete specimen, and (iii)

potentially identifiable using classical methods of morphological analysis. We exclude eDNA

and  iDNA metabarcoding  due  to  the  potentially  different  bioinformatic  processing  needs

associated with these samples. In particular, eDNA and iDNA bioinformatic methods need to

accommodate degraded DNA and a potentially high proportion of non-target reads. Furthermore,

in  many  cases  wocDNA  metabarcoding  is  directly  comparable  to  direct  observation  of

specimens  and  conventional  methods  of  taxonomic  assignment  not  available  for  eDNA

metabarcoding (Ji et al. 2013, Aylagas et al. 2016). This allows for more objective stringency

thresholds in bioinformatic filtering and delimitation of operational taxonomic units (OTU).

We conducted a systematic search of peer-reviewed studies in the Web of Science (WOS)

Core Collection (Science Citation Index Expanded, 1900-present) on 3rd November 2020, using

the  search  “TS  =  (metabarcoding)  NOT  TS  =  (*micro*  OR  *bacteria*  OR  *myco*  OR

*archaea* OR fungi OR plant OR eDNA OR environmental DNA)”. These search parameters

were selected in order to obtain  a comprehensive set of wocDNA metabarcoding studies limited

to Metazoa. 
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The systematic search resulted in 692 records,  which were screened to to select only

those studies  that:  (i)  amplified  some portion  of  the standard  COI barcode “Folmer''  region

(Folmer  et  al.,  1994),  (ii)  fit  our  definition  of  wocDNA samples,  comprising  mixtures  of

organisms  extracted  from  the  substrate,  and  (iii)  provided  a  characterisation  of  metazoan

communities. Studies targeting extra-organismal DNA (i.e. eDNA, iDNA) were excluded. We

included studies of experimental mock communities composed of mixtures of DNA extracted

from individual specimens or mixtures of specimens, and we also included studies where the

target organisms remained partially or completely within an environmental substrate upon which

DNA extraction  was  performed  (e.g.  parasites  within  a  host,  arthropods  within  soil),  if  the

principal  target  was  the  whole  organism community  DNA.  After  reviewing  the  final  set  of

filtered papers, 24 additional papers fitting the selection criteria but not present in the systematic

WOS search were also included. A total of 111 articles constituted the set of core papers for

subsequent assessment (see Table S2 for a complete list).

The core papers

All papers were systematically processed to record (i) the research aim and type of samples

analysed; (ii) the bioinformatic tasks and pipelines implemented; and (iii) the software tools used

and the reproducibility of the bioinformatic procedures employed. A detailed description of this

process is provided in the Supplementary Methods and is summarised as follows.

The research aim was categorised according to whether the focus was (i) the comparison of

molecular  and/or  bioinformatic  procedures  for  metabarcoding,  (ii)  a  proof-of-concept  or

feasibility study into the success of metabarcoding for uncovering accurate community data in

the  taxon/community/biome studied,  or  (iii)  principally  the  study of  ecological  patterns  and

processes.  We recorded whether  the  metabarcoded communities  were  sampled from marine,
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freshwater, terrestrial biomes or from a host species, and finally if the targets were invertebrates

or vertebrates. 

Subsequently,  the bioinformatic procedures for each paper were systematically parsed to

identify the different tasks implemented, i.e. specific bioinformatic actions with a clearly-defined

purpose and performed by a single tool. A total of 30 distinct bioinformatic tasks were identified

starting from initial procedures on raw sequencing files through to the generation of community

tables (see Table 1 for a description of each task). We focused solely on bioinformatic tasks that

were presented as necessary for the generation of information about the occurrence or incidence

of  taxonomic  units  in  the  sampled  communities  (i.e.  community  data),  and  the  taxonomic

identity of these units. For example, we did not record any steps performing phylogenetics with a

final OTU set, although we recorded steps where phylogeny-based methods were used as part of

OTU  delimitation  and  filtering.  Similarly,  we  recorded  tasks  that  performed  filtering  of

community data for the purposes of removing OTUs or OTU records arising from erroneous

sequences  or  from cross-talk/contamination  (Edgar,  2018),  but  we did  not  record  tasks  that

filtered  community  data  for  the  purposes  of  statistical  correction,  such  as  normalisation  or

rarefaction.

Once the different tasks implemented by each article were identified, the pipeline used (i.e.

the specific sequence of tasks in a particular order), was also recorded based on the order in

which the different tasks were mentioned in the text,  figures, supplementary material  and/or

cited  papers.  Where  multiple  mutually  exclusive  tasks  were  employed  for  the  purposes  of

comparison of pipelines, we recorded that pipeline that the authors concluded to be empirically

superior, or from which the authors used the output data for subsequent analysis.

For each of the bioinformatic tasks identified across the papers, we calculated (i) the number

of papers implementing the task, (ii) the task’s relative position within the pipelines, (iii) the
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information reported on the software, version and parameters used, and (iv) the homogeneity in

the software tools used to implement the task.  We assessed homogeneity by calculating two

indices, the software homogeneity rate and the software dominance rate (see Fig 5). Finally, we

also summarised temporal trends in both the reporting and software heterogeneity of each task.
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Results and Discussion

Diversity  of bioinformatic methods

The 111 selected papers were published in 36 different journals with a broad focus on ecology

and molecular ecology. There has been a steady increase in the number of papers published in

this domain over time (Fig. 1). The earliest year of publication was 2011, but 77% of all papers

were published in the last four years (2017-2020, n = 86,  Fig. 1). Almost all papers studied

invertebrate communities (n=108). Forty-five papers were focussed on terrestrial communities,

31 on freshwater, 30 on marine and five on parasite communities collected from a host vertebrate

(see Table S2 for all the details on the core papers set). 

Despite a clear trend for increased use of wocDNA COI metabarcoding, the field remains in

a relatively early stage of implementation, reflected in the fact that in half of all papers (n=56,

n=38 in the last four years) metabarcoding was undertaken as a proof-of-concept and the authors

primarily discussed the feasibility of this method for the studied ecological system. Only 25

papers  considered  the  sample  sizes  and  metabarcoding  procedures  sufficiently  rigorous  to

answer  ecological  questions.  Thirty  papers  were  primarily  methodological,  assessing  the

influences  of  primer  choice,  lab  protocols  and/or  sequencing methods.  However,  within  the

methodological category, no paper solely studied the effect of bioinformatic pipeline choices.

Indeed, only eight out of the 111 papers clearly stated that they compared different bioinformatic

tools for the same task, despite the use of 116 discrete pieces of software or functions in our final

count.  These  results  illustrate  the  timely  nature  of  this  review,  highlighting  the  inconsistent

implementation of bioinformatic methods, in contrast to the relative maturity and harmonisation

of field and laboratory methodologies.
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High heterogeneity in tasks and pipelines

The  variety of bioinformatics pipelines reported across the 111 papers employed 108 unique

pipelines, i.e.  sets of bioinformatics tasks carried out in a specific sequence.  Three pipelines

were used twice; in two of these cases, a group of authors replicated their pipeline exactly, in the

other case the pipeline as reported consisted solely of a single step of searching raw reads against

a reference set. Although some of these pipelines were similar, with minor modifications to the

order, or the addition/removal of a few tasks, the heterogeneity of pipelines is remarkable. There

was also high heterogeneity in the number of tasks implemented within each pipeline, ranging

between 1 and 18 tasks, with half of the articles reporting fewer than 9 distinct bioinformatic

tasks (Fig. 2a). There was no  particular trend in the number of tasks implemented over time

(Fig. 2b). The order in which  these tasks were implemented also differed greatly  (Fig. 2c),

although there was a tendency for certain tasks to be performed within similar general stages

within pipelines, that is, read preparation-based tasks tend to be implemented at the initial steps

of the pipelines, followed by filtering-based tasks and data generation tasks (Fig. 3). 

Heterogeneity in the sequence of tasks may reflect the careful design and adaptation of

bioinformatic procedures within each study to the type and structure of sample and sequence

data  and/or  the  specific  research  question,  rather  than  the  simple  duplication  of  previously

published  pipelines.  However,  high  heterogeneity  may  equally  result  from  the  omission  of

important tasks or their inappropriate implementation within the pipelines, and so result in low

comparability, integration  and replication across studies. One clear example of this is associated

with the Filtering tasks of removal of erroneous sequence reads. Denoising (i.e. the removal of

sequencing  errors  based  on  models  of  error  frequency  parameterised  by  between-sequence

similarity, error sensitivity and/or relative frequency), was employed in just 18 studies and its

relative position within the pipelines was highly variable (see Table 1 and Fig. 3). While some

sequencing errors will be disregarded during OTU clustering, failure to incorporate denoising
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can lead to false OTUs and thus OTU inflation (Shum & Palumbi, 2021) Furthermore, the trend

towards examining haplotypic variation in metazoan wocDNA metabarcoding through use of

amplicon sequence variants (ASVs, Callahan et al., 2017) requires minimising the number of

spurious  sequences,  relying  on  stringent  filtering  such  as  denoising.  Similarly,  filtering  to

remove  sequences  with  low  copy  number  (that  are  often  considered  highly  likely  to  be

erroneous) was reported in only half (n=57) of the studies, despite being generally recommended

(Calderón‐Sanou et  al.,  2020; Ficetola et  al.,  2017) and a critical  step for reducing spurious

sequences  surviving  denoising  including nuclear  mitochondrial  (NUMT, Lopez  et  al.,  1994)

copies (Andújar et al., 2021). It should be noted that while many task absences are cases of

under-implementation, some may also be underreporting (see below).

Infrequent adaptation of pipelines to COI

The COI locus differs from many other metabarcoding loci (e.g. 18S, 16S, 12S, ITS) in that it is

a protein coding gene, imparting strict expectations of amplicon sequence read properties that

can  be  exploited  in  metabarcoding  bioinformatics  (Andújar  et  al.,  2018b).  However,  the

adaptation of pipelines to this fragment are in general rarely implemented in the papers of the

core set. For example, only 22 papers (20%) used amino acid translations to identify erroneous

sequences (“translation filtering”),  using 11 different software tools for the task. The reason for

low  implementation  of  translation  filtering  is  likely  twofold;  first,  none  of  the  major

metabarcoding software packages include functions for translation filtering, and second, there is

no standard straightforward command line software for undertaking this task. Those papers that

carry out translation filtering do so by using one of three main approaches: (i) sequences are

viewed and translated in a GUI application such as Geneious (https  ://  www  .  geneious  .  com  ) or

MEGA (Kumar et al., 2018), and those with stop codons manually removed, (ii) sequences are
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processed through a custom script, some of which are available on github but none of which are

used  by  research  groups  separate  from  the  author,  and  (iii)  sequences  are  aligned  against

references using MACSE (Ranwez et al., 2011) and those containing indels or stop codons are

removed. The first option is time consuming and prone to human error, and custom scripts are

challenging to document and maintain for a wider number of users. While MACSE is the most

frequent single approach, it is computationally efficient only for small datasets. There may be

some potential  in the recent  coil R package (Nugent  et  al.,  2020) that  uses Hidden Markov

Models to identify and filter translation-based errors and appears to scale well to large datasets,

although  the  R  implementation  presents  a  slight  barrier  to  efficient  inclusion  in  pipelines.

Furthermore, the majority of translation filtering approaches are based solely on removing stop

codons, while there may be other potential avenues for filtering based on amino acid translation.

The  extent  to  which  expectations  for  protein  structural  properties  can  be  applied  to

metabarcoding sequences for filtering other non-synonymous errors has been underexplored (but

see Turon et al., 2020).

In addition to the potential of amino acid translation, the protein coding nature of COI leads

to  relatively  stricter  expectations  of  amplicon  length.  However,  only  half  (n=54)  of  papers

reported using length filtering, despite this being a relatively trivial procedure and with functions

available in all metabarcoding software packages and as options in many more software tools.

There  may  be  some  underreporting  here;  given  the  implementation  of  a  length  filtering

parameter in many software tools that have a different primary purpose, authors may not have

explicitly reported that length thresholds had been applied as part of a different procedure (note

that we recorded when a single tool was reported to have fulfilled multiple tasks). Despite length

filtering being widely available, and the relative algorithmic simplicity of implementation, there

are  no  length  filtering  tools  that  allow  for  specification  of  thresholds  outside  of  a  simple

minimum-maximum range, despite the internal barcode region of protein coding genes generally
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being expected to vary in length only by multiples of 3 bases. While trivial to implement this

programmatically for an experienced bioinformatician, this lack of straightforward user-friendly

availability  presents  a  barrier  to  appropriate  threshold  implementation  by  those  with  less

experience.

Severe underreporting and increasing heterogeneity in the tools used for bioinformatic tasks

Of the 30 bioinformatic tasks identified (see Table 1 for a description of the tasks), only 11 were

implemented in more than half of the papers (n<55) (Fig. 3). Quality filtering (n=92) and OTU

delimitation (n=89) were the tasks most reported. Some of the less reported tasks were those

associated with uncommon bioinformatic requirements of metabarcoding data, such as assembly

or  degapping;  others  have  become  redundant  with  modern  computational  power,  such  as

preclustering. Low reporting of such tasks is likely an accurate reflection of rare implementation;

however, there are many other tasks that are fundamental in metabarcoding bioinformatics but

are poorly reported. For example, primer trimming was only reported by just over half of the

papers (n=67), yet is a completely necessary step. Similarly, adapter trimming was underreported

(n=21); while it is likely that in the majority of cases this is implemented by sequencing facilities

prior  to  the  authors  receiving  data,  its  reporting,  including  parameters  and  tools  used,  is

fundamental to verify stringency of the read preparation procedures. The mapping of by-sample

reads  to  OTUs  was  reported  by  only  one  third  (n=30)  of  the  papers  that  employed  OTU

delimitation,  despite  this  being  a  necessary  step  for  the  production  of  ecological  data  for

downstream  analysis.  Furthermore,  OTU  mapping  is  not  a  trivial  step;  the  level  of

filtering/processing performed on the reads used for mapping (as opposed to filtering/processing

performed on the sequences used for OTU delimitation), and the similarity threshold and tie-

breaking algorithm employed to assign reads to OTU clusters could all substantially affect the

14

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

14



community data generated. The accurate reporting of this step is important to assess the validity

of a pipeline, its comparability across studies, and/or its ability to be reproduced.

In addition to the clear underreporting of tasks within the pipelines as discussed above, the

reporting of the bioinformatic tools and parameters used for those tasks cited in the papers was

also  very  poor  (Table  1).  Only  21  of  the  111  papers  reported  software  name,  version  and

parameters used for all of the bioinformatic tasks implemented, and 25 failed on all three counts

(Fig.  4a).  When  considering  the  degree  of  underreporting  by  task  (Fig.  4b),  the  most

underreported  software  were  used  for  some  of  the  most  perfunctory  tasks  (e.g.  frequency

filtering,  length filtering,  dereplication) that can be easily reproduced using many equivalent

tools. Nonetheless, there remains relatively widespread underreporting, and this has remained

unchanged over time (Fig. 5b). 

Within  the  reported  software,  we  identified  93  software  tools  used  in  metabarcoding

bioinformatic pipelines (Table S3), of which 27% (25) were software ‘packages’. When taking

into  account  distinct  functions  within  packages,  a  total  of  169  unique  tools  were  recorded,

however, this is likely an inaccurate picture given low reporting rates of functions used within

software packages across all steps. There is a clear increase in the number of different software

and software functions employed across all papers over time (Fig. 5a). Examining the diversity

of software used within tasks over time, controlling for the number of papers published, there is

limited improvement in homogeneity and a decrease in dominance of software (Figs 5c and 5d).

Given that the number of metabarcoding publications is increasing year-on-year, there is thus a

concomitant  increase  in  the  diversity  of  software  used  for  a  given  task,  and  previously

commonly used software are being used less (Figs 5c and 5d). These trends reflect that while

new  software  tools  are  constantly  being  made  available  for  metabarcoding,  uptake  is  not

consistent across the field and while some researchers use more recent tools, many researchers

continue to use older methods, diversifying the field. 
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Toward a bioinformatic harmonisation of COI metabarcoding for metazoan wocDNA samples

Our results show that the increasing use of wocDNA COI metabarcoding for metazoan diversity

is characterised by a clear absence of bioinformatic harmonisation, and the temporal trends show

little  change  in  this  situation.  The  reviewed  literature  showed  (i)  high  heterogeneity  across

pipelines, tasks and tools used, (ii) limited or no adaptation of bioinformatic procedures to the

nature  of  the  COI  fragment,  and  (iii)  a  worrying  underreporting  of  tasks,  software  and

parameters. 

The  development  of  metabarcoding  as  a  method  for  community  ecology  began  with

microbial studies over a decade ago, which have revealed the extensive diversity of bacteria and

archaea on our planet and demonstrated the potential of metabarcoding for global biodiversity

syntheses (Bates et al., 2013; Thompson et al., 2017). Although the integration and meta-analysis

of  microbial  community  data  from  independent  studies  is  still  challenging  (e.g.  Ramirez-

Gonzalez et  al.,  2013),  the success of  international  consortia  such as  the Earth Microbiome

Project  (EMP,  Gilbert  et  al.,  2010,  2014)  has  promoted  the  development  of  a  harmonised

framework for data generation and analyses within microbial eDNA research (see e.g. Tedersoo

et al., 2015). 

Through  the  adaptation  of  the  microbial  metabarcoding  method  to  wocDNA samples,

specific protocols to sample, sort and enrich community samples for wocDNA metabarcoding

have been developed, targeting different taxonomic fractions and types of samples (e.g., Andújar

et al., 2018a; Arribas et al., 2016; Creedy et al., 2019; Elbrecht & Leese, 2017; Fonseca et al.,

2010;  Yu et al., 2012). Additionally, recent efforts to adapt and optimise existing methods are

increasing  efficiency  and  versatility,  for  example  through  non-destructive  DNA extraction

techniques that retain specimens for morphological vouchering (Marquina et al., 2019; Nielsen
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et al., 2019), or library preparation techniques tailored to metazoan samples (Yang et al., 2020).

Although  wocDNA  COI  metabarcoding  remains  in  an  expansive  phase  of  development,

standardisation  in  field  and  laboratory  methods  are  emerging.  This  is  in  part  boosted  by

collaborative  initiatives  such  as  the  BIOSCAN  initiative  and  its  regional  extensions  (e.g.

BIOALPHA),  the  Kruger  Malaise  Program,  SITE-100,  the  Insect  Biome  Atlas  Project,

LIFEPLAN, and iBioGen (Arribas et al., 2021). 

In contrast, there has been little advance in the development and validation of best practices

associated with the bioinformatics  processing of wocDNA COI metabarcoding data  (but  see

Yang  et  al.,  2020  for  error  reduction).  Outside  of  taxonomic  assignment,  discussion  of

customising  or  parameterising  tools  for  the  purposes  of  working  with  wocDNA  COI

metabarcoding is very rare, with most papers simply reporting using tools with default settings.

Our  review  has  revealed  heterogeneity  in  the  number  of  tasks,  the  order  of  these  within

pipelines, and the tools used to implement them, along with a lack of even basic adaptations to

the COI metabarcode for most of the papers. The majority of available software and resources

for metabarcoding bioinformatics are still those that have been developed around the 16S rRNA

gene (the primary target for microbiome metabarcoding), including the most popular software

packages (e.g. USEARCH) and sets of wrapper scripts (e.g. QIIME, OBItools).  While in many

cases these methods may carry over to COI without issue, we observe very few studies that

report consideration or analysis that assesses or validates the suitability of software choices for

COI. These issues suggest that the expansion of wocDNA COI metabarcoding is proceeding at a

pace and manner that could lose sight of or simply ignore the challenges inherent in producing

high‐quality data and reproducible methods (Baker et al., 2016; Zinger et al., 2019), and lose out

on the potential for exploiting the benefits of the COI marker for wocDNA metabarcoding of

Metazoa. 
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DNA  metabarcoding  has  broad  multidisciplinary  potential,  as  demonstrated  by  the

expansion in use of metazoan wocDNA COI metabarcoding among users from very diverse

backgrounds.  The  diversity  of  applications  of  metabarcoding  requires  the  concomitant

bioinformatic  techniques  to  be  flexible  and  adaptable,  and  the  field  remains  under  active

development. Thus it would not be productive to attempt to prescribe pipelines, tasks or even

software  tools  in  the  name  of  standardisation,  as  there  is  no  one-size-fits-all  approach  in

metabarcoding.  However,  some  degree  of  harmonisation  is  required  to  ensure  quality,

reproducibility and potential integration in metastudies (Tedersoo et al., 2015). Additionally, the

absence of a harmonised framework of bioinformatic processing can act as a barrier for potential

new users (Liu et al., 2020), hampering the growth of the field. To these ends, we thus propose a

set  of  recommendations  that  we  believe  all  researchers  in  the  field  should  consider  when

designing and reporting their  wocDNA COI metabarcoding bioinformatics pipeline,  with the

hope that they will catalyse harmonised implementation.

Fully report all tasks, software, software versions and parameters used, even if just the

defaults. Our results show that underreporting is a recurrent problem. Comprehensive reporting

of the tasks,  pipelines and software used is  essential  for further integrating results  in future

reviews or meta-analyses (Tedersoo et al., 2015). Furthermore, care should be taken to report not

just the name of the software package, but also the exact function, and if wrapper scripts are used

then  the  underlying  functions  should  be  reported.  Considering  the  trade-off  with  current

constrictions for manuscript length, this could be achieved by the inclusion of a supporting table

following the STAR-METHODs philosophy (Marcus, 2016), where task reference, order within

the  pipeline  and  software  used  are  included.  Note  that  the  task  lexicon  and  software  lists

compiled in this review (see Table 1) are a very useful resource for this purpose. This reporting

effort  for  all  the  wocDNA COI metabarcoding  will  promote  rigour  and robustness  with  an
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intuitive, consistent framework that makes reporting easier for the author and replication easier

for the reader.

Implement  filtering  tasks  such that  spurious  sequences  are  sufficiently  removed to

meet the assumptions of the research question. The quality of metabarcoding results is likely

to depend most on the appropriate inclusion of filtering into a pipeline (Calderón‐Sanou et al.,

2020; Elbrecht et al., 2018; Zinger et al., 2019), so proper implementation of filtering tasks are

critical for robust and harmonised use of COI metabarcoding. In metabarcoding, real amplicon

sequence  variants  (ASVs,  Callahan  et  al.,  2017)  amplified  from target  genes  are  inherently

accompanied by spurious sequences, arising from multiple sources. Indeed, taxonomic inflation

is a recurring issue demonstrated in communities with known haplotype composition (Creedy et

al., 2020; Elbrecht et al., 2018). This can be exacerbated for mitochondrial markers like COI,

due  to  the  co-amplification  of  NUMTs  and  other  non-authentic  ASVs  that  are  missed  by

denoising  and  require  stringent,  optimised  filtering  based  on  read  abundances  such  as  that

implemented  by  the  metaMATE software  (Andújar  et  al.,  2021).  To  ensure  quality  and

reproducibility,  metabarcoding  studies  should  consider  implementing  the  six  most  common

filtering approaches,  i.e  Quality,  Length,  Chimera,  Translation,  and Frequency filtering,  plus

Denoising. For each of these tasks, appropriate thresholds should be considered, implemented

and fully reported to a level that ensures reproducibility. Given the demonstrated importance of

these tasks for most wocDNA metabarcoding studies, if any are not employed by a study the

omission should be explained.

 Adapt pipelines to the COI fragment.  Suitable adaptations include read processing and

filtering steps that leverage evolutionary properties of the protein coding nature of this fragment,

or  determining  appropriate  parameters  for  tools  originally  designed  for  other  DNA regions.

Some recent advances have been made in filtering tasks (metaMATE, Andújar et al., 2021; coil,

Nugent et al.,  2020; entropy-based denoising, Turon et al.,  2020) but further development in
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these  promising  areas  is  essential  to  fully  exploit  the  potential  of  the  COI  gene  for

metabarcoding. As mentioned previously, there are no tools that enable simple length filtering

variation that accounts for codon-level insertion or deletion. To our knowledge there is limited

work exploring the extent  to  which protein structure inference might  allow identification of

erroneous sequences: for example the SOAPbarcode pipeline (Liu et al., 2013) includes a script

that  filters  sequences  based  on  translation  hydrophilicity,  but  this  is  not  comprehensively

documented  or  discussed  in  the  associated  publications.  Computation  of  protein  structural

properties is relatively trivial to perform, and seems like a fertile ground for novel development

of filtering tools for protein coding markers. 

For each task, consider all software available and try to select the most appropriate

tool(s). This can only be approached with sufficient information about available software, and to

this  end we include a list  of all  software used for each task within  Table S1, and  Table S3

includes links to documentation and publications. The selection of the most appropriate tool is

not always straightforward,  but we suggest  considering (i)  the extent  to  which the tool  was

designed  for  the  intended  barcode  region,  purpose  or  dataset,  (ii)  the  detail  of  available

documentation and explanation to ensure a tool performs as expected, (iii) the availability and

flexibility of options to appropriately apply the tool, (iv) the frequency of use of a tool in other

studies with similar research aims, and (v) all else being equal, the simplest approach. Ideally,

where multiple approaches exist, reasonable comparison between key methods should take place

to  fully  understand  the  potential  variation  in  conclusions  that  might  arise  from  different

bioinformatic  choices,  and  the  results  of  these  comparisons  should  be  reported.  This  is

particularly  the case  when considering  alternative,  conceptually  distinct  algorithms for  more

bioinformatically complex tasks, such as denoising and OTU delimitation. The development of

software packages and open access platforms integrating a catalogue of common bioinformatic

tools, such mBRAVE (http  ://  www  .  mbrave  .  net  /  ), may play a fundamental role towards a proper
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selection and harmonisation of the software used. However, software choices should be made on

the  basis  of  appropriateness  and  usefulness,  rather  than  simply  ease  of  availability  and

implementation due to inclusion in these packages/platforms. 

Verify the compatibility of the tasks within a pipeline, especially with respect to task

order.  It  is  important to  ensure that  the assumptions of one task have not  been violated by

upstream  processing;  for  example,  UNOISE  denoising  employs  a  model  of  error  rates  in

Illumina sequencing, and if errors have been removed by prior length or frequency filtering this

model may not accurately fit to the data. Further, linked processes should be compatible: for

instance, if OTU delimitation is based on a linkage algorithm such as swarm (Mahé et al., 2015),

it is inappropriate to employ a simple similarity-based mapping method to assign reads to the

resultant OTUs. 

Aside  from  these  recommendations,  we  also  urge  researchers  to  make  data  publicly

available, both raw reads and final ASV and/or OTU sequences. Raw read datasets will become

an invaluable resource for future work integrating many wocDNA metabarcoding studies across

spatial  and temporal  scales,  with continuing development and improvement  of bioinformatic

pipelines allowing for forward-compatibility of the data as analytical tools continue to evolve.

Uploading  ASV  and/or  OTU  sequences,  even  with  incomplete  taxonomy,  improves  the

capability of methods for taxonomic assignment that draw on these resources and provides fertile

datasets for future development of bioinformatic methods.

Conclusions

The past decade has seen rapid growth in the development, testing and use of wocDNA COI

metabarcoding. Much effort has been expended in the development of laboratory, sequencing

and bioinformatic methodologies for wocDNA COI metabarcoding and for metabarcoding as a
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whole.  However,  while  much  progress  has  been  made  towards  harmonisation  of  lab  and

sequencing  methods,  bioinformatic  processes  have  remained  a  tangle  of  varying  software,

pipelines and theoretical approaches, often suffering from underreported detail. This diversity

allows  for  versatility,  especially  for  those  who  are  well-informed  and  experienced  in

bioinformatics and able to pick and choose the appropriate approach. However, choosing from

the range of approaches could easily hinder new applications of metabarcoding for researchers

coming  from  a  limited  bioinformatic  background,  and  high  heterogeneity  can  stymie  the

potential for future reviews and meta-analyses. Our review, which is the first evaluating the state

of the art on this topic, highlights that this danger is clearly present in the field of metazoan

wocDNA COI metabarcoding. The results of our assessment and the recommendations derived

from it  may help to improve bioinformatic harmonisation and thus the long-term integrative

potential of wocDNA COI metabarcoding for biodiversity science. 
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Tables 

Table 1:  Table of all bioinformatic tasks performed across the core papers set. Tasks are

grouped into four groups by broad purposes, and a detailed definition of each task is given along

with summary statistics of the implementation of each task across the 111 papers. For a list of

the software used for each task, Table S1 is an expanded version of this table.

Figures

Figure 1: Year of publication of the articles in the core papers set. Bar fills and numbers

refer to the number of articles within each research aim category. Note that only articles indexed

by Web of Science by 3rd November 2020 were included.

Figure  2:  Bioinformatic  pipelines  implemented  by  the  core  papers  set.  A)  Frequency

distribution of the number of tasks by study, B) Number of tasks by study against the year of

publication, with best fit regression line in blue with shaded 95% confidence intervals around the

line. Slight horizontal jitter added to points to better show density. C) Network diagram of tasks

and different pipeline routes through these tasks. All pipelines start and end on the respective

orange  nodes.  All  other  nodes  are  coloured  according  to  the  four  main  categories  of

bioinformatic  tasks;  red  for  read  preparation  tasks,  blue  for  sequence  processing,  green  for

filtering and purple for data generation tasks.  Arrows link tasks performed consecutively, with

direction of arrow showing order of tasks. Thickness of arrows shows relative frequency of pairs

of  consecutive  tasks.  Arrows coloured orange are the top 10% of  consecutive task pairs  by

relative frequency. Note that while this illustrates a possible complete pipeline from Start to End,

this “average” pipeline is not in fact performed by any of the papers assessed by this review.

Figure  3:  Violin  plot  of  standardised  task  position  within  pipelines.  Increasing  x-axis

position denotes later placement of task within pipelines, vertical dashed lines denote 25%, 50%

and 75% of the way through the pipeline respectively. Tasks are separated into task groups and

ordered within task group by mean standardised pipeline position. Points denote task positions

where tasks occurred too infrequently to compute density profile for violin plots. Values report

the total number of papers implementing each task.

Figure  4:  Plots  summarising  the  reporting  of  three  key  aspects  of  bioinformatic  tools

(software name, version and parameters) by the core papers. A). Venn diagram shows the number

of papers fully reporting each detail, i.e. giving the software used for every task reported, and

giving the parameters and version for each task where software is given; 86 papers reported at
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least one of the three details for all steps, 25 further papers failed to fully report all three details

in all steps. B) Bar chart details the proportion of papers employing a specific task that failed to

report the software used for that task, with longer bars denoting a greater proportion of papers

not reporting software for that specific task

Figure 5:  Consistency in software reporting and use over time.  A) The total  number of

unique software functions reported across all papers for each year of publication. B) For each

paper, the proportion of the total number of bioinformatic tasks for which the software used for a

task was not reported. C) The software homogeneity rate is one minus the number of different

software tools used for a given task in a given year, divided by the number of papers employing

the task in that year, calculated only when more than one paper reported a task in a given year. A

value of 1 means all papers used the same tool for a given task in a given year. D) The software

dominance rate is the proportion of papers that use the most common software tool for a given

task in a given year,  calculated only when more than one paper reported a task in a given year. A

value of 1 means all papers used the same tool for a given task in a given year. B-D) Best fit

regression  lines  are  shown  in  blue  with  shaded  95% confidence  intervals  around  the  line.

Horizontal  jitter  added  to  points  to  illustrate  density  within  years;  C  & D)  colours  denote

different tasks, see Figure S1.

30

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

30



Task Group Task Description Number papers
reporting task

Number papers
not reporting

software

Total number of
software tools

Total number of
software
functions

Number of papers
performing
manually

Read
preparation quality control Generating a report of sequence quality information from a

sample or set of samples - no modification is done to data 19 0 4 4 0

adapter trimming Trimming of sequencing adapters 9 1 6 6 0

demultiplexing
Separation of sequences from a mixed pool into separate
pools based on the occurence of a unique set of bases (index
or tag)

55 17 16 19 0

pair merging The assembly of mate pair reads into a single contig 63 1 10 18 0

quality trimming The removal of bases from either or both ends of sequences
in a pool based on quality scores 20 1 8 10 0

mate pairing
The identification and syncronisation of mate pair reads
between two samples, often involving arranging reads in
identical orders and/or removal of reads without a mate
pair

3 0 3 3 0

primer trimming Trimming of PCR primers 66 8 15 17 0
reverse
complementation Reverse complementing the sequences in a pool 7 3 2 2 0

sequence
conversion Converting sequences from fastq to fasta 3 0 2 3 0

length trimming
The removal of bases from either or both ends of sequences
in a pool, either the removal of a fixed number of bases or
the removal of a variable number of bases to reduce
sequences to a standard length

10 3 6 7 0

pair concatenation Concatenating mate pair reads into a single contig (where
reads don't overlap) 8 4 4 4 0

assembly The assembly of reads into contigs, applied when more than
one pair of overlapping fragments have been metabarcoded 6 0 4 4 0

degapping Removal of gaps from sequences 1 0 1 1 0

Sequence
processing dereplication

The removal of duplicate reads to retain only unique
sequences in a pool; often the total number of copies of a
sequence is recorded in the header of the retained sequence

58 10 11 19 0

size sorting The sorting of a fasta file according to a size annotation in
the header 10 2 3 4 0

Filtering quality filtering
Removal and/or trimming of sequences from a pool based
on quality information. Also often converts from fastq to
fasta.

81 11 20 27 0

similarity filtering Removal of sequences based on similarity to an alignment,
either based on sequence identity or alignment position 9 1 4 4 0



length filtering
The removal of sequences from a pool that are less than,
more than, or fall within or outside of a specified length
threshold or thresholds

54 21 17 23 0

preclustering Reduction of sequence variation in a dataset prior to further
processing - a form of denoising 12 1 3 6 0

denoising The removal of reads containing putative PCR or
sequencing errors based on statistical assessment 18 1 8 8 0

normalisation

A process by which the number of sequences for each of a
set of samples is reduced where necessary such that the
output set of samples all have the same number of
sequences while maintaining the relative frequencies of
OTUs

2 0 1 1 1

chimera filtering The filtering of putative chimeric assemblies from a pool of
mate paired reads 63 4 6 16 1

translation filtering
Removal of sequences from a set of sequence based on their
translation, usually removing sequences with inframe stop
codons or frameshifts due to erroneous indels or
substitutions caused by sequencing errors

22 3 11 12 0

frequency filtering Removal of sequences based on their frequency in a pool 51 37 11 15 1

taxonomy filtering Removal of sequences based on an assigned taxonomy or a
taxonomic classification 9 5 1 1 1

mistag filtering Removal of sequences based on putative tagging errors 3 1 1 1 0
Data
generation OTU delimitation The grouping of a set of sequences into OTUs by some

method 84 5 12 22 0

OTU mapping The mapping of sequences to OTUs to provide read counts
for each OTU 30 3 7 11 0

uncurated
taxonomic
assignment

The assignment (identification or classification) of
taxonomy to OTUs using a global uncorated reference
database (e.g. GenBank, BOLD)

55 2 11 13 0

reference
taxonomic
assignment

The assignment (identification or classification) of
taxonomy to OTUs using a purpose-built and/or specially
curated reference set of sequences

60 9 18 23 1

Table 1: Table of all bioinformatic tasks performed across the core papers set. Tasks are grouped into four groups by broad purposes, and a

detailed definition of each task is given along with summary statistics of the implementation of each task across the 111 papers. For a list of the

software used for each task, Table S1 is an expanded version of this table.



Figure 1: Year of publication of the articles in the core papers set. Bar fills and numbers refer to the number
of articles within each research aim category. Note that only articles indexed by Web of Science by 3rd
November 2020 were included.



Figure 2: Bioinformatic pipelines implemented by the core papers set. Left: A) Frequency distribution of the
number of tasks by study, B) Number of tasks by study against the year of publication, with best fit
regression line in blue with shaded 95% confidence intervals around the line. Slight horizontal jitter added
to points to better show density. Right: C) Network diagram of tasks and different pipeline routes through
these tasks. All pipelines start and end on the respective orange nodes. All other nodes are coloured
according to the four main categories of bioinformatic tasks; red for read preparation tasks, blue for
sequence processing, green for filtering and purple for data generation tasks. Arrows link tasks performed
consecutively, with direction of arrow showing order of tasks. Thickness of arrows shows relative frequency
of pairs of consecutive tasks. Arrows coloured orange are the top 10% of consecutive task pairs by relative
frequency. Note that while this illustrates a possible complete pipeline from Start to End, this “average”
pipeline is not in fact performed by any of the papers assessed by this review.



Figure 3: Violin plot of standardised task position within pipelines. Increasing x-axis position denotes later
placement of task within pipelines, vertical dashed lines denote 25%, 50% and 75% of the way through the
pipeline respectively. Tasks are separated into task groups and ordered within task group by mean
standardised pipeline position. Points denote task positions where tasks occurred too infrequently to
compute density profile for violin plots. Values report the total number of papers implementing each task.



Figure 4: Plots summarising the reporting of 3 key methodological details by papers. A) Venn diagram
shows the number of papers fully reporting each detail, i.e. giving the software used for every task reported,
and giving the parameters and version for each task where software is given; 86 papers reported at least one
of the three details for all steps, 25 further papers failed to fully report all three details in all steps. B) Bar
chart details the proportion of papers employing a specific task that failed to report the software used for
that task, with longer bars denoting a greater proportion of papers not reporting software for that specific
task.



Figure 5: Consistency in software reporting and use over time. A) The total number of unique software
functions reported across all papers for each year of publication. B) For each paper, the proportion of the
total number of bioinformatic tasks for which the software used for a task was not reported. C) The software
homogeneity rate is one minus the number of different software tools used for a given task in a given year,
divided by the number of papers employing the task in that year, calculated only when more than one paper
reported a task in a given year. A value of 1 means all papers used the same tool for a given task in a given
year. D) The software dominance rate is the proportion of papers that use the most common software tool for
a given task in a given year, calculated only when more than one paper reported a task in a given year. A
value of 1 means all papers used the same tool for a given task in a given year. B-D) Best fit regression lines
are shown in blue with shaded 95% confidence intervals around the line. Horizontal jitter added to points to
illustrate density within years; C & D) colours denote different tasks, see Figure S1.


