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ABSTRACT
We measure the anisotropic clustering of the quasar sample from Data Release 16 (DR16) of the Sloan Digital Sky Survey IV
extended Baryon Oscillation Spectroscopic Survey (eBOSS). A sample of 343 708 spectroscopically confirmed quasars between
redshift 0.8 < z < 2.2 are used as tracers of the underlying dark matter field. In comparison with DR14 sample, the final
sample doubles the number of objects as well as the survey area. In this paper, we present the analysis in configuration space by
measuring the two-point correlation function and decomposing it using the Legendre polynomials. For the full-shape analysis of
the Legendre multipole moments, we measure the baryon acoustic oscillation (BAO) distance and the growth rate of the cosmic
structure. At an effective redshift of zeff = 1.48, we measure the comoving angular diameter distance DM(zeff)/rdrag = 30.66 ± 0.88,
the Hubble distance DH(zeff)/rdrag = 13.11 ± 0.52, and the product of the linear growth rate and the rms linear mass fluctuation
on scales of 8 h−1 Mpc, fσ 8(zeff) = 0.439 ± 0.048. The accuracy of these measurements is confirmed using an extensive set of
mock simulations developed for the quasar sample. The uncertainties on the distance and growth rate measurements have been
reduced substantially (∼45 and ∼30 per cent) with respect to the DR14 results. We also perform a BAO-only analysis to cross
check the robustness of the methodology of the full-shape analysis. Combining our analysis with the Fourier-space analysis, we
arrive at Dc

M(zeff)/rdrag = 30.21 ± 0.79, Dc
H(zeff)/rdrag = 13.23 ± 0.47, and f σ c

8 (zeff) = 0.462 ± 0.045.

Key words: methods: data analysis – quasars: general – cosmology: observations – cosmology: large-scale structure of Uni-
verse – cosmology: dark energy – cosmology: distance scale.

1 IN T RO D U C T I O N

In the current standard cosmological model, a component known
as dark energy is believed to drive the accelerated expansion of
the Universe. While various observations indicate that dark energy
is consistent with a cosmological constant, � (Riess et al. 1998;
Planck Collaboration VI 2020), there is no satisfying explanation
to the nature of this component so far. Addressing this fundamental
question requires accurate measurements of the expansion history of
the Universe and the cosmic structure growth rate. Observations of
the large-scale structure (LSS) of the Universe are a powerful tool to
obtain these measurements.

In the early Universe, photons, electrons, and baryons were tightly
coupled via Compton scattering and Coulomb interaction. Around

� E-mail: jiamin.hou@gmx.de

overdensity regions, the radiation pressure sourced spherical waves,
which propagated outwards, dragging the matter with it. Later on, as
the Universe cooled down, neutral atoms formed, and the photons
streamed freely away while leaving the signature of the waves in the
matter distribution frozen at a characteristic scale of ∼150 Mpc. This
feature, known as the baryon acoustic oscillation (BAO; Peebles &
Yu 1970; Sunyaev & Zeldovich 1970; Bond & Efstathiou 1984;
Hu & Sugiyama 1996), is mapped on to the late time galaxy
distribution in both Fourier and configuration space (Cole et al. 2005;
Eisenstein et al. 2005). BAO measurements at different redshifts can
be used as a standard ruler to measure the expansion history of the
Universe.

In galaxy redshift surveys, the distances to individual objects
are inferred from their measured redshifts, which also contain a
component due to their peculiar velocities. This extra component is
responsible for the angular dependence of the clustering amplitude
(with respect to the line-of-sight direction), and gives rise to a
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phenomenon known as redshift-space distortions (RSD; Jackson
1972; Kaiser 1987). As the peculiar velocities of the galaxies are
sourced by the gravitational attraction of the surrounding matter, the
strength of the anisotropic clustering is tightly related to the matter
density fluctuation, which in turn can be used as a probe of the
growth of structure (Guzzo et al. 2008). Besides constraining the
properties of dark energy, measurements of structure growth can be
used to test alternative models of gravity on large scales (Jennings
et al. 2012; Barreira, Sánchez & Schmidt 2016; Hernández-Aguayo
et al. 2019).

The Sloan Digital Sky Survey (SDSS; York et al. 2000) has
provided many spectroscopic samples of galaxies and quasars for
mapping the distribution of LSS at different redshifts. The extended
Baryon Oscillation Spectroscopic Survey (eBOSS) program (Daw-
son et al. 2016), which is a successor of BOSS (Dawson et al. 2013),
was performed during the fourth phase, SDSS-IV (Blanton et al.
2017). There are four main tracers in the eBOSS program: luminous
red galaxies (LRGs), emission line galaxies (ELGs), quasars which
can be used as direct tracers of the matter field (QSOs), and another
higher redshift quasar sample for studies of the Ly α forest. Together,
they cover a wide redshift range. The first BAO detection using
quasars as tracers at 0.8 < z < 2.2 was from the eBOSS Data Release
14 (DR14) sample (Ata et al. 2017). This quasar sample bridges the
gap between lower redshift SDSS galaxy measurements (Kazin et al.
2014; Alam et al. 2017) and those from the Ly α forest (Bautista
et al. 2017; du Mas des Bourboux et al. 2017). In the DR14 full-
shape analysis (Gil-Marı́n et al. 2018; Hou et al. 2018; Zarrouk et al.
2018), it was demonstrated that quasars can be used as robust tracers
of the underlying matter field, extending growth rate measurements
to redshift z ∼ 1.5.

The eBOSS program concluded observations on 2019 March
1. This work is one of a series of papers presenting an analysis
of the final eBOSS data release 16 (DR16) quasar sample, which
approximately doubles the number of quasars of the previous DR14
release. The DR16 quasar catalogue is presented in Lyke et al. (2020).
The clustering catalogue used for this analysis is described in Ross
et al. (2020). The quasar mock challenge used to assess modelling
systematics is described in Smith et al. (2020). N-body simulations
for assessing systematic errors are presented in Rossi et al. (2020)
for LRG, Alam et al. (2020) and Avila et al. (2020) for ELG. The
approximate mocks used to estimate the covariance matrix and assess
the observational systematics are presented in Zhao et al. (2020a).
A complementary quasar clustering analysis in Fourier space is
performed by Neveux et al. (2020). The BAO and RSD analyses
of the QSO sample from this work and the one from Neveux et al.
(2020), LRG sample (Bautista et al. 2020; Gil-Marı́n et al. 2020),
ELG sample (de Mattia et al. 2020; Tamone et al. 2020), together
with the BAO analyses of Ly α forest (du Mas des Bourboux et al.
2020) will enter (eBOSS Collaboration 2020) for the cosmological
implications from eBOSS.1

This paper is arranged as follows: Section 2 provides an introduc-
tion to the eBOSS survey and focuses on the quasar sample. Section 3
describes the methodology used to infer the cosmological constraints.
Section 4 describes the modelling of the full-shape analysis for the
two-point statistics. Section 5 describes the BAO-only modelling.

1A summary of all SDSS BAO and RSD measurements with accompanying
legacy figures can be found here: https://www.sdss.org/science/final-bao-and
-rsd-measurements/. The full cosmological interpretation of these measure-
ments can be found here: https://www.sdss.org/science/cosmology-results-f
rom-eboss/.

Table 1. Summary of statistics for the eBOSS DR16 QSOs clustering
catalogue. The quasars used for the clustering analysis are obtained with
a cut in redshift 0.8 < z < 2.2, completeness CeBOSS > 0.5, and sector
success rate Cz > 0.5.

NGC SGC Total

Nqso 218 209 125 499 343 708
Ncp 6878 4832 11 710
Effective volume (Gpc3) 0.39 0.21 0.60
Area (weighted, deg2) 2860 1839 4699

Section 6 discusses the model validation and our estimation on
various systematics. Section 7 provides the constraints obtained with
the final sample from the full-shape analysis, BAO-only analysis, and
the combination of the configuration with the Fourier-space analysis.
Section 8 discusses the robustness of our analysis. Our conclusions
are summarized in Section 9.

2 DATA

2.1 Overview of the eBOSS survey

The eBOSS program, which began in 2014 July, was performed using
the Sloan Foundation Telescope at Apache Point Observatory (Gunn
et al. 2006), and inherited the double-armed spectrographs from
BOSS (Smee et al. 2013). These spectrographs are fed by a total
of 1000 optical fibres (500 each), where the diameter of each fibre
subtends an angle of 62

′′
on the sky. This paper focuses on the quasar

sample that covers the redshift range of 0.8 < z < 2.2. Table 1
summarizes the statistics for the sample, including the number of
quasars used for the clustering analysis (Nqso), number of quasars
suffered from the fibre collision (Ncp), the effective volume (equation
5 of Tegmark 1997), and the weighted area of the north galactic cap
(NGC) and south galactic cap (SGC). Fig. 1 shows the footprint of
the final DR16 QSO sample for the NGC and SGC. In DR16, a mean
completeness of Ccomp ∼ 0.98 for both galactic caps is achieved. The
final data release doubles the total number of objects, as well as the
survey area, compared to DR14 released 2 yr ago.

The details of the catalogue are described in the companion
paper (Ross et al. 2020). Here, we briefly summarize the target
selection and the spectroscopic observations, which are the two steps
needed to construct the quasar catalogue. The quasar target selection
is documented in Myers et al. (2015). We used the optical imaging
data from SDSS-I/II/III, together with a mid-infrared cut from the
Wide Field Infrared Survey Explorer (WISE; Wright et al. 2010).

In the DR14 analysis, we corrected for the trends in the g-band
depth and Galactic extinction. In our final analysis, we also correct
for the sky background and seeing. The weight wsys is introduced to
mitigate the imaging systematics (for details, see section 5.5 in Ross
et al. 2020). The impact of these additional corrections on our final
results is discussed in Section 8.

After the target selection, the quasar candidates are observed spec-
troscopically. This introduces two new sources of systematics, which
need to be corrected. First, the minimum angular projected distance
between two neighbouring quasar targets in each observation is
limited by the ferrules (a small bracelet) that supports the fibres,
which have a projected size of 62

′′
. When two objects fall within

such angular separation, they are denoted as ‘collided objects’ and
corrected using the close pair (fibre collision) weight, wcp, where
objects are up-weighted according to the colliding fraction of each
group. Secondly, the redshift efficiency varies between different

MNRAS 500, 1201–1221 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/1/1201/5936662 by Secretaria G
eneral Adjunta de Inform

atica user on 13 April 2022

https://www.sdss.org/science/final-bao-and-rsd-measurements/
https://www.sdss.org/science/cosmology-results-from-eboss/


eBOSS DR16 QSOs in configuration space 1203

Figure 1. Footprint of the eBOSS QSOs, split into the NGC (left) and SGC (right). The DR14 sample is shown in orange, while the DR16 sample is shown in
blue (and also includes the entire orange region).

fibres, showing a dependence on the fibre ID number. Fibres falling
near the edge of the spectrograph have lower efficiencies, and this
is accounted for with the spectroscopic weight, wnoz. Section 8
investigates how different definitions of the spectroscopic weight
affect our results. The imaging weights, wsys, are iteratively corrected
for the spectroscopic weights. These weights are then combined to
correct for the observing and targeting systematics. The final weight
that is applied to each object is defined as

wtot = wFKP wsys wcp wnoz, (1)

where the FKP weight (Feldman, Kaiser & Peacock 1994) is applied
to minimize the variance of the measurement,

wFKP = (1 + P0n(z))−1 , (2)

with P0 = 6000 h−3 Mpc3 and n(z) is the volume number density
in each redshift bin. Finally, instead of downsampling the random
catalogue, the completeness in each sector is used as a weight.

The redshift estimation is based on the REDVSBLUE algorithm2

that is detailed in Lyke et al. (2020). The final clustering catalogue is
composed of redshift sources from three classes. (i) Legacy: These
are quasars with reliable redshifts obtained during SDSS I/II/III.
Within this category, the objects that were observed before BOSS
were obtained from combining the fifth edition of the SDSS QSO
catalogue (based on SDSS DR7) (Schneider et al. 2010) with a
catalogue of known stellar spectra from SDSS-I/II. (ii) SEQUELS:
At the end of the BOSS program, Sloan Extended Quasar, ELG,
and LRG Survey (SEQUELS) was designed as a pilot survey
for eBOSS. SEQUELS used a less constrained quasar selection
algorithm than that which was adopted for eBOSS, and a subsample
of the SEQUELS objects that pass the eBOSS target selection entered
the final eBOSS catalogues. These objects are treated the same as
eBOSS objects. (iii) eBOSS: This is the main source of QSOs for the
program. During DR14, over 75 per cent of the new redshifts were
observed during the eBOSS program. In the final data release, this
number has increased to ∼80 per cent.

2.2 Two-point correlation function

The two-point correlation function, ξ (s) = 〈δ(x)δ(x + s)〉, character-
izes the probability excess in observing galaxies pairs as a function
of their separation, s, with respect to a homogeneous distribution.
Assuming rotational symmetry along the line-of-sight direction, the
correlation function is reduced to the 2D function ξ (s) ≡ ξ (μ, s),
with μ = cos (θ ), where θ is the angle between the separation

2https://github.com/londumas/redvsblue

vector, s, and the line-of-sight direction. Fig. 2 shows the 2D
correlation function ξ (s⊥, s‖), which reveals a BAO ring at the scale
s ∼ 100 h−1 Mpc. On smaller scales, the correlation function appears
to be compressed, due to RSDs. Analysing the full 2D correlation
function ξ (s, μ) is difficult, due to the low signal-to-noise ratio and
a large size of the covariance matrix.

Fortunately, the information in the 2D correlation function can
be compressed into a set of 1D projections by choosing different
angular-dependent weighting schemes. One of the typical choices
is decomposing the correlation function into Legendre polynomials
L	(μ)

ξ (s, μ) =
∑

	

ξ	(s)L	(μ). (3)

Using the orthogonality of the Legendre polynomials∫ 1
0 L	(μ)L′

	(μ) = δD,		′ , one arrives at

ξ	(s) ≡ 2	 + 1

2

∫ 1

−1
ξ (μ, s)L	(μ) dμ. (4)

Due to the symmetry w.r.t μ, only the even multipoles are non-
zero and the 	 = 0, 2, 4 terms are referred to as the monopole,
quadrupole, and hexadecapole, respectively. During the DR14 anal-
ysis, we compared the difference between using multipole moments
and the clustering wedges and found that the multipoles yield a better
constraint for a shot-noise dominated sample (Hou et al. 2018). We
therefore do not repeat the same analysis here.

The right-hand panel in Fig. 2 shows the correlation function
multipole measurements from the final DR16 data with the best-
fitting model, which compresses the information from the left-hand
panel. In order to highlight the BAO feature, in Fig. 3 the component
of the best-fitting model with no BAO has been subtracted. The
bottom panel displays the result for the quadrupole. In order to
highlight the (lack of) difference between α⊥ and α�, we have
subtracted the quadrupole of a model that has the same parameters
as the best fit, but with ε = (α�/α⊥ − 1) = 0. If α⊥ and α� differ, ε


= 0, a feature is observed in fig. 3 from Alam et al. (2017). Here, we
see that the BAO transverse and along the line of sight are consistent
with each other with respect to our fiducial model.

3 M E T H O D O L O G Y

3.1 Inference of cosmological parameters

In order to infer the best-fitting cosmological parameters from a
theoretical model, we aim to maximize the likelihood function. Given
Bayes’s theorem, the posterior distribution of a set of parameters
{λ} is proportional to the product of the likelihood function and the
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Figure 2. Left: The 2D correlation function ξ (s⊥, s‖) measured from the DR16 quasar sample. The solid contour is from the theory prediction. Right: The
measured correlation function for monopole (	 = 0, blue), quadrupole (	 = 2, red), and hexadecapole (	 = 4, grey), with the best-fitting full-shape model shown
by the solid lines.

Figure 3. Comparison between our measured correlation function and the
best-fitting BAO model. In the top panel, we show the monopole, where we
have subtracted the smooth component of the model from both the model
and the data. In the bottom panel, we display the quadrupole and subtract the
quadrupole of a model that has the same parameters as the best fit, but with
ε = 0.

prior P(λ|ξ ) ∝ L(ξ |λ)P(λ). In our case, the data vector ξ stands for
the two-point correlation function. The likelihood for the Gaussian-
distributed data is

L(ξ |λ) ∝ exp

[
−1

2

(
ξ − ξmodel(λ)

)T
�
(
ξ − ξmodel(λ)

)]
, (5)

where ξmodel is the theoretical model for the two-point correlation
function (see Section 4), and the precision matrix is the inverse
of the true covariance matrix, � � C−1

true, which follows the inverse
Wishart distribution. We will discuss the estimation of the covariance
matrix in Section 3.2. The two-point correlation function for the
data vector and the model is expressed in the spatial coordinates.
In order to transform the observed redshift into distance, a fiducial
cosmology is required. A difference between the true and fiducial
cosmological parameters results in a rescaling of cosmological

distances (Padmanabhan & White 2008; Kazin, Sánchez & Blanton
2012)

s⊥ = DM (zm)

D′
M (zm)

s ′
⊥ = q⊥s ′

⊥,

s‖ = DH (zm)

D′
H (zm)

s ′
‖ = q‖s ′

‖, (6)

where DM is the comoving angular diameter distance (see Ap-
pendix D) and DH = c/H is the Hubble distance defined as the
ratio of the speed of light in vacuum, c, and the Hubble parameter, H.
s⊥ and s� are distances perpendicular and parallel to the line of sight,
the prime ′ denotes the distance inferred from the fiducial cosmology,
and q⊥, � are the geometric distortion parameters.

The BAO scale is tightly related to the comoving sound horizon
at the drag epoch, rdrag, which depends on the ratio of the baryon to
radiation density. The geometric distortion parameters need further
to be rescaled by the ratio of the sound horizon

α⊥ = q⊥
r

′
drag

rdrag
and α‖ = q‖

r
′
drag

rdrag
, (7)

where α⊥ and α� are commonly referred to as the Alcock–Paczynski
(AP) parameters (Alcock & Paczynski 1979). This method of
compressing the cosmological information is only an approximation,
which we test in Section 7.2.

The rescaling of the 2D correlation function ξ (s, μ) → ξ (s
′
, μ

′
)

can be expressed as

s = s ′
√

α2
‖ (μ′)2 + α2

⊥
(
1 − μ′2)μ = α‖μ′

√
α2

‖ (μ′)2+α2
⊥(1−μ′2)

. (8)

3.2 Estimation of the Covariance matrices

3.2.1 Covariance matrices from the EZMOCKS

We use the effective Zel’dovich mock catalogues to estimate the
covariance matrices (EZmocks; Chuang et al. 2015). A detailed
description of the methodology for eBOSS QSO mock catalogue
is presented in Zhao et al. (2020a). We briefly summarize the steps
in the following. The initial displacement field in the EZMOCKS

is constructed using the Zel’dovich approximation. The probability
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density function (PDF) of the tracers is linked to the dark matter
field using an effective bias model, then further calibrated with
respect to the real data. Afterwards, galaxies are assigned to the
dark matter particles. The EZMOCKS cubic boxes for quasars were
generated at seven different redshift snapshots using the same initial
condition, each box is of side length 5 h−1 Gpc. The boxes at different
redshift slices are transformed into sky coordinates, trimmed by
the angular geometry, selected by the radial distribution, and then
trivially combined in redshifts. The light-cone mocks constructed
out of this way intrinsically captures the redshift uncertainty. The
mock catalogues are tuned independently for the NGC and SGC.
The EZMOCKS were constructed using a flat �CDM cosmology, with
matter density parameter 
m = 0.307, baryon density 
bh2 = 0.022,
a dimensionless Hubble parameter h = 0.678, and no contribution
from massive neutrinos. The power spectrum of these mocks is
characterized by a scalar spectral index ns = 0.96, normalized to
a value of σ 8(z = 0) = 0.8225.

When using the mocks to estimate the covariance matrix, the
limited number of mocks will add extra noise to the covariance
matrix. This extra noise can lead to a biased estimation of the inverse
of the covariance matrix. Consequently, the precision matrix needs
to be corrected following Anderson (2003) and Hartlap, Simon &
Schneider (2007)

C−1
debiased = Nm − Nb − 2

Nm − 1

〈
Ĉ−1

∗
〉

for Nb < Nm − 2, (9)

where Nb represents the number of bins in the data vector and Nm

is the number of synthetic mocks. Although the bias can be easily
corrected by this factor, it does not however correct for the error in the
covariance. The uncertainty in the covariance can lead to additional
variance in the inferred parameters. In Dodelson & Schneider (2013),
it was shown that if the precision matrix is contaminated by the error
� = � true + ��, it leads to an additional term in the covariance
when expanding the covariance to second order. When the best-fitting
parameters are estimated from a set of independent mock catalogues,
the actual scattering of the best-fitting parameters is inflated at the
second order given by B · (Nb − Np), with Np being the number of
parameters and B is given by

B = Nm − Nb − 2

(Nm − Nb − 1) (Nm − Nb − 4)
. (10)

When inferring the parameters from the data, the error is derived by
integrating the likelihood function, and the noise in the covariance
leads to a modified variance estimator that involves additional
parameter,

A = 2

(Nm − Nb − 1) (Nm − Nb − 4)
. (11)

Therefore, the final parameter matrix needs to be rescaled follow-
ing Percival et al. (2014)

M = 1 + B
(
Nb − Np

)
1 + A + B

(
Np + 1

) , (12)

where such a correction is suitable under the assumption of a
Gaussian likelihood.

3.2.2 Covariance matrices from the Gaussian analytical
approximation

For the mock challenge (see Section 6), a problem that we face is
that the number of simulation doesn’t fulfil Ns � Nb, where Ns is
the number of simulations. Consequently, the noise in the covariance

matrix will propagate into the parameter estimation and the error bar
can be overestimated. A more general problem associated with the
brute force method is that for a large survey with high number density,
it can be computationally very expensive to run the simulations.
Therefore, alternative methods such as an analytical expression of the
covariance can be very helpful. We follow the prescription of Grieb
et al. (2016) to estimate the covariance for the OUTERRIM mocks.
A description of the implementation of the analytical method with
Gaussian approximation can be found in Appendix B.

4 MO D E L L I N G TH E F U L L - S H A P E O F TH E
T WO - P O I N T C O R R E L AT I O N FU N C T I O N

The modelling of the two-point statistics requires three main ingre-
dients: (1) the non-linear evolution of the density field, (2) the LSS
bias that establishes the relation between the luminous tracers and
the underlying matter field, and (3) the modelling of the RSDs. In
the following, we will first describe the power spectrum modelling
in redshift space, Ps(k), and the recipe we use for the LSS bias
expansion. To calculate Ps(k), we need to input the non-linear matter
power spectrum Pδδ (Section 4.2), the matter–velocity divergence
cross power spectrum, Pδθ , and the auto velocity divergence power
spectrum, Pθθ (Section 4.3).

4.1 Bias and redshift-space distortions

The model is constructed in the Fourier space and Fourier trans-
formed to obtain the two-point correlation function. The full model
in redshift space can be expressed as

P s(k, μ) = FFOG(k, μ) exp
[− (kμσzerr)

2
]
Pnovir(k, μ), (13)

where the first term FFOG(k, μ) denotes the finger-of-god (FoG)
factor, which arises from the moment generating function for the
line-of-sight velocity difference and characterizes the random motion
of galaxies on small scales. This is given by

FFOG(μ, k) ≡ 1√
1 + μ2k2a2

vir

exp

( −μ2k2σ 2
v

1 + μ2k2a2
vir

)
, (14)

where avir is a free parameter that represents the kurtosis of the small-
scale velocity distribution. The 1D linear velocity dispersion is given
by σ 2

v = 1
3

∫
P lin

θθ (k)/k2d3k. In linear theory, we have P lin
δδ = P lin

δθ =
P lin

θθ . Such an FoG treatment, which takes into account the non-
linear corrections, can also be found in Sánchez et al. (2017b), Grieb
et al. (2017), and Hou et al. (2018). We do not explicitly express
the f dependence, as done in the previous paper. Instead, since f and
σ 8 are degenerate, we fit the combination of these two parameters.
The second term in equation (13), exp [ − (kμσ zerr)2], describes
the redshift uncertainty of quasars. As tested in Hou et al. (2018),
this parameter yields a less biased estimation of the cosmological
parameters in the presence of the redshift uncertainty. The final term,
Pnovir(k, μ), can be further decomposed into three terms, and this
large-scale RSD modelling treatment can be found in Scoccimarro
(2004) and Taruya, Nishimichi & Saito (2010)

Pnovir (k, μ) = P (1)
novir (k, μ) + (kμf )P (2)

novir (k, μ)

+ (kμf )2P (3)
novir (k, μ), (15)

where the first term, P (1)
novir , is the non-linear version of the Kaiser

formula (Kaiser 1987), which is given by

P (1)
novir (k, μ) = Pgg + 2f μ2Pgθ + f 2μ4Pθθ , (16)

where the velocity divergence is defined as θ ≡ ∇ · v(x, τ ). The two
higher-order terms P (2)

novir and P (3)
novir depend on the cross bispectrum
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at tree level and the cross-spectrum,

P (2)
novir(k, μ) =

∫
d3p

pz

p2
[Bσ (p, k − p,−k) − Bσ (p, k, −k − p)] ,

(17)

and

P (3)
novir(k, μ) =

∫
d3p

pz (kz − pz)

p2(k − p)2

(
b1 + f μ2

p

)
(
b1 + f μ2

k−p

)
Pδθ (p)Pδθ (k − p), (18)

where the cross bispectrum is defined as〈
θ (k1)

{
δg (k2) + f

k2
2z

k2
2

θ (k2)

}{
δg (k3) + f

k2
3z

k2
3

θ (k3)

}〉

= (2π)3δD (k1 + k2 + k3) Bσ (k1, k2, k3) . (19)

The LSS bias represents the statistical relation between the distri-
bution of the luminous tracers and the underlying matter field. Down
to the quasi-linear scales, this statistical relation can be described
as a perturbative bias expansion, which encompasses complicated
galaxy formation processes dominated by local gravitational effects.
The perturbative expansion of the galaxy density fluctuation, δg,
in terms of the matter fluctuation, δ, can be generalized as a
series of operators with associated coefficients. One efficient way
of expressing the operators is in terms of Galileons. If we consider
all scalar invariants of the tensor ∇ij�(x, τ ) for the gravitational
potential, and ∇ij�v(x, τ ) for the velocity potential, only three
invariants exist in three dimensions (see Chan, Scoccimarro & Sheth
2012; Eggemeier, Scoccimarro & Smith 2019). The first two terms
are

G1(�) ≡ ∇2� ≡ δ,

G2(�) ≡ (∇ij�
)2 − (∇2�

)2
, (20)

and similar relations also exist for the velocity potential. The second
line in equation (20) can be associated with the tidal field. At linear
order, the gravitational potential � and velocity potential �v are
equal. At higher order, these two potential terms are not equal, and
an additional operator emerges from the second Galileon operator
G(3)

2 at the third order:

�3G2 = G2(�) − G2 (�v) = G(3)
2 (�) − G(3)

2 (�v) . (21)

Combining these ingredients, we arrive at the bias expansion follow-
ing Chan et al. (2012), which is given by

δg = b1δ + b2

2
δ2 + γ2G2 + γ −

3 �3G2 + . . . , (22)

where b1 and b2 are the bias parameter at linear and second order.
We use the local Lagrangian relation to fix γ 2 = −2/7(b1 −
1) and we leave γ −

3 as a free parameter. We have ignored the
higher-derivative bias in our bias expansion. The effect of this
is expected to be suppressed on the scales much larger than the
Lagrangian radius of the hosting haloes (a few Mpc). The shape
of the two-point correlation function of QSOs may potentially be
affected by the radiation field or large-scale outflows during its
formation (Desjacques, Jeong & Schmidt 2018). It therefore remains
interesting to potentially include the higher-derivative bias in the
future.

4.2 Matter power spectrum

The matter power spectrum is calculated using RESPRESSO (Rapid
and Efficient SPectrum calculation based on RESponSe functiOn;

Figure 4. Comparison of matter power spectrum between RESPRESSO
(dotted-orange), gRPT (dotted-green), and MINERVA N-body simulation (blue,
with 2 per cent error indicated by the grey band) at z = 1.0.

Nishimichi, Bernardeau & Taruya 2017). The idea of RESPRESSO
is based on the response function at the power spectrum level. The
response function characterizes the variation of the non-linear power
spectrum, δP(k, z), at redshift z for a given small perturbation of the
initial power spectrum, δPini(q, z). The response function is defined
as

K(k, q; z) = q
δP (k; z)

δPini(q; z)
. (23)

Based on the numerical measurements of the response function of
the power spectrum, Nishimichi et al. (2017) proposed the following
phenomenological model,

Kmodel(k, q) =
[(

1 + βk,q + 1

2
β2

k,q

)
KSPT

tree (k, q)

)

+ (1 + βk,q

)
KSPT

1− loop (k, q)

+KSPT
2− loop (k, q)]D

(
βk,q

)
, (24)

where the explicit expression for the response function, KSPT, using
the standard perturbation theory (SPT) up to 2-loop order, can be
found in the original paper. The damping factor is given by

D(x) =
{

exp(−x), if Kmodel(k, q) > 0
1

1+x
, if Kmodel(k, q) < 0

, (25)

with βk, q = αk + αq, and,

αk = 1

2
k2
∫

dk

6π2
Plin(k), (26)

where the 1D integral is the variance of the linear displacement
field. The model is designed to recover the SPT prediction in
the low limit of the wavenumber associated with the initial linear
power spectrum, and also keep the feature from the regularized
perturbation calculation (Taruya et al. 2012). Finally, a (multistep)
reconstruction at the power spectrum level is performed.3 Fig. 4
compares the matter power spectrum calculated using RESPRESSO
and Galilean-invariant RPT (gRPT; Crocce et al., in preparation) at
redshift z = 1.0. Both of them agree very well with the measure-
ment from a GADGET-based N-Body simulation (Springel 2005)
MINERVA (Grieb et al. 2016), within 2 per cent. A comparison using
RESPRESSO with the empirical fitting function (discussed in the
next section) and gRPT in inferring the parameter constraints can be
found in Table 7.

3We modify the RESPRESSO python package into a FORTRAN version.
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eBOSS DR16 QSOs in configuration space 1207

Figure 5. Comparison of the cross matter–velocity divergence power spec-
trum, Pδθ , and the auto velocity divergence power spectrum, Pθθ , at z = 1.0.
Power spectra calculated using the fitting formulae are shown by the solid red
and brown curves for Pδθ (with input from RESPRESSO for the auto matter
power spectrum) and Pθθ , respectively. Power spectra calculated using gRPT
are indicated by the dotted blue curves.

4.3 Auto- and cross-velocity power spectra

RESPRESSO provides the prediction for the auto matter power
spectrum. However, the full modelling of the power spectrum for
the RSD effects on large scales requires the input of the cross
spectrum for the matter and velocity divergence, Pδθ , as well as
the auto power for the velocity divergence field, Pθθ . An alternative
approach to the perturbative calculation is to model the velocity
power spectra using empirical relations measured from N-body
simulations. Bel et al. (2019) performed a study based on a set of
Dark Energy and Massive Neutrinos Universe (DEMNUni) N-body
simulations (Carbone, Petkova & Dolag 2016), in the presence of
massive neutrinos. The velocity field was reconstructed from the cold
dark matter particles using a Delaunay tessellation. Fitting formulae
for the velocity power spectra are proposed as

Pδθ (k) = {Pδδ(k)P lin
θθ (k)

} 1
2 e− k

kδ
−bk6

, (27)

and

Pθθ (k) = P lin
θθ (k)e−k(a1+a2k+a3k2), (28)

where P lin
θθ is the linear auto velocity divergence power spectra, which

is equal to the linear matter power. In our case, the input of the matter
power spectra Pδδ can be either calculated from RESPRESSO or from
HALOFIT. The amplitude of Pδθ and Pθθ is strongly influenced by the
amplitude of the matter fluctuation. The free parameters that enter
equations (27) and (28) are given by

a1 = −0.817 + 3.198σ8,m,

a2 = 0.877 − 4.191σ8,m,

a3 = −1.199 + 4.629σ8,m,

1/kδ = −0.017 + 1.496σ 2
8,m,

b = 0.091 + 0.702σ 2
8,m,

1/kθ = −0.048 + 1.917σ 2
8,m, (29)

where σ 8, m is the total matter fluctuation, including cold dark matter
as well as massive neutrinos. Bel et al. (2019) showed that these
fitting functions can provide an accuracy of ∼ 3 per cent in Pδθ (k <

0.7 hMpc−1) and Pθθ (k < 0.65 hMpc−1) at redshifts down to z = 0.
Fig. 5 shows the power spectra that involve the velocity. The

velocity power spectra are suppressed in comparison to the amplitude
of the matter power in Fig. 4 due to the non-linear correction. At

redshift z = 1.0, we observe a good agreement between the empirical
fitting formula and the perturbative calculation by gRPT, for both Pδθ

and Pθθ . For the cross matter–velocity power spectrum Pδθ , we have
input RESPRESSO as the non-linear matter power spectrum Pδδ

(red). The auto velocity divergence power spectrum Pθθ depends
only on the linear matter power spectrum and uses the direct input
from CAMB (Lewis, Challinor & Lasenby 2000).

5 BAO - O N LY MO D E L L I N G

In addition to the full-shape analysis, we also present BAO-only
measurements of the geometric parameters α⊥ and α� as an additional
consistency check. These measurements attempt to isolate the BAO
information such that none of the constraining power comes from
information in the broad-band amplitude of the correlation function.
We follow the same methodology as in Ross et al. (2017), which was
itself based on Xu et al. (2013) and Anderson et al. (2014). The BAO
feature is isolated in Fourier space and damped as a function of μ

in order to approximate the effects of non-linear structure formation
and RSDs

PBAO(k, μ) = (Plin − Pnw) e−k2 .σs (μ)2 + Pnw. (30)

The linear power spectrum, Plin, is calculated using CAMB (Lewis
et al. 2000), while the ‘no-wiggle’ power spectrum is obtained from
the fitting formulae of Eisenstein & Hu (1998). In the exponential
term of equation (30), σ s captures the non-linear damping of the
BAO feature, which is anisotropic, and given by

σ 2
s = (1 − μ2

)
�2

⊥/2 + μ2�2
‖/2. (31)

The damping parameters are set fixed to �⊥ = 3 h−1 Mpc and �‖ =
8 h−1 Mpc in order to match those adopted by the Fourier-space
analysis of Neveux et al. (2020) for the Fourier-space analysis.

The effect of RSDs on the power spectrum is modelled using

P (k, μ) =
(

1 + μ2β

1 + k2μ2�2
s /2

)2

PBAO(k). (32)

Broad-band polynomial terms are included in the model as they allow
considerable freedom in fitting the broad-band, but the inclusion
of the factor above allows the fiducial model to be in reasonable
agreement before their inclusion. The factor β is fixed to be 0.4. For
a physical redshift-space distortion model, this is the ratio between
the growth rate and the linear bias, β = f/b1. Here, it controls the
overall amplitude of the quadrupole, which is allowed to vary in the
BAO fits through the B0 and B2 terms defined below. The term �s is
included to model the effect of redshift smearing and redshift errors,
and we set it fixed to a value �s = 4 h−1 Mpc, again matching the
choice adopted by Neveux et al. (2020).

The correlation function BAO template, ξ temp, is then the Fourier
transform of equation (32). As a generalization of equation (4), we
have

ξtemp(s)F =
∫ 1

0
dμF (μ) ξtemp(s, μ), (33)

where F is a weighting function over μ defined for particular case.
For example, F(μ) can be Legendre polynomials for ξ	 = 0, 2, or
F(μ) = 3μ2 for ξμ2 (see below).

We fit for the monopole 	 = 0 and quadrupole 	 = 2, which are
given by

ξ mod
0 (s) = B0ξ

temp
0 (s) + A0(s), (34)
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and

ξ mod
2 (s) = 5

2

(
B2ξ

temp
μ2 (s) − B0ξ

temp
0 (s)

)
+ A2(s), (35)

where the polynomial Ax(s) = ax, 1/s2 + ax, 2/s + ax, 3 removes
information from the broad-band shapes of the ξ	, Bx adjusts the
amplitude of the BAO feature. In order to obtain the likelihood for
α� and α⊥, we find the minimum χ2 over a grid of values in the range
0.8 < α� < 1.2 and 0.8 < α⊥ < 1.2.

We also obtain BAO results only fitting to ξ 0. In this case, we
use the same model and nuisance parameters for ξ 0, but we assume
spherical symmetry, so we simply have

ξ
temp
0 (s, αiso) = ξ

temp
0 (sαiso). (36)

The parameter αiso is defined as αiso = α
2/3
⊥ α

1/3
‖ , which is the best

constrained combination of the BAO information. We obtain the
likelihood for αiso by finding the χ2

min(αiso) on a grid in the range
0.8 < αiso < 1.2. We test the BAO template on both the OUTERRIM

(blind and non-blind) mocks and the EZMOCKS.
A comparison between our BAO analysis in configuration space

on the EZMOCKS and a Fourier-space BAO analysis can be found in
the companion paper (Neveux et al. 2020).

6 A SSESSING THE SYSTEMATIC
U N C E RTA I N T Y

In this section, we describe how we assess the systematic uncertain-
ties in our measurements. We split the systematic uncertainties into
modelling and observational systematics.

To assess the modelling systematics, we perform an N-body mock
challenge (Smith et al. 2020), using the OUTERRIM simulation (Heit-
mann et al. 2019). The OUTERRIM simulation was run in a cubic box
of side length Lb = 3 h−1 Gpc, with 10, 2403 dark matter particles
and a force resolution of 6 h−1 kpc, corresponding to a mass reso-
lution of mp = 1.85 109 × M�. The cosmology for the OUTERRIM

simulation is consistent with WMAP7 cosmology (Komatsu et al.
2011), with h0 = 0.71, 
bh2 = 0.02258, 
cdmh2 = 0.1109, σ 8 =
0.8, ns = 0.963, and zero neutrino mass. The mocks are constructed
from a cubic box using a single snapshot at z = 1.433, and are
populated with quasars using halo occupation distribution (HOD)
models. The goal of the mock challenge is two-fold: first, it serves
to provide an estimate of the systematics in the modelling of the
two-point statistics. Secondly, it is used to assess the impact of the
assumption of the fiducial cosmology.4 In the first stage of the mock
challenge (Section 6.1), we test our model on a ‘non-blind’ set of
mocks, where we know precisely the underlying cosmology. In order
to test the full analysis pipeline, in the second stage, we test our
methodology on a set of ‘blind’ mocks that have been rescaled to
different cosmologies. The true cosmological parameters of these
mocks are unknown during the analysis (Section 6.2). The mock
challenge is described in detail in the companion paper (Smith et al.
2020).

The observational systematics are quantified using a set of ap-
proximate EZMOCKS (Section 6.3). In the following sections, we
summarize the tests we performed and our main conclusions.

4Fiducial cosmology here refer to both the set of cosmological parameters for
the coordinates transformation and the ones for the generation of the template
for the two-point correlation function. We do not distinguish the terminology
because we always keep the same set of cosmological parameters for both.

6.1 Modelling systematics: non-blind mock challenge

The mock catalogues for the non-blind part of the mock challenge
are created using 20 different HOD models, and we generate 100
random realizations of each. To test the flexibility of our model,
we use a wide range of HOD models, including some more extreme
models that are not motivated by quasar physics. We do not explicitly
include effects such as assembly bias or star formation rate, but their
impacts are partially degenerate with the wide range of HOD models.
We validate our model using mocks with and without different
observational effects. For each mock, we create a version with
no redshift smearing, with Gaussian redshift smearing, and with
a double-Gaussian smearing (see equation 4 in Smith et al. 2020)
that matches the redshift distribution seen in the data. We also create
an additional catalogue with catastrophic redshift failure objects,
using the estimated catastrophic redshift failure rate from the data,
of 1.5 per cent.

Covariance matrices are calculated analytically using the method
described in Section 3.2.2. This requires the power spectrum, which
we directly calculate from each mock, and the effective volume,
which is estimated using equation (B4). We fit our model to
the correlation function multipoles calculated from each mock,
on comoving scales in the range s = [20, 160] h−1 Mpc, with bin
separation �s = 8 h−1 Mpc. The fitting parameters of our model can
be found in Table 4. The takeaway message from these non-blind
mock analyses are (1) we are able to recover α� and α⊥ within
an accuracy of 1 per cent, and 3 per cent for fσ 8. (2) When adding
the effect of 1.5 per cent catastrophic redshift failures to the mocks,
we observe a −3 per cent shift in fσ 8. The redshift of an object is
completely randomized by a catastrophic redshift failure, removing
some of the structure growth information, which results in the shift
in fσ 8. (3) The exact choice of the HOD formalism does not have a
strong impact on the geometrical parameters or the growth rate. The
impact of the extreme HODs is mostly absorbed by the nuisance
parameters that model the effect of the effect RSD through the
redshift randomization and the satellite fraction. The systematic error
is quantified from the mocks by taking the root-mean-square (rms) of
the difference to the true cosmology. Using the mocks with realistic
redshift smearing and catastrophic redshifts failures, we arrive at
modelling systematics of δα⊥ = 0.003, δα� = 0.004, and δfσ 8 =
0.008.

6.2 Fiducial cosmology systematics: blind mock challenge

To test the full analysis pipeline, we go one step further by testing
our model ‘blindly’. Since the OUTERRIM simulation is in a known
cosmology, we use the method of Mead & Peacock (2014) to rescale
the halo positions and velocities, in order to mimic a simulation of
a different cosmology. The method has two aims: (1) rescale the
units of the simulation to match the halo mass function of the new
cosmology, and (2) use the displacement field to adjust positions and
velocities to match the linear clustering. We produced in total eight
different cosmologies, with three HOD configurations for each. The
choice of the cosmological parameters, as well as the validation of
the rescaling method, can be found in the companion paper (Smith
et al. 2020), which justifies the parameter range being tested. We
find that the inferred parameters are sensitive to the choice of the
fiducial cosmology. For our final results, we decide to add the effect
of an incorrect fiducial cosmology as additional source of systematic
error. To calculate a systematic error due to the fiducial cosmology,
we calculate the rms of the set of 24 blind mocks, which are then
added in quadrature to the modelling systematic error calculated from
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Figure 6. Difference between the correlation function monopole (left), quadrupole (centre), and hexadecapole (right) from the EZMOCKS with different
systematics, with respect to a reference correlation function with no systematics. The black dash–dotted curves denote the difference in the case without the
systematic effects compared to the reference case (also show the impact on the radial integral constraint effects). The difference in the mocks including all the
systematics is given in the green solid curve. The cases without including the spectroscopic effect and photometric effect are shown in the red dotted curve, the
grey band indicates the standard deviation of the 1000 mocks, while the vertical dotted line denotes the scale at s = 20 h−1 Mpc.

the non-blind mocks. Although the technique of Mead & Peacock
(2014) is also applicable to more general cases, e.g. dynamical
dark energy models, we restrict our blind analysis to standard
�CDM cosmologies. Our estimate of the systematic error budget
is not affected by this choice. The range of cosmological parameter
values explored, e.g. varying 
mh2 by ∼20 per cent, the spectral
index ns by ∼10 per cent, and the baryon density parameter 
b by
∼35 per cent, represent models with a wide range of power spectrum
shapes, expansion and growth of structure histories, corresponding
to different values of DM, DH, and fσ 8, which are the quantities that
are most relevant for our analysis. The rms we find with the blind
mocks challenge is δα⊥ = 0.007, δα� = 0.011, and δfσ 8 = 0.010.

6.3 Observational systematics: EZMOCKS

We utilize the EZMOCKS introduced in Section 3.2.1 to quantify the
observational systematics. We consider the impact of the following
observational effects: spectroscopic redshift failures, close pairs,
and the photometric calibration. The construction of the EZmocks,
which include observational effects, are summarized in Appendix C.
The code for post-processing the systematic effects on the mocks
is integrated into the clustering analysis toolkit.5 Fig. 6 compares
the impact of the different systematics on the correlation function
multipoles. It can be seen that the largest effect on small scales is
due to fibre collisions (orange curve). For the monopole, the impact
is visible from scales s � 25 h−1 Mpc. For higher order multipoles,
this effect is already visible at scales starting from s � 50 h−1 Mpc.

There are several methods that can be utilized to correct the small-
scale clustering measurements for the effect of fibre collisions. This
includes an angular up-weighting (e.g. Hawkins et al. 2003), mod-
elling the effect of fibre collisions on the correlation function (Hahn
et al. 2017), or an inverse pair weighting scheme (e.g. Bianchi &
Percival 2017). To assess the systematics due to the fibre collision,
it is required that the radial distribution of the ‘unobserved’ objects
is similar to the one of the total objects. It is not necessary that
the collided objects which are identified within the same group are
physically associated. Therefore, it is not critical whether EZMOCKS

predicts as accurate small-scale clustering as the N-body simulations.
Fig. 7 shows the radial distribution of the unobserved objects and the
total objects in one of the EZMOCKS realizations (left-hand panel),
as well as their ratio as a function of redshift (right-hand panel). The

5https://github.com/julianbautista/eboss clustering

similarity of the radial distribution between the unobserved and the
total objects in the post-processed mocks making it viable to use
these mocks for assessing the systematics.

To correct for the effect of fibre collisions, the method we use
is based on Hahn et al. (2017), which models the effect of fibre
collisions on the correlation function. This method produces similar
results to recent pair weighting schemes (see Section 8). The effect of
fibre collisions is treated as a top-hat function in configuration space.
Since our model is built in Fourier space, it is more convenient to
modify the power spectrum directly by convolving it with the Fourier
transform of the top-hat function. We have implemented this method
both in configuration and Fourier space and have verified that the
difference between the two is very small.

The projected correlation function measured from the EZMOCKS

on small scales is shown in the left-hand panel of Fig. 8. For the
full mock with no fibre collisions (wtrue

p ), the clustering amplitude is
approximately zero. This is because pairs of physically associated
quasars at these separations are very rare, and most of the pairs are
due to random alignments on the sky. wNN

p indicates the clustering
measured from the mocks with fibre collisions that have been
corrected with a nearest neighbour (NN) weight. The negative
clustering amplitude indicates an ‘anticorrelation’ due to the fibre
collision, but wNN

p does not reach −1, since a fraction of closely
separated pairs can still be observed, due to the overlapping regimes
and the Legacy objects.

The right-hand panel of Fig. 8 shows the ratio of the two projected
correlation functions. This function is sloped between 0.5 h−1 Mpc �
rp � 1.0 h−1 Mpc, making a top-hat function a poor fit. This is
because the fibre collision scale corresponds to a physical scale
that depends on redshift, varying from Dfc(zmin) = 0.58 h−1 Mpc to
Dfc(zmax) = 1.13 h−1 Mpc.

Starting from equation (23) in Hahn et al. (2017), the correction
can be written in terms of the configuration space multipoles,

�ξ	 = −fs(2	 + 1)
∫ 1

0
Wfc

(
s
√

1 − μ2
)

(ξ (s, μ) + 1)L	(μ)dμ.

(37)

We use two different functional forms for Wfc(x). The first function
we use is the original top-hat function, where the step is at the
scale rp = Dfc(zeff ) = 0.91 h−1 Mpc. It is natural to introduce a cut

in the line-of-sight direction, with μc =
√

1 − r2
p/s2, and therefore
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Figure 7. Left-hand panel: distribution of the n(z) in one realization of the EZMOCKS. The blue histogram is the distribution of the total objects. The green
histogram is the distribution for those objects that are assigned with a fibre, and the orange one corresponds to those who do not receive a fibre assignment.
Right-hand panel: blue dots denote the ratio of n(z) between the objects assigned (orange) or not assigned (blue) with a fibre and the total objects. The average
difference between the total and ‘unobserved’ objects in the radial distribution is less than 1 per cent.

Figure 8. Left-hand panel: projected correlation function measured from the EZMOCKS with no fibre collisions (wtrue
p , orange), and with fibre collisions and an

NN weighting (wNN
p , blue). Right-hand panel: the ratio 1 − (1 + ξNN)/(1 + ξ true) (black dots), with a best-fitting model (dotted red curve). The turnover scales

are Dfc1 = 0.58 h−1 Mpc and Dfc2 = 1.13 h−1 Mpc.

equation (37) can be simplified to

�ξ	 = −fs(2	 + 1)

[∫ 1

μc

(1 + ξ (s, μ))Ll(μ)dμ

]
. (38)

We also use a functional form for Wfc(x) that is motivated by Fig. 8,
which we define as

Wfc

(
rp

) =
⎧⎨
⎩

1 for rp ≤ Dfc1

tp − kprp for Dfc2 ≥ rp > Dfc1

0 for rp > Dfc2.

(39)

The slope kp and intercept tp are determined by the two characteristic
scales, Dfc1 and Dfc2 as well as the fraction of non-overlapping area,
fs, which we leave as a free fitting parameter.

The systematics obtained from fitting the 1000 EZMOCKS are
summarized in Table 2. We show the systematic shifts in the
measurements of α⊥, α�, and fσ 8, with respect to the expected
values in the cosmology of the mocks. We divide them into two
groups: in the first group, we examine the effect associated with
the radial integral constraint (RIC; de Mattia & Ruhlmann-Kleider
2019). We used a set of mocks wbaseline, which are only downsampled
by completeness and the redshifts for the random catalogue are drawn

from a single global file. Then we added the RIC effect by drawing the
redshifts for the random catalogues from each individual data mock
wric

baseline. In the next line, we correct this effect follow de Mattia &
Ruhlmann-Kleider (2019) and denote it as wric-corr

baseline. In the second
group, we examine the effects associated with the observational
effects. wno-sys are mocks without applying any systematics. Since
fibre collisions have the largest impact on the correlation function
among the observational systematics (Fig. 6), we show in Table 2 the
results where all systematics are applied, including and excluding
fibre collisions (wall and wnocp, respectively). We show results using
the top-hat, wfc(top−hat)

all , or trapezoidal function, wfc(trapezoid)
all , to apply a

correction. When applying the trapezoidal correction, we initially left
fs as a free parameter, but found a best-fitting value of fs = 0.45 which
coincides very well with the predicted value from Fig 8. Hereafter,
we keep this parameter fixed. Uncertainties are the standard error of
the mean from the 1000 EZMOCKS.

To estimate the final observational systematics, we add the RIC
effect (�ric) and the observational effects (�obs) in quadrature. We
quote the final systematics as the larger value between the systematic
bias and two times the standard error of the mean for the mocks,
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eBOSS DR16 QSOs in configuration space 1211

Table 2. Observational systematics measured from the EZMOCKS, showing the offsets in the
measured values of α⊥, α�, and fσ 8 to the fiducial values, with different systematics applied. The
offset is inferred from the fits to the mean of the 1000 correlation function multipoles. The first
group shows the effect associated with the RIC (de Mattia & Ruhlmann-Kleider 2019). Mocks
wbaseline are only downsampled by completeness and the redshifts for the random catalogue are
drawn from a single global file. wric

baseline are the same, but redshifts in the random catalogues
are drawn from the data mocks. The RIC effects are corrected in the model for wric-corr

baseline. The
second group shows the effects related to the observational effects. wno-sys are mocks without
including observational systematics. wnocp includes all systematics except for fibre collisions,
while wall includes all systematics. The next rows show the result after applying the correction
of Hahn et al. (2017), using a top-hat function and a trapezoidal function. Uncertainties are
taken from the standard error of the mean of the 1000 EZMOCKS.

Systematics �α⊥ �α� �fσ 8

wbaseline 0.002 ± 0.001 −0.003 ± 0.001 −0.009 ± 0.001

wric
baseline 0.006 ± 0.001 −0.005 ± 0.001 −0.013 ± 0.001

wric-corr
baseline 0.003 ± 0.001 −0.004 ± 0.001 −0.012 ± 0.001

�ric 0.001 ± 0.001 −0.001 ± 0.001 −0.003 ± 0.001

wno-sys 0.009 ± 0.001 0.002 ± 0.002 −0.006 ± 0.001

wnocp 0.008 ± 0.001 0.002 ± 0.002 −0.006 ± 0.001

wall 0.017 ± 0.001 −0.008 ± 0.002 0.008 ± 0.002

w
fc(top−hat)
all 0.011 ± 0.001 0.002 ± 0.002 −0.003 ± 0.002

w
fc(trapezoid)
all 0.010 ± 0.001 −0.001 ± 0.002 −0.004 ± 0.002

�obs 0.001 ± 0.001 −0.003 ± 0.002 0.002 ± 0.002

Total 0.003 0.005 0.004

δsys = max{�sys, 2σ stat}, and we arrive at δα⊥ = 0.003, δα� =
0.005, and δfσ 8 = 0.004.

7 C O N S T R A I N T S O N TH E G E O M E T R I C A L
PA R A M E T E R S A N D G ROW T H R AT E

In this section, we explore the BAO and RSD constraints in terms
of comoving angular diameter distance, Hubble distance, and the
growth rate of cosmic structure. We estimate the effective redshift
using the definition:

zeff =
∑

i,j wiwj (zi + zj )∑
i,j 2wiwj

, (40)

where we sum over pairs with a separation distance between
20 h−1 Mpc ≤ ds ≤ 160 h−1 Mpc, the weights wi are defined as in
equation (1). The exact definition of the pair separation distance
has marginal impact on the effective redshift. A comparison using
different definition of effective redshift can be found in Section A1.

7.1 Results in the configuration space: full-shape analysis

For the full-shape analysis, the final parameter inference is performed
using RESPRESSO + fitting function, combined with an RSD
model, which is described in Section 4. Fibre collisions are corrected
using the method described in Section 6.3, which is based on Hahn
et al. (2017) but the effect of fibre collisions is modelled by a
trapezoidal function. We iteratively find that the parameter fs = 0.4,
which is in good agreement with the measurements of the projected
correlation function (see Section 8). We perform the analysis on
the multipoles ξ	(s) = 0, 2, 4 within the range 20 h−1 Mpc ≤ s ≤
160 h−1 Mpc, and with bin separation �s = 5 h−1 Mpc. The 1000
EZMOCKS, including photometric and spectroscopic systematics, are
used to estimate the covariance matrix. Fig. 9 shows the posterior
distribution of the AP parameters as well as fσ 8 for the NGC (orange),

Figure 9. Posterior distribution for AP parameters, fσ 8 and linear bias b1

for NGC (orange), SGC (blue), and combined (pink).

SGC (blue), and the combination of both (pink). Fig. 10 compares
the statistical error on the data to the distribution from the EZMOCKS

(combined NGS+SGC) for the AP parameters and fσ 8, where the
error inferred from the data sits at the lower tail of the mocks. One
reason is that the BAO signal in the data is higher than that
in the average of the mocks, which effectively leads to a strong
SNR and reduces the statistical error. A similar distribution is also
observed in the eBOSS LRG sample (Bautista et al. 2020). Table 5
lists our measured values in terms of the AP parameters and fσ 8.
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1212 J. Hou et al.

Figure 10. Distribution of the statistical error for �α⊥, �α�, and �fσ 8 on the EZMOCKS with all observational effects included (blue histogram) and the
statistical error of the DR16 QSO data (red dashed line).

Table 3. Systematics for full-shape and BAO-only fit to the mocks. On the
OUTERRIM HOD mocks, we took the set with realistic redshift smearing and
catastrophic redshift failure for the non-blind mocks. For the blind mocks,
we use 24 boxes. The rms is calculated from the EZMOCKS sets with all
observational systematics included for the full-shape analysis.

Full-shape OUTERRIM EZMOCKS

rms non-blind blind all-syst

δDM/rdrag 0.070 0.210 0.104
δDH/rdrag 0.057 0.145 0.057
δfσ 8 0.008 0.011 0.004
BAO-only OUTERRIM

rms non-blind blind
δDM/rdrag 0.133 0.161
δDH/rdrag 0.091 0.113

Table 4. A summary of the parameter space λ. A flat prior is applied to all
parameters with uniform distribution inside the limits and zero otherwise.
In all cases, the distortion parameters q⊥, q�, and fσ 8 are all free. We vary
also the three bias parameters b1, b2, γ −

3 and avir for the RSD effect at small
scale. σ zerr and fs are left optional depending on the feature of the problem
we study.

Parameter Description Prior limits

b1 Linear bias [0.25, 6]
b2 Second order bias [ − 2, 3]
γ −

3 non local bias [ − 2, 2]
avir FoG kurtosis [0.2, 10]
σ zerr Redshift error [0, 6]
fs fibre collision [0.2, 0.7]
q⊥ Distortion ⊥ L.O.S [0.5, 1.5]
q� Distortion � L.O.S [0.5, 1.5]
fσ 8 growth parameter [0, 1]

Table 5. Table summarizes the values on the final DR16 data for the α⊥, α�,
and fσ 8 in configuration space, Fourier space and the combined results.

Full-shape α⊥ α� fσ 8

ξ	 1.019 ± 0.028 1.017 ± 0.038 0.439 ± 0.046
P	 1.020 ± 0.029 1.049 ± 0.038 0.476 ± 0.045
combined 1.004 ± 0.026 1.027 ± 0.035 0.462 ± 0.043
BAO-only α⊥ α� αiso

ξ	 1.024 ± 0.026 1.026 ± 0.042 1.026 ± 0.016

The error bars are derived statistically from the Markov chain Monte
Carlo (MCMC) chain with the correction factor

√
M = 1.036 (see

equation 12).
We adopt the same fiducial cosmology as for DR14 analysis,{


m, 
bh
2, h, ns, σ8

} = {0.31, 0.022, 0.676, 0.97, 0.8}, where
the total matter density parameter also includes a contribu-
tion from massive neutrinos

∑
i mi

ν = 0.06 eV, corresponding to

νh2 = 0.0064. We obtain the fiducial distances, H(z = 1.48) =
157.40 km s−1 Mpc−1, DM(z = 1.48) = 4446.82 Mpc, and rdrag =
147.8 Mpc. This corresponds to the rms of the mass contained in a
sphere of radius 12 Mpc, σ 12 = 0.79, as suggested in Sanchez (2020).
Finally, using equations (6) and (7), we arrive at the comoving angular
diameter distance, Hubble distance, and fσ 8:

DM(zeff = 1.48)/rdrag = 30.66 ± 0.84 ± 0.25, (41)

DH(zeff = 1.48)/rdrag = 13.11 ± 0.49 ± 0.17, (42)

f σ8(zeff = 1.48) = 0.439 ± 0.046 ± 0.014, (43)

where the first error denotes the statistical uncertainty including cor-
rection factor

√
M = 1.036. The second error denotes the systematic

uncertainty inferred from the OUTERRIM mock challenge (including
both the blind and non-blind tests) as well as the observational
systematics from the EZMOCKS. The three of them are summed
in quadrature. The individual systematic uncertainties are listed in
Table 3. The systematic errors are quoted as the larger value between
the systematic bias and the 2σ of the standard deviation of the mean
of the mocks.

Fig. 11 shows the redshift evolution of the distance measure-
ments (left-hand panel) and growth rate measurement (right-hand
panel). Our final results from the DR16 quasar sample in the
configuration space are shown by the yellow points with error bars.
We compare this to the �CDM model inferred from the Planck
CMB temperature and polarization measurements. We also show
previous results from the SDSS main galaxy sample (MGS) for
the distance measurement (Ross et al. 2015a) and growth rate
measurement (Howlett et al. 2015), the constraints from BOSS DR12
LRG sample (Alam et al. 2017), and the combined constraints from
eBOSS DR14 Ly α measurements (Blomqvist et al. 2019; de Sainte
Agathe et al. 2019). With the final QSO sample, statistically we
gain ∼45 per cent in the distance measurement, and ∼30 per cent
in the growth rate measurement compared to our DR14 QSO
analysis.
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eBOSS DR16 QSOs in configuration space 1213

Figure 11. Redshift evolution of the distance parameter and the cosmic growth rate. The �CDM model, with input from the Planck 2018 MCMC chains,
is shown by the curves (as indicated in the legend). The grey points are from the BOSS DR12 LRG sample (Alam et al. 2017), the blue points are from the
combined eBOSS DR14 Ly α auto- and cross-correlation function (Blomqvist et al. 2019; de Sainte Agathe et al. 2019), the pink points are from an early SDSS
MGS sample (Ross et al. 2015a for the distance measurement and Howlett et al. 2015 for the growth rate measurement). The orange points show the final results
from the eBOSS DR16 quasar analysis, in configuration space.

We present the parameter covariance matrix including the sta-
tistical error, theoretical modelling systematics, and observational
systematics in the DM/rdrag, DH/rdrag, and fσ 8 basis as

DM/rdrag DH/rdrag f σ8

Cλ =
⎛
⎝7.709 × 10−1 −5.656 × 10−2 1.750 × 10−2

− 2.640 × 10−1 −6.204 × 10−3

− − 2.308 × 10−3

⎞
⎠ .

(44)

The results expressed in various alternative basis can be found in the
Appendix D.

7.2 Results in the configuration space: BAO-only analysis

We apply the model described in Section 5 to the measured
eBOSS quasar monopole and quadrupole, ξ	 = 0, 2(s), in the range
50 h−1 Mpc < s < 150 h−1 Mpc, with bin size �s = 5 h−1 Mpc. The
constraints on the basis of AP parameters can be found in Table 5. The
error bars given here are only derived statistically from the MCMC
chain with the correction factor

√
M = 1.010 (see equation 12).

The χ2 value of our fit to α⊥ and α� is χ2/dof = 34.1/30, while
for the fit to αiso we have χ2/dof = 16.5/15. The best-fitting models
are presented in Fig. 3. The top panel shows the monopole, where
we fit α⊥ and α�. However, the model where we fit αiso looks almost
identical.

We show the likelihood in Fig. 12, in terms of �χ2, for our fit
to αiso. Our BAO measurement is shown by the solid curve, while
the dashed curve is the result for a fit to a template that does not
include the BAO. This highlights the significance of the BAO feature
in the eBOSS DR16 quasar data, as we find that the BAO model is
preferred by a significance greater than 6σ .

We convert the BAO α⊥ and α� results to constraints on the
comoving angular diameter and Hubble distance:

DM(zeff = 1.48)/rdrag = 30.82 ± 0.82 ± 0.21, (45)

DH(zeff = 1.48)/rdrag = 13.22 ± 0.56 ± 0.14. (46)

The first error denotes the statistical uncertainty including the
correction factor

√
M = 1.010, while the second error denotes the

Figure 12. The likelihood of the BAO parameter αiso from the fit to the
correlation function monopole, in terms of �χ2 (solid curve). The dashed
curve indicates the likelihood for a model with no BAO feature. The no BAO
model has a χ2 greater than 37 over the full range of αiso values. This implies
that the clustering of the eBOSS DR16 quasar sample has a BAO feature at
greater than 6σ significance.

systematic uncertainty, which is inferred from the mock challenge
based on Table 3. We have not explicitly performed the tests on the
observational systematics for the BAO-only fit, but the results are
expected to be very similar to the ones reported in the Fourier-space
analysis at sub-per cent level (Neveux et al. 2020).

Fig. 13 compares the posterior distribution of the AP parameters
for full-shape and BAO-only analysis. The BAO-only measurements
are in good agreement (within 0.5σ ) with the full-shape measure-
ments presented in the previous subsection. The degeneracy direction
of α⊥–α� for the BAO-only fit (blue contour) is precisely predicted
in Ross, Percival & Manera (2015b). The full-shape measurement is
expected to obtain improved results on DM(z) and DH(z) through the
broad-band modelling of the AP effect. For our results, this manifests
as a 14 per cent improvement in the statistical uncertainty on
DH(z).

It has been shown that the BAO-only analysis is robust to the
assumption of fiducial cosmology (Carter et al. 2020). Since the
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1214 J. Hou et al.

Figure 13. Comparison of full-shape (red contour) and BAO only (blue
contour) fits in configuration space.

full-shape analysis is potentially sensitive to the shape of the model
template, we have performed a detailed analysis using the set of
OUTERRIM mocks in blind cosmologies (Smith et al. 2020) and thus
believe the full-shape results, with the inclusion of our systematic
uncertainties, are robust to these concerns. The good agreement
between the full-shape and BAO-only results further strengthen our
confidence. Our BAO results are used, after being combined with
those of Neveux et al. 2020, for the cosmological tests in eBOSS
Collaboration (2020) that only use BAO information.

7.3 Combination of the configuration space and Fourier-space
results

We use the method described in Sánchez et al. (2017a) to combine
the results. The aim is to compress the information obtained from
m different of methods into a single set of measurement. Under the
Gaussian assumption, such a measurement should always be possible
and we should be able to write down the equation

Dc = �−1
c

m∑
i=1

⎛
⎝ m∑

j=1

�ji

⎞
⎠Di , (47)

where the compressed precision matrix is,

�c
−1 ≡

⎛
⎝ m∑

i=1

m∑
j=1

�ij

⎞
⎠

−1

. (48)

In the case, the two methods are completely independent from each
other, the big precision matrix, �c, reduces to be block diagonal. The
statistical error of the data is directly calculated from the MCMC
chain. We use the 1000 EZMOCKS including the systematic effects
to estimate the correlation Cmi (λn)⊗mj (λl ) between the cosmological
parameters λ = {λ1, λ2. . . λn} among different methods m = {m1,
m2. . . mi} as well as the correlation coefficients between cosmo-
logical parameters of the same method Cmi (λn⊗λl ). The estimation
of the correlation between the parameters of the same method is
different from the original proposal, and we discuss the difference in
Section 8.

The diagonal elements from the real data are rescaled using
equation (9) for both configuration and Fourier space. The covariance
matrix of the EZMOCKS is estimated from the scattering of the best-
fitting parameters, which is then normalized using the error inferred

Figure 14. Correlation coefficients for the configuration multipoles and the
power spectrum.

from the data. Fig. 14 shows the correlation coefficients between two
methods, with the diagonal terms of the off-diagonal blocks being
0.743, 0.783, 0.844.

Fig. 15 shows the posterior for α⊥, α�, and fσ 8 in configuration
space (green), Fourier space (orange), and the combined results
using the method described in Sánchez et al. (2017a). The black
solid ellipses represent the combined constraints at the 68 and 95
confidence limits. As summarized in Table 5, by combining the
configuration and Fourier-space results, we find an improvement in
the statistical uncertainty of ∼ 7 per cent σ in α⊥, ∼ 3 per cent σ in
α�, and ∼ 5 per cent σ in fσ 8.

To quantify the combined systematic error, we use the non-blind
mocks that include the effects of redshift smearing and catastrophic
redshifts and the blind mocks with various implementations of HODs
(see Section 6.2). We combine the configuration and power spectrum
multipoles for each of the boxes, and calculate the correlation
coefficients using the 100 realizations for each box. The systematic
error is derived from the rms of the difference with respect to the
true cosmology. The combined statistics on the OUTERRIM mocks
is summarized in Table 6. The observational systematics inferred
from the EZMOCKS are directly added to the diagonal terms of the
data covariance matrix. Finally, we arrive at the combined result in
terms of comoving angular diameter distance, Hubble parameter, and
fσ 8,

Dc
M(zeff = 1.48)/rdrag = 30.21 ± 0.79, (49)

Dc
H(zeff = 1.48)/rdrag = 13.23 ± 0.47, (50)

f σ c
8 (zeff = 1.48) = 0.462 ± 0.045, (51)

where the errors include both the statistical and systematic un-
certainties. The final covariance matrix for the combined data
reads

DM/rdrag DH/rdrag f σ8

Cc
λ =
⎛
⎝6.227 × 10−1 1.424 × 10−2 2.257 × 10−2

− 2.195 × 10−1 −7.315 × 10−3

− − 2.020 × 10−3

⎞
⎠ .

(52)
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eBOSS DR16 QSOs in configuration space 1215

Figure 15. Posterior for α⊥, α�, and fσ 8 configuration space, Fourier space, and the combined results using the method described in Sánchez et al. (2017a).
The filled contours are derived from the MCMC chains in configuration space (green), and Fourier space (orange). The black solid ellipses are the combined
constraints at the 68, 95 confidence limits. The red points denote the values that are inferred from the Planck constraints (Planck Collaboration VI 2020).

Table 6. Table summarizes the combined systematics for configuration and
the Fourier-space results, calculated from the non-blind and blind OUTERRIM

mocks. We use the 20 sets of non-blind OUTERRIM mocks, and the 24 sets of
blind mocks, in eight different cosmologies.

Combined Non-blind Blind

δDM/rdrag 0.079 0.129
δDH/rdrag 0.053 0.094
δfσ 8 0.009 0.008

8 ROBU STN ESS TESTS ON THE DATA
ANA LY SIS

In this section, we describe the various systematic tests we perform
on the data to check the robustness of our inferred cosmological
constraints. We consider alternative definitions of the systematic
weights, model for the two-point correlation function, definition on
the effective redshift, and the impact of the fibre collision correction.
The final results are summarized in Table 7, which shows how the
final measurements of α⊥, α�, and fσ 8 shift with different choices
for the systematic corrections.

8.1 List of tests performed on the data

8.1.1 Redshift efficiency weights

The redshift detection efficiency depends, for example, on the
efficiency of the spectrograph, observational conditions, position of
the objects with respect to the focal plane, and the intrinsic properties
of the objects. To account for the inhomogeneity in the redshift
detection efficiency, we identify the trends in ngood/ntotal as a function
of the fibre number ID and the spectral SNR, where ngood stands
for the number of good objects and ntotal is for the total objects. An
inverse weighting is assigned to each object to correct for the trend.
As discussed in Section 2.1, the efficiency in detecting the redshift
of the objects is not uniform across different fibres (see fig. 4 in
the companion paper Ross et al. 2020). The detection efficiency is
lower near the edge of the CCDs, as well as near the locations of
the CCD amplifiers. While the trend as a function of the spectral
SNR is weak for the quasar sample, we include the correction
to remove any dependence. Both effects are accounted for in the
final redshift failure weighting. In Ata et al. (2017), the correction
was performed by up-weighting objects by the success rate of the
sectors. In Table 7, we show the impact of weighting based on the

success rate of each sector (denoted as ‘wnoz, ssr’). In addition, we
also show a weighting scheme that only corrects for the trend in
fibre ID number, without considering the spectral SNR (denoted as
‘wnoz, id’).

8.1.2 Photometric weights

In DR14 QSO analysis (Gil-Marı́n et al. 2018; Hou et al. 2018;
Zarrouk et al. 2018), the trend in ndata/nrandom was calibrated against
the extinction corrected g-band depth and the extinction coefficients
E(B − V). In fact, the QSO data also show trends in the sky
background and seeing, in the i-band (see fig. 9 of Ross et al. 2020).
In the final data catalogue, we correct for all of these trends. In
Table 7, we show the impact of using photometric weights that omit
the trends in the i-band, which we denote as ‘wphoto,no-i’.

8.1.3 Close pair correction

The finite radius of the fibre leads to objects in close pairs being
missed. Our fibre collision correction, which models the impact on
the two-point correlation function, is described in Section 6.3. An
alternative treatment of this effect can be found in Bianchi & Percival
(2017) and Mohammad et al. (2018), where correlation function
measurements are corrected using pairwise inverse probability (PIP)
weights. The idea is to up-weight the pair counts based on the
probability that each pair can be observed. This probability is inferred
by running the fibre assignment algorithm many times (on the
corresponding eBOSS input target catalogue) to find how often each
pair can be observed. The detailed description of catalogue with PIP
weights that we use can be found in Mohammad et al. (2020). Table 7
shows the impact of using the PIP weighting, which is denoted as
‘wcp, pip’.

8.1.4 Impact on the combination of NGC and SGC

We compare two methods for combining the data from the NGC
and SGC. In the first method, which is done in our final analysis,
the pair counts from the north and south caps are combined. In
the second method, the north and south caps are fitted separately,
and the posterior distributions are combined. Given that the north
and south caps are statistically independent, the second method
would correspond to applying fits simultaneously to both caps, but
leaving all the fitting parameters free at the same time (including
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Table 7. Table compares the impact on potential systematics, which includes alternative
weighting schemes for redshift efficiency weights (wnoz, {id, ssr}), photometric (wphoto,no-i),
and fibre collision weight (wcp, pip). The table also includes the definition of the effective
redshift (5th row), the correction on the fibre collision effect (6th row), the difference using
the gRPT model (7th row), the impact on the combination of the caps (8th row), and alternative
estimation of the correlation coefficients when combining the data (9th row).

�α⊥ �α� �fσ 8

wnoz, id 0.000 ± 0.026 0.001 ± 0.037 0.000 ± 0.043
wnoz, ssr 0.002 ± 0.026 −0.002 ± 0.036 0.004 ± 0.046
wphoto,no-i −0.002 ± 0.027 −0.001 ± 0.036 −0.002 ± 0.042
wcp, pip −0.007 ± 0.026 0.012 ± 0.034 −0.019 ± 0.043
fibre collision
fs = 0 0.003 ± 0.027 −0.004 ± 0.036 0.007 ± 0.044
zeff = 1.52 0.000 ± 0.028 −0.001 ± 0.036 0.001 ± 0.044
model
gRPT 0.002 ± 0.027 −0.001 ± 0.037 0.002 ± 0.044
NGC+SGC
independent 0.002 ± 0.028 0.013 ± 0.037 −0.005 ± 0.043
correlation coeff. 0.003 ± 0.026 0.007 ± 0.035 −0.002 ± 0.043

Figure 16. Projected correlation function on the data for north cap (green),
south cap (red), and the combined pair counts (grey). The error bars are
derived from the EZmocks.

the AP parameters, fσ 8, bias parameters, etc). To determine the
correction factor of the fibre collision, fs (see Section 6.3), for
the north and south caps, we measure the projected correlation
function. To increase the signal-to-noise ratio, we integrate over
the full depth of the QSO sample along the radial direction.
Fig. 16 shows the projected correlation function for the NGC,
the SGC, and the combination. When fitting the NGC and SGC
separately, we find fs|NGC = 0.36 and fs|SGC = 0.45, which is
consistent with Neveux et al. (2020). In Table 7, we show the
effect on our results of combining independent fits to the NGC
and SGC. The shifts are small compared to the total systematic
uncertainty.

8.1.5 Alternative estimation of the correlation coefficients

As discussed in Section 7.3, to estimate the correlation between
cosmological parameters measured using different methods, our
only option is to use the 1000 EZMOCKS (the set that includes the
systematic effects. To estimate the correlation between cosmological
parameters within the same method, we have two options: use either
the EZMOCKS or use a covariance matrix that is inferred directly
from the data. The latter option is justified if, on average, the error

inferred from a single realization matches that from the ensemble of
the mocks.

Fitting the 1000 EZMOCKS in configuration space, we find a good
agreement between the mean of the standard deviation and the scatter
of the best-fitting values for the 1000 realizations. For presenting
the results, we select the first option of estimating the correlation
coefficients using the mocks. Although the correlation coefficients
are cosmology dependent, the estimation from an ensemble of
mocks is expected to be more robust and less sensitive to statistical
fluctuations. To further confirm the combining method, we performed
test on the 1000 EZMOCKS for the first option, we arrive at the mean
of the standard deviation of the 1000 realizations: std(α⊥) = 0.038,
std(α‖) = 0.052, and std(fσ8) = 0.049, which is in good agreement
with the scatter in the best-fitting parameters for the 1000 realizations
(include the correction factor given by equation 22 in Percival et al.
2014): δα⊥ = 0.039, δα� = 0.052, δfσ 8 = 0.049. The effect of
choosing the second option of using the data to infer the correlation
coefficients is shown in Table 7.

8.2 Summary of the robustness test

Table 7 shows how the measurements of α⊥, α�, and fσ 8 are
shifted, for alternative choices of weighting schemes, compared
to the one used in the final data catalogue. In the spectroscopic
weighting, the effect of correcting for the trend in the spectral SNR
has a marginal impact on the parameter constraints. In addition,
the difference when using the ‘SSR’ weights applied to the DR14
data is at the sub-per cent level compared to the statistical error.
Similarly, the correction in the photometric weights by including
the sky background and seeing in the i-band also induces changes
at a sub-per cent level, and therefore this does not influence the
conclusions drawn from the DR14 release. The close pair correction
using the PIP algorithm has a larger impact on α� and fσ 8, where
the latter one accounts for 44 per cent of the statistical error. Given
the statistical properties of the two close-pair treatment schemes,
this difference is statistically not significant; nevertheless, it would
be worth exploring for future denser samples. The table also lists
miscellaneous tests including the impact of setting fs = 0 in our
modelling of the fibre collision effect, a different definition of
the effective redshift (see Section A1), constraints derived using
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the gRPT model, a different method to combine the NGC with
SGC, and an alternative estimation of the correlation coefficients.
These tests all show a much smaller variation compared to the
statistical uncertainty, which demonstrates the robustness of our
analysis.

9 C O N C L U S I O N S

In this paper, we presented the full-shape and BAO-only analysis
of the eBOSS DR16 QSO clustering sample. We measured the
two-point correlation function of the quasar sample, which we
decomposed into Legendre multipoles, ξ	(s), with 	 = 0, 2, 4. In
our full-shape analysis, we incorporated a new recipe to describe the
correlation function. The matter power spectrum is calculated using
RESPRESSO (Nishimichi et al. 2017), whose original python code
was implemented in FORTRAN. The power spectra that involve the
velocities were computed using the fitting formulae provided by Bel
et al. (2019).

In the final data release, we doubled the number of objects and the
survey area compared to the DR14 sample, leading to a 6σ detection
of the BAO signal in configuration space (consistent with the Fourier-
space analysis of Neveux et al. 2020). Compared to the DR14
analysis, the final sample represents a reduction of ∼ 45 per cent
in the statistical uncertainties of our distance measurements, and
∼ 30 per cent for the growth rate measurement. We obtained the
comoving angular diameter distance DM(zeff)/rdrag = 30.66 ± 0.88,
the Hubble distance DH(zeff)/rdrag = 13.11 ± 0.52, and the cosmic
structure growth rate fσ 8(zeff) = 0.439 ± 0.048. Our analysis in
the configuration space combined with the analysis in the Fourier
space (Neveux et al. 2020) allowed us to obtain a tighter con-
straints in the cosmological distance and growth rate parameters:
Dc

M(zeff )/rdrag = 30.21 ± 0.79, Dc
H(zeff )/rdrag = 13.23 ± 0.47, and

f σ c
8 (zeff ) = 0.462 ± 0.045.
The measurements of the AP parameters are found to be within 1σ

to the best-fitting �CDM model to the combination of Planck and
previous BAO measurements (Planck Collaboration VI 2020). The
growth rate measurement fσ 8 in configuration space is found to agree
at the 1.4 σ level with the same �CDM prediction. Meanwhile, when
combined with the results in the Fourier space, the inferred growth
rate fσ 8 is ∼2σ higher than the �CDM model with the best fit from
the Planck measurements. The tendency of higher fσ 8 was observed
in DR14 analysis (Gil-Marı́n et al. 2018; Hou et al. 2018; Zarrouk
et al. 2018)

We performed extensive tests to quantify potential systematics and
focused on testing observational effects as well as the modelling of
the two-point correlation function. We tested observational systemat-
ics using fast mocks including various angular effects (such as fibre
collision, photometric, and redshift failure effects). We corrected
for the largest angular systematics (fibre collision) using a modified
form following Hahn et al. (2017). We also corrected for the RICs
as described in de Mattia & Ruhlmann-Kleider (2019). Based on
these tests, the residual observational systematics on the inferred
parameters are shown to be at sub-per cent level. Based on a set
of HOD mocks built on N-body simulation (Smith et al. 2020),
we examined the modelling of the two-point correlation function.
In these mocks, we checked the impact of various HODs and
also included different redshift uncertainty distribution, as well as
catastrophic redshift failure objects (potentially important for future
surveys). Our model can account for these effects, and we can recover
1 per cent accuracy for the distance measurement and 3 per cent for
the growth rate measurement. A larger systematics turned out to be
the impact of the fiducial cosmology and is the dominant source of

our systematic error budget that accounts for up to 30 per cent of the
statistical error.

As a consistency check for our constraints on the data, we also
performed a BAO-only analysis, which was proven to be more robust
to the assumption of the fiducial cosmology (Carter et al. 2020).
We found good agreement between the full-shape and BAO-only
analyses, which demonstrates the robustness of the methodology
given the current statistical precision. In the line with our findings
from DR14 (Gil-Marı́n et al. 2018; Hou et al. 2018; Zarrouk
et al. 2018), we demonstrate that quasars are robust tracers of the
underlying matter field.

Our work has several points in common with those of our
companion papers. The configuration-space BAO-only analyses of
Tamone et al. (2020) and Bautista et al. (2020) are based on a similar
method as the one used here. Regarding the modelling of the full-
shape of two-point statistics, the predictions of RESPRESSO used
here were also tested in the analysis of the LRG sample (Bautista et al.
2020). All analyses use a consistent definition of the total systematic
error budget. The differences in the statistical uncertainties of the
results inferred from each sample are mainly due to their different
volumes and number densities.

The distance and growth of structure measurements inferred from
all samples are summarized in Table 3 by eBOSS Collaboration
(2020). A comparison of these measurements with the predictions
of the best-fitting �CDM model to Planck CMB data shows good
agreement. The largest deviations in the distance measurements
are given by the LRG BAO measurements, which are ∼1.7σ

lower. Regarding fσ 8, the consensus QSO measurement is ∼1.9σ

higher, while the ELG analysis is lower by ∼1.4σ . However, these
measurements cover a wide range of the redshift and showed no clear
deviation from the �CDM paradigm.

The different eBOSS samples overlap in redshifts and can be
studied using the multitracer technique (Seljak 2009). Wang et al.
(2020) and Zhao et al. (2020b) show that the combination of
the eBOSS tracers can further help to tighten the constraints on
cosmological parameters.

The cosmological implications of our results and those of our
companion papers will be explored in eBOSS Collaboration (2020).
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A P P E N D I X A : C O N S I S T E N C Y C H E C K O N TH E
POTENTIAL SYSTEMATICS

A1 Impact of the effective redshift definition

We define the effective redshift, zzeff, of the quasars using equa-
tion (40), which matches the definition used for the other eBOSS
tracers. The main motivation for this definition is that, in practice, the
correlation function is measured in terms of weighted pairs. Taylor
expanding the correlation function about zzeff gives

ξ (z) = ξ (zzeff ) + dξ

dz

∣∣∣∣
z=zzeff

(zzeff − z) + O
[
(zzeff − z)2

]
, (A1)

and we effectively measure the correlation function

ξ̂ =
∑

i,j ξ (z) |z=(zi+zj )/2wiwj∑
i,j wiwj

, for �si,j ∈ [smin, smax]. (A2)

The first order term in equation (A1) vanishes if we define the
effective redshift as in equation (40). However, there is some
ambiguity in the definition of the effective redshift. First, objects
at higher redshifts are more likely to receive a larger weight, and
the effect of this should in principle also being taken into account.
Secondly, there is also potential ambiguity in the range of pair
separations, �si, j, that are summed over. In Table A1, we list the value
of zzeff obtained using different definitions. We find that the range of
pair separations has only a marginal impact, while the pair-defined
zzeff differ by ∼3 per cent compared to the definition we used for the
DR14 analysis. Nevertheless, we compare the inferred cosmological
parameters obtained using either of the effective redshift definitions,
and the difference is small compared to the statistical error (see
Table 7).

Table A1. Effective redshift, zzeff, of the NGC, SGC, and combined
NGC+SGC, for different definitions of zzeff. The first row uses the definition
of zzeff used in the DR14 analysis. The second and third rows show the
definition used in our DR16 analysis, with different ranges of pair separations.

zeff NGC SGC NS
∑

i (wi∗zi )∑
i wi

1.512 1.520 1.515∑
i, j(wiwj∗(zi + zj)/2)

∑
i, jwiwj

s ∈ [25, 120] h−1 Mpc 1.474 1.491 1.480∑
i, j(wiwj∗(zi + zj)/2)

∑
i, jwiwj

s ∈ [20, 160] h−1 Mpc 1.474 1.491 1.480

A P P E N D I X B: A NA LY T I C A L C OVA R I A N C E
MATRIX ESTIMATION W ITH G AU SSIAN
APPROX IMATION

Following the prescription in Grieb et al. (2016), the covariance of
the Legendre multipoles in configuration space can be expressed as

C
ξ
	1	2

(
si , sj

) = i	1+	2

2π2

∫ ∞

0
k2σ 2

	1	2
(k)j̄	1 (ksi) j̄	2

(
ksj

)
dk, (B1)

where the j̄	 is the bin-averaged spherical Bessel function over a
volume Vsi = 4π

(
s3
i,max − s3

i,min

)
/3 around a bin si

j̄	 (ksi) ≡ 4π

Vsi

∫ si+�s/2

si−�s/2
s2j	(ks)ds. (B2)

The per-mode covariance in equation (B1) is given by

σ 2
	1	2

(k) ≡ (2	1 + 1) (2	2 + 1)

Veff

∫ 1

−1

[
P (k, μ) + 1

n

]2

L	1 (μ)L	2 (μ)dμ. (B3)

In the case of cubic simulation box, the volume is estimated by Veff =
L3. For a survey with selection function and varying radial number
density, the volume Veff can be defined as the integral of the amplitude
squared of the survey window function, Q(k), in Fourier space

V −1
eff ≡

∫
d3k

(2π)3
|Q(k)|2 =

∫
d3xn4(x)w4(x)[∫
d3xn2(x)w2(x)

]2 . (B4)

The window function is designed to maximize the signal-to-noise
ratio by weighting the density fluctuation field. For the non-blind
mock analysis, the weight w(x) is simply taken to be the FKP weight
defined by equation (2), with P0 = 6000 h−3Mpc3. Here, we have
neglected the effects from super-survey modes, such as the beat-
coupling and the local average effect. The first effect is induced by
the survey window that mixes the small- and large-scale modes. The
second effect is caused by the zero-mode-modulated average density
that is estimated from a limited survey. These two effects cancel
each other and leave only up to ∼ 10 per cent excess in the original
variance (de Putter et al. 2012). In the fitting scales we consider in
this paper, the analytical Gaussian covariance should remain a quite
good approximation. This was also observed in Lippich et al. (2019)
from comparing to a set of fast mocks. Currently, the downside of the
method is that it does not include the survey geometry or the window
function, therefore we only use it when the analysing the OUTERRIM

N-body mocks.

APPENDI X C : POST-PROCESSI NG THE
E Z M O C K S

We start with mocks that include the angular selection function. In the
first step, contamination from the data is added to the mocks, which
includes stars, objects with redshift failures, wrong objects classes,
objects that have no chances to receive good redshifts (e.g. due to
unplugged fibres, etc.) and the not tiled objects. For the photometric
correction, a fit is applied to the minimize the trend in the ratio
nQSO/nrandom in the extinction corrected g-band depth and the stellar
density. The sample of quasars used in the data analysis includes
a special Legacy group (see last paragraph in Section 2.1). These
objects do not receive any spectroscopic or collision correction and
are separately assigned with the tag IMATCH = 2 to distinguish
from the CORE sample. The fibre collision effect is added to the
EZMOCKS using the FIBERCOLLISION module from NBODYKIT (Hand
et al. 2018). After identifying the close pairs, the objects that fall in
the same collision groups are up-weighted by the ratio nhasfibre/ntotal.
The redshift failure corrections are applied using the same definition
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as for the real data (see discussion in Section 8), and the mock objects
inherit the property from the data objects through closest angular-
matching.

APPENDIX D : R ESULTS EXPRESSED IN
ALT ER NATIV E BASIS

In this appendix, we consider the results given in different alternative
basis. First, we list the results expressed on the basis of comoving
angular diameter DM/rdrag,6 Hubble parameter, Hrdrag, and fσ 8.
Secondly, we list the results expressed on the basis of comoving
angular diameter DM/rdrag, Hubble distance, DH/rdrag, and fσ 12.

D1 DM/rdrag–Hrdrag–fσ 8 basis

D1.1 BAO-only fits

We convert the BAO α⊥ and α� results to constraints on the comoving
angular diameter and Hubble parameter with

DM(zeff = 1.48)/rdrag = 30.82 ± 0.80 ± 0.21, (D1)

H (zeff = 1.48) rdrag = (2.267 ± 0.093 ± 0.025) × 104 km s−1.(D2)

The first error denotes the statistical uncertainty, which is rescaled
by

√
M = 1.010, the second error denotes the uncertainty inferred

from the OUTERRIM mock challenge (without the observational
uncertainties).

D1.2 Full-shape analysis in configuration space

DM(zeff = 1.48)/rdrag = 30.66 ± 0.84 ± 0.25, (D3)

H (zeff = 1.48) rdrag = (2.289 ± 0.085 ± 0.029) × 104 km s−1,

(D4)

f σ8(zeff = 1.48) = 0.439 ± 0.046 ± 0.014, (D5)

where the first error denotes the statistical uncertainty, which is
rescaled by

√
M = 1.036, the second error denotes the systematics

uncertainty inferred from the OUTERRIM mock challenge as well as
the observational systematics inferred from the EZMOCKS by adding
them in quadrature. The covariance matrix is given by

DM/rdrag H rdrag f σ8

Cλ =
⎛
⎝7.709 × 10−1 9.780 × 101 1.750 × 10−2

− 8.007 × 105 1.085 × 101

− − 2.308 × 10−3

⎞
⎠ .

(D6)

D1.3 Combined full-shape analysis

Dc
M(zeff = 1.48)/rdrag = 30.21 ± 0.79, (D7)

H c(zeff = 1.48) rdrag = (2.255 ± 0.079) × 104 km s−1, (D8)

6The comoving angular diameter is defined as DM = ∫ z

0
cdz′

H(z′) .

f σ c
8 (zeff = 1.48) = 0.459 ± 0.045, (D9)

where the errors include the statistical and systematic uncertainties
(inferred from OUTERRIM mock challenge and EZMOCKS). The
covariance matrix for the combined data is given by

DM/rdrag H rdrag f σ8

Cc
λ =
⎛
⎝6.222 × 10−1 −4.374 × 101 2.223 × 10−2

− 6.216 × 105 1.191 × 101

− − 2.010 × 10−3

⎞
⎠ .

(D10)

D2 DM/rdrag–DH/rdrag–fσ 12 basis

Sanchez (2020) showed that the constraints on fσ 8(z) depend on the
particular value of h assumed in the full-shape analysis, and that more
correct constraints on this combination should be marginalized over
the uncertainties on h. Then, using the growth rate measurements
expressed in terms of fσ 8(z) to constrain cosmological parameters
leads to both a potential systematic bias and an underestimation of the
uncertainties. This problem is solved if the growth rate measurements
are expressed instead in terms of the combination fσ 12, where σ 12

represents the rms of the mass contained in a sphere of radius
12 Mpc. As the BAO-only measurements are not affected by this
choice, we list here only the results for the full-shape analysis in the
configuration-space and combined cases.

D2.1 Full-shape analysis in configuration space

DM(zeff = 1.48)/rdrag = 30.66 ± 0.84 ± 0.25, (D11)

DH(zeff = 1.48)/rdrag = 13.11 ± 0.49 ± 0.17, (D12)

f σ12(zeff = 1.48) = 0.435 ± 0.046 ± 0.012. (D13)

Using the same convention as above: the first error denotes
the statistical uncertainty, which is rescaled by

√
M = 1.036, the

second error denotes the systematic uncertainty by adding the error
inferred from OUTERRIM mock challenge as well as the one from the
EZMOCKS in quadrature. The blind mock challenge test shows that
the relative error on the growth rate measurement improves from 2.8
to 2.5 per cent when presenting the results in the fσ 12 basis. Finally,
the covariance matrix is given by

DM/rdrag DH/rdrag f σ12

Cλ =
⎛
⎝7.709 × 10−1 −5.656 × 10−2 1.733 × 10−2

− 2.640 × 10−1 −6.145 × 10−3

− − 2.227 × 10−3

⎞
⎠ .

(D14)

D2.2 Combined full-shape analysis

Dc
M(zeff = 1.48)/rdrag = 30.21 ± 0.79, (D15)

Dc
H(zeff = 1.48)/rdrag = 13.23 ± 0.47 (D16)

MNRAS 500, 1201–1221 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/1/1201/5936662 by Secretaria G
eneral Adjunta de Inform

atica user on 13 April 2022



eBOSS DR16 QSOs in configuration space 1221

f σ c
12(zeff = 1.48) = 0.458 ± 0.044, (D17)

where the errors include both the statistical and systematic uncer-
tainties. For the combined results, there is also a slight improvement
in the relative error from 2 to 1.8 per cent on the growth rate
parameter based on the blind mock challenge results. The final
covariance matrix for the combined data reads as the following

DM/rdrag DH/rdrag f σ12

Cc
λ =
⎛
⎝6.227 × 10−1 1.424 × 10−2 2.235 × 10−2

− 2.195 × 10−1 −7.246 × 10−3

− − 1.958 × 10−3

⎞
⎠ .

(D18)
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