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Optimization Techniques and Formal Verification
for the Software Design of Boolean Algebra Based

Safety-Critical Systems
Jon Pérez, Jose Luis Flores, Christian Blum, Jesús Cerquides, and Alex Abuin

Abstract—Artificial intelligence, and the ability to learn op-
timized solutions that comply with a set of safety rules, could
facilitate the human-based design process of safety-critical sys-
tems. However, the reconciliation of state-of-the-art artificial
intelligence technology with current safety standards and safety
engineering processes is a challenge to be addressed. This
publication describes a method based on optimization and on
formal verification for the design of safety-critical systems that
are defined by Boolean algebra. Several diverse optimization
techniques and a hybrid of these approaches are used to find
an optimized design that considers performance requirements,
availability rules and complies with all defined safety rules.
Subsequently, this solution is translated into an alternative knowl-
edge representation that can be formally verified and developed
in compliance with currently considered safety standards. This
method is evaluated with a simplified safety-critical case study.

Index Terms—artificial intelligence; estimation of distribution
algorithm; iterated local search; ant colony optimization; hybrid
algorithm; functional safety; formal verification

I. INTRODUCTION

Artificial Intelligence (AI) is at the core of recent scientific
and industrial advancements and, in some applications, it is
used to support safety-critical decisions where errors can lead
to catastrophic and fatal consequences [1], [2], [3], [4], [5],
[6], [7]. Driven by research challenges such as autonomous
driving, there is a substantial research effort to define AI
solutions for the development of safety-critical systems [3],
[4], [8], [9], aligned with the required evolution and definition
of new safety standards. This is also of interest in other
domains —for example, in industrial domains such as railway
interlocking— where AI solutions could also be used to
develop safety-critical systems [1], [10], [11].

Safety-critical systems, such as industrial safety protection
systems, may cause a catastrophic event in case of failure
(e.g., loss of human lives). They are therefore developed and
certified with domain specific safety standards such as IEC
61508 [12] (industrial) and EN 50128 [13] (railway). The
safety criticality is defined by means of a Safety Integrity Level
(SIL) value with a range from 1 to 4 [12]. For the highest
criticality (SIL4), the probability of a dangerous failure is in
the range of 10−9 per hour of operation, that is, approx. one
dangerous failure every 114.155 years. Achieving such a low
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probability of a dangerous failure requires compliance with
strict safety methods and techniques, in order to mitigate sys-
tematic errors (e.g., design method to reduce human, process
and tool errors) and random errors (e.g., diagnostics, fault
tolerance).

Boolean algebra, or Boolean logic, is commonly used for the
development of safety protection and safety control systems in
industrial domains. Examples include the wind turbine safety
chain (SIL3) [14], the lift safety chain and compensatory
means (SIL3) [15] and railway interlocking systems (SIL4)
[1], [16]. Although the computational complexity of Boolean
algebra is considered to be low and design methods are mature,
the effort required to find a safe and optimal design increases
with growing design space dimensions to be considered by
human safety engineers. A design must meet all safety rules.
Moreover, it should be optimal with regard to availability and
application specific performance measurements, such as max-
imizing the fluidity of trains in railway interlocking systems
[16]. This leads to high development and certification costs,
where human cognitive limitations [17] could lead not only to
sub-optimal designs but also to potential systematic errors.

The use of AI to assist humans in the design of safe and
optimal solutions could facilitate the development of safety-
critical systems, such as the examples previously described [1],
as long as the generated solution is safe for its purpose and
compliant with associated safety standards. However, current
AI tools have several limitations with respect to ensuring
the required systematic fault avoidance and the compliance
with current safety standards. Examples concern ’black box’
limitations regarding the interpretability and analyzability of
the solution [2], [4], [7], and compliance limitations with
respect to the V-model development activities such as spec-
ification completeness and correctness, verification, validation
and testing [1], [3], [5], [6], [8], [9], [18], [19]. Because
of this, AI techniques are generally considered not recom-
mended for safety-critical systems [1]. However, as stated
by Nordland, ”what we need are methods for assessing and
certifying processes” for the development of AI based safety-
critical systems, ”and when processes can be certified, artificial
intelligence should be simply renamed to automated process
and will be acceptable for safety related applications” [1].

This paper contributes with the definition of an IEC
61508 (industrial) and EN 50128 (railway) compliant safety
software design method for Boolean algebra based safety-
critical systems, based on diverse optimization techniques and
formal verification. For that purpose, different optimization



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. Y, FEBRUARY 2021 2

techniques are used to find a safe design that meets all defined
safety rules and is high-performing with respect to availability
and performance criteria. Subsequently, this design is trans-
lated into an alternative knowledge representation that can
be analyzed, formally verified and developed in compliance
with selected industrial and railway safety standards. Several
conceptually different optimization algorithms are used in the
considered case study (Estimation of Distribution Algorithms
(EDA), Iterated Local Search (ILS), Ant Colony Optimization
(ACO)). A hybridization of EDA and ILS is overall the best-
performing method. Finally, the formal verification activity
allows the prior use of optimization tools and algorithms that
are not qualified for the design of safety-critical systems.

The remainder of this paper is organized as follows. Section
II describes basic concepts. Section III describes the proposed
safety design method and Section IV outlines a simplified
railway signaling case study to which the proposed method
is applied and the results are explained. Note that a simplified
example was chosen to show the cross-domain applicability
of the approach. Finally, Section V provides the conclusions.

II. PRELIMINARIES

a) AI Optimization Techniques: In the context of this
paper, the design of Boolean algebra based safety-critical
systems will be modelled as a binary optimization prob-
lem. Algorithms for solving such problems range from exact
techniques, that guarantee to deliver an optimal solution in
bounded space and time, to heuristic techniques. However, as
we will need to solve large-scale problems with various objec-
tive functions related to safety, availability, and performance,
metaheuristics [20] are generally the best option. In order to
study the suitability of different metaheuristics for the case
study considered in this paper, we decided to implement the
following three approaches, being conceptually quite different
from each other.

Estimation of Distribution Algorithms (EDA) [21], [22]
are evolutionary algorithms that sample new individuals (so-
lutions) at each iteration from a probability distribution. In
fact, EDA algorithms can be classified depending on the
complexity of the probabilistic model used to capture the
interdependencies between the variables used to model the
tackled problem. Univariate EDAs, for example, do not con-
sider any dependencies, bivariate variants consider pair-wise
dependencies, while multivariate approaches are the most
complex ones. We decided to implement a Univariate Marginal
Distribution Algorithm (UMDA) [23], which is a univariate
approach that assumes that all variables are independent. For
detailed information about the characteristics and different
algorithms that constitute the family of EDAs, see [21], [22].

Iterated Local Search (ILS) [24] is an extension of local
search (hill climbing). Given a local search method, the algo-
rithm works as follows. First, an initial solution is generated in
some way. Subsequently, local search is applied to the initial
solution in order to obtain the first incumbent solution. At
each iteration, ILS algorithms apply three basic steps. First, a
so-called perturbation mechanism is applied to the incumbent
solution, resulting in a perturbed solution. Second, local search

is applied to the perturbed solution resulting in an alternative
local minimum. Third, the incumbent solution for the next
iteration is selected between the current incumbent solution
and the produced alternative local minimum. ILS is said to be
able to produce high-quality solutions often very quickly. On
the other side, the algorithm may sometimes fail to find the
very best solutions.

Ant Colony Optimization (ACO) [25] is an optimization
technique inspired by the foraging behaviour of natural ant
colonies. At each iteration, first a number of solutions to the
tackled problem is constructed in a probabilistic way, based on
greedy information and on so-called pheromone information.
The best solutions from the current iteration, possibly in
addition to solutions from previous iterations, are then used to
update the pheromone information. Over time, the algorithm
learns to produce better and better solutions.

b) Formal Verification - Model Checking: Formal veri-
fication uses formal methods with ”mathematically rigorous
techniques and tools” [13] for the verification of a given
algorithmic design. Model checking is an example of a formal
verification technique. The model checker provides either a
positive answer whenever a set of properties are proved to
be satisfied, or a counter-example that shows that the design
violates a given property. For that purpose, the design is
modeled as a state-transition design or a state machine, and
input properties are specified in temporal logic. NuSMV, for
example, is an open source symbolic model checking tool
which allows to express the properties to be verified using
Linear Temporal Logic (LTL) [26].

c) Boolean Algebra: Boolean algebra uses a set of rules
and laws to perform Boolean operations (e.g., ∨, ∧) on
Boolean variables that can only have two possible values (’0’
(false) or ’1’ (true)). Safety-critical systems that manage a set
of safety digital outputs (Y ) based on the readings of a set
of digital inputs (X) are commonly developed using Boolean
algebra based logic functions (Y = F (X)). Moreover, they
are implemented with safety relays, programmable electronic,
and/or software.

d) Safety Standards Analysis (Software): IEC
61508 [12] is considered a reference safety standard
by several domain specific standards such as, for example, in
the railway domain (EN 50128 [13]), in industrial machinery
(ISO 13849 [27]) and in the construction and installation of
lifts (EN 81-20/21/50 [28], [29], [30]). For further details
with respect to safety standards and certification processes
see [31].

The previously referenced standards are characterized by a
considerable variability of domain-specific terms and require-
ments. For this reason, and in order to ease the description
and comprehension, the proposed design method is described
using IEC 61508-3 and EN 50128 standards. However, our
design method has also been defined taking into consideration
additionally referenced standards, which basically refer to IEC
61508-3 techniques and requirements:
• Wind turbines: As described in [31], [14] and in appli-

cable certification guidelines [32], the safety chain pro-
tection system design shall at least comply with the ISO
13849 standard. This standard references IEC 61508-3
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Fig. 1: Module design process

for the development of safety-related application software
(4.6.3), and basically recommends a subset of techniques
and requirements referenced from IEC 61508-3.

• Lifts: The design of safety protections, such as safety-
chain and compensatory measures, shall at least consider
compliance with applicable EN 81-20/21/50 safety stan-
dards that specify required safety functions and safety
rules. With respect to safety software, these standards
directly use or refer to a subset of techniques defined
in IEC 61508-3 (e.g., EN 81-50 Table B.2).

Both IEC 61508-4 (3.2.11) and EN 50128 (3.1.42-44)
provide a classification of software development tools: a class
T1 tool ”generates no output which can directly or indirectly
contribute to the executable code”, a T2 tool ”supports the
test or verification of the design or executable code, where
errors in the tool can fail to reveal defects” and a T3 tool
”generates outputs which can directly or indirectly contribute
to the executable code” [12], [13]. Moreover, both standards
describe tool requirements (IEC 61508-3 7.4.4; EN 50128 6.7),
such as tool qualifications for T2 and T3 classes (IEC 61508-
3 7.4.4) or, alternatively, perform an independent verification
of the tool results as if they had been obtained manually (EN
50128 6.7.1.1).

III. METHOD - SAFETY SOFTWARE DESIGN

This section describes the proposed safety software design
method for Boolean algebra based safety-critical systems, de-
fined in compliance with the V-model design phases, activities
and technical requirements of the considered safety standards
[12], [13]. As summarized in Figure 1, this design method
proposes an optimization-based module design (’Optimization
Module Design’ (B.1) and ’Formal Verification’ (B.2)) that
aims to facilitate the human-based module design activity (B).
The boxes shown with gray background in Figure 1 represent
V-model phases (e.g., module design) and activities (B.2) that
are performed by qualified safety engineers with state-of-the-
art safety techniques and tools.

The described design method should be considered a ref-
erence method that must be adapted for a given application,
domain and standard. Safety and performance measures are
considered a cross-domain common minimum for any con-
sidered application. The three objective functions (relating to
safety, availability, and performance) proposed in the context
of the case study (see Section IV) are representative for
applications such as railway interlocking [16].

A. Software Safety Specification

As stated by IEC 61508-3 (7.2.2) and EN 50128 (7.2.4),
the software safety specification defines at least the safety
function(s) and their associated safety integrity levels. In
addition, it must also provide the required details to allow an
appropriate design, implementation and assessment. For exam-
ple, the specification of Boolean algebra based safety functions
requires the specification of safety inputs (X) and outputs
(Y ), safety functionality (F), safety rules (e.g., Table I) and
additional constraints—for example, related to performance—
with which the design must comply (e.g., [14], [16]).

This specification is the same, regardless of the selected
design process which may, or not, be based on optimization
assistance. Requirements could be managed with common
class T1 tools such as text editors and specialized requirement
management tools, because the specification deliverable is
subject to an independent verification activity (IEC 61508-3
7.9.2.8; EN 50128 7.2.4.21) to assess the completeness and
the correctness.

However, in this method the safety specification (e.g., safety
rules) common to both the optimization module design (B.1)
and the formal verification (B.2), shall also be formalized with
the formal method notation (IEC 61508-3 Table A.1) selected
for the formal verification (model checker language).

B. Module Design

This section provides a technical description of the specific
optimization and formal validation activities to be carried out
for the (detailed) software module design of the previously
specified Boolean algebra based safety function(s), in accor-
dance with associated software design requirements described
in IEC 61508-3 (7.4.5) and EN 50128 (7.4). This is the design
to be implemented (C). Prior to this design—and regardless of
the selected design process; with or without assistance—it is
assumed that the required activities and requirements for the
software architecture and software design have been handled
according to IEC 61508-3 (7.4; 7.4.3) and EN 50128 (7.3).

The proposed module design (B) starts with the
optimization-based module design (B.1) and subsequently with
the formal verification (B.2) to ensure that the proposed design
complies with all safety rules.

1) Optimization Module Design (B.1): The optimization
module design starts with the definition of the optimization
problem to be solved, prior to the selection of an appro-
priate optimization algorithm, the execution of the learning
process—that is, the application of the selected algorithm to
the defined problem—and finally the knowledge transforma-
tion.

a) Definition of the Optimization Problem: First, a solu-
tion to the problem consists of outputs for each configuration
of inputs. A solution is evaluated by three different basic ob-
jective functions: Safety Rules Evaluation (SRE), Availability
Evaluation (AE) and Performance Evaluation (PE). Hereby,
the objective function that is concerned with the fulfillment
of the safety rules (SRE) is certainly the most important one,
because a solution that does not fulfill all safety rules cannot
be implemented in practise. Secondary objective functions
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are concerned with availability (AE) and performance criteria
(PE). In principle, there are different ways to handle multiple
objective functions. They may be combined as a weighted
sum (or product) into a single objective function, assigning
higher weights to objective functions that are more important
than others [33]. Another option is to define a lexicographic
objective function that makes use of the objective functions in
terms of an explicitly ordered list [34]. Finally, a third option
is to solve a real multi-objective optimization problem based
on Pareto optimality concepts [35].

b) Selection of an Appropriate Optimization Algorithm:
The selection of an appropriate optimization technique de-
pends very much on the type and on the nature of the optimiza-
tion problem under consideration. Important factors are, for
example, the nature of the objective function and the type and
the number of the constraints. Therefore, we recommend to
implement and test several diverse and conceptually different
algorithms in each case.

c) Solving the Problem: The process of solving the
previously defined problem with the chosen algorithms starts
with tuning the algorithm parameters, that is, finding values for
the algorithms’ parameters such that the performance of each
algorithm is as good as possible. Subsequently, the algorithms
are applied to the problem. This process ends when one or
more solutions meet all safety rules (SRE) and when the
evaluations computed for other performance criteria such as
availability and performance (AE and PE) are considered
sufficiently high.

d) Knowledge transformation: The output of the opti-
mization is implementation specific (e.g., binary vector), and a
knowledge transformation is required to translate it into a truth
table or into Boolean algebra expressions that can afterwards
be formally verified (B.2) and implemented (C) in compliance
with applicable safety standards.

This activity is required to transform the potential ’black
box’ design provided by the optimization algorithm into a
’white box’ representation (truth table) that supports inter-
pretability, analizability and a subsequent formal verification
(B.2).

In addition to this, a truth table can easily be transformed
into Boolean expressions using the Quine-McCluskey algo-
rithm [36], and Boolean expressions can also be transformed
into a truth table. The selection of the required representation
is application specific (e.g., selected model checker).

2) Formal Verification (B.2): The design is then subject to
a formal verification activity, in compliance with applicable
requirements such as IEC 61508-3 (Table A.5, C.5.12) and
EN 50128 (D.28), using a model checking tool in order to
”symbolically examine the entire state space” and ”establish
a correctness or safety property that is true for all possible
inputs” [13]. The formal verification activity supports an inde-
pendent verification of the design tool results that assist human
designers in the generation of a design output, ”which can
directly or indirectly contribute to the executable code” (T3)
[12], enabling the usage of currently available non-qualified
optimization software, libraries and tools in the design phase.

The compliance with safety rules has already been evaluated
during the optimization module design by the SRE evaluation

criteria. However, neither the optimization software, libraries
and tools are qualified (T2, T3), nor the AI researcher is
required to be a qualified safety engineer, nor the required
optimization design process itself needs to comply with safety
standards, methods, techniques and constraints. For this rea-
son, as previously described, a formal verification activity is
proposed. And the model software itself (to be executed by
the model checker) shall also be independently verified.

Finally, the selection and usage of a qualified formal ver-
ification tool (T2) is a certification project decision beyond
the scope of this publication, which could potentially simplify
some of the required tool analysis, justifications, gathering
of evidences and previously described verification activities
(e.g., Simulink Design Verifier, Prover [26]).

C. Implementation and module testing

If the formal verification result is satisfactory, the
optimization-based design represented as a truth table or as
Boolean algebra expressions can be implemented as a software
module. The implementation and testing can be performed
with state-of-the-art techniques (e.g., [1], [16], [14]) as de-
scribed in IEC 61508 (7.4.6, 7.4.7) and EN 50128 (7.5). This
is because the implementation and testing activities do not
depend on the selected design process, which may work with
or without optimization assistance.

IV. RAILWAY SIGNALING CASE-STUDY

In order to demonstrate the potential usefulness of the
method described in the previous section, we consider the
simplified railway interlocking case study described in [37]
as a guiding simplified example. In this way we intent to
show the cross-domain applicability of our method for the
development and certification of safety-critical systems up
to the highest integrity level (SIL4). This public case study
has been chosen to facilitate the comprehension, analysis and
reproduction of the results as opposed to using private case
studies with application specific complexities (e.g., [14], [15],
[1]) such as detailed characteristics and constraints of the
railway interlocking domain [16].

A. Optimization module design

1) Definition of the Optimization Problem: Figure 2 shows
a simplified railway interlocking system defined in [37],
supporting the safe bidirectional movement of trains in five
railway sections ({S1, ..., S5}). As explained in [1], a railway
interlocking system is a computer based SIL4 system that con-
trols railway objects (e.g., signals) in a delimited geographical
area based on static design time information (e.g., track layout)
and dynamic input information (e.g., sections state).

At any time, a section Sj has exactly one of two possible
values, that is, [0, 1] = [free, busy]. Moreover, for each
section Sj there is a binary variable Dj ∈ {0, 1}. In case
Sj = 1 (that is, section Sj is busy) the value of Dj indicates
the direction of the train at Sj . More specifically, if Dj = 0
the intention of the train at Sj is to move to the left, to the
right otherwise. Note that each possible setting of the variables
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Fig. 2: Simplified railway interlocking case study. Reproduced
from [37]

in {S1, . . . , S5, D1, . . . , D5} is called a train configuration Xi

which is represented by a binary vector:

Xi = (si1, . . . , s
i
5, d

i
1, . . . , d

i
5) , (1)

where sij ∈ {0, 1} is the value of Sj in configuration Xi, and
dij ∈ {0, 1} is the direction of the train at Sj in configuration
Xi. It is easy to verify that there are exactly 243 different
train configurations. They form the set of input configurations.
For each input configuration Xi, the setting of 14 traffic light
object based signals ({U1, . . . , U8, L1, ..., L6}) is required; see
Figure 2. In this simplified example, traffic light objects can
only have two possible values, [0, 1] = [red, green], where ’0’
is considered the default safe state (traffic light state ’red’).
A vector of output values for a train configuration Xi is
henceforth denoted by

Y i = (ui1, . . . , u
i
8, l

i
1, . . . , l

i
6) (2)

In other words, a candidate setting Y i of the traffic lights
for a specific train configuration Xi is represented by a
binary vector of 14 elements. The first 8 elements, (ui1, ..., u

i
8),

represent the states of the 8 upper track traffic lights, while
the following 6 elements, (li1, ..., l

i
6), represent the states of

the 6 lower track traffic lights.
Summarizing, a complete candidate solution (Y ) provides

traffic light settings (outputs) for all N = 243 train configu-
rations, where Y i is defined in Equation 2:

Y = (Y 1, . . . , Y N ) (3)

A possible candidate solution Y is evaluated according to
three different objective functions: SRE, AE and PE. Each of
them will be described in the following in detail. The safety
requirement can be informally described as ”avoid the collision
of train(s) by proper traffic light settings (Y ) dependent on
the section occupation and direction values (X)”. In other
words, two trains entering the same section simultaneously
is a situation that must be avoided. This safety requirement
is encoded by means of a set of 22 Boolean rules defined in
[37], each one expressed by a premise and a conclusion; see
also Table I. Given a candidate solution Y , the safety-related
objective function value SRE(Y ) is defined as follows:

SRE(Y ) =

N∑
i=1

22∑
k=1

rik (4)

where rik ∈ {0, 1} is a binary value with the following
meaning. If rik = 0, the k-th rule from Table I is fulfilled,
while with rik = 1 this is not the case. In other words, function

SRE() counts the total number of safety rule violations of a
candidate solution Y . This function must be minimized.

Number Rule
Rule 1 (u1) → (¬l1)
Rule 2 (u6) → (¬l6)
Rule 3 (s1) → (¬u2)
Rule 4 (s2) → (¬l2)
Rule 5 (s3) → (¬u3)
Rule 6 (s3) → (¬u4)
Rule 7 (s4) → (¬u5)
Rule 8 (s5) → (¬l5)
Rule 9 (¬u3 ∧ ¬l3) ∨ (¬u5 ∧ ¬l5) → ¬u1

Rule 10 (¬u3 ∧ ¬l3) ∨ (¬u5 ∧ ¬l5) → ¬l1
Rule 11 (¬u2 ∧ ¬l2) ∨ (¬u4 ∧ ¬l4) → ¬u6

Rule 12 (¬u2 ∧ ¬l2) ∨ (¬u4 ∧ ¬l4) → ¬l6
Rule 13 (¬u2 ∧ ¬l2) → (¬u7)
Rule 14 (¬u5 ∧ ¬l5) → (¬u8)
Rule 15 (u3) → (¬u4)
Rule 16 (l3) → (¬l4)
Rule 17 (u2) → (¬l2)
Rule 18 (u3) → (¬l3)
Rule 19 (u4) → (¬l4)
Rule 20 (u5) → (¬l5)
Rule 21 (u1 ∨ l1) → (¬u7)
Rule 22 (u6 ∨ l6) → (¬u8)

TABLE I: Safety rules [37].

The second function, AE(), is concerned with availability,
which can informally be described as ”avoid trains getting
blocked by constant red traffic lights”. Availability is often
evaluated by simulation in sophisticated railway signaling
systems. However, for the purpose of our simplified case
study, availability is measured as follows. First, we identify
the following six situations in which availability is important:
• Sit. 1: train at S1, direction ”right” (traffic light: u1).
• Sit. 2: train at S2, direction ”right” (traffic light: l1).
• Sit. 3: train at S3, direction ”right” (traffic light: u8).
• Sit. 4: train at S3, direction ”left” (traffic light: u7).
• Sit. 5: train at S4, direction ”left” (traffic light: u6).
• Sit. 6: train at S5, direction ”left” (traffic light: l6).

Let δk ⊂ {1, . . . , N} for each situation k = 1, . . . , 6 be the
set of all indices of those train configurations in which the
respective situation is present. δ1, for example, contains the
indices of all train configurations with a train at section S1

that wants to leave to the right. Given a solution Y , function
AEk() measures for each situation k = 1, . . . , 6 the fraction of
train configurations in which the respective train has a green
light. In the case of k = 1, for example, AEk(Y) is defined as
follows:

AE1(Y ) =

∑
i∈δ1 u

i
1

|δ1|
(5)

In the case of the remaining five situations, function AEk()
is defined correspondingly. Finally, the complete availability
measure AE(Y ) of a solution Y is defined as follows:

AE(Y ) = min
k=1,...,6

AEk(Y ) (6)

This function must be maximized, that is, we intent to
maximize—as much as possible—the availability for trains
at the railway section that is worst off. Nevertheless, we
noticed that maximizing the average availability by means
of a subordinate objective function helps the algorithms to
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Algorithm 1 EDA

1: input: values for parameters psize, nsel, clim
2: P = GenerateInitialPopulation(nsel)
3: Y pbest = BestSolutionFrom(P )
4: Y bsf = Y pbest, Y rb = Y pbest, cnoimpr = 0
5: while CPU time limit not reached do
6: if cnoimpr ≥ clim then
7: P = GenerateInitialPopulation(nsel)
8: Y pbest = BestSolutionFrom(P )
9: Y rb = Y pbest

10: cnoimpr = 0
11: end if
12: Psel = Select(P , nsel) {Psel ⊆ P}
13: D← EstimateDistribution(Psel ∪ Y pbest)
14: P ← SampleDistribution(D, psize)
15: Y pbest = BestSolutionFrom(P )
16: if F (Y pbest) < F (Y rb) then
17: Y rb = Y pbest

18: cnoimpr = 0
19: else
20: cnoimpr = cnoimpr + 1
21: end if
22: if F (Y rb) < F (Y bsf) then Y bsf = Y rb

23: end while
24: output: Y bsf , the best solution found

maximize AE(). Therefore, AEA(Y ) = (
∑6
k=1 AEk(Y ))/6

is also considered (see below).
Finally, the last function, PE(), measures the performance

of a solution in terms of the ”railway network traffic flow
capability”. This performance measure balances the presence
of trains and the possibilities to allow the trains to proceed. If
there are no trains, it does not matter how many traffic lights
are set to green, and if there are many available trains but no
green lights it is not possible to transport passengers. For the
purpose of our simplified case study the performance-related
objective function value PE(Y ) is defined as follows:

PE(Y ) =

N∑
i=1

(
5∑
j=1

sij

)
×

(
8∑
j=1

uij +

6∑
j=1

lij

)
(7)

As the three objective functions can be clearly ordered ac-
cording to decreasing importance (first SRE(), then AE(), and
finally PE()), we decided to tackle this problem by means of
a lexicographic objective function, F (), which is indirectly
defined as follows. Given two solutions Y and Y ′, it holds
that F (Y ) < F (Y ′) if and only if

1) SRE(Y ) < SRE(Y’) or
2) SRE(Y ) = SRE(Y’) and AE(Y ) > AE(Y ′) or
3) SRE(Y ) = SRE(Y’) and AE(Y ) = AE(Y ′) and

AEA(Y ) > AEA(Y ′) or
4) SRE(Y ) = SRE(Y’) and AE(Y ) = AE(Y ′) and AEA(Y )

= AEA(Y ′) and PE(Y ) > PE(Y ′)

2) Implementation of the Optimization Algorithms: As al-
ready mentioned in Section II, we decided to implement an
EDA variant which is known as UMDA. The pseudo-code of

Algorithm 2 ILS

1: input: values for parameters ppLB, ppUB, clim
2: Y cur = GenerateInitialSolution()
3: Y cur = LocalSearch(Y cur)
4: Y bsf = Y cur, cnoimpr = 0, ppcur = ppLB
5: while CPU time limit not reached do
6: if cnoimpr < clim then
7: Y iter = Perturbation(Y cur, ppcur)
8: else
9: Y iter = StrongPerturbation(Y cur)

10: end if
11: Y iter = LocalSearch(Y iter)
12: if F (Y iter) < F (Y bsf) then Y bsf = Y iter

13: if F (Y iter) < F (Y cur) or cnoimpr ≥ clim then
14: Y cur = Y iter, ppcur = ppLB
15: if cnoimpr ≥ clim then cnoimpr = 0
16: else
17: ppcur = ppcur + 0.01
18: if ppcur > ppUB then
19: ppcur = ppLB, cnoimpr = cnoimpr + 1
20: end if
21: end if
22: end while
23: output: Y bsf , the best solution found

this EDA is given in Algorithm 1. As input, the algorithm
requires values for three parameters:

1) psize: the population size
2) nsel: the number of solutions chosen from the population

for the estimation of the new probability distribution D.
3) clim: the maximum number of consecutive iterations

without improvement of the restart-best solution Y rb.
At the start of the algorithm, an initial population of solutions
(P ) is generated uniformly at random (line 2). Moreover, the
best-so-far solution Y bsf and the restart-best solution Y rb are
initialized with the population-best solution Y pbest, and the
counter for consecutive non-improving iterations (cnoimpr) is
initialized to zero (line 4). Then the following cycle is repeated
until the CPU time limit is reached. First, in lines 6–11 the
algorithm performs a restart if necessary, that is, if cnoimpr ≥
clim. Second, the best nsel solutions from P are selected and
stored in Psel (line 12). Third, a probability distribution D is
estimated in which the probability p(yj = 1) for generating
value ’1’ for position j of a solution Y is defined as follows:

p(yj = 1) =
|{Y ′ ∈ Psel ∪ Y bsf s.t. y′j = 1}|

|Psel ∪ Y bsf |
(8)

Obviously it holds that p(yj = 0) = 1 − p(yj = 1). Next,
psize solutions are sampled from D and stored in the new
population P (line 14). Finally, the restart-best solution is
updated, the counter for consecutive non-improving solutions
is updated accordingly (lines 16–21), and the best-so-far
solution Y bsf is updated.

Our second algorithm is known as iterated local search
(ILS). The pseudo-code is provided in Algorithm 2. It requires
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values for parameters 0 < ppLB < ppUB < 1, which are the
lower bound, respectively the upper bound, of the perturbation
strength. Moreover, clim is the maximum number of times that
the algorithms’ current perturbation strength ppcur is allowed
to surpass the pre-defined upper bound (ppUB). Once this
happens, a strong perturbation of the current solution (Y cur)
is executed (see line 9 of the algorithm).

The algorithm starts by generating an initial solution uni-
formly at random (line 2) and by subsequently applying local
search to this solution (line 3). Local search tries to swap
each bit of the input solution exactly once. In case such a bit-
swap improves the solution, it is immediately executed. The
order in which the bits are considered is as follows. The train
configurations are considered in a random order, and—in this
order—the 14 bits for each train configuration are also treated
in a random order. After the application of local search, the
best-so-far solution Y bsf , the no-improvement counter cnoimpr,
and the current perturbation strength ppcur are initialized
(line 4). Then, at each iteration, a random perturbation of the
current solution Y cur is performed. The standard perturbation
(line 7) works as follows. Each train configuration is consid-
ered one after the other, and with a probability of ppcur all
14 corresponding bits in Y cur are set to value ’0’. On the
other side, when cnoimpr ≥ clim, the standard perturbation is
replaced by a stronger, and conceptually different, perturbation
(line 9). In particular, the stronger perturbation considers the
six availability-related situations in random order and—with
a fixed probability of 0.3—it sets all related bits of the
corresponding solution to ’0’. When dealing with situation 1,
for example, the strong perturbation mechanism would set all
bits ui1 (for all i = 1, . . . , N ) to ’0’. After the application
of local search to the perturbed solution Y iter, the remainder
of the algorithm iteration deals with updates of solutions and
counters. In particular, in case of no improvement of solution
Y cur, the strength of the standard perturbation mechanism is
increased by 0.01 (line 17). Otherwise, it is set back to the
lower bound (line 19). The idea behind this mechanism is
as follows. In case of a successful iteration, the perturbation
strength should be small in order to search in the vicinity
of the new solution in subsequent iterations. Otherwise, the
perturbation strength is increased in order to enlarge the search
radius.

Due to the fact that combinations of different algorithms
often lead to improved techniques, we also studied ways of
hybridizing EDA and ILS. The best form of hybridization
is obtained by choosing EDA as the main algorithm and by
applying LocalSearch() exclusively to the best solution of
P after lines 2, 7, and 14. The resulting hybrid algorithm is
henceforth labelled H-EDA.

Finally, we also implemented an ACO algorithm known as
MAX -MIN Ant System (MMAS) in the hypercube frame-
work (see [38]). This approach (see Algorithm 3) requires
values for three important input parameters:

1) nants: the number of solution constructions per iteration
2) lrate: the learning rate (between 0 and 1)
3) drate: the determinism rate (between 0 and 1). Lower

values result in less deterministic solution constructions.

Algorithm 3 ACO

1: input: values for parameters nants, lrate, drate
2: InitializePheromoneValues(T )
3: Y bsf = Y rb = 1

4: while CPU time limit not reached do
5: S = ∅
6: for i = 1, . . . , nants do
7: Y = ConstructSolution(T , drate)
8: S = S ∪ {Y }
9: end for

10: Y ib = argmin{f(Y ) | Y ∈ S}
11: Y ib = LocalSearch(Y ib)
12: Update(Y bsf , Y rb, Y ib)
13: c = ComputeConvergenceFactor(T )
14: UpdatePheromoneValues(Y bsf , Y rb, Y ib, T , c, lrate)
15: end while
16: output: Y bsf , the best solution found

Our algorithm works with a pheromone value τj ∈
T for each position j of a binary solution Y . All
pheromone values are initially set to 0.5 in function
InitializePheromoneValues(T ); line 2. Then, the best-so-
far solution Y bsf and the restart-best solution Y rb are ini-
tialized to a low-quality solution: the one with all-ones (all
traffic lights set to green in all train configurations). Then,
at each iteration, nants solutions are constructed in function
ConstructSolution(T , drate); line 7. After applying local
search to the iteration-best solution Y ib, Y bsf , respectively
Y rb, are updated with Y ib, if necessary; line 12. Finally, the
convergence factor is computed and the pheromone values are
updated (lines 13 and 14). This is done in exactly the same
way as described in [38]. The only aspect that remains to be
described is the construction of a solution Y . In particular, for
each position j of solution Y , the following is done. First,
a random nunber r1 ∈ [0, 1] is chosen. In case r1 ≤ drate,
position j is set to ’1’ if τj ≥ 0.5, and to ’0’ otherwise. If,
however, r1 < drate, a second random number r2 ∈ [0, 1]
is drawn and position j is set to ’1’ if r2 ≤ τj , and to ’0’
otherwise. Finally, note that we include, by default, the use
of local search in ACO, because this is nowadays a standard
procedure.

3) Experimental evaluation: After implementing the four
algorithms (EDA, ILS, H-EDA and ACO) in C++, the algo-
rithm parameters were tuned using the scientific parameter
tuning tool irace [39], with a CPU time limit of 500 seconds
for each run. The resulting parameter values are as follows:

1) EDA: psize = 200, nsel = 50, clim = 10
2) ILS: ppLB = 0.0318, ppUB = 0.0515, clim = 500
3) H-EDA: psize = 1000, nsel = 20, clim = 5
4) ACO: nants = 5, lrate = 0.05, drate = 0.33

Afterwards, the four algorithms were applied 100 times each–
that is, using 100 different random seeds—with a CPU time
limit of 500 seconds per run to the optimization problem de-
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fined in the previous section.1 The outcome is shown in graph-
ical form in Figure 3. Note that—in all three graphics—the
lines indicate the average performance, while the confidence
ribbons indicate the performance over 100 runs. Moreover, the
x-axes of the three graphics are shown in log-scale in order
to focus on the early stages of the search process.

Figure 3a shows the evolution of the number of safety rule
violations over time. All algorithms clearly reach solutions that
do not violate any safety rules very quickly. ILS achieves that
after about 0.125 seconds, while EDA requires close to eight
seconds. H-EDA already starts off with much better solutions
than EDA, due to the application of local search. While most
of the ACO runs quickly produce solutions without safety rule
violations, there are a few runs in which this is only achieved
after 100-200 seconds. In general, the variability in algorithm
behaviour over 100 runs is rather low. Figure 3b presents
the algorithms’ evolution for what concerns availability. All
algorithms start with rather high availability values (caused
by solutions with many safety rule violations). While the algo-
rithms move towards solutions with no safety rule violations,
the availability value of the produced solutions becomes worse.
However, as soon as the algorithms reach areas of the search
space with safe solutions, they start to optimize availability.
Again, ILS and ACO are faster in doing so. However, EDA
clearly outperforms both ILS and ACO at about 150 seconds
into the search process. The best algorithm concerning the
availability measure is H-EDA, which nicely inherits the
strong aspects of both EDA and ILS. H-EDA basically behaves
like EDA, but it inherits the speed of ILS and is therefore able
to outperform EDA. Finally, Figure 3c shows the algorithms’
performance for what concerns performance. The graphic
indicates that the optimization of the performance measure
happens alongside the optimization of availability. The zig-
zag behaviour in the case of EDA, starting at around five
seconds, indicates that, every time the algorithm is able to find
improved solutions concerning availability, the performance
measure slightly decreases for a moment before improving
again. This behaviour is neither seen for ILS nor for ACO, and
to a less extent in the case of H-EDA, which is again the best-
performing algorithm. Note that the corresponding numerical
values—apart from function SRE for which all algorithms
always obtain zero—are provided in Table II.

TABLE II: Objective function values (AE and PE) of the best
solutions found by EDA, ILS, H-EDA and ACO. Moreover,
average solution qualities over 100 runs are also provided,
together with the corresponding standard deviations.

AE PE
best average (std) best average (std)

EDA 0.395062 0.371975 (0.01) 2946 2921.15 (17.04)
ILS 0.320988 0.298642 (0.01) 2909 2896.13 (13.13)

H-EDA 0.419753 0.392716 (0.01) 2954 2954.00 (0.0)
ACO 0.320988 0.272963 (0.02) 2950 2946.36 (5.78)

4) Search Space Analysis: Finally, we would like to point
out that—even in the context of this simplified railway signal-

1Note that the number of required repetitions of a stochastic algorithm
strongly depends on its variability. However, general recommendations range
nowadays from 30 to 100 repetitions [40].

X = Y =
{s1 . . . s5, d1 . . . d5} {u1 . . . u8, l1 . . . l6}
00000 , 00000 00010000 , 010000
00001 , 00000 01101001 , 100100
00010 , 00000 00010001 , 111010
00011 , 00000 00100010 , 010101
00100 , 00000 01000011 , 000110
. . . . . , . . . . . . . . . . . . . , . . . . . .
11110 , 00000 00000001 , 101010
11111 , 00000 00000000 , 000100

TABLE III: A part of the learned truth table derived from the
best solution produced by H-EDA within 100 runs.

ing case study—the size of the search space is rather huge. In
particular, the search space includes 23402 candidate solutions
(translating into a number with 1025 digits). Approximately
21092 of these candidate solutions (a number with 329 digits)
comply with all safety rules. Given that the feasible search
space is only a tiny fraction of the complete search space,
our algorithms do a very good job in finding feasible (safety-
compliant) solutions in a fraction of a second (ILS), respec-
tively in a few seconds (EDA, H-EDA and ACO).

Figure 4 is concerned with a search space analysis. The
number of feasible output configurations depends very much
on the number of trains present in the input configuration
(Figure 4a). As no trains are present in input configuration
1, for example, there are 398 feasible output configurations.
The orange-colored dots in Figure 4b show, for each of the
243 input configurations, the feasible output configurations
(binary vectors) converted to integer values. Moreover, the
green crosses show those output configurations present in the
best solution found by H-EDA. Finally, the Hamming dis-
tances (minimum, maximum and mean) between the feasible
output configurations of each input configuration are shown
in Figure 4c. Interestingly, the mean Hamming distances are
rather high, which—at least partially—explains why EDA
outperforms ILS for this problem. This is because sometimes,
in order to move from the current solution to a better solution,
the output configuration for a certain input configuration must
be changed considerably. This cannot be achieved with a local
search procedure based on one-flip moves. This aspect should
be considered in future work.

5) Knowledge transformation: Implementation specific
knowledge transformation is applied to convert the optimized
design to the truth table shown in Table III. The output
configuration of each non-valid input configuration—that is, an
input configuration which is not among the 243 valid ones—
is defined as the default safe output in which all traffic lights
are set to ’red’ (Y i = (0, ....0)). In this way, the truth table
is fully represented with the learned combinations (N = 243
rows) and default safe state combinations.

B. Formal Verification

The learned Boolean expressions listed as truth table (see
Table III), or equivalent Boolean algebra expressions, must be
formally verified with respect to the safety rules listed in Table
I. In this specific use case, the truth table is used to model a
transition system where the states of the traffic lights (Y i) are
specified based on the input values (Xi) that indicate section
occupation and train direction. Moreover, the properties that
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Fig. 3: Evolution of the three quality measures over time.
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0 50 100 150 200 250
row

0

2500

5000

7500

10000

12500

15000

in
t(Y

)

Safe ouput values (Y) per each truth table row

0 50 100 150 200 250
Input configurations

0

2500

5000

7500

10000

12500

15000

in
t(Y

)

0 50 100 150 200 250
row

0

100

200

300

400

Nu
m

be
r s

af
e 

ou
tp

ut
 c

om
bi

na
tio

ns

# of safe output configurations

0 50 100 150 200 250
Input configurations

0

100

200

300

400

# 
of

 sa
fe

 o
ut

pu
t c

on
fig

ur
at

io
ns

0 50 100 150 200 250
Input configurations

0

2

4

6

8

10

12

14

Ha
m

m
in

g 
di

st
an

ce

Max distance
Mean distance
Min distance

0 1 2 3 4 5 6 7
Maximum Hamming Distance

0

10

20

30

40

50

60

Re
pe

tit
io

ns

Histogram of safe ouput combinations Euclidean Distance (max) - As measure of dispersion

(c) Hamming distance between configurations

Fig. 4: (a) shows for each input configuration (x-axis) the set of feasible output configurations (binary vectors) converted to
integer. Moreover, the green crosses show those output configurations that are found in the best solution derived by H-EDA.
(b) provides the number of feasible output configurations for each of the 243 input configurations. Finally, (c) indicates the
maximum, minimum and mean Hamming distance between the feasible output configurations of each input configuration.

the system must satisfy correspond to the safety rules listed in
Table I, which can be translated from premise and conclusion
expressions to LTL properties. The formalization of the model
in NuSMV has been done in the following way:
• Input and output values are defined (X,Y ).
• The start condition (INIT clause in NuSMV) is defined

with the default safe state output with all signals in ’red’
• State transitions are represented as formulas in which the

combination of input values (truth table entry Xi) defines
the state of the output signals (Y i). As the truth table
defines output values for all input value combinations,
the model is fully represented.

• The properties the system model must satisfy, described
as safety rules in Table I, are modeled using LTL prop-
erties. With this logic, propositional formulas can be
expressed using ’Always’ (’G’: in all states) and ’Next’
(’X’: in the next state) time operators.

The formal verification tool NuSMV is executed with the
described system design model. The result, as expected, is that
the proposed optimized design complies with all the safety
rules expressed in terms of LTL properties.

V. CONCLUSION

In this publication an IEC 61508 (industrial) and EN
50128 (railway) compliant safety software design method for

Boolean algebra based safety-critical systems is proposed to
facilitate the human-based design process, which combines
optimization techniques and formal verification in compliance
with currently considered safety standards. The multi-objective
optimization is performed by a hybrid algorithm (H-EDA),
which combines the speed of ILS with the optimization
performance of EDA, in order to propose an optimized safe
design, chosen from a large and scattered Boolean design
search space.

In order to support further analysis and the potential adap-
tation to other applications, domains and standards, the devel-
oped case-study software and results for both the optimized
design and formal verification activities are available at [41].

In future work we plan to test our methodology in the
context of real case studies, such as, for example, the
automated design of safety-critical protection systems for
industrial applications and lifts, which is nowadays still
commonly done manually by experienced safety personnel.

Acknowledgements. Will appear hear upon acceptance.
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