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Abstract. We study the Fock quantization of scalar fields with a time dependent mass in
cosmological scenarios with flat compact spatial sections. This framework describes physically
interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker
spacetimes, generally including a suitable scaling of them by a background function. We prove
that the requirements of vacuum invariance under the spatial isometries and of a unitary
quantum dynamics select (a) a unique canonical pair of field variables among all those related
by time dependent canonical transformations which scale the field configurations, and (b) a
unique Fock representation for the canonical commutation relations of this pair of variables.
The proof is generalizable to any compact spatial topology in three or less dimensions, though
we focus on the case of the three-torus owing to the especially relevant implications.

1. Introduction
The Fock quantization of linear fields in curved spacetimes (either physical backgrounds or
auxiliary spacetimes in effective descriptions) is subject to ambiguities which affect the physical
predictions. The canonical commutation relations (CCR’s) of the fieldlike system admit an
infinite number of nonequivalent Fock representations [1]. In simple cases, like e.g. in Minkowski
spacetime, one can remove this ambiguity and select a preferred representation by imposing that
the vacuum be invariant under the spacetime symmetries. But for less symmetric backgrounds
(or when the curved spacetime is only an auxiliary structure) one cannot appeal to this criterion,
and other vacuum properties must be required in order to pick out a unique Fock representation.

In this work we will consider the case of scalar fields in cosmological spacetimes which
have spatial sections with the topology of a three-torus. We focus our study on the case of
three-torus topology owing to its physical relevance, for instance in the study of cosmological
perturbations around flat Friedmann-Robertson-Walker (FRW) spacetime with compact sections
[2]. The analysis is nonetheless generalizable to other compact spatial sections [3] (see e.g. [2, 4]
for three-spheres). We will show that one can select a unique class of unitarily equivalent
Fock quantizations by means of a requirement which, furthermore, is itself stable under
unitary transformations. This requirement includes the invariance under the spatial isometries.
However, this invariance does not suffice to fix the Fock representation, essentially because, in
cosmological scenarios, no timelike symmetry is available. The requirement is then completed
by demanding instead that the dynamics be unitary in the quantum theory.

On the other hand, in cosmological settings like those that we want to study, it is natural to
consider time dependent linear canonical transformations in which the field is scaled [4, 5]. In
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these transformations, the dynamics is modified (owing to the time dependent changes) and, in
general, a new fieldlike system is reached. This introduces a new kind of ambiguity when facing
the Fock quantization. Nonetheless, we will show that our requirement of spatial symmetry
invariance and unitary evolution fixes this freedom completely as well.

Before proving these results, let us emphasize the importance of determining a unique
Fock quantum description for fields in cosmological spacetimes, since this uniqueness provides
robustness to the quantum predictions and makes them significant.

2. Fock quantization with unitary evolution
Let us begin by considering the quantization of a real scalar field ϕ with a time dependent mass
s(t) propagating in a globally hyperbolic static spacetime, I×Σ, where I is a closed time interval
and the spatial sections Σ have the topology of a three-torus. A system of this type describes,
for instance, the gauge-invariant energy density perturbations around an FRW spacetime after
a suitable field scaling (in conformal time and in isotropic and adiabatic conditions) [4], as
well as the ultraviolet behavior of the scalar perturbations after gauge fixing and rescaling [6].
The phase space of the system is given by (ϕ, Pϕ) = (ϕ|t0 ,

√
hϕ̇|t0). The dot stands for the

time derivative, t0 is an initial time, and h is the determinant of the spatial metric, hab. The
Hamilton field equations are ϕ̇ = h−1/2Pϕ and Ṗϕ = h1/2 [∆ϕ− s(t)ϕ], where ∆ is the standard
Laplace-Beltami (LB) operator for the three-torus metric. These field equations are invariant
under the spatial isometries resulting from the composition of rigid rotations in each of the three
spatial directions i = 1, 2, 3, T~α = Tα1 ◦ Tα2 ◦ Tα3 , where Tαi : θi → θi + αi and αi ∈ S1.

We make a Fourier decomposition of the scalar field using a basis of real eigenfunctions of
the LB operator:

ϕ(t, ~θ) =
1

π3/2

3∑
j=0

∑
~nj

[
q~nj

(t) cos(~nj · ~θ) + x~nj
(t) sin(~nj · ~θ)

]
. (1)

Here, ~n0 = (n1, n2, n3) with ni ∈ N, and ~ni is obtained from ~n0 by flipping the sing of ni. A
similar expansion of the field momentum leads to modes determined by the coefficients p~nj

= q̇~nj

and y~nj
= ẋ~nj

. Then, the equations of motion for the field modes coincide in each eigenspace

of the LB operator, with eigenvalue −ω2
n = −|~nj |2 (the subindex n ∈ N designates here the

ordering in the sequence of different eigenvalues):

q̈~nj
+
[
ω2
n + s(t)

]
q~nj

= 0, ẍ~nj
+
[
ω2
n + s(t)

]
x~nj

= 0. (2)

The possible Fock representations of the CCR’s are totally characterized by the choice of a
complex structure (CS) J [1], namely, of a real, canonical linear map on phase space whose square
is minus the identity and which is compatible with the symplectic structure, Ω (containing the
information about the canonical Poisson brackets), in the sense that the bilinear map Ω(J ·, ·) is
positive definite.

As starting point, we choose the CS which would be naturally associated with a free massless
field. This CS, J0, is determined by the spatial metric, and hence its invariance under the
three-torus isometries is warranted. The corresponding annihilationlike variables are

a~nj
=

1√
2ωn

(ωnq~nj
+ ip~nj

), ã~nj
=

1√
2ωn

(ωnx~nj
+ iy~nj

). (3)

For simplicity, we ignore the zero modes, which can be quantized separately (possibly by
nonstandard methods). The creationlike variables {(a∗~nj

, ã∗~nj
)} are the complex conjugate of

(3). The action of J0 is diagonal in these variables: J0(a~nj
) = ia~nj

, J0(a
∗
~nj

) = −ia∗~nj
, and
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likewise for ã~nj
and ã∗~nj

. Note that these variables are precisely those promoted to annihilation

and creation operators in the Fock representation defined by J0.
The time evolution of the annihilationlike variables is given by the Bogoliubov transformation

a~nj
(t) = αn(t, t0)a~nj

(t0) + βn(t, t0)a
∗
~nj

(t0), (4)

where the alpha and beta functions coincide in each eigenspace of the LB operator, and
|αn(t, t0)|2−|βn(t, t0)|2 = 1. This transformation is unitary in the Fock representation defined by
J0 if and only if the set of beta functions, {β~nj

(t, t0)}, is square summable. Taking into account
the eigenspace degeneracy, gn, the considered condition amounts to the square summability of
{gn|βn(t, t0)|2}. On the other hand, the asymptotic behavior when n → ∞ (provided that the
timelike function s(t) has an integrable first derivative in each compact time subinterval [2]) is

αn(t, t0) = e−iωn(t−t0) +O
(
ω−1n

)
, βn(t, t0) = O

(
ω−2n

)
. (5)

The variation of gn with n in the three-torus case is quite involved, because of accidental
degeneration. Nonetheless, one can prove that the sequence {gn/ω4

n} is summable if so is
{Dn/n

4}, where Dn is the number of eigenstates with eigenvalue in the interval (n − 1, n].
It is easy to realize [7] that Dn = O(n2) for large n and, therefore, the evolution is indeed
unitarily implementable with respect to the CS J0.

3. Uniqueness results
Let us briefly sketch the proof that the requirement of invariance under the spatial symmetries
and of a unitary quantum dynamics indeed selects a unique family of (unitarily equivalent) Fock
representations, as well as a preferred canonical pair of field variables.

3.1. Fock representation of the CCR’s
First, we characterize the complex structures, J , that are invariant under the group of
transformations T~α. These transformations only mix modes with the same labels ~nj (and the
mixing is independent for each value of the label). As a consequence, any invariant CS must be
block diagonal, with 4×4 blocks, in the considered basis on phase space. Furthermore, imposing
the invariance and compatibility of the symplectic structure with the CS, we conclude that every
invariant CS J can be obtained from J0 by means of a transformation of the type J = KJ0K

−1,
where K is block diagonal, with 4× 4 blocks of the form (see [7] for details):

K~nj
=

(
K~nj

0
0 K~nj

)
; K~nj

=

(
κ~nj

λ~nj

λ∗~nj
κ∗~nj

)
. (6)

Here, κ~nj
and λ~nj

are complex numbers satisfying |κ~nj
|2 − |λ~nj

|2 = 1, so that K is a canonical
transformation. The evolution U(t, t0) is unitarily implementable in the representation given by
J if and only if K−1U(t, t0)K is unitarily implementable in the representation given by J0, for all
instants of time. As before, unitarity amounts to the square summability of the corresponding,
new beta functions, which are

βJ~nj
(t, t0) = (κ∗~nj

)2βn(t, t0)− λ2~nj
β∗n(t, t0) + 2iκ∗~nj

λ~nj
I[αn(t, t0)]. (7)

The symbol I[·] denotes the imaginary part. It is easy to realize that, if {βJ~nj
(t, t0)} is square

summable, then the same must happen with {λ~nj
I[αn(t, t0)} [2]. Owing to the asymptotic

(ultraviolet) behavior of the functions αn(t, t0) (and making an average in time, together with
a convenient use of Lusin’s theorem [2]), one arrives then to the conclusion that {|λ~nj

|2} must
be square summable. But this immediately guarantees that the representations given by J and
J0 are unitarily equivalent (since the transformation K is then implemented unitarily).
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3.2. Field description
As the final step in our analysis, we consider now the most general form of a time dependent,
linear canonical transformation which scales the field configuration:

φ = f(t)ϕ, Pφ = f(t)−1Pϕ + g(t)
√
hϕ. (8)

The real functions f(t) and g(t) are assumed to be twice differentiable, and f(t) nonvanishing.
Besides, without loss of generality, we can set initially f(t0) = 1 and g(t0) = 0 [4].

One can show that a unitary evolution with respect to a CS which is invariant under the
spatial symmetries is only possible when f(t) = 1 and g(t) = 0 ∀t ∈ I [7]. In order to prove
this result, we consider the field dynamics of the new canonical pair and compute the alpha and
beta functions for the CS J0:

ᾱn = f+(t)αn + f−(t)β∗n + i
g(t)

2ωn
[αn + β∗n], β̄n = f+(t)βn + f−(t)α∗n + i

g(t)

2ωn
[βn + α∗n], (9)

where 2f±(t) = f(t) ± 1/f(t). Then, the beta functions β̄J~nj
for any other invariant CS, J ,

can be obtained as in expression (7). Once more, if the evolution is to be unitary, these beta
functions have to be square summable at all times. Hence, in particular, the beta functions must
tend to zero for large ωn. Recalling the asymptotic behavior (5), one can then show that this
vanishing limit is possible only if f−(t) is the zero function, a fact which implies that f(t) = 1
[7]. Moreover, by studying the behavior for large ωn when f(t) is the unity, one can prove that
the square summability of the beta functions, needed for the unitarity of the dynamics, requires
that g(t) vanish identically [7]. In this way, the field description of the system turns out to be
completely determined.

4. Conclusions
We have considered the Fock quantization of scalar fields in (possibly effective) cosmological
spacetimes whose spatial sections have a three-torus topology. We have shown that the
requirement of invariance under the spatial symmetries and of a unitary dynamics picks out
a preferred canonical pair of variables for the field description –among all those related by time
dependent canonical transformations which include a scaling of the field configuration. Besides,
for such a canonical pair, the introduced requirement turns our to select a unique family of
unitarily equivalent Fock representations of the CCR’s. As a result, the ambiguity in the Fock
quantization coming from the scaling of the field or from a choice of vacuum is removed. This
allows one to reach robust physical predictions in the quantum theory for linear scalar fields
with quadratic potentials, propagating in some types of nonstationary scenarios, which include
the relevant case of compact flat FRW cosmologies.
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