

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[4-Acetyl-5-methyl-5-(2-p-tolylpropyl)-4,5-dihydro-1,3,4-thiadiazol-2yl]acetamide

Mohamed Tebaa,^a Noureddine Mazoir,^a Celia M. Maya,^b Bouhmaida Nouzha,^c Ahmed Benharref^d and Moha Berraho^a*

^aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, ^bInstituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano, 119 28002 Madrid, Spain, ^cLaboratoire des Sciences des Matériaux, Département de Physique, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and ^dLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco Correspondence e-mail: mberraho@yahoo.fr

Received 16 December 2008; accepted 4 January 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.001 Å; R factor = 0.035; wR factor = 0.108; data-to-parameter ratio = 37.5.

The title heterocyclic compound, C₁₇H₂₃N₃O₂S, was synthesized from 4-(4-methylcvclohex-3-envl)pent-3-en-2-one, which was isolated from Cedrus atlantica essential oil. The thiadiazole ring adopts a flattened envelope conformation, with the flap sp^3 -hybridized C atom lying 0.259 (1) Å out of the plane of the other four atoms. The screw-related molecules are linked into chains along the b axis by intermolecular N- $H \cdots O$ hydrogen bonds.

Related literature

For 1,3,4-thiadiazole derivatives and their biological activity, see: Beatriz et al. (2002); Loughzail et al. (2009); Mazoir et al. (2008); Mohammed et al. (2008); Nakagawa et al. (1996); Sakthivel et al. (2008); Tehranchian et al. (2005); Wang et al. (1999, 2004). For puckering parameters, see: Cremer & Pople (1975).

8286 independent reflections

 $R_{\rm int} = 0.019$

7182 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₇ H ₂₃ N ₃ O ₂ S	V = 1724.52 (6) Å ³
$M_r = 333.44$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.3984 (2) Å	$\mu = 0.20 \text{ mm}^{-1}$
b = 11.0510 (2) Å	T = 298 (2) K
c = 16.6045 (3) Å	$0.5 \times 0.4 \times 0.3 \text{ mm}$
$\beta = 90.442 \ (10)^{\circ}$	

Data collection

Bruker X8 APEX CCD areadetector diffractometer Absorption correction: none 52162 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.108$	independent and constrained
S = 1.03	refinement
8286 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N1 - H4 \cdots O2$ 0.89(1)1.96 (1) 2.8391 (7) 169 (1)

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Professor J. C. Daran for fruitful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2746).

References

- Beatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, X, 14-23.
- Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Loughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, 04.
- Mazoir, N., Benharref, A., Bailén, M., Reina, M. & González-Coloma, A. (2008). Phytochemistry, 69, 1328-1338.
- Mohammed, T., Mazoir, N., Daran, J.-C., Berraho, M. & Benharref, A. (2008). Acta Cryst. E64, o610-o611.
- Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.
- Sakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Tehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamifar, H. & Shafiee, A. (2005). *Bioorg. Med. Chem. Lett.* **15**, 1023–1025.
- Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.
- Wang, Y.-G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). *Chin. J. Org. Chem.* **24**, 1606–1609.

supporting information

Acta Cryst. (2009). E65, o267-o268 [doi:10.1107/S1600536809000191]

N-[4-Acetyl-5-methyl-5-(2-*p*-tolylpropyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide

Mohamed Tebaa, Noureddine Mazoir, Celia M. Maya, Bouhmaida Nouzha, Ahmed Benharref and Moha Berraho

S1. Comment

1,3,4-Thiadiazole derivatives (Sakthivel *et al.*, 2008) represent an interesting class of compounds possessing diverses activities: biological (Nakagawa *et al.*, 1996), fungicidal (Wang *et al.*, 1999, 2004) and bactericidal properties (Tehranchian *et al.*, 2005). The work of our research group focused on the phytochemical study of Moroccan plants and aimed to find out new compounds, which could be used as precursors or intermediates for the synthesis of high added value specimens (Mazoir *et al.*, 2008; Loughzail *et al.*, 2009). In this way, we have investigated native Cedrus species rich on sesquiterpene derivatives. Thus a new compound was obtained through chemical modification of 4-(4-methylcyclohex-3-enyl)pent-3-en-2-one, which was isolated from Cedrus Atlantica essential oil. The aromatization of the above compound followed by condensation with thiosemicarbazide (Beatriz *et al.*, 2002; Mohammed *et al.*, 2008) ending with treatment of acetic anhydride in the presence of pyridine yielded a diasterioisomers in high stereoselectivity.

The molecular structure of the title compound is shown in Fig. 1. The thiadiazole ring adopts a flattened envelop conformation as indicated by Cremer & Pople (1975) puckering parameters Q = 0.1578 (6) Å and φ = 148.3 (2)°. Atom C5 deviates from the mean plane through other four atoms in the ring by 0.259 (1) Å.

In the crystal structure, molecules are linked into chains (Fig. 2) running along the b axis by intermolecular N—H···O hydrogen bonds (Table 1) involving the carbonyl and the acetamide groups.

S2. Experimental

A solution of 4-(4-methylcyclohex-3-enyl)pent-3-en-2-one (0.5 g, 2.8 mmol) and Pd/C (10%) was heated at 423 K for 12 h. The product obtained was treated with equimolecular quantity of thiosemicarbazide and several drops of HCl (cc) were added. The reaction mixture was heated at reflux in ethanol for 6 h and then evaporated under reduced pressure and the residue obtained was purified on silica gel column using hexane-ethyl acetate (96:4) as an eluent. 0.25 mmol of the thiosemicarbazone obtained was dissolved in 3 ml of pyridine and 3 ml of acetic anhydride. The mixture was heated on a water bath for 1.5 h. The resulting residue was concentrated *in vacuo* and chromatographied on silica gel column with hexane-ethyl acetate (92:8) as an eluent. Suitable crystals were obtained by evaporation of ethyl acetate solution at 277 K.

S3. Refinement

Atoms H4 and H7 were located in a difference map and refined freely (C7—H7 = 0.974 (11) Å and N1—H4 = 0.889 (13) Å). The remaining H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with $U_{iso}(H) = 1.2U_{eq}(aromatic, methylene, methine)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$. The highest residual density peak is located 0.62 Å from atom C2 and the deepest hole is located 0.39 Å from atom H70'.

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2

Partial packing view showing N-H…O hydrogen-bonded (dashed lines) chain running along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

N-[4-Acetyl-5-methyl-5-(2-p-tolylpropyl)-4,5-dihydro-1,3,4- thiadiazol-2-yl]acetamide

Crystal data			
$C_{17}H_{23}N_{3}O_{2}S$ $M_{r} = 333.44$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 9.3984 (2) Å b = 11.0510 (2) Å c = 16.6045 (3) Å $\beta = 90.442$ (10)° V = 1724.52 (6) Å ³ Z = 4	F(000) = 712 $D_x = 1.284 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 31976 reflections $\theta = 2.2-36.5^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 298 K Prism, colourless $0.5 \times 0.4 \times 0.3 \text{ mm}$		
Data collection			
 Bruker X8 APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 52162 measured reflections 8286 independent reflections 	7182 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 36.8^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 15$ $k = -18 \rightarrow 17$ $l = -27 \rightarrow 27$		

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
8286 reflections	and constrained refinement
221 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0594P)^2 + 0.2773P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1′	-0.18648 (9)	0.69929 (8)	0.22865 (5)	0.03405 (16)	
H1′	-0.2631	0.7423	0.2493	0.041*	
C2′	-0.12028 (8)	0.74007 (7)	0.15872 (5)	0.02883 (13)	
H2′	-0.1553	0.8087	0.1329	0.035*	
C2	0.40705 (7)	0.72005 (6)	0.13520 (4)	0.02074 (10)	
C3′	-0.00246 (7)	0.68003 (6)	0.12659 (4)	0.02299 (11)	
C3	0.58917 (7)	0.58558 (7)	0.08145 (4)	0.02531 (12)	
C4	0.67040 (8)	0.47195 (8)	0.09881 (5)	0.03082 (14)	
H40	0.6397	0.4094	0.0625	0.046*	
H41	0.6534	0.4471	0.1533	0.046*	
H42	0.7702	0.4865	0.0917	0.046*	
C4′	0.04426 (8)	0.57608 (7)	0.16569 (5)	0.02818 (13)	
H4′	0.1221	0.5340	0.1458	0.034*	
C5	0.24444 (7)	0.89236 (6)	0.09425 (4)	0.02261 (11)	
C5′	-0.02462 (10)	0.53384 (8)	0.23496 (5)	0.03469 (17)	
H5′	0.0073	0.4631	0.2595	0.042*	
C6	0.10835 (8)	0.85717 (6)	0.04946 (4)	0.02444 (12)	
H61	0.1172	0.8834	-0.0060	0.029*	
H62	0.0302	0.9021	0.0728	0.029*	
C6′	-0.13955 (10)	0.59549 (9)	0.26777 (5)	0.03553 (17)	
C7′	-0.21196 (14)	0.55330 (13)	0.34392 (6)	0.0557 (3)	
H70′	-0.1661	0.4813	0.3634	0.083*	
H71′	-0.3103	0.5363	0.3325	0.083*	
H72′	-0.2054	0.6155	0.3841	0.083*	
C7	0.06784 (7)	0.72237 (6)	0.04914 (4)	0.02407 (11)	
C8	-0.02971 (10)	0.69513 (9)	-0.02232 (5)	0.03593 (17)	
H80	0.0164	0.7187	-0.0713	0.054*	
H81	-0.1169	0.7395	-0.0168	0.054*	
H82	-0.0501	0.6100	-0.0239	0.054*	
C9	0.27064 (10)	1.02844 (7)	0.08864 (5)	0.03188 (15)	
H90	0.3533	1.0493	0.1200	0.048*	
H91	0.1895	1.0711	0.1090	0.048*	
H92	0.2855	1.0505	0.0334	0.048*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C41	0.15568 (7)	0.88983 (6)	0.23768 (4)	0.02220 (11)
C42	0.16402 (9)	0.82781 (7)	0.31792 (4)	0.02797 (13)
H420	0.1094	0.7544	0.3161	0.042*
H421	0.1265	0.8802	0.3587	0.042*
H422	0.2615	0.8091	0.3304	0.042*
N1	0.49426 (6)	0.61997 (5)	0.14026 (3)	0.02274 (10)
N3	0.32596 (6)	0.74595 (5)	0.19539 (3)	0.02162 (10)
N4	0.24397 (6)	0.84788 (5)	0.17882 (3)	0.02167 (10)
O1	0.60479 (7)	0.64374 (7)	0.01970 (4)	0.03731 (14)
O2	0.07229 (6)	0.97409 (5)	0.22442 (3)	0.02734 (10)
S1	0.400452 (18)	0.813333 (16)	0.050251 (10)	0.02473 (5)
H4	0.4838 (13)	0.5774 (12)	0.1853 (8)	0.036 (3)*
H7	0.1540 (12)	0.6750 (10)	0.0411 (7)	0.028 (3)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1′	0.0346 (4)	0.0368 (4)	0.0309 (3)	-0.0069 (3)	0.0063 (3)	-0.0080 (3)
C2′	0.0302 (3)	0.0267 (3)	0.0297 (3)	0.0019 (2)	0.0030 (2)	-0.0024 (2)
C2	0.0225 (2)	0.0212 (2)	0.0185 (2)	-0.00085 (19)	-0.00014 (18)	0.00030 (19)
C3′	0.0255 (3)	0.0214 (3)	0.0220 (3)	0.0002 (2)	-0.0027 (2)	-0.00210 (19)
C3	0.0203 (2)	0.0334 (3)	0.0222 (3)	0.0008 (2)	0.00024 (19)	-0.0032 (2)
C4	0.0255 (3)	0.0331 (3)	0.0338 (3)	0.0052 (2)	-0.0005 (2)	-0.0081 (3)
C4′	0.0296 (3)	0.0246 (3)	0.0303 (3)	-0.0003 (2)	-0.0072 (2)	0.0011 (2)
C5	0.0293 (3)	0.0197 (2)	0.0188 (2)	0.0009 (2)	-0.0005 (2)	0.00177 (19)
C5′	0.0396 (4)	0.0325 (4)	0.0318 (3)	-0.0098 (3)	-0.0116 (3)	0.0077 (3)
C6	0.0289 (3)	0.0245 (3)	0.0199 (2)	0.0025 (2)	-0.0023 (2)	0.0024 (2)
C6′	0.0407 (4)	0.0420 (4)	0.0238 (3)	-0.0185 (3)	-0.0029 (3)	-0.0004 (3)
C7′	0.0633 (7)	0.0724 (8)	0.0313 (4)	-0.0341 (6)	0.0034 (4)	0.0054 (5)
C7	0.0264 (3)	0.0251 (3)	0.0207 (2)	0.0018 (2)	-0.0016 (2)	-0.0032 (2)
C8	0.0402 (4)	0.0437 (4)	0.0238 (3)	-0.0051 (3)	-0.0066 (3)	-0.0053 (3)
C9	0.0445 (4)	0.0202 (3)	0.0310 (3)	-0.0016 (3)	-0.0006 (3)	0.0036 (2)
C41	0.0276 (3)	0.0205 (2)	0.0185 (2)	0.0008 (2)	-0.00094 (19)	-0.00301 (19)
C42	0.0367 (3)	0.0281 (3)	0.0191 (3)	0.0049 (3)	0.0014 (2)	0.0006 (2)
N1	0.0240 (2)	0.0233 (2)	0.0209 (2)	0.00241 (18)	0.00268 (17)	0.00121 (18)
N3	0.0262 (2)	0.0202 (2)	0.0184 (2)	0.00288 (18)	0.00029 (17)	0.00064 (17)
N4	0.0281 (2)	0.0199 (2)	0.0171 (2)	0.00304 (18)	-0.00031 (17)	0.00020 (16)
01	0.0321 (3)	0.0550 (4)	0.0249 (2)	0.0069 (3)	0.0068 (2)	0.0066 (2)
O2	0.0344 (3)	0.0233 (2)	0.0244 (2)	0.00714 (18)	-0.00082 (18)	-0.00255 (17)
S 1	0.02737 (8)	0.02713 (9)	0.01972 (8)	0.00035 (5)	0.00253 (5)	0.00433 (5)

Geometric parameters (Å, °)

C1'—C6'	1.3886 (14)	C6—C7	1.5375 (10)	
C1′—C2′	1.3963 (12)	C6—H61	0.97	
С1'—Н1'	0.93	С6—Н62	0.97	
C2'—C3'	1.4001 (10)	C6′—C7′	1.5142 (13)	
C2'—H2'	0.93	С7′—Н70′	0.96	

C2—N3	1,2936 (8)	C7'—H71'	0.96
C2—N1	1 3788 (9)	C7'—H72'	0.96
$C_2 = S_1$	1 7478 (6)	C7—C8	1 5240 (10)
$C_{3'} - C_{4'}$	1 3891 (10)	C7—H7	0.974 (11)
$C_{3'} - C_{7}$	1 5239 (10)	C8—H80	0.96
C_{3}^{-}	1 2100 (0)	C8_H81	0.96
C3N1	1.2199(9) 1 3810(9)	C8_H82	0.96
$C_3 - C_4$	1.3010(9) 1.4966(11)	C9H90	0.96
C_{4} H40	0.96	C9 H91	0.96
C4—H41	0.96	C9H92	0.96
$C_4 = H_4^2$	0.96	C_{1}	1 2357 (8)
CA' = C5'	1.4040(12)	$C_{41} = 0.2$	1.2557 (8)
C4' = H4'	0.03	C_{41} C_{42}	1.3079(8) 1.4008(10)
$C_{4} = 114$	1 /878 (8)	$C_{41} = C_{42}$	0.06
C_{5}	1.4070 (0)	$C_{42} = H_{421}$	0.90
C_{5}	1.5250(10) 1.5267(10)	$C_{42} = 11421$	0.90
C_{5}	1.3207(10) 1.8600(7)	C42—11422 N1 H4	0.90
C_{2}	1.8009(7) 1.2016(14)	N1—П4 N2 N4	0.889(13)
$C_{5} = C_{0}$	1.3910 (14)	IN3—IN4	1.3911 (8)
С5—Н5	0.93		
C6'—C1'—C2'	120 90 (8)	C6'—C7'—H70'	109 5
C6' - C1' - H1'	119 5	C6' - C7' - H71'	109.5
C2' - C1' - H1'	119.5	H70'-C7'-H71'	109.5
C1' - C2' - C3'	121 52 (7)	C6' - C7' - H72'	109.5
C1' - C2' - H2'	119.2	H70'-C7'-H72'	109.5
C3' - C2' - H2'	119.2	H71' - C7' - H72'	109.5
N3-C2-N1	118 94 (6)	C3' - C7 - C8	109.53 (6)
N3-C2-S1	118.91(6) 118.40(5)	$C_{3'} - C_{7} - C_{6}$	113 80 (5)
N1-C2-S1	122.66 (5)	C8-C7-C6	109.97 (6)
C4' - C3' - C2'	117 51 (7)	C3'-C7-H7	108.5(7)
C4' - C3' - C7	120.72 (6)	C8—C7—H7	1064(7)
C2'-C3'-C7	121.70 (6)	C6—C7—H7	108.3(7)
01 - C3 - N1	121.10(0)	C7 - C8 - H80	109.5
01 - C3 - C4	122.65(7)	C7-C8-H81	109.5
N1-C3-C4	115 21 (6)	H80-C8-H81	109.5
$C_3 - C_4 - H_{40}$	109 5	C7-C8-H82	109.5
$C_3 - C_4 - H_{41}$	109.5	H_{80} C_{8} H_{82}	109.5
H40-C4-H41	109.5	H81 - C8 - H82	109.5
$C_3 - C_4 - H_4^2$	109.5	C_{5} C_{9} H_{90}	109.5
H40-C4-H42	109.5	C5-C9-H91	109.5
H41 - C4 - H42	109.5	H_{0}	109.5
$C_{3'} - C_{4'} - C_{5'}$	120.78 (8)	C_{5} C_{9} H_{92}	109.5
C3' - C4' - C3'	119.6	H_{0} C_{0} H_{0}	109.5
C5' - C4' - H4'	119.6	$H_{01} - C_{0} - H_{02}$	109.5
N4 C5 C6	111.56 (5)	$O_2 C_4 I N_4$	107.5
N4-C5-C9	112.62 (6)	02 - C41 - C42	121.05 (0)
C6-C5-C9	110.89(6)	N_{4} C41 C42	116 87 (6)
-0.5 - 0.5	102 02 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 5
INT-CJ-51	102.92 (4)	-1	107.5

C6—C5—S1	110.44 (5)	C41—C42—H421	109.5
C9—C5—S1	108.08 (5)	H420—C42—H421	109.5
C6'—C5'—C4'	121.47 (8)	C41—C42—H422	109.5
С6'—С5'—Н5'	119.3	H420—C42—H422	109.5
C4'—C5'—H5'	119.3	H421—C42—H422	109.5
C5—C6—C7	117.10 (5)	C2—N1—C3	124.37 (6)
С5—С6—Н61	108.0	C2—N1—H4	113.9 (8)
С7—С6—Н61	108.0	C3—N1—H4	121.7 (8)
С5—С6—Н62	108.0	C2—N3—N4	110.79 (5)
С7—С6—Н62	108.0	C41—N4—N3	118.12 (5)
Н61—С6—Н62	107.3	C41—N4—C5	124.65 (5)
C1'—C6'—C5'	117.78 (7)	N3—N4—C5	116.65 (5)
C1′—C6′—C7′	120.12 (10)	C2—S1—C5	89.03 (3)
C5'—C6'—C7'	122.10 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H4···O2 ⁱ	0.89 (1)	1.96 (1)	2.8391 (7)	169 (1)

Symmetry code: (i) -x+1/2, y-1/2, -z+1/2.