The postharvest of mill olives

By José M. García and Khaled Yousfi

Departamento de Fisiología y Tecnología de Productos Vegetales
Instituto de la Grasa, CSIC,
Avda. Padre García Tejero 4 - 41012 Sevilla, Spain.

RESUMEN

La postcosecha de aceituna de molino

El mayor deterioro del aceite de oliva es debido a la inadequada manipulación de las aceitunas durante el tiempo que media entre su cosecha y su procesado. El almacenamiento de las aceitunas se lleva acabo mediante el simple amontonamiento del fruto, esperando su procesamiento. Estos frutos desarrollan toda clase de procesos degenerativos en un corto periodo de tiempo. Los aceites obtenidos a partir de estos frutos exhiben deterioros hidrolíticos y oxidativos característicos, confirmados por sus valores altos de acidez, de índice de peróxidos o de absorbancia en la región ultravioleta a 232 y 270 nm. Para evitar esta situación, la industria intenta reducir al máximo el intervalo entre la cosecha y el procesado del fruto, mediante un aumento de la capacidad de molturación. Sin embargo, el equipo necesario para prevenir la acumulación de fruto en Enero no se precisa para el resto de la campaña. En este capítulo, la refrigeración de las aceitunas o el uso de tratamientos físicos, que permiten el procesado de frutos poco maduros, son analizados como alternativas posibles.

PALABRAS-CLAVE: Aceite de oliva - Calidad - Olea europaea - Refrigeración - Tratamiento de calor.

SUMMARY

The postharvest of mill olives

The greatest deterioration of olive oil is due to poor handling of the olives during the time between harvesting and processing. Storage of olive fruits is carried out by simple heaping in fruit piles, waiting their processing. These fruits develop all kinds of degenerative processes in a short period of time. Oils obtained from them show characteristics hydrolytic and oxidative deteriorations confirmed by their high acidity values, peroxide value or ultraviolet absorbance at 232 and 270 nm. To avoid this situation, the industry is currently reducing the interval between harvesting and processing, through an increase in milling capacity. However, the equipment necessary for preventing the accumulation of fruit in January would be unnecessary for the rest of the season. In this chapter, refrigeration of the olive fruits, or the use of physical treatments, to allow the processing of unripe fruits, are analysed as possible alternatives.

1. INTRODUCTION

Virgin olive oil is by definition the oil obtained from the olive fruit through physical procedures, which include the washing, grinding, beating, pressing, decantation, centrifugation or filtration, without being mixed with oils of another nature. In the same way, it seems logical to relate the quality of an orange juice to the physiological state of the fruits wherefrom it is obtained; the quality of virgin olive oil is directly related to the quality of the fruit from which it is extracted. In this chapter the consequences of the postharvest manipulation on the olive physiology and on the oil quality will be studied. In general, the postharvest period of a fruit includes all the processes that the olive is subjected to, from harvesting up to its sale in the market or its industrial transformation. Thus, normal activities such as packaging, transportation, selecting, sorting, cleaning, antifungal treatments, grading, or storage are all associated with this period. Traditionally, olives have been treated from the moment of harvesting until their processing with the same sensitivity that construction material such as sand or gravel might receive (Figure 1). The degree of excellence of virgin olive oil is directly related to the physiological state of the fruit at the moment of its processing, and this is the most determinant factor to its level of quality. Unfortunately, obtaining the best quality virgin olive oil is not rewarded by a sufficient increase in the market value of this oil in comparison to that reached for other virgin oils from a lower quality category (Fundación del Olivar, 2005a). Frequently, extra virgin olive oil is sold only about 3% more expensive than the so-called “lampante”, which can not be commercialized for human consumption without previous refining and, in fact, oil of the “virgin” category can reach a better price than “extra virgin” oil, in spite of its lower level of quality (Fundación del Olivar, 2005b). Therefore, to address the olive industry on the goal of obtaining a high quality olive oil...
may seem utopia. Nevertheless, it is an indisputable fact that olive oil will never be able to compete in price with other oils, due to the high cost of its harvesting and the scanty yield that is obtained from its physical extraction (25 % of the initial weight, at best). The competitiveness of olive oil comes from its intrinsic quality, superior to any another edible oil (Touzani 2004). The increasing value that the Mediterranean diet is acquiring among nutrition specialists has contributed to an international rise in the demand for virgin olive oil (Wahrburg et al. 2002). For this reason, in spite of the scarce profit margin rendered from its price, the production and sale of virgin olive oil is increasing systematically (Grapevines et al. 2003). Throughout this chapter the postharvest strategy that the olive industry has selected for obtaining a high quality product will be discussed and the utilization of other alternative systems will be proposed.

2. POSTHARVEST OF OLIVES: CURRENT SITUATION AND FUTURE TRENDS

Historically, the greatest deterioration of olive oil is due to poor handling of the olives during the time between harvesting and processing. After harvesting, which is normally done with the cheapest process called “vareo” (shaking the olive branches with rods), the olives, laying on the soil from the beaten branches, are picked up and put in dump truck boxes, sometimes even using digging machines (Figure 2). Storage of these olives is carried out by simple heaping in fruit piles on the courtyard of the olive mills, awaiting their processing. In these conditions all kinds of degenerative processes and pathogenic infections develop in the fruit in a short period of time. Anaerobic micro-organisms act in the internal zone of the pile and aerobic ones in the outermost areas. At the same time, the metabolism of the accumulated fruits results in a considerable increase in temperature in the pile, autocatalyzing the degenerative processes and accelerating fruit degradation. Normally, oils obtained from these fruits are characterized by presenting hydrolytic and oxidative deteriorations measured by their high acidity values, peroxide value or ultraviolet absorbance at 232 and 270 nm, produced respectively by lipases, lipoxygenases and lialases of both olive and parasitic origin (González-Cancho, 1957; Mazuelos-Vela, 1972; García and Streif, 1991). The oil obtained also develops an undesirable sensory attribute called “atrojado” (fusty), due to the presence of a high content in volatile acids, such as acetic or butyric and in fat alcohols, such as 1-octen-3-ol and 2-octen-1-ol (Gutiérrez et al., 1981; Olías et al., 1988; Olías and García, 1997).

To avoid this physical and biological deterioration of the fruit, which determine the subsequent production of a low quality virgin oil, the industry is currently following a main strategy of reducing the interval between harvesting and processing, as much as possible and recommends three steps for the olive during this period: Firstly, the separation of harvested olives from the ones previously falling onto the soil is strongly recommended. For this purpose the use of canvases on the soil for the reception of the harvested fruits is commonly used. Secondly, the use of perforated boxes is recommended for keeping the olives: a larger format of 100 x 100 x 120 cm³ for a short storage period (≤ 48 h) (Figure 3) and a small one (50 x 30 x 40 cm³) specially for longer periods of storage (Figure 4) (Tous et al. 2005). Finally, the main recommendation that the olive industry is following consists in an increase in milling capacity in order to avoid a wait period ≥ 24 h from the harvesting to the oil extraction (de Toro et al. 2002).

The separation of healthy from decayed fruit is one of the basic premises of postharvest technology in order to guarantee that it will arrive to the market or processing plant in good condition. It is especially important for the sensory quality of virgin oils. The human nose is very sensitive to the odours developed in infected olives. A small presence of these undesirable attributes could contaminate a large amount of oil, resulting in a serious loss of quality. On the other hand, these infected fruit randomly placed in the olive pile are infection nests from which the parasitic microorganisms, mainly fungi, can rapidly proliferate among the rest of the fruit. This progressive deterioration is accelerated by the presence of mechanically damaged fruits, which are especially
sensitive to the fungi infection. The use of “vareo” causes a high incidence of fruit damage and, indirectly, facilitates oil deterioration.

Unfortunately, the use of perforated plastic boxes to contain the olives during their postharvest period is not yet an extended practice. Normally, the use of boxes is limited to transporting the olives from harvesting to the dump truck boxes, but even this simple measure can suppose a considerable improvement in the maintaining fruit integrity in comparison to the use of diggers for this task. In addition to the reduction of mechanical damage, the main aim of this system is to avoid deterioration due to excessive fruit accumulation. The holes in the boxes are very important to allow for ventilation of the olives, delaying the fermentation processes in the stored fruit. The use of boxes for the storage of olives intended for oil would mean a significant improvement in quality for the olive oil industry. It implies the introduction of the palletization system, habitually used for other commodities, such as oranges, apples, pears, etc. For instance, palletization, in addition to a better preservation of the fruit to damage caused by handling, allows for quick cargo removal in minutes using a forklift, more efficient olive storage, higher quantity in a lower space, and better organization of the olives, which could be classified by their different characteristics: origin, quality, harvesting system, variety, etc. However, the main advantage of this system is that it would facilitate the traceability of the olive oil from the olive tree to the bottle of virgin olive oil. Thus, producers, who obtain the highest quality virgin olive oil, could sell their product at a higher price than other oils of inferior quality. This system should be an affective tool for securing the characteristic of quality of a determined denomination of origin.

The acceleration of fruit processing through the increase of milling capacity is the least imaginative and the most expensive solution to prevent olive oil deterioration caused by the use of damaged and/or decayed fruits, which have been stored in poor conditions. Historically, the olive oil industry has suffered two traditional impediments, which condition its quality production: Reduced harvesting time and olive tree alternation (Table 1). Olive harvesting is done during a relatively short period of time, when fruit offer a better yield for oil production. Thus, in the last five seasons, almost 40% of oil production has been concentrated in the month of January. The machinery necessary for preventing the accumulation of fruit waiting oil extraction during peak production in January would be excessive for the rest of the season, when it would have to work at 50 or 60% of its capacity. Furthermore, the olive crop is highly variable; one season with a high yield of olives will be followed by one with a very poor fruit production. For this reason, the processing capacity for a crop during a high production season to avoid fruit accumulation, would only work at 50% of its performance during seasons of lower fruit production.

3. COLD STORAGE. AN ALTERNATIVE

The use of refrigeration in fruit storage is based on the reduction of the speed of the metabolic processes induced by low temperatures. Thus, enzymatic activity such as cellulases and galacturonases, responsible for fruit softening, or chlorophylases, which act in skin colour changes are delayed, allowing a longer commercial life for the commodity. However, the main metabolic effect of cool temperature is the decrease in the effectiveness of fruit respiration. This process supplies the energy necessary for the development of fruit maturation. A high level of respiration determines two undesirable effects: a shorter commercial life for the product stored and a loss in weight and nutritional value, because this process consumes energy metabolites such as sugars, lipids, or organic acids. Furthermore, refrigeration delays the deterioration activity of the pathogens, which are mainly responsible for postharvest loss of fruits. In olives, decreasing the temperature from 18 to 5 °C led to a decrease in CO₂ production of somewhat more than twenty-fold (García and Streif, 1991). This suggests that the lag provoked in all the

<table>
<thead>
<tr>
<th>Months</th>
<th>2000/01</th>
<th>2001/02</th>
<th>2002/03</th>
<th>2003/04</th>
<th>2004/05</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>40</td>
<td>93</td>
<td>55</td>
<td>89</td>
<td>70</td>
<td>347</td>
<td>6.1</td>
</tr>
<tr>
<td>December</td>
<td>200</td>
<td>388</td>
<td>282</td>
<td>430</td>
<td>315</td>
<td>1615</td>
<td>28.6</td>
</tr>
<tr>
<td>January</td>
<td>270</td>
<td>535</td>
<td>324</td>
<td>568</td>
<td>422</td>
<td>2119</td>
<td>37.5</td>
</tr>
<tr>
<td>February</td>
<td>320</td>
<td>295</td>
<td>144</td>
<td>240</td>
<td>145</td>
<td>1144</td>
<td>20.2</td>
</tr>
<tr>
<td>March</td>
<td>110</td>
<td>67</td>
<td>48</td>
<td>71</td>
<td>26</td>
<td>322</td>
<td>5.7</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
<td>27</td>
<td>5</td>
<td>16</td>
<td>4</td>
<td>82</td>
<td>1.5</td>
</tr>
<tr>
<td>May</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>975</td>
<td>1413</td>
<td>861</td>
<td>1417</td>
<td>983</td>
<td>5649</td>
<td>100.0</td>
</tr>
</tbody>
</table>
metabolic activities that require energy produced by respiration should be equally delayed.

Some fruits are sensitive to low temperature and during cold storage develop a physiological disorder commonly named “chilling injury”. The cause of this problem has been attributed to a non programmed accumulation of succinic acid in the Krebs cycle. Succinic-dehydrogenase should be more affected by a low temperature than the other enzymes of this metabolic system and its toxic substrate would destroy the fruit cell (Kader, 1985). At the same time, low temperatures could affect the permeability of the plasmatic membranes, altering the physical properties of its main constituent, the phospholipids. In general, a fruit is considered cool-sensitive, if it develops chilling injuries at temperatures slightly higher than its freezing point. Unfortunately, the fruit of the *Olea europaea* is one of them. Chilling injury symptoms in olives begin as an internal browning of the flesh around the pit, subsequently, external pitting appears dull in colour on the skin of this area, browning becomes darker and, finally, progressively occupies all the internal flesh and the skin surface. The chilled olives are especially sensitive to fungi infection and rot rapidly (Kader 1996; Nanos 2002).

Maxie (1964), Woskow and Maxie (1965) and Kader (1989) in different works identified the temperature of 5 °C as the barrier for the cold storage for different table olives. Below this temperature these fruits developed severe chilling injury. Subsequently, García (1993a) found that this temperature was also useful for storing mature-green ‘Picual’ fruits, the most highly cultivated Spanish variety of olives intended for oil. However, after a prolonged storage of 2 months at 5 °C this variety exhibited a 10 % incidence of chilling injury. For the storage of olives intended for oil, temperature is the main determining factor for maintaining physiological conditions of the fruit intact and, subsequently, to extract from it oil with the same level of quality as it had initially. During storage, the incidence of fruit decay increases in direct relationship with the temperature selected. After a week of storage the decay of ‘Picual’ olives stored at 12 °C was four times higher than at 8 °C and eight times higher than at 5 °C (García et al., 1996a). The increase of fruit decay determines a proportional increase in the acidity of the oil, due to the hydrolytic action of the lipases of these fruits developed chilling injuries at temperatures slightly higher than at 8 °C and eight times higher than at 5 °C. Succinic-dehydrogenase should be more affected by a low temperature than the other enzymes of this metabolic system and its toxic substrate would destroy the fruit cell (Kader, 1985). The cause of this problem has been attributed to a non programmed accumulation of succinic acid in the Krebs cycle.

Refrigeration at 5 °C delays fungi proliferation and, consequently, the acidity value of the oil is maintained within the limit established for the “extra” category of quality. The acidity of the oil subsequently extracted. Both, O2 reduction or CO2 enrichment with a concentration of 5% CO2. The period of 6 weeks at 10 °C under an atmosphere enriched with a concentration of 5% CO2. The incidence of this disorder increased if the presence of O2 was also diminished at up 2% in the storage atmosphere (Woskow and Maxie, 1965; Kader et al., 1989). More recently, Nanos et al. (2002) also obtained a different answer to storage conditions, according to the table variety tested, whereas ‘Conservolea’ olives can be stored at 7.5 °C under CA conditions for up to 22 days, ‘Chondrolia’ fruits resulted extraordinarily sensitive to chilling injury, even at this relatively high temperature.

In general, a fruit is considered cool-sensitive, if it develops chilling injuries at temperatures slightly higher than its freezing point. Unfortunately, the fruit of the *Olea europaea* is one of them. Chilling injury symptoms in olives begin as an internal browning of the flesh around the pit, subsequently, external pitting appears dull in colour on the skin of this area, browning becomes darker and, finally, progressively occupies all the internal flesh and the skin surface. The chilled olives are especially sensitive to fungi infection and rot rapidly (Kader 1996; Nanos 2002).

Maxie (1964), Woskow and Maxie (1965) and Kader (1989) in different works identified the temperature of 5 °C as the barrier for the cold storage for different table olives. Below this temperature these fruits developed severe chilling injury. Subsequently, García (1993a) found that this temperature was also useful for storing mature-green ‘Picual’ fruits, the most highly cultivated Spanish variety of olives intended for oil. However, after a prolonged storage of 2 months at 5 °C this variety exhibited a 10 % incidence of chilling injury. For the storage of olives intended for oil, temperature is the main determining factor for maintaining physiological conditions of the fruit intact and, subsequently, to extract from it oil with the same level of quality as it had initially. During storage, the incidence of fruit decay increases in direct relationship with the temperature selected. After a week of storage the decay of ‘Picual’ olives stored at 12 °C was four times higher than at 8 °C and eight times higher than at 5 °C (García et al., 1996a). The increase of fruit decay determines a proportional increase in the acidity of the oil, due to the hydrolytic action of the lipases of these fruits developed chilling injuries at temperatures slightly higher than at 8 °C and eight times higher than at 5 °C. Succinic-dehydrogenase should be more affected by a low temperature than the other enzymes of this metabolic system and its toxic substrate would destroy the fruit cell (Kader, 1985). The cause of this problem has been attributed to a non programmed accumulation of succinic acid in the Krebs cycle.

Refrigeration at 5 °C delays fungi proliferation and, consequently, the acidity value of the oil is maintained within the limit established for the “extra” category of quality. The acidity of the oil subsequently extracted. Both, O2 reduction or CO2 enrichment with a concentration of 5% CO2. The period of 6 weeks at 10 °C under an atmosphere enriched with a concentration of 5% CO2. The incidence of this disorder increased if the presence of O2 was also diminished at up 2% in the storage atmosphere (Woskow and Maxie, 1965; Kader et al., 1989). More recently, Nanos et al. (2002) also obtained a different answer to storage conditions, according to the table variety tested, whereas ‘Conservolea’ olives can be stored at 7.5 °C under CA conditions for up to 22 days, ‘Chondrolia’ fruits resulted extraordinarily sensitive to chilling injury, even at this relatively high temperature.

Storage of mill olives under CA conditions has also been assayed. García and Streif (1991), using the table variety ‘Gordal’ tested the effect of refrigeration and CA conditions on the quality of the oil subsequently extracted. Both, O2 reduction or CO2
increasing induced chilling on fruit stored at 5 °C and the incidence of this disorder increased; when both CA conditions were combined. In contrast, fruit stored at the same temperature did not suffer any physiological damage. Affected fruit decayed rapidly and, in consequence, the best quality oil was obtained from the olives refrigerated in air. Subsequently, using ‘Picual’ olives the effects of CA conditions were studied on fruit physiology (Castellano et al., 1993; García, 1993a), on polyphenol content (Maestro et al., 1993) and oil quality (Gutiérrez et al., 1992; Pérez-Camino et al., 1992; García, 1993b) in the Instituto de la Grasa. As was previously observed in table olives, CA storage induced physiological disorders in olives intended for oil, being especially detrimental the use of high CO2 concentrations (García, 1993a). In consequence, as the capacity of CA storage atmospheres does not provide any additional advantage over refrigeration in air at 5°C for the storage of mill olives, but inducing physiological disorders facilitates fruit decay and, afterwards, the obtaining of poor quality oils, which are characterized by a high acidity level and the presence of undesirable sensory attributes.

One of the main factors to take into account for the use of refrigeration for the storage of olives intended for oil is the selection of an adequate loading unit to contain the product. Of course, for the industry the use of the largest possible container supposes an important saving in costs. However, it may imply an excessive fruit accumulation, which does not allow for effective refrigeration of the unit. On the other hand, the use of small boxes facilitates that the stored fruit acquiring the desired temperature as soon as possible, but it can be expensive in practice. García et al. (1994) studied the effect of the loading unit on fruit physiology and on the quality of the oil from it. A loading unit with a capacity of 400 kg of ‘Picual’ olives stored at 5 °C showed a real temperature of 25 °C in the inner zone of fruit accumulation. Consequently, the fruit stored under these conditions decayed rapidly and the oil extracted immediately exhibited a poor level of quality. In contrast, fruit placed in containers with a storage capacity of 60 Kg showed an internal temperature of 6 °C, only 1 °C higher than the refrigerated room where it was stored and the oils obtained from it exhibited a level of quality similar to its initial level for at up 30 days of fruit storage. In summary, the best possible loading unit should be one, while as big as possible, allows efficient refrigeration of the entire stored product. The perforated plastic boxes capable of holding 22 Kg of fruit, previously recommended for prolonged olive storage are perfectly useful for cold storage.

When considering the use of refrigeration for the storage of olives intended for oil, the industry must meet at least the following requirements: A cool room capable of storing the product that cannot be absorbed by the mill machinery. It should be equipped with cooling machinery able to refrigerate the product at the temperature required (normally 5 °C) over a period of time ≤ 12 hours, to immediately delay fruit deterioration due to internal or external factors. The air inside the room must be renewed often, to avoid undesirable accumulations of CO2 due to fruit respiration. As the external aspect of the fruit is not relevant for mill olives, maintaining a high level of relative humidity (RH) is not necessary, but the level of fruit dryness could be easily controlled during fruit cold storage regulating the speed of ventilation and the RH inside the room. It would be interesting for future studies to clarify the effect of the level of fruit dryness induced by cold storage on oil quality. It can be a non-polluting system to reduce the production of waste water. All the material necessary for palletization required by the industry is also necessary, including boxes, pallets or forklifts and the machinery associated with it: Case inverters, case washing machines, etc. Finally, it is necessary to take into account that cold storage is not a fruit hospital. Only healthy fruit can be refrigerated to obtain a high quality olive oil. The refrigeration of damaged or rotten fruit only guarantees an oil of poor quality. Consequently, this system is only compatible with the careful harvesting, packing and transport of this product.

Refrigeration of olives intended for oil at 5°C has been successfully applied by the olive oil industry (García et al., 1996b; Canet and García, 1999). About 1000 Tm of olives (‘Blanqueta’ and ‘Villalonga’ cultivars) were hand harvested in Valle de Albaída (Valencia, Spain), packed in perforated plastic containers with a capacity of 14 Kg of olives and stored for 18 days at 5 °C (Figure 5). The commercial quality of the oil obtained (about 200 Tm) from the fruit stored under these conditions was evaluated as the best possible for virgin oils (“extra”), since the values of the quality parameters, which measure the level of quality of these oils, were inside the limits established for this category of quality (Table 2). The storage at 5 °C of the olive that could not be immediately processed allowed for the use of the mill machinery to full yield for 8 weeks (Figure 6). The hypothetical increase of double milling capacity would be not sufficient to absorb
the harvest at highest production peak (Figure 7). An amount of 200 Tm of olives could not be processed in the sixth week of the season, and would be exposed to a serious risk of deterioration. On the other hand, under this milling capacity, the oil extraction machinery would work to full yield for only two weeks. Cold storage clearly facilitates a more economic use of disposable machinery. Considering that the next season the olive fruit production could suffer a reduction of the 50 %, due to the typical olive alternation (Figure 8). In this case, the actual milling capacity should be sufficient to process this reduced fruit production. An excessive milling capacity would be unproductive approximately every two seasons. Cold storage is more versatile and less restrictive than oil extraction machinery. It can be used for the refrigeration of multiple products and requires a lower maintenance cost. Furthermore, cold storage is more susceptible to renting than excess of oil extraction machinery, because at the moment of the peak production, when it is actually required, all the mills of a certain area would be occupied, working to full yield.

Table 2

<table>
<thead>
<tr>
<th>Quality parameter</th>
<th>‘Blanqueta’</th>
<th>‘Villalonga’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity (% oleic)</td>
<td>0.53 ± 0.19</td>
<td>0.44 ± 0.12</td>
</tr>
<tr>
<td>Peroxide value (mEq Oxygen/Kg oil)</td>
<td>3.50 ± 0.65</td>
<td>3.87 ± 0.98</td>
</tr>
<tr>
<td>K232</td>
<td>1.68 ± 0.06</td>
<td>1.57 ± 0.09</td>
</tr>
<tr>
<td>K270</td>
<td>0.12 ± 0.00</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td>Stability (hours)</td>
<td>51.13 ± 6.96</td>
<td>67.67 ± 9.59</td>
</tr>
<tr>
<td>Panel text (“1” the worst - “9” the best)</td>
<td>6.93 ± 0.37</td>
<td>7.30 ± 0.22</td>
</tr>
</tbody>
</table>

Source: Canet and García (1999).
4. POSTHARVEST HEAT TREATMENT: A FUTURE POSSIBILITY

During olive ripening (from the green-mature to the black stage of maturity) the increase of the lipid content is scarce (Wodner et al. 1988). Coinciding with this observation, the changes in the oil biosynthesis during fruit growing and maturity, measured by the incorporation of ^{14}C acetate to the oil of ‘Picual’ and ‘Gordal’ olives, showed at 25 weeks after flowering (corresponding to the green-mature or spotted stages of olive ripening) the enzymatic machinery responsible for the oil synthesis lost its activity in both varieties (García and Mancha, 1992). This point of ripening can be considered, in a production perspective, as the suitable one by the beginning of the fruit harvesting, because after this maturity level the oil accumulation in the olives is interrupted. Furthermore, olive fruit cells have internal enzymatic activities, such as lipases, lipoxigenases or hydroperoxide liases, which can cause hydrolytic or oxidative alterations during fruit ripening or/and the milling and the malaxation of the oil extraction process (Olías, 1992). Obviously, as the olive matures, the possibility of these enzymes acting on the stored oil increases and, in consequence, the quality of the oils tends to decline. The oil of the variety ‘Arbequina’, for example, presented significantly higher acidity and ultraviolet absorbance when it was obtained from black fruits at the end of their ripening stage, than when was extracted from green-mature fruits, at the beginning of this physiological process (García et al. 1996c, Yousfi et al. 2005). Furthermore, olives soften during fruit ripening, being riper fruits more susceptible to mechanical damage and fungal infection. Thus, green-mature olives resist postharvest handling better than the mature ones (García and Yousfi 2005). Nevertheless, in Spain the harvesting is normally carried out during the months of December, January or February, when fruit reaches a red or black skin colour (Table 1), due to four main reasons: Firstly, the harvesting is easier, because the resistance of the olive to fall down decreases fruit maturity. Secondly, although the oil content is only slightly higher in black olives, the physical extractability normally increases with the level of maturity. This fact is probably due to the softening of the ripe fruit which would facilitate the separation of the oil from the olive tissue. The third reason is the excess of bitterness and pungency that the oils extracted from green olives show. When their presence is too high, these sensory attributes can result in consumer rejection of the product. Especially sensitive to these attributes the consumers who are accustomed to the milder taste of refined oils such as those from important markets such as Japan, Canada, U.S.A. or the Northern European Countries. The green-mature stage of the ripening marks the beginning of a continuous reduction of the level of oil bitterness up to practically disappearing in the most advanced stages of olive maturity (Amiot et al. 1986 and 1989). Finally, perhaps the most important reason for the harvesting delay of olives intended for oil is tradition. In Andalusia, since perhaps the times of Roman domination, olive harvesting has begun on the same day, December the eighth (the day of the Immaculate Conception, according to the catholic calendar).

Both the first and the fourth reasons for harvesting delay are not in the scope of postharvest intervention and they are not treated in this chapter, but the other two arguments can be clear objectives susceptible to being solved by the development of an adequate postharvest technology in the same way that other fruits have been successfully treated to control sensory attributes, such as the elimination of kaki astringency or the degreening orange skin.

Oil bitterness is mainly due to of the secoiridoid derivatives of phenols (Mateos et al. 2004), these compounds, partially soluble in lipids, are given on the virgin oil during its extraction, through an unknown process, in which at least two kinds of enzymes, such as glycosidases and esterases, should be involved (Tsimidou et al. 1998). Glycosidases would break the glycosidic bond of the oleuropein, an extraordinarily bitter water-soluble glycoside characteristic of the *Olea europaea* leaves and fruits, yielding these secoiridoid derivatives of phenols. From oleuropein and/or secoiridoid derivatives the esterases would yield free phenols which are not bitter. A physical treatment previously applied to the fruit might alter the activities of these enzymes, probably inhibiting them partially or totally, and, consequently, controlling the level of bitter taste in the oil obtained. According to this work hypothesis García et al. (2001) heated green-mature Manzanilla and Verdal olives at different temperatures (30 to 50 °C) for 24 to 72 hours in a thermostaticed room, observing that heating promotes a reduction of oil bitterness in direct relationship to the time and the temperature used, without any significant affect on the physical and chemical parameters, which are used to evaluate the level of quality of olive oil. As expected according to the proposal of an enzymatic inhibition, the phenol content of the oil decreased with the intensity of the treatment and, consequently, the stability against oxidation also decreased, although maintaining high absolute values. This result did not coincide with those published before by Farag et al. (1997), who obtained a stabilization of the olive oil by microwave heating of ‘Picual’ and ‘Chemlali’ olives previous to oil extraction.

The heat treatment by temperature air transmission is difficult to adapt to the production lines of the olive oil extraction industry. It requires an equipped room, a relatively long treatment time, the use of boxes and is a discontinuous process that requires the loading and unloading of treated material. Dipping in water allows for a more rapid and efficient transmission of the heat to the fruits. Using this method, the heat treatment could be carried out in only a few minutes, and its adaptation to the industrial production lines would be easier. It would only be necessary to add a heating system to the fruit washing process normally used in the oil

Fundación del Olivar, 2005a: www.oliva.net/poolred/Comun/GrafEvolAnual.asp, 28/09/05

Fundación del Olivar, 2005b: www.oliva.net/poolred/Comun/presentation.asp, 29/09/05

REFERENCES

Fundación del Olivar, 2005a: www.oliva.net/poolred/Comun/GrafEvolAnual.asp, 28/09/05

Fundación del Olivar, 2005b: www.oliva.net/poolred/Comun/presentation.asp, 29/09/05

Recibido: Septiembre 2005
Aceptado: Noviembre 2005