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12 AABBSSTTRRAACCTT

13 In the assessment of irrigation schemes, the accuracy of performance indicators related to 

14 the water balance could be improved by estimating crop evapotranspiration (ETc) using 

15 remote sensing techniques. The two main remote sensing approaches to estimating ETc

16 are the surface energy balance and the FAO56-based approach, that uses the ability of 

17 vegetation indices (VI) to trace the crop coefficient. Both approaches were evaluated 

18 comparatively at the Río Dulce irrigation scheme in Argentina (where the predominant 

19 crops are cotton, alfalfa, and maize) using products from the Landsat 7 and 8 sensors 

20 provided by the EEFlux application. The first analysis used field-specific, VI-derived basal 

21 crop coefficients obtained for 1743 fields using series of 9 to 29 satellite images along the 

22 2014-15 irrigation campaign. The second analysis used 30 fields (grown with cotton and 

23 maize) where the actual irrigation schedules in the 2014-15 irrigation campaign were 

24 known. A root zone soil water balance was computed in these fields using the FAO56 dual 

25 approach with field-specific, VI-derived basal crop coefficients. The ETc obtained from the 

26 water balance was compared with the ETc estimated using a single crop coefficient 

27 approach that uses field-specific VI and takes into account soil evaporation (herein called 

28 synthetic approach), and with the ETc obtained with the METRIC surface energy balance 

29 model as facilitated by the EEFlux application. The third analysis was a simulation analysis 

30 of errors in the estimation of the ETc due to the interpolation to daily values of single crop 

31 coefficients and basal crop coefficients determined at hypothetical satellite overpass 
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32 intervals of longer than one day. The VI-derived basal crop coefficient curves obtained for 

33 the 1743 fields of the first analysis were below the locally adopted standard (not field-

34 specific) basal crop coefficient. Crop evapotranspiration in the 8005 ha covered by this 

35 analysis was about 20 % higher when applying standard non-field specific curves than 

36 when applying VI-derived curves. This difference pointed to the importance of using field-

37 specific estimations of ETc. In the analysis carried out on the 30 selected fields, the ETc

38 estimated using the VI-based approach agreed well with the ETc obtained from the water 

39 balance except under water deficit conditions. The crop coefficients obtained for these 

40 fields using the METRIC model correlated with those obtained by applying the VI-based 

41 method, although the former tended to be higher than the latter in the lower value range. 

42 The analysis of interpolation errors showed that when satellite overpass frequency is 

43 greater than one week and water deficit is mild or inexistent, the interpolation of crop 

44 coefficients (for instance, of those derived from an energy balance) gives errors of ETc

45 estimations that are greater than those resulting from the VI-based approach. Under water 

46 deficit conditions, the VI-based approach systematically overestimates 

47 evapotranspiration.

48

49 11.. IInnttrroodduuccttiioonn

50 Irrigation scheme performance assessment is imperative in a world with an increasing 

51 population and food demand, where water scarcity is constraining agricultural production 

52 more and more, and emerging sectors compete for the available water resources. Several 

53 efforts have been made in the last decades to formulate a framework and guidelines for 

54 irrigation scheme performance assessment. Relevant examples of these efforts are the 

55 Performance Assessment Program of the International Water Management Institute 

56 (Molden et al., 1998); the Guidelines for Benchmarking in the Irrigation and Drainage 

57 Sector of the International Programme for Technology and Research in Irrigation and 

58 Drainage (Malano and Burton, 2001); and the Task Force on Benchmarking of Irrigation 

59 and Drainage Projects of the International Commission on Irrigation and Drainage 

60 (Malano et al., 2004). A prominent set of performance indicators, the outcome of these 

61 efforts, refers to the water balance. These indicators have been widely applied to the 

62 internal assessment (e.g., Morábito et al., 1998; Lozano and Mateos, 2008) and 

63 benchmarking (e.g., Rodríguez-Diaz et al., 2008; Borgia et al., 2013; Zema et al., 2018) of 

64 irrigation schemes. The accuracy of performance indicators related to the water balance 

65 could be improved by estimating evapotranspiration (ET) using remote sensing 

66 techniques (Bos et al., 2005). Some of the latter’s early applications in the evaluation of 



3

67 irrigation scheme performance were carried out in South America (Menenti et al., 1989; 

68 Roerink et al., 1997; Bastiaanssen et al., 2001). With the advent of the Google Earth Engine 

69 (a computing platform based primarily on satellite imagery that allows users to run 

70 planetary-scale geospatial analysis on Google's infrastructure), this type of application is 

71 increasingly within the reach of researchers, developers and water managers.

72 Two main approaches to estimating crop evapotranspiration (ETc) assisted by remote 

73 sensing techniques have become common in agricultural water use studies (González-

74 Dugo et al., 2009; Taghvaeian and Neale, 2011). The first approach partitions the available 

75 energy by using the radiometric surface temperature (derived from thermal band 

76 imagery) to estimate the sensible heat flux and compute latent heat as a residual to the 

77 surface energy balance (e.g., Kustas and Norman, 1996; Bastiaanssen et al., 1998; Allen et 

78 al., 2007a). The second approach is based on the ability of multispectral vegetation indices 

79 (VI), derived from surface reflectance data, to trace the crop’s growth and estimate the 

80 crop coefficient (Bausch and Neale, 1989; Pôças et al., 2020). This approach is unable to 

81 detect the reduction in ETc due to stomata closure, but it generates spatially-distributed 

82 crop coefficients that, multiplied by a reference evapotranspiration (estimated daily from 

83 local weather station data), provide estimates of field-specific potential (stomatal 

84 conductance not limited by water deficit) evapotranspiration (González-Dugo et al., 2009).

85 Various forms of the remote sensing surface energy balance approach have been applied 

86 to upscale the estimations of ET to project scale. For example, Droogers and Bastiaanssen 

87 (2002) combined the hydrological model SWAP with ET estimated with the SEBAL 

88 (Surface Energy Balance Algorithm for Land; Bastiaanssen et al. 1998) model to evaluate 

89 the performance of an irrigation district in Turkey. Similarly, Taghvaeian et al. (2018) 

90 calculated a water balance, with ET also estimated with SEBAL, to obtain irrigation 

91 performance indicators for an irrigation district in Southern California. Allen et al. (2007a) 

92 mapped ET across irrigation districts in Idaho, California, and New Mexico using METRIC 

93 (Mapping Evapotranspiration at high Resolution with Internalized Calibration; Allen et al., 

94 2007b), and Santos et al. (2008) used the same model for similar purposes in southern 

95 Spain. The ReSET (Remote Sensing of Evapotranspiration; Elhaddad and García, 2011) 

96 model has been used to map ET across an irrigation district in California (Elhaddad and 

97 García, 2014) and to feed a water balance for obtaining irrigation performance assessment 

98 indicators in an irrigation district in Spain (Chalghaf et al., 2015). However, the VI-based 

99 crop coefficient approach has been used less on a large scale (examples are in González-

100 Dugo et al., 2013 and Segovia-Cardozo et al., 2019) but more for irrigation advisory 

101 services (D'Urso et al., 2010; Melton et al., 2012; Calera et al., 2017).
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102 In both approaches, remote measurements are taken at time intervals, which depend on 

103 the sensor overpass frequency. To estimate ETc for dates between measurements, daily 

104 interpolation is needed, and the error due to this interpolation may depend on the remote 

105 sensing approach used to estimate ETc. Satellite overpass frequency varies from satellite 

106 to satellite. In addition, a compromise between temporal and spatial resolution is needed 

107 to meet the goals of agricultural applications. High spatial resolution (< 100 m) is 

108 required in most cases for these applications. The number of sensors on board of satellites 

109 that meet the condition of high spatial resolution is limited. This limitation is even greater 

110 if the energy balance approach is to be used, i.e., if measurements of radiometric surface 

111 temperature are needed. A time resolution of less than one week is rare; two to four weeks 

112 is common, although the use of constellations of satellites may help in some situations to 

113 increase the time resolution. These constraints condition the accuracy of the two main 

114 remote sensing approaches to estimating ETc, making the selection of the method a 

115 challenge.

116 The objective of this study was a comparative evaluation of the two remote sensing 

117 approaches for the estimation of ETc in the performance assessment of irrigation schemes. 

118 The two methods evaluated were the FAO56 method (Allen et al., 1998) with crop 

119 coefficients derived from a vegetation index (following Mateos et al., 2013), and the 

120 METRIC model (Allen et al., 2007a) as executed by the Earth Engine Evapotranspiration 

121 Flux (EEFlux) application (Allen et al., 2015). The evaluation used the Río Dulce irrigation 

122 scheme (in the province of Santiago del Estero, Argentina) as a study case. First, the study 

123 compared estimations of ETc (for individual crops and for the entire cultivated area of 

124 8005 ha) using standard (not field-specific) crop coefficients with estimations using field-

125 specific, VI-based crop coefficients. Second, in a set of 30 fields where the irrigation 

126 schedule was known, the study compared the field-specific, VI-based approach with 

127 METRIC. Finally, the study included an evaluation of errors in the estimation of the crop’s 

128 evapotranspiration due to the interpolation to daily values of single crop coefficients and 

129 basal crop coefficients determined at hypothetical satellite overpass  intervals of longer 

130 than one day. The evaluation of interpolation errors was related to the comparative 

131 evaluation of the two remote sensing approaches for ETc estimation as both approaches 

132 were based on measurements made at discontinuous satellite overpass dates, so 

133 interpolation at intermediate dates was necessary.

134

135 22.. MMaatteerriiaall aanndd MMeetthhooddss
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136 2.1. Remote sensing-based evapotranspiration models

137 2.1.1. The FAO56 method to obtain Kc and VI-derived Kc

138 The method proposed by the FAO to estimate ETc consists of multiplying a reference 

139 evapotranspiration by a crop coefficient (Doorenbos and Pruitt, 1977; Allen et al., 1998). 

140 Reference evapotranspiration (ETo) is calculated with the Penman-Monteith equation 

141 (Allen et al., 1998) from meteorological variables measured at ground weather stations. 

142 The crop coefficient, Kc, is the quotient between the ETc of the crop concerned and ETo. 

143 Therefore:

ETc = KcETo (1)

144 Kc may be a single coefficient or be split into two components (dual approach), direct 

145 evaporation from the soil surface and plant transpiration (Allen et al., 1998):

Kc = KcbKs + Ke (2)

146 where Kcb is the basal crop coefficient (addressing plant transpiration under unstressed 

147 conditions), Ks quantifies the reduction in crop transpiration due to soil water deficit, and 

148 Ke is the soil evaporation coefficient.

149 The standard procedure (Allen et al., 1998) for developing the Kc and Kcb curves requires 

150 three-characteristic value: those during the initial stage (Kc ini, Kcb ini), the mid-season stage 

151 (Kc mid, Kcb mid) and at the end of the late season stage (Kc end, Kcb end). The curves are 

152 constructed by connecting straight-line segments through each of the four growth stages 

153 (initial, crop development, mid-season, and late season). Horizontal lines are drawn 

154 through Kc ini in the initial stage and through Kc mid in the mid-season stage. Straight lines 

155 are drawn from Kc ini to Kc mid in the course of the crop development stage and from Kc mid to 

156 Kc end in the course of the late season stage. Herein, the Kc and Kcb curves developed like 

157 this will be called Kc,standard and Kcb,standard, respectively.

158 Since both Kcb and multispectral VIs obtained by remote sensing techniques represent crop 

159 development (Choudhury et al. 1994), Kcb can be derived from VI (Bausch and Neale, 

160 1987; Neale et al., 1989). The relation between some VIs and the ground cover fraction (fc) 

161 is approximately linear in the range from bare soil to near full ground cover (Huete et al., 

162 1985; González-Dugo and Mateos, 2008), thus:

fc =
VI ‒ VImin

VImax ‒ VImin
(3)
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163 where VImin and VImax are the values of VI for fc = 0 and fc = 1, respectively. On the other 

164 hand, researches have obtained different linear relationships between VIs and Kcb (Pôças 

165 et al., 2020). Mateos et al. (2013) validated the following normalized form of these linear 

166 relationships to obtain the generic expression:

Kcb,VI = min[Kcb,max,
Kcb,max

fc,Kcbmax( VI ‒ VImin

VImax ‒ VImin)] (4)

167 According to this equation, the linear increase of Kcb with VI is from the value of VI (VImin) 

168 corresponding to bare soil (fc = 0) to the value of VI (VImax) corresponding to pure 

169 vegetation (fc = 1). Kcb,max is the maximum value of Kcb, generally equal to Kcb,mid. Kcb,mid

170 corresponds to fc = fc,max (Pereira et al., 2020ab). If for some reason the crop in the region 

171 of interest is different from the standard crop, then a local value of Kcb,max can be used in 

172 Eq. 10, in this case associated to its specific fc (fc,Kcbmax). Since fc = 1 is not always achieved 

173 (Allen and Pereira, 2009), Eq. 4 ensures that the computed Kcb does not exceeds Kcb,max, 

174 (achieved at fc = fc,Kcbmax), and also ensures coherence with the FAO-56 method to 

175 determine actual Kcb. Although Allen et al. (1998) recommended a minimum value of Kcb

176 close to 0.15, for simplicity, Eq. 4 assumes Kcb = 0 for fc = 0. Setting Kcb to zero 

177 acknowledges the fact that evaporation of bare soil will reduce to zero or nearly zero over 

178 extended drying periods (Allen et al., 2005). Anyway, choosing a minimum Kcb closer to 

179 0.15 would have required adapting Eq. 4, but the effect on the comparisons presented in 

180 this paper would have been negligible.

181 Ks equals one for unstressed crops. Thus, the potential crop coefficient of a specific crop 

182 may be obtained from Eq. 2, making Ks = 1. For water-stressed crops, Ks may be computed 

183 as (Allen et al., 1998):

Ks =
TAW ‒ Dr

(1 ‒ p) TAW
If Dr < (1-p) TAW (5a)

Ks = 1 If Dr ≥ (1-p) TAW (5b)

184 where Dr is the root zone water depletion (mm), TWA is the root zone total available 

185 water (mm) and p is the fraction of the TAW below which transpiration is reduced. The 

186 depth of the root zone (Zr, m) may be calculated as:

Zr = Zr min + (Zr max ‒ Zr min)
Kcb

Kcb,max
(6)
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187 where Zr max (m) and Zr min (m) are the maximum effective root depth and the effective root 

188 depth during the initial stage of crop growth. Therefore, TAW is

TAW = 1000(θFC ‒ θWP)Zr (7)

189 where θFC and θWP are the water content at field capacity and wilting point, respectively (in 

190 m3 m-3).

191 Dr,i in Eq. 5a may be computed with a daily water balance in the soil root zone as:

Dr, i = Dr, i ‒ 1 + ETc, i ‒ Pi ‒ Ii + (ROi + DPi) (8)

192 where Dr,i is the root zone water depletion at the end of day i (mm), Dr,i-1 (mm) is the root 

193 zone water depletion at the end of the previous day, i-1, and ETc,i, Pi, Ii, ROi, and DPi are 

194 crop evapotranspiration, precipitation, irrigation, rainfall runoff from the soil surface, and 

195 water loss out of the root zone by deep percolation, respectively, on day i and expressed in 

196 mm. Pi was measured, ETc,i was computed with equations 1 to 5, ROi was computed with 

197 the curve number method (NRCS, 2004), DPi was estimated as the soil water in excess of 

198 field capacity, and Ii was simulated (according to a given irrigation strategy) or measured, 

199 depending on the application (sections 2.4 and 2.5).

200 The soil evaporation coefficient, Ke, is calculated taking into consideration topsoil wetting 

201 events (due to irrigation or rainfall) and the availability of energy at the soil surface (Allen 

202 et al., 1998):

Ke = min[Kc maxfew;Kr(Kc max ‒ Kcb)] (9)

203 where Kr is an evaporation-reduction coefficient dependent on the cumulative depth of 

204 water depleted from the topsoil, Kc max is the maximum value of Kc, following rain or 

205 irrigation (with Kcb = Kcb max), and few is the fraction of the soil that is both exposed (1 – fc) 

206 and wetted. Following rain or irrigation, Kr = 1. As the soil surface dries, Kr is reduced 

207 linearly with cumulative evaporation, to become zero when no water is left for 

208 evaporation in the upper soil layer (Allen et al., 1998).

209 Therefore, the application of the dual crop coefficient requires computing a water balance 

210 at the upper soil layer and a soil root zone water balance if crop water stress is to be 

211 considered. Computing any of the two water balances implies knowing the dates and 

212 depths of irrigation and rainfall events on every field, which is rarely viable when dealing 

213 with large irrigation areas. In this case, the single crop coefficient approach is more 
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214 practical since it assumes typical (not field-specific) wetting conditions. However, 

215 satellites provide VIs across large irrigation areas at high spatial resolution, thus one may 

216 want to profit from field-specific VIs to improve the accuracy and spatial resolution of the 

217 estimation of ETc. The most straightforward alternative would be applying Eq. 1 with Kc

218 estimated using one relationships between VI and Kc. For instance, this was the method 

219 chosen by Segovia-Cardozo et al. (2019) to estimate ETc in Spanish irrigation schemes 

220 based on the linear VI-Kc relationship proposed by Calera et al. (2005). Another 

221 alternative would be Eq. 2 with Kcb obtained from one of the published VI-Kcb linear 

222 relationships (Calera et al. 2017) and running a water balance to obtain Ke and Ks. This 

223 second option, chosen for instance by Pôças et al. (2015), requires knowing or assuming 

224 the irrigation schedules of the fields in the area of study. A third option, somehow 

225 intermediate between the two previous ones, uses field specific VIs to obtain field-specific 

226 Kcb,VI (Eq. 4) and then uses approximate soil-wetting information (rainfall data measures 

227 at local weather stations and typical irrigation frequencies) to approximate Kc to field-

228 specific conditions. One way to make such an approximation is in Mateos et al. (2013), 

229 where the approximate Kc was called the synthetic crop coefficient (Kc,synthetic) so as not to 

230 be confused with the FAO-56 single crop coefficient:

Kc,synthetic = Kc,bare soil + (1 ‒ Kc,bare soil)Kcb,VI if Kcb,VI < 1 (10a)

Kc,synthetic = 1 +
Kc max ‒ 1
Kcb,max ‒ 1(Kcb,VI ‒ 1) if Kcb,VI ≥ 1 (10b)

231 where Kc,bare soil is Ke computed with Eq. 9 applied to bare soil (Kcb = 0) and averaged on 

232 the time interval corresponding to each satellite overpass for which VI (and thus Kcb,VI) 

233 was available. If Kcb,VI > 1 on a given date, then Kc,synthetic will depend only on the Kcb,VI for 

234 that date and on the crop-characteristic parameters Kc,max and Kcb,max. Otherwise, Kc,synthetic

235 will depend on Kcb,VI on the date of concern but also on Kc,bare soil. Kc,synthetic will increase with 

236 respect to Kcb,VI as Kc,bare soil is lower. The reader may find more details about the rationale 

237 behind Eq. 10 in Mateos et al. (2013). Note that crop evapotranspiration estimated using 

238 Kc,synthetic (ETc,synthetic) is field-specific but does not take into account eventual reduction of 

239 transpiration due to stomatal closure provoked by water deficit.

240

241 2.1.2. Earth Engine Evapotranspiration Flux (EEFlux) application

242 The Earth Engine Evapotranspiration Flux (EEFlux) application (Allen et al., 2015) uses 

243 Landsat imagery archives on the Google Earth Engine platform to calculate the daily 

244 evapotranspiration on the 30 × 30 m scale. Automatically calibrated for each Landsat 
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245 image, EEFlux produces and provides maps of actual ETc estimations, surface temperature, 

246 normalized difference vegetation index (NDVI), reference evapotranspiration, and albedo 

247 for any Landsat 5, 7 or 8 scene. Reference evapotranspiration is computed from gridded 

248 hourly and daily weather data stored on Earth Engine using the ASCE Standardized 

249 Penman-Monteith method (ASCE–EWRI, 2005) (ETr) and the FAO-56 method (ETo) (Allen 

250 et al., 1998). EEFlux can be freely accessed in https://eeflux-level1.appspot.com/.

251 The estimation of actual ETc in EEFlux is based on the METRIC model (Allen et al., 2007a; 

252 Irmak et al., 2012). METRIC is a satellite-based image-processing model for calculating 

253 actual evapotranspiration based upon the energy balance at the land surface. The latent 

254 heat flux (λET) is calculated from the surface energy balance for the moment captured in 

255 satellite image acquisition as:

λET = Rn – G – H (11)

256 where G is the soil heat flux, H is the sensible heat flux, and Rn is the net radiation, all units 

257 in Wm-2. Net radiation is computed from solar radiation estimation by taking into 

258 consideration the atmospheric transmissivity, surface reflectance, and longwave emission 

259 balance using satellite shortwave and thermal observation data. Soil heat flux is estimated 

260 as a ratio of net radiation using surface conditions such as vegetation and temperature 

261 observed by satellite. Sensible heat flux (H, W m−2) is expressed as

H = ρacp
∆T
ra

(12)

262 where ρa (kg m−3) is the air density, cp (J kg−1 K−1) is the specific heat of air at constant 

263 pressure, ΔT (K) is the near-surface vertical temperature difference, and ra (s m−1) is the 

264 aerodynamic resistance corresponding to ΔT. METRIC assumes that ΔT can be 

265 approximated by a linear relationship of the radiometric surface temperature (TR, K) 

266 (Bastiaanssen et al., 1998):

∆T = a + b TR (13)

267 where a and b are empirical parameters determined by means of a calibration based on 

268 the selection of ‘‘hot’’ and ‘‘cold’’ pixels within the satellite scene (Bastiaanssen et al., 

269 1998). The ΔT values for these two pixels are estimated by rearranging Eq. 12 for the 

270 selected ‘‘hot’’ and ‘‘cold’’ pixels and by using Eq. 11 to derive the respective values of H. 

271 Following the procedure proposed by Allen et al. (2007a), the ‘‘hot’’ pixel should be bare, 

272 dry soil, so λET = 0 and H = Rn - G; and the cold pixel should be a well-watered crop at full 

273 cover where λET is assumed to be 5% above that of the alfalfa reference 

https://eeflux-level1.appspot.com/
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274 evapotranspiration (ETr), computed using the standardized ASCE Penman-Monteith 

275 equation (ASCE-EWRI, 2005). The resulting evapotranspiration at the moment of the 

276 satellite image is used to calculate a fraction of reference evapotranspiration that enables 

277 the conversion of the instantaneous value into daily values of actual ET. The latent heat 

278 flux is then computed for each pixel at the instant of satellite overpass and is readily 

279 converted to instantaneous ET (ETinst):

ETinst = 3600
λET
λ (14)

280 A fraction ETrF is computed for the time of the satellite overpass:

ETrF =
ETinst

ETr

(15)

281 Finally, EEFlux calculates daily ETc (ETc,EEFlux) for each pixel by multiplying ETrF by the 

282 daily ETr computed from gridded weather data, assuming consistency between ETrF at 

283 overpass time and ETrF for the 24-hour period:

ETc,EEFlux = ETrF ETr (16)

284 The corresponding Kc (Kc,EEFlux) is calculated as the ratio between ETc,EEFlux and ETo

285 provided by the EEFlux platform. Note that ETc,EEFlux is field-specific and does take into 

286 account eventual reduction of transpiration due to stomatal closure provoked by water 

287 deficit.

288

289 2.2. Study area

290 The evaluation of methods for estimating ETc for the performance assessment of irrigation 

291 scheme was carried out in the Río Dulce irrigation scheme (SRRD, acronym in Spanish), 

292 located in the province of Santiago del Estero, Argentina, at latitude 27°47′ S and longitude 

293 64°16′ W. The area irrigated in SRRD is around 80,000 ha extending over the river alluvial 

294 plain. The climate is semiarid, mesothermal, with a mean annual rainfall of 600 mm, 

295 concentrated in summer (Morello and Adámoli, 1974). Maximum monthly rainfall occurs 

296 in January (111 mm) and minimum in July (2 mm). Mean annual ETo is 1300 mm, with 

297 peak values in December (5.6 mm d-1) and minimum in June (1.6 mm d-1). Mean annual 

298 maximum temperature is 27.5 °C (33.6 °C in January and 20 °C in June), and mean annual 

299 minimum temperature is 12.7 °C (3.7 °C in July and 19.6 °C in January). All climatic data 

300 are from the Instituto Nacional de Tecnología Agropecuaria (INTA) weather station (Fig. 
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301 1). Soils, of alluvial origin, are deep, of a silty loam texture and a low content in organic 

302 matter and nitrogen (Angueira and Zamora, 2007; Galizzi et al., 2015). The Río Dulce 

303 water is of good quality. Predominant crops are cotton and alfalfa, followed by maize, 

304 soybean, wheat, oat and vegetables (onion, melon and watermelon). Water is distributed 

305 through an open channel network according to a fixed-rotation delivery schedule with 

306 turns every 25 to 30 days, a turnout flow rate of 300 l s−1, and duration of delivery of 50 

307 min ha−1, giving a gross irrigation depth of 90 mm per irrigation. Surface irrigation is the 

308 predominant on-farm irrigation method with application efficiency and distribution 

309 uniformity of around 70 % (Angella et al., 2011). SRRD is divided into five administrative 

310 areas. This study covered two of these subsystems, APAZ-IV (canal San Martín) and El 

311 Alto. APAZ-IV includes 15,000 ha with irrigation rights (out of a total area of 70,000 ha 

312 equipped for irrigation) while El Alto covers 4,000 ha of which only 2,100 ha have 

313 irrigation rights (Fig. 1). The analysis was carried out in the 2014-15 irrigation season. In 

314 that season, the main crops in APAZ-IV were alfalfa (58 % of the area with water rights), 

315 cotton (27 %) and maize (4 %), while in El Alto the main crops were cotton (67 %) and 

316 alfalfa (12 %). Other crops (soybean, onion, melon, watermelon, and oat) were present in 

317 both subsystems but occupying relatively small areas.

318

319 2.3. Crop, weather, soils, and satellite image data

320 An updated geographical information system was provided by the Irrigation Service of 

321 SRRD, an entity that depends on the provincial government of Santiago del Estero. The 

322 geographical information contained conventional maps like roads, rivers, canals, land use, 

323 and detailed data about the irrigable plots: total area and area with permanent water 

324 right. Crop information for each field was provided by the respective managers of the 

325 APAZ-IV and El Alto subsystems for the 2014-15 irrigation season.

326 Meteorological data to compute daily ETo with the Penman-Monteith equation (Allen et al., 

327 1998) and daily rainfall were obtained from the weather station of the National Weather 

328 Service (SMN) for El Alto and from the INTA weather station for APAZ-IV (Fig. 1).

329 Soil information was taken from the soil maps of the APAZ-IV area produced by Angueira 

330 and Zamora (2007). The soils in the study area, of alluvial origin, are relatively 

331 homogeneous. Two similar soil classes (named El Simbol and La María according to the 

332 INTA classification; Etchevehere, 1976) occupy most of the area (75% of the total area and 

333 about 90% of the cultivated area). The main characteristics of the respective typical soil 

334 profiles are in Table 1. The soils, deeper than 1.5 m, do not present restriction to crop root 
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335 growth. Texture is silty loam. Soil water holding capacity in the typical soil profiles of the 

336 El Simbol and La María soil classes is 179 mm m-1 and 176 mm m-1, respectively. Soil water 

337 contents at field capacity (θFC) and wilting point (θWP) were derived from the soil water 

338 retention curves provided in Angueira and Zamora (2007) for the typical soil profiles, 

339 using the method by Rawles and Brakensiek (1982). The result was essentially the same 

340 for both soil profiles. Thus, given the relatively low resolution of the soil maps and the 

341 relative homogeneity of the soils, the values of θFC = 0.270 and θWP = 0.092 m3 m-3 were 

342 used for the whole APAZ-IV subsystem. Regarding El Alto subsystem, although it falls just 

343 outside the area covered by the available soil maps, based on the experience of INTA 

344 researchers we assumed that most cultivated soils in this subsystem belonged to either El 

345 Simbol or La María class. Therefore, in the soil water balances applied to fields in the El 

346 Alto subsystem we used the same θFC and θWP values obtained for the APAZ-IV subsystem.

347 A set of 16 NDVI images from Landsat 7 (Path/Row 229/80, 230/79 and 230/80) and 14 

348 NDVI images from Landsat 8 (Path/Row 229/80 and 230/79) was downloaded from 

349 EEFlux (Table 2). The images selected were all cloud free. Path/Rows 230/79 and 230/80 

350 covered the entire SRRD (14 images in total) while Path/Row 229/80 (16 images) 

351 covered only part of SRRD. The images were re-projected to the Coordinate Reference 

352 System POSGAR 98/Argentina 4 - "European Petroleum Survey Group" (EPSG) 22174. 

353 Geographical analysis was performed with the QGIS 3.10 (QGIS Development Team, 2019) 

354 application, a free and open-source software that supports viewing, editing, and analysis 

355 of geospatial data. The images from the same date were merged and clipped to the area of 

356 interest with QGIS. Then, the "zonal statistics" tool of QGIS was used to extract the mean 

357 NDVI value for each image and crop field date.

358

359 2.4. Analyses applied to cultivated fields in SRRD

360 The first analysis concerned all cultivated fields in El Alto and APAZ-IV (161 and 1582, 

361 respectively). ETc,standard (ETc obtained from the FAO56 standard procedure, using Kc,standard, 

362 i.e., without using remote sensing data), ETc,synthetic (ETc obtained using VI-derived 

363 Kc,synthetic), and ETc,VIopt (ETc obtained using Kcb,VI and computing Ks and Ke running the 

364 water balance simulating optimal irrigation schedule, that is, triggering irrigation when 

365 the soil water content reaches the allowable depletion) were calculated for these fields. 

366 Soil water contents at field capacity and wilting point were θFC = 0.270 and θWP = 0.092 m3

367 m-3. The crop parameters taken to apply the FAO56 method are in Table 3, as well as the 

368 number of fields and area for each crop. The growing calendars were set based on the 
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369 information from farmers and subsystem managers. Kc values were taken from FAO56 and 

370 adjusted for the frequency of wetting and climatic conditions following the 

371 recommendations of FAO56 (Allen et al., 1998) and based on the local knowledge of the 

372 first author. Values of fc,max or fc,Kcbmax were not readily available in the literature, thus we 

373 set the conservative values of 0.8 for all crops, within the range compiled in the reviews by 

374 Pereira et al. (2020ab). NDVImin was specifically obtained from the Landsat images 

375 selecting fields with bare soil, and NDVImax was set to 0.9 for all crops based on González-

376 Dugo and Mateos (2008) and Carpintero et al. (2020).

377 The second analysis used 30 fields (23 of cotton and 7 of maize) for which the actual 

378 irrigation schedule and growing itinerary (from planting to harvesting) were available. In 

379 these fields, ETc,VIact (ETc obtained using Kcb,VI and computing Ks and Ke running the water 

380 balance using actual irrigation depths) was compared with ETc,synthetic, and ETc,EEFlux. The 

381 selected fields were located in the APAZ-IV subsystem (Fig. 1), with their size ranging 

382 between 8 and 60 ha. Their soils belonged to the La María soil class, thus the characteristic 

383 water contents used in the water balance were θFC = 0.270 and θWP = 0.092 m3 m-3. Cotton 

384 planting dates were between November 1 and December 10, 2014, while all selected 

385 maize fields were planted on January 1, 2015. The number of irrigations varied between 1 

386 and 4 in the cotton fields and was 2 in the maize fields. For these fields, in addition to the 

387 images of NDVI, two other EEFlux products were downloaded: ETo and ETc,EEFlux (six 

388 Landsat 7 - Path/Row 230/79 and 230/80- and five Landsat 8 - Path/Row 230/79) (Table 

389 2). A buffer along the crop field borders was eliminated to prevent external pixel 

390 contamination. 

391

392 2.5. Simulation analysis of interpolation errors

393 The third analysis was a simulation analysis to evaluate the errors in the estimation of ETc

394 due to the interpolation to daily values of: 1) Kcb (used to obtain Kc,synthetic); and 2) Kc, both 

395 determined at hypothetical satellite overpass intervals of longer than one day. Although 

396 the context of the interpolation analysis was the application of satellite imagery to 

397 estimate ETc by the VI- and energy balance-based methods, the analysis did not need to 

398 apply those methods or use satellite imagery; it only needed assumptions about the 

399 frequency of satellite overpasses and supposedly known (“truth”) values of Kcb and Kc at 

400 the satellite overpass dates.

401 The first step for the interpolation analysis was depicting the curve representing the daily 

402 Kcb of an ideal cotton crop grown in the environment of Santiago del Estero, from 
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403 November 1 to April 15, under non-limiting conditions. This particular Kcb curve was taken 

404 as being the “truth” (“truth” as opposed to “interpolated”) for the interpolation analysis 

405 and named Kcb,truth. Second, the values of Kcb,truth corresponding to dates at intervals of 1, 5, 

406 10, 15, 20, 25, 30, 35 and 40 days were selected. This selection resulted in 9 series of 

407 values of "truth" coefficients, supposedly corresponding to their respective satellite 

408 overpass frequencies. The number of assumed satellite overpasses during the period of 

409 analysis (October 1 to May 1) varied from 212 to 5 (corresponding to assumed satellite 

410 revisit time of 1 day and 40 days, respectively). Third, the values of Kcb,truth in each series 

411 were linearly interpolated to obtain daily estimations of Kcb (named Kcb,interpolated). Fourth, 

412 Kc,synthetic was calculated from Eq. 10 replacing Kcb,VI by Kcb,interpolated. The value of Kc,bare soil, 

413 also necessary to apply Eq. 10, was Ke (Eq. 9) applied to bare soil considering rainfall 

414 events and averaged on the time interval centred on each of the assumed satellite 

415 overpasses. In order to account for the effect of weather variability, the simulation period 

416 was 30 years (July 1, 1988 to June 30, 2018), using weather data from the INTA weather 

417 station (Fig. 1). Other parameters needed in Eqs. 9 and 10 were taken from Table 3. 

418 Finally, Kc,synthetic was multiplied by daily ETo to obtain daily ETc,synthetic.

419 For the analysis of errors in the interpolation of Kc, the assumed “truth” daily Kc curve of 

420 the ideal cotton crop was generated applying the dual crop coefficient approach (Eq. 2) 

421 using Kcb,truth. Since the dual approach requires knowing the soil wetting dates, rainfall was 

422 obtained from the INTA weather station and the irrigation dates for the ideal cotton crop 

423 were simulated using the soil water balance. The simulation period and weather data were 

424 the same as for the analysis of interpolation of Kcb used to obtain Kc,synthetic (i.e., July 1, 1988 

425 to June 30, 2018, INTA weather station). Therefore, while the analysis used a unique 

426 Kcb,truth curve, the Kc,truth curve varied from year to year. Moreover, two surface irrigation 

427 strategies were simulated, consisting of refilling the soil to field capacity when the crop 

428 depleted the readily available water (estimated as 65 % of the root zone soil water holding 

429 capacity) or 80 % of the root zone soil water holding capacity, for the full and deficit 

430 irrigation strategies, respectively. Then, the values of Kc,truth corresponding to dates at 

431 intervals of 1, 5, 10, 15, 20, 25, 30, 35 and 40 days were selected and the "truth" 

432 coefficients of each series were linearly interpolated to obtain daily estimations of crop 

433 coefficient (named Kc,interpolated). Finally, Kc,interpolated was multiplied by daily ETo to obtain 

434 daily ETc,interpolated.

435 The interpolation errors were evaluated by means of the root mean square error (RMSE) 

436 of daily ETc and the relative error (RE) of seasonal ETc. The former was obtained from the 

437 square of the difference between the daily values of ETc obtained using Kc,truth and obtained 
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438 with the corresponding daily values of Kc,synthetic or Kc,interpolated. RE was computed as the 

439 relative difference between seasonal ETc computed using Kc,truth and computed with 

440 Kc,synthetic or Kc,interpolated.

441 The connection of the interpolation analysis with the comparison of methods of estimating 

442 ETc carried out in the study case is as follows. The VI-based approach used satellite data to 

443 obtain Kcb on the days of satellite overpass. If it was assumed that Kcb can be derived from 

444 VIs accurately, then the Kcb,truth curve could be reproduced with complete accuracy using 

445 daily VIs. If the temporal frequency of Kcb determination (Kcb,VI) was less than daily, then 

446 daily Kcb,VI values would have to be obtained by interpolation, thus making interpolation 

447 errors. On the other hand, the energy balance approach determined Kc as the quotient 

448 between ETc and ETo determined on the days of satellite overpass (Kc,EEFlux in our study). If 

449 it was assumed that this Kc can be obtained with complete accuracy, then the interpolated 

450 Kc,EEFlux curve would reproduce Kc,truth if satellite overpass was daily; otherwise, daily 

451 Kc,EEFlux values would have to be obtained by interpolation, thus making interpolation 

452 errors that would depend on the satellite overpass frequency.

453 The hypothesis behind the interpolation analysis is as follows. Since the evolution of VIs 

454 along the crop growing cycle follows a rather determined trend, Kcb can be interpolated 

455 confidently between dates of image acquisition. However, the VI-based approach needs a 

456 complementary procedure to account for soil wetting events (to obtain Kc,synthetic in the 

457 approach adopted in this study) and is unable to detect crop water stress. In contrast, the 

458 energy balance approach gives the crop coefficient directly, considering effects of water 

459 deficit as well, but the interpolation to daily crop coefficients may be unreliable because 

460 both numerator and denominator in the quotient ETc/ETo used to determine Kc are highly 

461 affected by day-to-day weather variability. Therefore, the objective of the interpolation 

462 analysis was to assess the errors of each method as a function of the temporal frequency of 

463 the satellite images.

464 This analysis was intended to specifically address the errors due to interpolation; 

465 therefore, it did not take into account the inaccuracy of the methods used to determining 

466 Kcb,VI, Kc,synthetic and Kc,EEFlux.

467

468 33.. RReessuullttss

469 3.1. Comparison of methods of estimating ETc
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470 Fig. 2a shows the FAO56 standard Kcb (Kcb,standard) curve for cotton, consisting of 4 straight 

471 lines. The curve was constructed before determining VI, taking the three Kcb characteristic 

472 values and the duration of the growth stages from Table 3. During the crop development 

473 and mid-season stages, Kcb,VI was less than Kcb,standard in both the APAZ-IV and El Alto 

474 subsystems. This can be seen in the mean and standard deviation of the Kcb,VI

475 corresponding to the cotton fields in both El Alto and APAZ-IV at the dates of satellite 

476 overpass (Fig. 2a). Similar observations are in Fig. 2c for the alfalfa fields. Kcb,standard refers 

477 to a pristine crop, thus the deviation of Kcb,VI from Kcb,standard reflects the cropping 

478 performance gap and points to the convenience of the field-specific approach for scheme 

479 water consumption assessment. Actually, average cotton yield in SRRD is about 3 Tn ha−1, 

480 while attainable yield (yield of the best performing crops) is 5 Tn ha−1 (Angella et al., 

481 2016). During the late season stage, the mean Kcb,VI of cotton was slightly greater than the 

482 Kcb,standard. The declining slope of the late season Kcb,standard implies the recommended 

483 practice of forcing defoliation to accelerate boll opening. The milder slope of Kcb,VI reflects 

484 the indeterminate nature of cotton that often regrows during and after the harvesting 

485 period, while weeds may proliferate below the cotton canopy (distorting the Kcb,VI

486 estimate). 

487 This discussion on Kcb can be transferred in the same terms to Kc with the addition that in 

488 Kc soil wetting also intervenes. During the cotton development mid-season stages, Kc,synthetic

489 was less than Kc,standard in both the APAZ-IV and El Alto subsystems (Fig. 2b). During the 

490 initial and early cotton development stages, Kc,synthetic on the satellite overpass dates 

491 (triangles and squares in Fig. 2b) deviated from Kc,standard, showing that the former takes 

492 into account the occurrence of rainfall and dry periods. In the case of alfalfa (Fig. 2d), the 

493 locally assumed Kc,standard, that is based on the cutting frequency in the different seasons, 

494 was greater than Kc,synthetic, especially in winter and autumn. Note that the field-to-field 

495 variability of Kc,synthetic could be evaluated not only on the dates of the satellite overpass 

496 (indicated in Fig. 2bd by standard deviation bars on the days of the satellite overpass), but 

497 also on the interpolated dates (as shown in Fig. 2bd with the area shaded by daily 

498 standard deviation bars). For the sake of brevity, we restricted the description of standard 

499 vs. VI-based Kcb and Kc to cotton and alfalfa, the two main crops in SRRD; however, similar 

500 analyses would apply to other crops.

501 Fig. 2b reinforces the recommendation of using the VI-based field-specific approach in 

502 SRRD (as Segovia-Cardozo et al., 2019, also remarked for their study area), and the 

503 adequacy of the synthetic crop coefficient approach to approximate the effect on Kc of 

504 rainfall events when field irrigation data are not available. Alternatively, one could use the 
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505 dual crop coefficient with Kcb,VI and compute the soil evaporation coefficient (Allen et al., 

506 1998) for an arbitrary irrigation schedule.

507 The results of applying one or other method on a system scale are in Table 4. Seasonal ETc

508 in APAZ-IV was greater than in El Alto, mainly due to the cropping pattern (alfalfa 

509 occupies 58 % of the area in APAZ-IV and 12 % in El Alto). Subsystem ETc was much 

510 greater (about 20 %) when using Kc,standard. The difference in system ETc estimated with 

511 Kc,synthetic and applying the dual crop coefficient with an optimal irrigation schedule 

512 (ETc,VIopt) was only 2 % (Table 4).

513 The same comparison is in Fig. 3 for the 30 selected fields with known irrigation 

514 schedules. In the sample of cotton fields, ETc,synthetic correlated very well with ETc estimated 

515 from VI and the actual irrigation schedule (ETc,VIact) (Fig. 3); however, in the maize fields 

516 ETc,synthetic was greater than ETc,VIact. Note that the water balance computed to estimate 

517 ETc,VIact takes into account ETc reduction due to water deficit, while the computation of 

518 ETc,synthetic ignores it. Fig. 3 suggests that water deficit was more pronounced in the maize 

519 fields than in the cotton fields. For economic reasons, in SRRD it is common practice to 

520 apply one irrigation only (the pre-irrigation) to the maize crops, and rely on rainfall for 

521 the rest of the growing season, while cotton crops typically receive one or two irrigations 

522 in addition to the pre-irrigation. Therefore, considering the crop water deficit could be 

523 important when estimating ET over systems such as SRRD; however, the VI-based 

524 approach is incapable of detecting the reduction in ET due to stomatal closure unless it is 

525 coupled to a water balance fed with field-specific irrigation data.

526 In theory, the energy balance approach to estimating ETc  may overcome this limitation. 

527 This was examined for the selected fields with known irrigation schedules. Fig. 4a 

528 represents Kc on the days of satellite overpass provided by EEFlux (Kc,EEFlux) against Kc,VIact. 

529 Overall, Kc,EEFlux was greater than Kc,VIact, particularly at low Kc. Part of this deviation could 

530 be due to small differences between the typical values of θFC and θWP used in the water 

531 balance and the actual values of each selected field; however, this could not be assessed. 

532 Part of the scatter (root mean square error, RMSE = 0.23) could be due to differences in 

533 the reference evapotranspiration used by EEFlux and that obtained from the weather 

534 stations. Recall that EEFlux uses gridded weather data stored in Earth Engine and the 

535 ASCE standardized Penman-Monteith equation (ASCE–EWRI, 2005) while the ETo from 

536 the weather stations is computed using measured data and FAO-56 Penman-Monteith 

537 equation (Allen et al., 1998). Nevertheless, the correlation between reference 

538 evapotranspiration derived from the two sources was unbiased and relatively good, with 

539 RMSE = 0.9 mm (Fig. 5).
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540 However, the field irrigation schedules across the SRRD system are unknown. Therefore, 

541 field daily ETc is estimated more adequately using Kc,synthetic, which is represented vs. 

542 Kc,EEFlux in Fig. 4b for the selected fields. This figure highlights deviations as a consequence 

543 of applying the Kc,synthetic method. The symbols circled with a continuous line correspond to 

544 satellite overpass dates soon after pre-irrigation and before crop emergence. Kc,EEFlux

545 detected the wet soil that resulted in high evapotranspiration (the upper and lower circle 

546 mark data points corresponding to 1 and 4 days after pre-irrigation, respectively, while 

547 the middle circle indicates data points corresponding to 3 days after pre-irrigation). 

548 Conversely, the smoothing feature of Kc,synthetic resulted in Kc,synthetic less than that actually 

549 expected for that soil surface wetness. The opposite circumstance occurred for the five 

550 data points circled with a discontinuous line: on that satellite overpass date, the plants 

551 were small or had not emerged, the previous soil-wetting event had occurred 6 days 

552 before (thus the soil surface was already dry) and a posterior rainfall event occurred 2 

553 days later. In this case, the smoothing feature of Kc,synthetic resulted in higher values than 

554 those actually expected for the soil surface wetness on the day of the satellite overpass.

555 The difficulties of applying the energy balance (for instance, using METRIC) have been 

556 overcome by platforms like EEFlux; however, the number of satellites providing thermal 

557 data remains a limitation. In our analysis of SRRD over a 12 month period, the number of 

558 useful Landsat images varied across the scheme from 9 to 29, with frequency varying from 

559 biweekly to monthly.

560 3.2. Interpolation results

561 The question is, with this frequency of images, which would be more appropriate: to 

562 interpolate Kc directly (for instance, output of the energy balance approach) or interpolate 

563 Kcb (for instance, output of the VI approach) and use an algorithm to derive Kc (for 

564 instance, the synthetic method). Fig. 6 depicts daily Kcb and Kc for the ideal cotton crop that 

565 represents the “truth” in the interpolation analysis that follows (Kcb,truth and Kc,truth, 

566 respectively). The irrigation strategy in Fig. 6 was full irrigation. Kcb,interpolated and 

567 Kc,interpolated resulted from the linear interpolation of their respective “truth” values on the 

568 assumed days of satellite overpass (marked by diamonds at the top of each Fig. 6), and 

569 Kc,synthetic resulted from applying the synthetic methodology using Kcb,interpolated as an input. 

570 Kcb,interpolated and Kc,interpolated would coincide with the respective “truth” coefficients if the 

571 satellite overpass were to be daily. Fig. 6a presents the five crop coefficient curves 

572 assuming an overpass interval of 15 days. The main observations were that Kcb,interpolated

573 represented Kcb,truth very well; Kc,interpolated fluctuated greatly capturing some of the 

574 variations of Kc,truth but missing others; and Kc,synthetic smoothed the fluctuations of Kc,truth. 
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575 Similarly, Fig. 6b presents the same five crop coefficient curves although assuming an 

576 overpass interval of 35 days. Kcb,interpolated still represented Kcb,truth quite well; Kc,interpolated

577 deviated highly from Kc,truth during most days of the initial and crop development stages; 

578 and Kc,synthetic smoothed the fluctuations of Kc,truth to a curve that was even flatter than that 

579 generated for the overpass interval of 15 days. This was just an example resulting from the 

580 specific rainfall pattern and irrigation schedule of a specific year. Fig. 7 shows the RMSE of 

581 the estimation of daily ETc with the water balance run for the 30 years of weather data 

582 under the full irrigation strategy, using either Kc,interpolated or Kc,synthetic. For short overpass 

583 intervals, the RMSE result of using Kc,synthetic was greater than that employing Kc,interpolated. 

584 The curves crossed at an overpass interval of about 4 days, reaching a practically constant 

585 difference of about 0.3 mm day−1 for overpass intervals longer than 10 days. Although the 

586 difference between both RMSE was relatively small, it was noticeable that the standard 

587 deviation of RMSE was greater using Kc,interpolated than using Kc,synthetic.

588 RE of seasonal ETc,synthetic was close to zero and showed little year-to-year variability when 

589 the water balance was run to prevent water deficit (Fig. 8a); however, under the deficit 

590 irrigation strategy, seasonal ETc,synthetic was systematically greater (bias of about 5 %) than 

591 the seasonal ETc obtained from Kc,truth (Fig. 8b). Contrarily, the RE of seasonal ETc obtained 

592 from Kc,interpolated did not differ from zero and was similar under full irrigation and deficit 

593 irrigation; however, year-to-year variability was notably large. This is important because 

594 one of the advantages of the energy balance approach is its capacity to detect ETc

595 reduction due to crop water stress.

596 Fig. 9a compares seasonal ETc,EEFlux with ETc,VIact computed for the 2014-15 irrigation 

597 season on the 30 selected fields. The satellite overpass interval for these computations 

598 varied from 24 to 66 days. It can be observed that cotton seasonal ETc,EEFlux was greater 

599 overall than the corresponding ETc,VIact (Fig. 9a). The RMSE of seasonal ETc,EEFlux vs. 

600 seasonal ETc,VIact was 75 mm and 27 mm for cotton and maize, respectively. The three 

601 satellite images that were available during the initial and early cotton development stages 

602 coincided in that particular year with dates immediately after rainfall events, so that 

603 Kc,interpolated during that period was greater than Kc,VIact on most days (an example of 

604 Kc,interpolated representative of this circumstance is in Fig. 10a). The opposite occurred for 

605 the maize fields. In the 2014 cropping season, satellite overpasses during the initial and 

606 early cotton development stages coincided with dates several days after rainfall events, 

607 when the soil surface was already dry, so that the Kc,interpolated during that period was lesser 

608 than Kc,VIact on most days. However, this deviation is not visible in Fig. 9a because the 

609 underestimation consequence of the interpolation effect was compensated for by an 
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610 overestimation of ETc during the mid-season and late season stages, when the maize crops 

611 suffered water deficit but the last satellite overpasses occurred before the deficit period 

612 (an example of Kc,interpolated representative of the two counteracting circumstances in the 

613 maize crops is in Fig. 10b).

614 Similarly to Fig. 9a, Fig. 9b compares seasonal ETc,EEFlux with ETc,synthetic. The smoothing 

615 effect of Kc,synthetic slightly reduced the discrepancy between the two approaches. This was 

616 evident for the cotton crops although the maize data points that in Fig. 9a were close to the 

617 1:1 line, in Fig. 9b were below that line (the RMSE of seasonal ETc,EEFlux vs. seasonal 

618 ETc,synthetic was 74 mm and 83 mm for cotton and maize, respectively). This reflects the 

619 incapacity of the Kc,synthetic method to account for the reduction in ETc as a consequence of 

620 the eventual crop water deficit.

621

622 44.. DDiissccuussssiioonn

623 The standard deviation bars in Figs. 2a and 2c depict an important field-to-field crop 

624 growth variation. Other authors have observed it, as well as its implications for crop water 

625 use. Using a time series of SPOT and Landsat NDVI images, Simonneaux et al. (2008) and 

626 Er-Raki et al. (2010) classified winter wheat into classes that differed greatly within an 

627 irrigation scheme in central Morocco. Seasonal evapotranspiration for those wheat classes 

628 varied between 200 and 450 mm, a range of the same order as that obtained in our study 

629 using similar methodology. For instance, in the APAZ-IV and El Alto subsystems, ETc,synthetic

630 varied between 437 and 902 mm and between 512 and 795 for cotton and maize fields, 

631 respectively. Tasumi et al. (2005) and Tasumi and Allen (2007) also reported growth 

632 variation in a variety of irrigated crops in Idaho using Landsat NDVI images. These authors 

633 did not used NDVI-derived Kc but obtained Kc directly by using an energy balance 

634 approach. Field-to-field ETc variation was not discussed in these studies although the 

635 results showed that early-planted crops consumed more water than late-growing ones 

636 (Tasumi and Allen, 2007), but in a narrower range than that observed in the APAZ-IV and 

637 El Alto subsystems. These findings and similar ones by other authors (e.g., Santos et al., 

638 2008; Gonzalez-Dugo et al., 2013; French et al., 2018; Segovia-Cardozo et al., 2019) stress 

639 the importance of exploring factors that influence irrigation decisions (Gibson et al., 

640 2018), and of going deeper into methodologies to accurately determine spatially-

641 distributed water use in irrigation schemes.

642 A crucial issue when determining ETc by using methods based on remote sensing is soil 

643 evaporation under partial ground cover. Tasumi et al. (2005) observed that the variation 
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644 in the Kc curves was considerably greater than that for the NDVI, which they attributed to 

645 the effect of wetting events on Kc, particularly during the initial and developmental growth 

646 stages. Methods based on VI are adequate for deriving Kcb but not for the soil evaporation 

647 component of Kc. Therefore, some complementary algorithm is necessary to overcome this 

648 limitation. One alternative is to run a water balance (Pôças et al., 2015) as we did to 

649 compute ETc,VIopt (for the entire subsystems) and ETc,VIact (for selected fields); however, 

650 this requires additional soil information and knowing the irrigation dates of each field, 

651 which are rarely available on a scheme scale. The synthetic crop coefficient (Mateos et al., 

652 2013) adopted in this study overcame this shortcoming by computing crop coefficients 

653 that took into account field specific Kcb while adjusting Kc to actual rain wetting events and 

654 typical irrigation frequency. The Kc,synthetic curve depicted in Figs. 2b and 2d sounds like a 

655 realistic temporal evolution, first, better adjusted to local conditions than the Kc,standard

656 curve and, second, capturing the field-to-field variation that the Kc,standard cannot do. The 

657 similarity of seasonal ETc,VIopt and ETc,synthetic in the APAZ-IV and El Alto subsystems (Table 

658 4) and the good correlation between seasonal ETc,VIact and ETc,synthetic for cotton crops (Fig. 

659 3) support the use of the Kc,synthetic methodology. Even if only partially, this methodology 

660 approximates the single and dual crop coefficients that are so discrepant when ground 

661 cover is partial (López-Urrea et al., 2009). Additionally, the potential for better adjusting 

662 Kc,standard to local conditions using a remote sensing approach (Tasumi et al., 2005; Segovia-

663 Cardozo et al., 2019) was evident in SRRD.

664 It was notable how the synthetic approach missed the effect of deficit irrigation of maize 

665 (Fig. 3). This observation prompted the comparison with an energy balance approach. 

666 EEFlux was a helpful and friendly platform allowing non-experts to apply METRIC. The 

667 comparison of Kc,EEFlux with Kc,VIact in Fig. 4a indicated that the former was greater than the 

668 latter in the range of smaller values. Ayyad et al. (2019) obtained similar results when 

669 comparing EEFlux with other satellite-based models in irrigated areas of Egypt. One of the 

670 causes of this discrepancy could be the difference between METRIC and EEFlux. Firstly, 

671 EEFlux uses gridded weather data to estimate reference evapotranspiration, while 

672 METRIC and the VI-based approach use data from weather stations. Secondly, some 

673 authors have observed that the automated EEFlux calibration algorithm could require 

674 some adjustment to reproduce manually-calibrated METRIC products for certain 

675 environments (Foolad et al., 2018). Nevertheless, the RMSE of 0.22 found in our 

676 comparison of Kc,EEFlux with Kc,synthetic was of the same order as the results of other authors 

677 who compared METRIC with other models. For instance, French et al. (2015) found that 

678 METRIC ETc estimates agreed with ETc obtained from consecutive measurements of soil 

679 water content in cotton to about 2 mm d−1. Paço at al. (2014) stated that ETc of an olive 
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680 orchard hedgerow computed using the FAO56 method agreed rather well with METRIC 

681 ETc estimations. The deviation of the crop coefficients obtained with METRIC and with the 

682 FAO56 model developed by these authors (mean bias of 18 %) was similar or even greater 

683 than the deviation observed in our comparison. Zhang et al. (2015) found a good 

684 correlation between METRIC ETc estimates of sugarcane with those of ETc computed with 

685 the FAO56 method using a VI-derived Kcb (RMSE = 0.17-0.19 mm d-1), although the former 

686 was lesser than the latter in the range of lower ETc. However, Kc obtained from METRIC 

687 agreed quite well with Kc derived from VI in the two sugarcane fields monitored by these 

688 authors. Nevertheless, other authors who carried out inter-comparison of models 

689 observed greater discrepancies. For instance, Al Zayed et al. (2016) obtained a RMSE of 2 

690 mm d−1 when comparing METRIC ETc with ETc derived from a water balance in the Gezira 

691 irrigation scheme (Sudan), with the former globally greater than the latter. Similarly, 

692 French et al. (2018) compared METRIC ETc with estimates of ETc computed with the 

693 FAO56 method (using VI-derived Kcb) obtaining that the former was about 1 and 2 mm d−1

694 greater than the latter for alfalfa and cotton, respectively, implying a significant deviation 

695 when computing seasonal ETc.

696 However, the main source of error in the estimation of seasonal ETc may derive from 

697 interpolation between spaced dates due to infrequent satellite overpass. He et al. (2017) 

698 compared METRIC ETc estimates over an almond orchard in California with 

699 measurements taken with a micrometeorological tower. Satellite revisiting time was 16 

700 days, but most images during December to March were not usable due to cloud cover. The 

701 conditions of the orchard were the ones that minimize the interpolation error (adult and 

702 uniform orchard, no rainfall, micro-irrigation). However, the mean relative difference of 

703 monthly aggregations from April to September was 10 %, within the range estimated in 

704 Fig. 8a for 15-day revisiting time. French et al. (2015) tested the impact of overpass 

705 frequency on cotton seasonal ET accuracy and showed a significant advantage in an 8-day 

706 overpass frequency compared with a 16-day observation interval. Similar results by Zhang 

707 et al. (2015) led these authors to conclude that the VI approach may be more practical for 

708 estimating sugarcane crop water use, where ground-based ETo measurements are 

709 available through on-site weather stations. Our results support this conclusion except 

710 under the following circumstances: when satellite-revisiting time is less than one week; if 

711 deficit irrigation is a common practice; or where ground-based ETo measurements are not 

712 available through automated weather stations or in a network covering all the scheme’s 

713 conditions. The first condition was not met in SRRD but the other two were. The distance 

714 from SRRD fields to the nearest weather station may be up to 5 km, and the perception of 

715 farmers and agriculturalists is that significant weather variations are evident across the 
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716 scheme on specific days. Thus, as concluded by Zhang et al. (2015) for a different 

717 environment, spatially distributed reference evapotranspiration (in this case provided by 

718 EEFlux) seems to be a better choice in SRRD than reference evapotranspiration obtained 

719 at the weather stations.

720 In summary, a combination of the two approaches evaluated in this study could be the 

721 best option, as suggested by Paço et al. (2014). Meanwhile, it is clear that scheme 

722 performance assessment based on ETc estimations interpolating satellite-derived Kc is 

723 subject to errors that advise against such applications.

724

725 55.. CCoonncclluussiioonnss

726 In the assessment of irrigation schemes, water balance-related performance indicators 

727 could be notably improved if the crop evapotranspiration estimated is field-specific, and 

728 based on remote sensing techniques. The robustness of the VI-based approach is the 

729 confidence of the daily interpolation of the VI-derived Kcb. Its disadvantages are the need 

730 of a complementary procedure to account for soil wetting events and its inability to detect 

731 crop water stress. Therefore, if deficit irrigation is a common practice (as observed in 

732 some crops in SRRD), the VI-approach will overestimate crop evapotranspiration so that 

733 remote sensing methods based on the energy balance may be more appropriate. However, 

734 when satellite overpass frequency is greater than one week (and water deficit is mild or 

735 inexistent), the interpolation of crop coefficients obtained with the energy balance 

736 approach leads to errors of ETc estimations that are greater than the errors resulting from 

737 estimating ETc using VI-derived basal crop coefficients in combination with an algorithm 

738 to consider soil evaporation. The synthetic crop coefficient was an appropriate approach 

739 to deriving field-specific VI-based crop coefficients when the dates of field irrigation 

740 events are unknown, as commonly happens in large irrigation schemes, although other VI-

741 based approaches may be as appropriate as the synthetic crop coefficient.

742 Future research should therefore investigate methods to combine both approaches to take 

743 advantage of the robustness of each of them avoiding their weaknesses.

744
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748

749 LLiisstt ooff ssyymmbboollss aanndd aaccrroonnyymmss

750 cp: specific heat of air at constant pressure [J kg-1 K-1]

751 Dr: root zone water depletion [mm]

752 DP: water loss out of the root zone by deep percolation [mm]

753 ET: evapotranspiration [mm d-1]

754 ETc,interpolated: crop evapotranspiration obtained using Kc,interpolated [mm d-1]

755 ETc,EEFlux: crop evapotranspiration obtained from the EEFlux platform [mm d-1]

756 ETc,standard: crop evapotranspiration obtained from the FAO56 standard procedure, using 

757 Kc,standard [mm d-1]

758 ETc,synthetic: ETc obtained using Kc,synthetic [mm d-1]

759 ETc,VIact: ETc obtained using Kcb,VI and computing Ks and Ke running a water balance for a 

760 given irrigation schedule [mm d-1]

761 ETc,VIopt: ETc obtained using Kcb,VI and computing Ks and Ke running a water balance for an 

762 optimal irrigation schedule that simulates irrigation when the soil water content reaches 

763 the allowable depletion [mm d-1]

764 ETc: crop evapotranspiration [mm d-1]

765 ETinst: instantaneous evapotranspiration flux at the time of satellite overpass [mm h-1]

766 ETo: (grass) reference crop evapotranspiration [mm d-1]

767 ETr: alfalfa reference crop evapotranspiration [mm d-1]

768 ETrF: reference ET fraction calculated as the ratio of the computed instantaneous ETinst

769 from each pixel to the instantaneous reference ETr (mm h-1) [-]

770 fc,max: fc corresponding to Kcb mid [-]

771 fc,Kcbmax: fc corresponding to Kcb,max [-]

772 fc: fraction of soil surface covered by vegetation (as observed from overhead) [-]

773 few: fraction of soil that is both exposed and wetted (from which most evaporation occurs) 

774 [-]
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775 G: soil heat flux [W m-2]

776 H: sensible heat flux [W m-2]

777 I: Irrigation depth [mm]

778 Kc end: crop coefficient at end of the late season growth stage [-]

779 Kc ini: crop coefficient during the initial growth stage [-]

780 Kc mid: crop coefficient during the mid-season growth stage [-]

781 Kc,VI: crop coefficient obtained from VI [-]

782 Kc,VIact: crop coefficient obtained from Kcb,VI and computing Ks and Ke running a water 

783 balance for a given irrigation schedule [-]

784 Kc,bare soil: crop coefficient for bare soil [-]

785 Kc,EEFlux: crop coefficient obtained from dividing ETc,EEFlux by reference evapotranspiration 

786 provided by EEFlux [-]

787 Kc,interpolated: daily Kc obtained by interpolation of Kc determined on days of satellite 

788 overpass [-]

789 Kc,max: maximum value of crop coefficient (following rain or irrigation) [-]

790 Kc,standard: crop coefficient obtained from segmented crop coefficient curve determined by 

791 the values of Kc at the initial, mid-season and end-season, respectively Kc ini, Kc mid and Kc end

792 [-]

793 Kc,truth: crop coefficient simulated with the daily water balance using the dual approach and 

794 assumed to be the "true" value for the interpolation analysis [-]

795 Kc,synthetic: crop coefficient obtained from Kcb,VI and Eq. 6 [-]

796 Kc: crop coefficient [-]

797 Kcb end: basal crop coefficient at end of the late season growth stage [-]

798 Kcb ini: basal crop coefficient during the initial growth stage [-]

799 Kcb mid: basal crop coefficient during the mid-season growth stage [-]

800 Kcb,interpolated: daily Kcb obtained by interpolation of VI-derived Kcb on the days of satellite 

801 overpass [-]

802 Kcb,max: maximum value of basal crop coefficient [-]
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803 Kcb,standard: basal crop coefficient obtained from segmented basal crop coefficient curve 

804 determined by the values of Kcb at the initial, mid-season and end-season, respectively Kcb 

805 ini, Kcb mid and Kcb end [-]

806 Kcb,truth: basal crop coefficient assumed to be the "true" value for the interpolation analysis 

807 [-]

808 Kcb,VI: basal crop coefficient obtained from VI [-]

809 Kcb: basal crop coefficient [-]

810 Ke: soil evaporation coefficient [-]

811 Kr: soil evaporation reduction coefficient [-]

812 Ks: water stress coefficient [-]

813 λ: latent heat of vaporization [J kg-1]

814 λET: latent heat flux [W m-2]

815 NDVI: Normalized difference vegetation index [-]

816 P: precipitation [mm]

817 p: soil water depletion fraction for no stress [-]

818 ra: aerodynamic resistance corresponding to ΔT [s m-1]

819 Rn: net radiation [W m-2]

820 RO: rainfall runoff from the soil surface [mm]

821 TR: radiometric surface temperature [K]

822 VI: vegetation index [-]

823 VImax: maximum vegetation index [-]

824 VImin: minimum vegetation index [-]

825 Zr: depth of the root zone [m]

826 Zr max: maximum effective root depth [m]

827 Zr min: effective root depth during the initial stage of crop growth [m]

828 ΔT: near-surface vertical temperature difference [K]

829 θFC: soil water content at field capacity [m3 m-3]
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830 θWP: soil water content at the permanent wilting point [m3 m-3]

831 ρa: mean air density [kg m-3]

832
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1061

1062 CCaappttiioonn ttoo ffiigguurreess

1063 Figure 1. Location of the study case Río Dulce irrigation scheme (Santiago del Estero, 

1064 Argentina), the selected irrigation subsystems (El Alto and APAZ-IV), the selected crops 

1065 fields, the two weather stations used in the study.

1066 Figure 2. Segmented curve for the standard basal crop coefficient (Kcb,standard), mean VI-

1067 derived basal crop coefficient obtained from VI (Kcb,VI) for the dates of overpass satellites 

1068 for cotton (a) and alfalfa (c). Segmented curve for the standard crop coefficient (Kc,standard), 

1069 synthetic crop coefficient on the dates of satellite overpass and daily synthetic crop 

1070 coefficient for cotton (b) and alfalfa (d). Averages are of 84 and 161 cotton crops fields 

1071 and 42 and 1344 alfalfa crops fields in the El Alto and APAZ-IV subsystems, respectively, in 

1072 season 2014-15. Vertical bars indicate standard deviations.

1073 Figure 3. Relationship between evapotranspiration estimated with the synthetic crop 

1074 coefficient (ETc,synthetic) and obtained using Kcb,VI and computing Ks and Ke running a water 

1075 balance for a given irrigation schedule and (ETc,VIact) for the 30 selected crops fields in 

1076 APAZ-IV in the season 2014-15. Triangles represent maize fields (7) and circles represent 

1077 cotton fields (23).

1078 Figure 4.Relationship between crop coefficients obtained from EEFlux (Kc,EEFlux) and the 

1079 corresponding a) crop coefficient (Kc,VIact) obtained from Kcb,VI and computing Ks and Ke

1080 running a water balance for a given irrigation schedule or b) synthetic crop 

1081 coefficients(Kc,synthetic). Triangles represent maize fields and circles cotton fields on dates of 

1082 overpass satellite in season 2014-15.

1083 Figure 5. Relationship between reference evapotranspiration provided by EEFlux 

1084 (ETo,EEFlux) and recorded at the INTA weather station (ETo,INTA) on dates of satellite 

1085 overpass in the years 2014-18.

1086 Figure 6. Evolution of Kc,truth, Kcb,truth, Kcb,interpolated, Kc,synthetic, and Kc,interpolated in the 

1087 interpolation simulation analysis for season 2014-15 and satellite overpass intervals of 15 

1088 (a) and 35 (b) days. Satellite overpass dates are indicated by diamonds. The simulation 

1089 analysis was carried out for a cotton crop in the conditions of APAZ-IV.

1090 Figure 7. Root Mean Square Error (RMSE) of daily ETc obtained from Kc,interpolated and 

1091 Kc,synthetic with respect to the “truth” value as a function of the hypothetical interval of 

1092 satellite overpass and assuming full irrigation strategy. The simulation analysis was 
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1093 carried out for a cotton crop in the conditions of APAZ-IV and 30 climate years (July 1, 

1094 1988 - June 30, 2018). The vertical bars indicate the standard deviation.

1095 Figure 8. Relative Error (RE) of seasonal ETc obtained from Kc,interpolated and Kc,synthetic with 

1096 respect to the “truth” value as a function of the hypothetical interval of satellite overpass 

1097 and assuming full (a) and deficit (b) irrigation strategy. The simulation analysis was 

1098 carried out for a cotton crop in the conditions of APAZ-IV and 30 climate years (July 1, 

1099 1988 - June 30, 2018). The vertical bars indicate the standard deviation.

1100 Figure 9. Seasonal ETc in 30 selected crop fields obtained by interpolating Kc derived from 

1101 actual and reference evapotranspiration provided by EEFlux on days of satellite overpass 

1102 represented against: a) ETc derived from interpolation of Kcb,VI on the days of satellite 

1103 overpass and computing Ks and Ke running a water balance for a given irrigation schedule 

1104 and b) ETc derived from the synthetic crop coefficient method. In a) and b), the reference 

1105 evapotranspiration was recorded at the INTA weather station. The crops were maize and 

1106 cotton in APAZ-IV grown in the season 2014-15.

1107 Figure 10. Evolution of Kcb,VI, Kc,VIact, Kc,interpolated from EEFlux (obtained by interpolating Kc

1108 derived from actual and reference evapotranspiration provided by EEFlux) and Kc,synthetic, 

1109 in a cotton field (a) and a maize field (b) from the 30 crop fields selected in APAZ-IV in the 

1110 season 2014-15. Satellite overpass dates are indicated by diamonds.

1111

1112
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TTaabbllee 11.. Properties of the typical soil profile of soil classes El Simbol and La María in the study area (Angueira and Zamora, 2007).

SSooiill ccllaassss LLaayyeerr TThhiicckknneess SSaanndd SSiilltt CCllaayy TTeexxttuurree WWaatteerr ccoonntteenntt
aatt ssaattuurraattiioonn

WWaatteerr
hhoollddiinngg
ccaappaacciittyy

EElleeccttrriiccaall
ccoonndduuccttiivviittyy ppHH OOrrggaanniicc

mmaatttteerr

(mm) (%) (%) (%) (%) (mm m-1) (dSm m-1) (%)

El Simbol A 220 25 58 17 Silty loam 48 200 0.58 7.0 3.22

B2t 310 22 60 18 Silty loam 43 180 0.46 7.2 1.55

B3 370 19 64 17 Silty loam 44 180 0.62 7.7 1.00

C1 >900 50 45 5 Silty loam 35 130 0.58 7.9 0.21

La María A 200 24 64 12 Silty loam 39 200 0.5 6.3 2.39

AC 320 28 62 10 Silty loam 36 180 0.2 7.2 1.14

C1ca 350 31 58 11 Silty loam 32 160 0.9 7.8 0.53

C2ca >870 34 60 6 Silty loam 39 170 3.5 7.9 1.16
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TTaabbllee 22.. Series of images of satellites Landsat 7 and Landsat 8 used from EEFlux plataform.

PPaatthh//RRooww SSaatteelllliittee DDaattee PPaatthh//RRooww SSaatteelllliittee DDaattee
230/79-230/80 Landsat 7 07/07/14 229/80 Landsat 8 16/01/15

229/80 Landsat 8 08/07/14 230/79 Landsat 8 23/01/15*
229/80 Landsat 8 24/07/14 230/79-230/80 Landsat 7 16/02/15*

230/79-230/80 Landsat 7 08/08/14 230/79 Landsat 8 12/03/15*
229/80 Landsat 8 09/08/14 230/79-230/80 Landsat 7 20/03/15*
230/79 Landsat 8 16/08/14 229/80 Landsat 7 29/03/15
229/80 Landsat 7 17/08/14 230/79-230/80 Landsat 7 05/04/15*
229/80 Landsat 8 25/08/14 229/80 Landsat 7 30/04/15
230/79 Landsat 8 01/09/14* 229/80 Landsat 8 08/05/15

230/79-230/80 Landsat 7 09/09/14* 229/80 Landsat 7 01/06/15
229/80 Landsat 7 18/09/14 230/79 Landsat 8 16/06/15*

230/79-230/80 Landsat 7 25/09/14*
229/80 Landsat 8 12/10/14
229/80 Landsat 7 20/10/14

230/79-230/80 Landsat 7 27/10/14*
229/80 Landsat 7 05/11/14
230/79 Landsat 8 06/12/14*
229/80 Landsat 7 23/12/14
229/80 Landsat 8 31/12/14

Path/row 230/79 includes the entire subsystems under analysis.
*Dates used to obtain ETc,EEFlux and ETo for the analysis of the 30 selected fields.
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TTaabbllee 33.. Area and number of fields for each crop in the study area, crop parameters used for computing evapotranspiration using the FAO56 standard procedure 
and from VI-derived crop coefficients. Kcb,standard: standard basal crop coefficient; Kc,standard: standard crop coefficient; Zr max: maximum effective root depth; fc,Kcbmax: 
fraction of soil surface covered by vegetation for maximum Kcb value; NDVImax and NDVImin: the Normalized Difference Vegetation Index maximum and minimum, 
respectively; p: soil water depletion fraction for no stress.

PPaarraammeetteerr AAllffaallffaa CCoottttoonn MMaaiizzee11 MMaaiizzee22 SSooyybbeeaann OOnniioonn MMeelloonn WWaatteerr--
mmeelloonn OOaatt

Total area (ha) 4353 2418 271 215 517 175 48 3 5
Number of fields 1386 245 18 20 8 40 20 4 2
Start of analysis (dd/mm) 01/07 25/09 25/11 01/07 25/11 15/02 01/07 01/07 15/04
Sowing date (dd/mm)* 01/07 15/10 01/12 01/10 01/12 15/02 15/08 01/10 15/04
Harvest date (dd/mm)* 30/06 31/03 30/04 20/01 30/04 15/10 15/12 15/11 21/10
Growth Stages (days)*

Initial 703 30 20 20 20 45 20 20 30
Develop. 1283 40 45 30 40 50 30 30 45
Mid-season 1233 65 50 40 65 50 25 30 75
Late season 443 32 35 21 25 85 17 10 40

Kcb,standard1

Initial 0.794 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Mid-season 0.834 1.15 1.15 1.15 1.10 0.90 1.00 0.95 1.10
Late season 0.804 0.50 0.15 0.15 0.30 0.90 0.70 0.70 0.15

Kc,standard1

Initial 0.874 0.40 0.52a/0.60b 0.30a/0.35b 0.52a/0.60b 0.83 0.10a/0.15b 0.30a/0.35b 0.45a/0.30b

Mid-season 0.914 1.20 1.20 1.20 1.15 1.00 1.05 1.00 1.15
Late season 0.864 0.70 0.35 0.35 0.50 1.00 0.75 0.75 0.25

Zr max (m)1 2.005 1.505 1.30 1.30 1.30 0.50 1.00 1.00 1.00
fc,Kcbmax2 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
NDVImax2 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
NDVImin 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
p1 0.55 0.65 0.50 0.50 0.50 0.30 0.45 0.40 0.55

Maize1: maize growing in summer; Maize2: maize growing in spring.
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* Dates representing typical growing practices in SRRD. These dates were used only to depict the standard crop coefficients.
a For El Alto subsystem.
b For APAZ-IV subsystem.
1FAO56 manual
2Gonzalez-Dugo et al. (2009)
3Values for the periods of winter, spring-summer, summer-autumn and autumn-winter, respectively, in SRRD.
4Average values for the local cutting periods in each growth phases along the season.
5Values based on experiences of local extension agents and INTA agronomists.
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TTaabbllee 33.. ETc,standard, ETc,VIopt and ETc,synthetic of each subsystem in season 2014-15.

SSuubbssyysstteemm EETTcc,,ssttaannddaarrdd EETTcc,,VVIIoopptt EETTcc,,ssyynntthheettiicc

(mm) (mm) (mm)
El Alto 843 720 702

APAZ-IV 999 825 810


