
Learning for Detecting Norm Violation
in Online Communities

Thiago Freitas dos Santos, Nardine Osman, and Marco Schorlemmer

Artificial Intelligence Research Institute, IIIA-CSIC
Barcelona, Catalonia, Spain

Abstract. In this paper, we focus on normative systems for online com-
munities. The paper addresses the issue that arises when different com-
munity members interpret these norms in different ways, possibly leading
to unexpected behavior in interactions, usually with norm violations that
affect the individual and community experiences. To address this issue,
we propose a framework capable of detecting norm violations and provid-
ing the violator with information about the features of their action that
makes this action violate a norm. We build our framework using Machine
Learning, with Logistic Model Trees as the classification algorithm. Since
norm violations can be highly contextual, we train our model using data
from the Wikipedia online community, namely data on Wikipedia edits.
Our work is then evaluated with the Wikipedia use case where we focus
on the norm that prohibits vandalism in Wikipedia edits.

Keywords: Norms · Norm Violation Detection · Machine Learning ·
Wikipedia Norms

1 Introduction

The aligned understanding of a norm is an essential process for the interaction
between different agents (human or artificial) in normative systems. Mainly be-
cause these systems take into consideration norms as the basis to specify and
regulate the relevant behavior of the interacting agents [9]. This is especially
important when we consider online communities in which different people with
diverse profiles are easily connected with each other. In these cases, misunder-
standings about the community norms may lead to interactions being unsuccess-
ful. Thus, the goals of this research are: 1) to investigate the challenges associated
with detecting when a norm is being violated by a certain member, usually due
to a misunderstanding of the norm; and 2) to inform this member about the fea-
tures of their action that triggered the violation, allowing the member to change
their action to be in accordance with the understanding of the community, thus
helping the interactions to keep running smoothly. To tackle these goals, our
main contribution is to provide a framework capable of detecting norm violation
and informing the violator of why their action triggered a violation detection.

The proposed framework is using data, that belongs to a specific community,
to train a Machine Learning (ML) model that can detect norm violation. We

ar
X

iv
:2

10
4.

14
91

1v
1

 [
cs

.S
I]

 3
0

A
pr

 2
02

1

2 TF dos Santos et al.

chose this approach based on studies showing that the definition of what is norm
violation can be highly contextual, thus it is necessary to consider what a certain
community defines as norm violation or expected behavior [2, 4, 16].

To investigate norm violations, this work is specifically interested in norms
that govern online interactions, and we use the Wikipedia community as a
testbed, focusing on the article editing actions. This area of research is not only
important due to the high volume of interactions that happen on Wikipedia,
but also for the proper inclusion and treatment of diverse people in these on-
line interactions. For instance, studies show that, when a system fails to detect
norm violations (e.g., hate speech or gender, sexual and racial discrimination),
the interactions are damaged, thus impacting the way people interact in the
community [8, 11].

Previous works have dealt with norms and normative systems, proposing
mechanisms for norm conflict detection [1], norm synthesis [12], norm violation
on Wikipedia [17, 3] and other online communities, such as Stack Overflow [5] and
Reddit [4]. However, our approach differs mainly in three points: 1) implementing
an ML model that allows for the interpretation of the reasons leading to detecting
norm violation; 2) incorporating a taxonomy to better explain to the violator
which features of their actions triggered the norm violation, based on the results
provided by our ML model; and 3) codifying actions in order to represent them
through a set of features acquired from previous knowledge about the domain,
which is necessary for the above two points. Concerning the last point, we note
that our framework does not consider the action as is, but a representation of that
action in terms of features and the relation of those features to norm violation
(as learned by the applied ML model). For the Wikipedia case, we represent the
action of editing articles based on the categorization introduced in [17], with
features such as: the measure of profane words, the measure of pronouns, and
the measure of Wiki syntax/markup (the details of these are later presented in
Section 4.2).

To build our proposed framework, this work investigates the combination
of two main algorithms: 1) the Logistic Model Tree, the algorithm responsible
for classifying an article edit as a violation or not; and 2) the K-Means, the
clustering algorithm responsible for grouping the features that are most relevant
for detecting a violation. The information about the relevant features is then
used to navigate the taxonomy and get a simplified taxonomy of these relevant
features.

Our experiments describe how the ML model was built based on the training
data provided by Wikipedia, and the results of applying this model to the task
of vandalism detection in Wikipedia’s article edits illustrate how our approach
can reach a precision of 78,1% and a recall of 63,8%. Besides, the results also
show that our framework can provide information about the specific group of
features that affect the probability of an action being considered a violation, and
we make use of this information to provide feedback to the user on their actions.

The remainder of this paper is divided as follows. Section 2 presents the basic
mechanisms used by our proposed framework. Section 3 describes our framework,

Norm Violation Detection 3

while Section 4 presents its application to the Wikipedia edits use case, and Sec-
tion 5 presents our experiment and its results. The related literature is presented
in Section 6. We then describe our conclusions and future work in Section 7.

2 Background

This section aims to present the base concepts upon which this work is built.
We first start with the description of the taxonomy, which we intend to use to
formalize a community’s knowledge about the features of the actions. Next, we
describe the ML algorithms applied to build our framework. First, the Logistic
Model Tree (LMT) algorithm, which is used to build the model responsible for
detecting possible vandalism; and second, the K-Means algorithm, responsible for
grouping the features of the action that are most relevant for detecting violation.

2.1 Taxonomy for Action Representation

In the context of our work, an action (executed by a user in an online community)
is represented by a set of features. Each of these features describes one aspect
of the action being executed, i.e., the composing parts of the action. The goal of
adopting this approach is to equip our system with an adaptive aspect, since by
modelling an action as a set of features allows the system to deal with different
kinds of actions (in different domains). For example, we could map the action of
participating in an online meeting by features, such as: amount of time present
in the meeting; volume of message exchange; and rate of interaction with other
participants. Besides, in the context of norm violation, the proposed approach
can use these features to explain which aspects of an action were problematic.

Defining an action through its features gives information about different as-
pects of the action that might have triggered a violation. However, it is still
necessary to find a way to present this information to the violators. The idea
is that this information must be provided in a human-readable way, allowing
the users to understand what that feature means and how different features are
related to each other. With these requirements in mind, we propose the use of
a taxonomy to present this data. This classification scheme provides relevant
information about concepts of a complex domain in a structured way [7], thus
handling the requirements of our solution.

We note that, in this work, the focus is not on building a taxonomy of features.
Instead, we assume that the taxonomy is provided with their associated norms.
Our system uses this taxonomy, navigating it to select the relevant features. The
violator is then informed about the features (presented as a subsection of the
larger taxonomy) that triggered the violation detected by our model.

2.2 Logistic Model Tree

With respect to the domain of detecting norm violations in online communities,
interpreting the ML model is an important aspect to consider. Thus, if a commu-
nity is interested in providing the violator with information about the features

4 TF dos Santos et al.

of their action that are indicative of violation, then the proposed solution needs
to work with a model that can correctly identify these problematic features.

In this work, we are interested in supervised learning, which is the ML task of
finding a map between the input and the output. Several algorithms exist that
implement the concepts of supervised learning, e.g., artificial neural networks
and tree induction. We are most concerned with the ability of these algorithms
to generate interpretable outputs, i.e., how the model explains the reasons for
taking a certain decision. As such, the algorithm we chose that contains this
characteristic is the tree induction algorithm.

The ability to interpret the tree induction model is provided by the way a
path is defined in this technique (basically a set of if-then statements), which
allows our model to find patterns in the data, present the path followed by the
model and consequently provide the reasons that lead to that conclusion.

Although induction trees have been a popular approach to solve classification
problems, this algorithm also presents some disadvantages. This has prompted
Landwehr et al. [10] to propose the Logistic Model Tree (LMT) algorithm, which
adds logistic regression functions at the leaves of the tree.

In logistic regression, there are two types of variables: the independent and
the dependent variables. The goal is to find a model able to describe the effects
of the independent variables on the dependent ones. In our context, the output
of the model is responsible for predicting the probability of an action being
classified as norm violation.

Dealing with odds is an interesting aspect present in logistic regression, since
the increase in a certain variable indicates how the odds changes for the classifica-
tion output, in this case the odds indicate the effect of the independent variables
on the dependent ones. Besides, another important aspect is the equivalence
of the natural log of the odds ratio and the linear function of the independent
variables, represented by equation 1:

ln(
p

1− p
)← β0 + β1x1 (1)

where ln is the logarithm of the odds ratio, p [0,1] is the probability of an event
occurring. β represents the parameters of the model, in our case the weights for
features of the action. After calculating the natural logarithm, we can then use
the inverse of the function to get our estimated regression equation:

p̂← εβ0+β1x1

1+εβ0+β1x1
(2)

where p̂ is the probability estimated by the regression model.
With these characteristics of logistic regression, we can see how this technique

can be used to highlight attributes (independent variables) that have relevant
influence over the output of the classifier probability.

Landwehr et al. [10] demonstrate how neither of the two algorithms described
above (Tree Induction and Logistic Regression) is better than the other. Thus,

Norm Violation Detection 5

to tackle the issues present in these two algorithms, LMT adds to the leaves of
the tree a logistic regression function.

Figure 1 presents the description of a tree generated by the LMT algorithm.
With a similar process as the standard decision tree, the LMT algorithm obtains
a probability estimation as follow: first, the feature is compared to the value
associated with that node. This step is repeated until the algorithm has reached
a leaf node, when the exploration is completed. Then the logistic regression
function determines the probabilities for the class, as described by equation 2.

Fig. 1. An example of a tree built by the LMT algorithm[10]. X1 and X2 are features
present in the dataset. F1 and F2 are the equations found by the logistic regression
model, describing the weights for each feature present in the training dataset.

2.3 K-Means Clustering Method

K-Means is a clustering algorithm with the goal of finding a number K of clus-
ters in the observed data, attempting to group the most ‘similar’ data points to-
gether. This algorithm has been used successfully in different applications, such
as feature learning [15] and computer vision [20]. To achieve this goal, K-Means
clusters the data using the nearest mean to the cluster center (calculating the
squared Euclidean distance), thus reducing the variance within the group [14].

In this work, the K-Means algorithm can be used to group the features that
may indicate an action as violation (we use the features’ weights multiplied by
their input values as indication of relevance for the classification probability).
First, after detecting a possible violation, the ML model provides the K-Means
algorithm with the set of features present in the logistic regression and their
associated values (the input multiplied by the weight). Then, based on the values
of these features, the algorithm is responsible for separating the features in two
groups: 1) those that our model found with highest values, i.g., the most relevant
for the vandalism classification; and 2) those with the lowest values, e.g., less
relevant for the vandalism classification. Lastly, the output of K-Means informs

6 TF dos Santos et al.

the framework which are the most relevant features for detecting violations (i.e.
the first group), which the framework can then use to navigate the taxonomy
and present a selected simplified taxonomy of relevant features to the violator.

3 Framework for Norm Violation Detection (FNVD)

This section presents the main contribution of our work, the framework for norm
violation detection (FNVD). The goal of this framework is to be deployed in a
normative system so that when a violation is detected, the system can enforce
the norms by, say, prohibiting the action.

The main component of our framework is the machine learning (ML) algo-
rithm behind the detection of norm violations, specifically the LMT algorithm
of Section 2.2. An important aspect to take into consideration, when using this
algorithm, is the data needed to train the model. In our work, the community
must provide the definitions of norm violations through a dataset that exempli-
fies actions that were previously labeled as norm violations. Thus, here we are
using data provided by Wikipedia, gathered using Mechanical Turk [13].

After defining the data source, our proposed approach essentially 1) collects
the data used to train the LMT model; 2) trains the LMT model to detect
possible violations and to learn the action’s features relevant to norm violations;
and 3) when violations are detected, according to the LMT model’s results, then
the action responsible for the violation is rejected and the violator is informed
about the features of their action that triggered the model output. Furthermore,
in both cases (when actions are labelled as violating norms or not), we suggest
that the framework collects feedback from the members of the community, which
can then be used as new data to retrain the ML model. This is important as
we strongly believe that communities and their members evolve, and what may
be considered a norm violation today might not be in the future. For example,
imagine a norm that states that hate speech is not allowed. Agreeing on the
features of hate speech may change from one group of people to another and may
also change over time. Consider the evaluation of the N-word, which is usually
seen as a serious racial offense and can automatically be considered a text that
violates the “no hate speech” norm. However, imagine a community of African
Americans frequently saluting each other with the phrase “Wussup nigga” and
the ML model classifying their text as hate speech. Clearly, human communities
do not always have one clear definition of concepts like hate speech, violation,
freedom of speech, etc. The framework, as such, must have a mechanism to adapt
to the views of the members of its community, as well as adapt to the views that
may change over time. While we leave the adaptation part for future work, we
highlight its need in this section, and prepare the framework to deal with such
adaptions, as we illustrate in Figure 2.

To further clarify how our framework would act to detect a norm violation
when deployed in a community, it is essential to explore the diagram in Figure 2.
Step 0 represents the training process of the LMT model, which is a fundamental
part of our approach because it is in this moment that the rules for norm viola-

Norm Violation Detection 7

Fig. 2. How the framework works when deployed in an online community.

tion are specified. Basically, after training the model, our framework would have
identified a set of rules that describe norm violation. We can portray these rules
as a conjunction of two elements: 1) the tree that is built by the LMT algorithm
on top of the collected data; and 2) the weights presented in the leaves of the tree.
These weights are the parameters of the estimated regression equation that de-
fines the probability of norm violation (depicted in Equation 2). With the trained
LMT model, the system starts monitoring every new action performed in the
community (Step 1). In Step 2, the system maps the action to features that the
community defined as descriptive of that action, which triggers the LMT model
to start working to detect if that action is violating (or not) any of the norms.
Step 3 presents the two different paths that can be executed by our system. If
the action is detected as violating a norm (Condition 1), then we argue that
the system must execute a sequence of steps to guarantee that the community
norms are not violated: 1) the system does not allow the action to persist (i.e.,
action is not executed); 2) the system presents to the user information about
which action features were the most relevant for our model to detect the norm
violation, and the taxonomy of the relevant features is presented; 3) the action
is logged by the system, allowing other community members to give feedback
about the edit attempt, thus providing the possibility of these members flagging
the action as a non-violation. The feedback collected from the users can later be
used to continuously train (Step 0) our LMT model (future work). However, if
the executed action is not detected as violating a norm (Condition 2), then the
system can proceed as follows. The action persists in the system (i.e., action is
executed), and since any model may incorrectly classify some norm violation as
non-violation, the system allows the members of the community to give feedback

8 TF dos Santos et al.

about that action, providing the possibility of flagging an already accepted ac-
tion as a violation. Getting people’s feedback on violations that go unnoticed by
the model is a way to allow the system to adapt to new data (people’s feedback)
and update the definitions of norm violations by continuously training the LMT
model (Step 0).

To obtain the relevant features for the norm violation classification (Condi-
tion 1), we use the K-Means algorithm. In our context, due to the estimated
logistic regression equation, the LMT model provides the weights for each fea-
ture multiplied by the value of these features for the action. This indicates the
influence of the features on the model’s output (i.e., the probability of an action
being classified as norm violation). With the weights and specific values for the
features, the K-Means algorithm can group the set of features that present the
highest multiplied values, which are the ones we assume that contribute the most
for the probability of norm violation. Then, by searching the taxonomy using
the group of relevant features, our system can provide the taxonomy structure
of the features that trigger norm violation, this is useful due to the explanatory
and interpretation characteristics of a taxonomy. The aim of providing this in-
formation is to clarify to the member of the community performing the action,
what are the problematic aspects of their action as learned by our model.

4 The Wikipedia Vandalism Detection Use Case

We focus on the problem of detecting vandalism in Wikipedia article edits. This
use case is interesting because Wikipedia is an online community where norms
such as ‘no vandalism’ may have different interpretations by different people. In
what follows, we first present the use case’s domain, followed by the taxonomy
used by our system, and finally, an illustration of how our proposed framework
may be applied to this use case.

4.1 Domain

Wikipedia [18] is an online encyclopedia, containing articles about different sub-
jects in any area of knowledge. It is free to read and edit, thus any person with
a device connected to the internet can access it and edit its articles. Due to
the openness and collaborative structure of Wikipedia, the system is subject to
different interpretations of what is the community’s expectation concerning how
content should be edited. To help address this issue, Wikipedia has compiled a
set of rules, the Wikipedia norms [13], to maintain and organize its content.

Since we are looking for an automated solution for detecting norm violations
by applying machine learning mechanisms, the availability of data becomes cru-
cial. Wikipedia provides data on what edits are marked as vandalism, where
vandalism annotations were provided by Amazon’s Mechanical Turk. Basically,
every article edit was evaluated by at least three people (Mechanical Turks) that
decided whether the edit violates the ‘no vandalism’ norm or not. In the context
of our work, the actions performed by the members of the community are the

Norm Violation Detection 9

Wikipedia users’ attempts to edit articles, and the norm is “Do not engage in
vandalism behavior” (which we refer to as the ‘no vandalism’ norm). It is this
precise dataset that we have used to train the model that detects norm viola-
tions. We present an example of what is considered a vandalism in a Wikipedia
article edit, where a user edited an article by adding the following text: “Bugger
all in the subject of health ect.”

4.2 Taxonomy Associated with Wikipedia’s ‘No Vandalism’ Norm

An important step in our work is to map actions to features and then specify how
they are linked to each other. We manually created a taxonomy to describe these
features by separating them in categories that describe their relation with the ac-
tion.1 In this work, we consider the 58 features described in [17] and 3 more that
were available in the provided dataset: LANG MARKUP IMPACT, the measure
of the addition/removal of Wiki syntax/markup; LANG EN PROFANE BIG
and LANG EN PROFANE BIG IMPACT, the measure of addition/removal of
English profane words. In the dataset, features ending with IMPACT are nor-
malized by the difference of the article size after edition. The main objective of
this taxonomy is to help our system present to the violator an easy-to-read ex-
planation of the reasons why their article edit was marked as violating a norm by
our model, specifying the features with highest influence to trigger this violation.

To further explain our taxonomy approach, we present in Figure 3 the con-
structed taxonomy for Wikipedia’s ‘no vandalism’ norm. We observe that fea-
tures can be divided in four main groups. The first is user’s direct actions, which
represent aspects of the user’s article editing action, e.g., adding a text. This
group is further divided in four sub-groups: a) written edition, which contains
features about the text itself that is being edited by the user; b) comment on
the edition, which contains features about the comments that users have left
on that edition; c) article after edition, which contains features about how the
edited article changed after the edition was completed; and d) time of edition,
which contains features about the time when the user made their edition. The
second group is the user’s profile, general information about the user. The third
is the page’s history, how the article changed with past editions. The last group
is reversions, which is essentially information on past reversions.2 In total, these
groups have 61 features, but due to simplification purpose, Table 1 only presents
a subset of those features.

4.3 FNVD Applied to Wikipedia Vandalism Detection

It this section, we first describe an example of how our framework can be config-
ured to be deployed in the Wikipedia community. First, the community provides
the features and the taxonomy describing that feature space (see Figure 3). Then,

1 For the complete taxonomy, the reader can refer to https://bit.ly/3sQFhQz
2 A reversion is when an article is reverted back to a version before the vandalism

occurred.

10 TF dos Santos et al.

Fig. 3. Taxonomy associated with Wikipedia’s ‘no vandalism’ norm.

Table 1. Example of Features present in the taxonomy groups.

Group Features
Written Edition LANG ALL ALPHA; LANG EN PRONOUN
Comment on Edition COMM LEN; COMM LEN NO SECT
Article After Edition SIZE CHANGE RESULT; SIZE CHANGE CHARS
Time of Edition TIME TOD; TIME DOW
User’s Profile HIST REP COUNTRY; USER EDITS DENSITY
Page’s History PAGE AGE; WT NO DELAY
Reversions HASH REVERTED; HASH IP REVERT

our framework trains the LMT model to classify norm violations based on the
data provided (Step 0 of Figure 2), which must contain examples of what that
community understands as norm violation and regular behavior.

In the context of vandalism detection on Wikipedia, the relevant actions
performed by the members of the community are the attempts to edit Wikipedia
articles. Following the diagram in Figure 2, when a user attempts to edit an
article (Step 1), our system will analyze this edit. We note here that our proposed
LMT model does not work with the action itself, but the features that describe
it. As such, it is necessary to first find the features that represent the performed
action. Thus, in Step 2, there is a pre-processing phase responsible for mapping
actions to the features associated to the norm in question. For example, an article
about Asteroid was edited with the addition of the text “ i like man!!”. After
getting this edition text, the system can compute the values (as described in
[17]) for the 61 features, which are used to calculate the vandalism probability.
For brevity reasons, we only show the values for some of these features:

1. LANG ALL ALPHA, the percentage of text which is alphabetic: 0,615385;
2. WT NO DELAY, the calculated WikiTrust score: 0,731452;
3. HIST REP COUNTRY, measure of how users from the same country as the

editor behaved: 0,155146.

After calculating the values for all features, the LMT model can evaluate
if this article edit is considered ‘vandalism’ or not. In the case of detecting
vandalism (Condition 1 of Figure 2), the system does not allow the edition to
be recorded on the Wikipedia article, and it presents to the violator two inputs.
The first is the set of features of their edit that have the highest influence on the
model’s decision to detect the vandalism. To get this set, after calculating the

Norm Violation Detection 11

probability of vandalism (as depicted in Equation 2), the LMT model provides
the features that present a positive relationship with the output. These ‘positive
features’ are then used by K-Means to create the group with the most relevant
ones (Table 2 presents an example of this process). The second input is the
selected part of the taxonomy related to chosen set of features, providing further
explanation of those features that triggered the norm violation. Additionally,
the system will log the attempt to edit the article, which eventually may trigger
feedback collection that can at a later stage be used to retrain our model.

Table 2. List of features that positively affects the probability of vandalism detection.
Total Value is the multiplication between the feature’s values and the features’ weights.
The most relevant features, as found by K-Means, are marked with an (*).

Features Total Value

WT NO DELAY* 1.08254896
HIST REP COUNTRY* 0.899847
LANG ALL ALPHA* 0.7261543
HASH REC DIVERSITY 0.15714292
WT DELAYED 0.12748878
LANG ALL CHAR REP 0.12
HIST REP ARTICLE 0.093548

The featuresWT NO DELAY ,HIST REP COUNTRY and LANG ALL
ALPHA were indicated by K-Means as the most relevant for the classification

of vandalism. With this information, our framework can search the taxonomy
for the relevant features and then automatically retrieve the simplified taxonomy
structure for these three specific features, as shown in Figure 4.

Fig. 4. Taxonomy for part of the features that were most relevant for the vandalism
classification. These features are then presented to the user with a descriptive text.

However, in case the system classifies the article edit as ‘non-vandalism’ (Con-
dition 2 of Figure 2), the Wikipedia article is updated according to the user’s
article edit and community members may provide feedback on this new article
edit, which may later be used to retrain our model (as explained in Section 3).

12 TF dos Santos et al.

5 Experiments and Results

The goal of this section is to describe how the proposed approach was applied
for detecting norm violation in the domain of Wikipedia article edits, with an
initial attempt to improve the interactions in online communities. Then, we
demonstrate and discuss the results achieved.

5.1 Experiments

Data on vandalism detection in Wikipedia articles [17] were used for the experi-
ments. This dataset has 61 features and 32,439 instances for training (with 2,394
examples of vandalism editions and 30,045 examples of regular editions). The
model was trained with WEKA [19] and evaluated using 10 folds cross-validation.

Fig. 5. The built model for the vandalism detection, using Logistic Model Tree.

5.2 Results

The first important information to note is how the LMT model performs when
classifying vandalism in Wikipedia editions. In Figure 5, it is possible to see the
model that was built to perform the classification task.3 The tree has four deci-
sion nodes and five leaves in total. Since the LMT model uses logistic regression
at the leaves, the model has five different estimated logistic regression equations,
each of these equations outputs’ the probability of an edition being a vandalism.

The LMT model correctly classifies 96% of instances in general. However,
when we separate the results in two groups, vandalism editions and regular

3 Trained model available at: https://bit.ly/3gBBkwP

Norm Violation Detection 13

editions, it is possible to observe a difference in the model’s performance. For
the regular editions, the LMT model achieves a precision of 97,2%, and a recall
of 98,6%. While for vandalism editions, the performance of the model drops,
with a precision of 78,1% and a recall of 63,8%. This decrease can be explained
by how the dataset was separated and the number of vandalism instances, which
consequently leads to an unbalanced dataset. In the dataset, the total number
of vandalism instances is 2,394 and the other 30,045 instances are of regular
editions. A better balance between the number of vandalism editions and regular
edition should improve our classifier, thus in the future we are exploring other
model configurations (e.g., ensemble models) to handle data imbalance.

Fig. 6. Number of occurrences of relevant features in vandalism detection.

The influence of each feature on determining the probability of a norm viola-
tion is provided by the LMT model (as assumed in this work, feature influence
is model specific, meaning that a different model can find a different set of rel-
evant features). The graph in Figure 6 shows the number of times a feature is
classified as relevant by the built model. Some features appear in most of the ob-
servations, indicating how important they are to detect vandalism. Future work
shall investigate if this same behavior (some features present in the actions have
more influence than other features to define the norm violation probability) can
be detected in other domains.

“LANG ALL ALPHA” recurrently appears as relevant when vandalism is
detected. This happens because this feature presents, as estimated by the LMT
model, a positive relationship with the norm violation, meaning that when a
vandalism edition is detected, this feature is usually relevant for the classification.

14 TF dos Santos et al.

6 Related Work

In this section, we present the most relevant works related to that reported in this
paper. Specifically, we reference the relevant literature that uses ML solutions
to learn the meaning of a violation, then use that to detect violations in online
communities. In addition to the specific works presented below, it is also worth
to mention a survey that studies a variety of research in the area, focusing on
norm violation detection in the domains of hate speech and cyberbullying [2].

Also investigating norm violation in Wikipedia but using the dataset from
the comments on talk page edits, Anand and Eswari [3] present a Deep Learning
(DL) approach to classify a comment as abusive or not. Although the use of DL
is an interesting approach to norm violation detection, we focus on offering inter-
pretability, i.e., providing features our model found as relevant for the detection
of norm violation. While the DL model in [3] does not provide such information.

The work by Cherian et al. [5] explores norm violation on the Stack Overflow
(SO) community. This violation is studied by analyzing the comments posted
on the site, which can contain hate speech and abusive language. The authors
state that the SO community could become less toxic by identifying and mini-
mizing this kind of behavior, which they separate in two main groups: generic
norms and SO specific norms. There are two important similarities between our
works: 1) both studies use labeled dataset from the community, considering the
relevant context; and 2) the norm violation detection workflow. The main differ-
ence is that we focus on the interpretation of the reasons that indicate a norm
violation as detected by our model, providing information to the user so they
can decide which specific features they are changing. This is possible because
we are mapping the actions into features, while Cheriyan at al. [5] work directly
with the text from the comments, which allows them to focus on providing text
alternatives to how the user should write their comment.

Chandrasekaran et al. [4] build a system for comment moderation in Reddit,
named Crossmod. Crossmod is described as a sociotechnical moderation system
designed using participatory methods (interview with Reddit moderators). To
detect norm violation, Crossmod uses a ML back-end, formed by an ensemble of
classifiers. Since there is an ensemble of classifiers, the ML back-end was trained
using the concept of cross-community learning, which uses data from different
communities to detect violation in a specific target community. Like our work,
Crossmod uses labeled data from the community to train the classifiers and the
norm violation detection workflow follows the same pattern. However, different
from our approach, Chandrasekaran et al. [4] use textual data directly, not map-
ping to features. Besides, Crossmod do not provide to the user information on
the parts of the action that triggered the violation classifier.

Considering another type of ML algorithm, Di Capua et al. [6] build a solution
based on Natural Language Processing (NLP) and Self-Oganizing Map (SOM) to
automatically detect bullying behavior on social networks. The authors decided
to use an unsupervised learning algorithm because they wanted to avoid the
manual work of labeling the data, the assumption is that the dataset is huge
and by avoiding manual labelling, they would also avoid imposing a priori bias

Norm Violation Detection 15

about the possible classes. This differs from our assumptions since we regard the
data/feedback from the community as the basis to deal with norm violation.

One interesting aspect about these studies is that they are either in the realm
of hate speech or cyberbullying, which can be understood as a sub-group of norm
violation by formalizing hate speech and cyberbullying in terms of norms that
a community should adhere to. Researchers are interested in these fields mainly
due to the damage that violating these norms can cause in the members of an
online community, and due to the available data to study these communities.

7 Conclusion and Future Work

The proposed framework, combining machine learning (Logistic Model Trees
and K-Means) and taxonomy exploration, is an initial approach on how to de-
tect norm violations. In this paper, we focused on the issue of norm violation
assuming violations may occur due to misunderstandings of norms originated by
the diverse ways people interpret norms in an online community. To study norm
violation, our work used a dataset from Wikipedia’s vandalism edition, which
contains data about Wikipedia article edits that were considered vandalism.

The framework described in this work is a first step towards detecting van-
dalism, and it provides relevant information about the problems (features) of the
action that led to vandalism. Further investigation is still needed to get a mea-
sure of how our system would improve the interactions in an online community.
The experiments conducted in our work show that our ML model has a precision
of 78,1% and a recall of 63,8% when classifying data describing vandalism.

Future work is going to focus on the use of feedback from the community
members to continuously train our ML model, as explained in Section 3. The idea
is to apply an online training approach to our framework, so when a community
behavior changes, that would be taken to indicate a new view on the rules
defining the norm, and our ML model should adapt to this new view.

Throughout this investigation, we have noticed that the literature mostly
deals with norm violation that focus either on hate speech or cyberbullying.
We aim that our approach can be applied to other domains (not only textual),
thus we are planning to explore domains with different actions to analyze how
our framework deals with a different context (since these domains would have a
different set of actions to be executed in an online community).

Acknowledgements

This research has received funding from the European Union’s Horizon 2020 FET
Proactive project “WeNet – The Internet of us”, grant agreement No 823783, as
well as the RecerCaixa 2017 funded “AppPhil” project.

References

1. Aires, J.P., Monteiro, J., Granada, R., Meneguzzi, F.: Norm Conflict Identification
using Vector Space Offsets. In: IJCNN. pp. 1–8 (2018)

16 TF dos Santos et al.

2. Al-Hassan, A., Al-Dossari, H.: Detection of Hate Speech in Social Networks: a
Survey on Multilingual Corpus. In: 6th International Conference on Computer
Science and Information Technology. pp. 83–100 (2019)

3. Anand, M., Eswari, R.: Classification of Abusive Comments in Social Media using
Deep Learning. In: 2019 3rd International Conference on Computing Methodologies
and Communication (ICCMC). pp. 974–977 (2019)

4. Chandrasekharan, E., Gandhi, C., Mustelier, M.W., Gilbert, E.: Crossmod: A
Cross-Community Learning-Based System to Assist Reddit Moderators. Proc.
ACM Hum.-Comput. Interact. 3(CSCW) (Nov 2019)

5. Cheriyan, J., Savarimuthu, B.T.R., Cranefield, S.: Norm Violation in On-
line Communities–A Study of Stack Overflow comments. arXiv preprint
arXiv:2004.05589 (2020)

6. Di Capua, M., Di Nardo, E., Petrosino, A.: Unsupervised Cyber Bullying Detection
in Social Networks. In: ICPR. pp. 432–437 (2016)

7. Fiedler, K.D., Grover, V., Teng, J.T.: An Empirically Derived Taxonomy of In-
formation Technology Structure and Its Relationship to Organizational Structure.
Journal of Management Information Systems 13(1), 9–34 (1996)

8. Gray, K.L.: Gaming out online: Black Lesbian Identity Development and Commu-
nity Building in Xbox Live. Journal of Lesbian Studies 22(3), 282–296 (2018)

9. Jones, A.J., Sergot, M., et al.: On the Characterisation of Law and Computer
Systems: The Normative Systems Perspective. Deontic logic in computer science:
normative system specification pp. 275–307 (1993)

10. Landwehr, N., Hall, M., Frank, E.: Logistic Model Trees. Machine learning 59(1-2),
161–205 (2005)

11. McLean, L., Griffiths, M.D.: Female Gamers’ Experience of Online Harassment
and Social Support in Online Gaming: A Qualitative Study. International journal
of mental health and addiction 17(4), 970–994 (2019)

12. Morales, J., Wooldridge, M., Rodŕıguez-Aguilar, J.A., López-Sánchez, M.: Off-Line
Synthesis of Evolutionarily Stable Normative Systems. Autonomous agents and
multi-agent systems 32(5), 635–671 (2018)

13. Potthast, M., Holfeld, T.: Overview of the 1st International Competition on
Wikipedia Vandalism Detection. In: CLEF (2010)

14. Rai, P., Singh, S.: A Survey of Clustering Techniques. International Journal of
Computer Applications 7(12), 1–5 (2010)

15. Rubaiat, S.Y., Rahman, M.M., Hasan, M.K.: Important Feature Selection Accu-
racy Comparisons of Different Machine Learning Models for Early Diabetes Detec-
tion. In: International Conference on Innovation in Engineering and Technology.
pp. 1–6 (2018)

16. van der Torre, L.: Contextual Deontic Logic: Normative Agents, Violations and
Independence. Annals of mathematics and artificial intelligence 37(1-2), 33–63
(2003)

17. West, A.G., Lee, I.: Multilingual vandalism detection using language-independent
& ex post facto evidence. In: CLEF Notebooks (2011)

18. Wikipedia contributors: Wikipedia — Wikipedia, the free encyclopedia (2021),
https://en.wikipedia.org/wiki/Wikipedia, [Online; accessed 22-Feb-2021]

19. Witten, I.H., Frank, E., Hall, M.A.: The WEKA Workbench. In: Data Mining:
Practical Machine Learning Tools and Techniques, pp. 403–406. Morgan Kaufmann
(2011)

20. Zheng, X., Lei, Q., Yao, R., Gong, Y., Yin, Q.: Image Segmentation Based on
Adaptive K-Means Algorithm. EURASIP J Image Video Process 2018(1), 1–10
(2018)

