1 SUPPLEMENTARY MATERIAL

- ² First evidence of microplastics occurrence in mixed surface and
- **treated wastewater from two major Saudi Arabian cities and**
- assessment of their ecological risk
- 5 Yolanda Picó^{1*}, Vasiliki Soursou¹, Ahmed H. Alfarhan², Mohamed A. El-Sheikh², Damià
- 6 Barceló^{2,3}
- ¹Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV),
 Moncada-Naquera Road Km 4.5, 46113 Moncada, Spain
- ²Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi
 Arabia
- ³Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain

^{*} Corresponding autor (Y. Picó)

E-mail address: Yolanda.Pico@uv.es

12 Index of Content

14	
15 16	Table S1. Concentration of Microplastics at Each Sampling Point of Riyadh and Al_Jubail (Items L ⁻¹)
17 18	Table S2. Characteristics of MPs found in selected studies in different types of inland watersaround the world.4
19 20	Table S3. Forms of Microplastics identified at Each Sampling Point of Ryadh and Al_Jubail (Items/L) 8
21 22	Table S4. Colors of Microplastics identified at Each Sampling Point of Ryadh and Al_Jubail (Items/L) 9
23 24	Table S5. Size of Microplastics identified at Each Sampling Point of Ryadh and Al_Jubail (Items/L) 11
25 26	Table S6. Sn of the different polymers according to Lithner et al. (2011), average % of eachpolymer found in this study, and average values of HI
27	Table S7. Calculation of PLE at each sampling point and for each city

City	Sampling site	R 1	R2	R3	Average	SDs
Riyadh	А	4.9	4.7	5.2	4.9	0.20
	В	3.0	2.7	2.5	2.7	0.20
	С	5.1	5.6	4.6	5.1	0.38
	D	1.8	1.7	2.1	1.9	0.15
	F	2.2	2.4	1.7	2.1	0.30
Al-Jubail	G	0.2	0.2	0.2	0.2	0.03
	Н	0.2	0.6	0.4	0.4	0.20
	Ι	0.2	0.1	0.2	0.2	0.04
	J	0.7	0.6	0.2	0.5	0.22

Table S1. Concentration of Microplastics at Each Sampling Point of Riyadh and Al_Jubail (Items L^{-1})

Table S2. Characteristics of MPs found in selected studies in different types of inland waters around the world.

Country	Total MPs	Water type	Polymers	Size	Color	Form	Ref.
Africa	2834–329,167 MPs/km ² or 0.02–2.19 MPs/m ³	Lake Victoria (Uganda)	PE and PP	36 % < 1mm	White >Blue > Green	Fragments>flakes>filaments>f ilm>foam	(Egessa et al., 2020)
Africa	mean of 705 particles m ⁻³	Urban stream (Johannesburg, South Africa)			White>Blue>Black	Filament> shaped objects> round> angular	(Dahms et al., 2020)
America (North)	230,000 particles/km2 (Ontario) and ~45,000 particles/km2	Lakes Eire and Ontario (Canada)	PE and PP	0.355–0.999 mm; 73%		Fragments>pellets>fibers	(Mason et al., 2020)
America (North)	9000 to 40,000 particles/km2 or 0.07-0.29 particles m ³	Lake Superior (frontier between Canada and USA)	PE and PP	>333µm<4 mm	Bue>pink>white>silver>others	Fibers	(Minor et al., 2020)
America (North)	0.011-0.469 particles/m3	4 Oregon Rivers (USA)		200-5000 μm		Fibers>Fragments	(Valine et al., 2020)
America (North)	0.44–9.7 particles/m3	Lake Mead National Recreation Area (USA)		73.1% 355–1,000 μm 26.5% w 1,000–5,600 μm	clear (33.4%) > white (18.7%) > black (17.1%) > blue (14.7%) > red (6.7%).	Fibers (68.9%)>fragments (15.6%)> films (8.9%)> foams (6.5%)>beads/pellets (0.1%)	(Baldwin et al., 2020)
America (North)	1–2.75 microplastics/m3 across the estuary (>500 μm)	Hudson and Raritan Rivers (USA)	PE, PP and rubber	Two set 250-500 μm and 500-2000 μm			(Bailey et al., 2021)
America (Central)	0.72 -3425.26 MPs m-3	Rivers of Quito (Ecuador)		>0.3 µm		Fibers>Fragments>Films	(Donoso and Rios-Touma, 2020)
America (Central)	11.9 ± 0.6 to 61.2 ± 6.1 items m-3	Lake Porto Alegre (Brazil)	PP(54%)>PE (43.3%)>Other material (0.5%each)	100-250>250-500>5-100>500- 1000>1000-3000	White transparent>Red>Blue≈Yelow >Green>Black)	Fragment>Fiber>microbead	(Bertoldi et al., 2020)
America (South)	0.9 ± 0.6 MPs m -3	Lakes across Patagonia	PET (38 %)>PU(11 %)>PP(2.9 %)>PS(2.9 %)	0.2-0.4 mm>0.4-0.6mm	Blue (42%)>Black (37%)	Fibers (67-96%)	(Alfonso et al., 2020)
Saudi Arabia	160-700 particles m3 Al- Jubail , 1867-5018 Riyadh	Artificial channels	PE>PP>PS>PET	50-100 μm>100-250μm>250- 500μm>500-1mm=<50μm>5 mm	white>red>blue>green>blac k	Fibers>fragments>spherules >others	This study

Asia	0.0070 ± 0.0033 particles/m3 River, 0.0051 ± 0.0053 particles/m3 mangroves	Cherating river and mangroves, Malaysia		0.5-1>0.1-0.5>1.0-5><0.1mm	White>Transparent>black>oth ers	Fragment>film>line>foam	(Pariatamby et al., 2020)
Asia	530 to 24,798 n/m3	Danjiangkou Reservoir (China)	PA, 24.8%>PE, 24.0%>PP, 17.1%	200–500 μm (61.4%)>500– 1000 μm (20.7%)> 75–200 μm(10%)>1000 mm (7.9%)	transparent (42.8%)>brown (40.9%)>black (5.9%)> green (3.7%)>gray (3.3%)	Fragment>fiber>film>pellet> microbead	(Lin et al., 2021)
Asia	$22,000 \pm 5-14,000 \pm 3$ items/m ³	Manas River Basin (China)	PP (22.99%)> PET (20.69%) > PS (17.24%) >PE (16.09%)	1-0.3mm>0.3-0.1mm>2- 1mm><1mm>5-2mm	White>black>transparency>re d>blue	Fiber>Fragments>Films>Other	(Wang et al., 2021)
Asia	35 ± 5 MP/m3 to 1064 ± 90 MP/m3	Freshwater Poyang Lake (China)	PP, PVC, PE, PS, PVA	MPs (0.03–1 mm)		fragments (30.2%)> films (17.2%)>fibers(29.3%)>foams (23.3%)	(Jian et al., 2020)
Asia	$(130 \pm 30) \times 10^{3}$ to $(8500 \pm 1241) \times 10^{3}$ MPs/m ³ WWF $(28.3 \pm 4) \times 10^{3}$ 1 p/L reservoirs	Water bodies of Shangai megacity (China)	PP and PE			Granule (55%) and fiber (43%) accounted for the majority of shapes in WWF, whereas fiber was the majority (86%) in the outlet river water.	(Chen et al., 2020)
Asia	$3.8\pm0.4~MP~m^3$	Ganges River (India)	Rayon>acrylic>PET>PVC	>333 µm		Fibres (91 %) and fragments (9 %)	(Napper et al., 2021)
Europe	0.3 to 618.5 items m-3	Mediterranean Rivers (France)	PP, PA, PVC, PS, PEVA, PET, PES, PUT, A	>333 µm		fibres> while fragments >spheres > and foils	(Constant et al., 2020)
Europe	≤4930 fibres·m-3	Inland Waters (Poland)	PET>PU>PS	< 1mm fibres 39 %		Only fibers	(Kaliszewicz et al., 2020)
Europe	5.57 particles m-3	Elve River	PE>PP>PS	150–5000 μm		fibres> while fragments >spheres > and foils	(Scherer et al., 2020)
Europe	231 x 10 ³ particles m ⁻³	Douro River (Portugal)		Most <40 µm		Fragment and fibers > spheres	(Prata et al., 2021)
Europe	0.15 particles.m ⁻³	Garonne River (France)	PE (44.5%), PS (30.1%) and PP (18.2%)	0.7 and 5 µm	White (32%), black (31%), and blue (14%)	Fibres not included	(de Carvalho et al., 2021)
Australia	0.40 ± 0.27 items/L	Goulburn River	PS>PA>Rayon	<1 mm 66 %	Blue>transparent	Fiber>Pellet	(Nan et al., 2020)
New Zealand	17–303 items m ⁻³	Cascades and streams	PE>PP	63-500 μm	Yellow>white/transparent	Fragment>Fiber>Film>Foam> pellet	(Dikareva and Simon, 2019)

33 **References**

- Alfonso MB, Scordo F, Seitz C, Mavo Manstretta GM, Ronda AC, Arias AH, et al., 2020. First evidence of
 microplastics in nine lakes across Patagonia (South America). Science of the Total Environment 733,
 139385. 10.1016/j.scitotenv.2020.139385.
- Bailey K, Sipps K, Saba GK, Arbuckle-Keil G, Chant RJ, Fahrenfeld NL, 2021. Quantification and
 composition of microplastics in the Raritan Hudson Estuary: Comparison to pathways of entry and
 implications for fate. Chemosphere 272, 129886.
- 40 <u>https://doi.org/10.1016/j.chemosphere.2021.129886</u>.
- Baldwin AK, Spanjer AR, Rosen MR, Thom T, 2020. Microplastics in Lake Mead National Recreation
 Area, USA: Occurrence and biological uptake. PLoS ONE 15, e0228896.
 10.1371/journal.pone.0228896.
- Bertoldi C, Lara LZ, Mizushima FAdL, Martins FCG, Battisti MA, Hinrichs R, et al., 2020. First evidence
 of microplastic contamination in the freshwater of Lake Guaíba, Porto Alegre, Brazil. Science of The
 Total Environment, 143503. https://doi.org/10.1016/j.scitotenv.2020.143503.
- Chen H, Jia Q, Zhao X, Li L, Nie Y, Liu H, et al., 2020. The occurrence of microplastics in water bodies in
 urban agglomerations: Impacts of drainage system overflow in wet weather, catchment land-uses,
 and environmental management practices. Water Research 183, 116073.
 https://doi.org/10.1016/j.watres.2020.116073.
- Constant M, Ludwig W, Kerhervé P, Sola J, Charrière B, Sanchez-Vidal A, et al., 2020. Microplastic fluxes
 in a large and a small Mediterranean river catchments: The Têt and the Rhône, Northwestern
 Mediterranean Sea. Science of the Total Environment 716, 136984.
 10.1016/j.scitotenv.2020.136984.
- Dahms HTJ, van Rensburg GJ, Greenfield R, 2020. The microplastic profile of an urban African stream.
 Science of The Total Environment 731, 138893. <u>https://doi.org/10.1016/j.scitotenv.2020.138893</u>.
- de Carvalho AR, Garcia F, Riem-Galliano L, Tudesque L, Albignac M, ter Halle A, et al., 2021.
 Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic
 pollution in the Garonne River. Science of The Total Environment 769, 144479.
 https://doi.org/10.1016/j.scitotenv.2020.144479.
- Dikareva N, Simon KS, 2019. Microplastic pollution in streams spanning an urbanisation gradient.
 Environmental Pollution 250, 292-299. 10.1016/j.envpol.2019.03.105.
- Donoso JM, Rios-Touma B, 2020. Microplastics in tropical Andean rivers: A perspective from a highly
 populated Ecuadorian basin without wastewater treatment. Heliyon 6, e04302.
 10.1016/j.heliyon.2020.e04302.
- Egessa R, Nankabirwa A, Ocaya H, Pabire WG, 2020. Microplastic pollution in surface water of Lake
 Victoria. Science of The Total Environment 741, 140201.
 https://doi.org/10.1016/j.scitotenv.2020.140201.
- Jian M, Zhang Y, Yang W, Zhou L, Liu S, Xu EG, 2020. Occurrence and distribution of microplastics in
 China's largest freshwater lake system. Chemosphere 261, 128186.
 10.1016/j.chemosphere.2020.128186.
- Kaliszewicz A, Winczek M, Karaban K, Kurzydłowski D, Górska M, Koselak W, et al., 2020. The
 contamination of inland waters by microplastic fibres under different anthropogenic pressure:
 Preliminary study in Central Europe (Poland). Waste Management and Research 38, 1231-1238.
 10.1177/0734242X20938448.
- Lin L, Pan X, Zhang S, Li D, Zhai W, Wang Z, et al., 2021. Distribution and source of microplastics in
 China's second largest reservoir Danjiangkou Reservoir. Journal of Environmental Sciences
 (China) 102, 74-84. 10.1016/j.jes.2020.09.018.
- Lithner D, Larsson Å, Dave G, 2011. Environmental and health hazard ranking and assessment of plastic
 polymers based on chemical composition. Science of The Total Environment 409, 3309-3324.
 <u>https://doi.org/10.1016/j.scitotenv.2011.04.038</u>.
- Mason SA, Daily J, Aleid G, Ricotta R, Smith M, Donnelly K, et al., 2020. High levels of pelagic plastic
 pollution within the surface waters of Lakes Erie and Ontario. Journal of Great Lakes Research 46,
 277-288. 10.1016/j.jglr.2019.12.012.

85	Minor EC, Lin R, Burrows A, Cooney EM, Grosshuesch S, Lafrancois B, 2020. An analysis of microlitter
86	and microplastics from Lake Superior beach sand and surface-water. Science of the Total
87	Environment 744, 140824. 10.1016/j.scitotenv.2020.140824.
88	Nan B, Su L, Kellar C, Craig NJ, Keough MJ, Pettigrove V, 2020. Identification of microplastics in surface
89	water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environmental
90	Pollution 259, 113865. 10.1016/j.envpol.2019.113865.
91	Napper IE, Baroth A, Barrett AC, Bhola S, Chowdhury GW, Davies BFR, et al., 2021. The abundance and
92	characteristics of microplastics in surface water in the transboundary Ganges River. Environmental
93	Pollution, 116348. https://doi.org/10.1016/j.envpol.2020.116348.
94	Pariatamby A, Hamid FS, Bhatti MS, Anuar N, Anuar N, 2020. Status of microplastic pollution in aquatic
95	ecosystem with a case study on cherating river, Malaysia. Journal of Engineering and Technological
96	Sciences 52, 222-241. 10.5614/j.eng.technol.sci.2020.52.2.7.
97	Prata JC, Godoy V, da Costa JP, Calero M, Martín-Lara MA, Duarte AC, et al., 2021. Microplastics and
98	fibers from three areas under different anthropogenic pressures in Douro river. Science of The Total
99	Environment, 145999. https://doi.org/10.1016/j.scitotenv.2021.145999.
100	Scherer C, Weber A, Stock F, Vurusic S, Egerci H, Kochleus C, et al., 2020. Comparative assessment of
101	microplastics in water and sediment of a large European river. Science of the Total Environment
102	738, 139866. 10.1016/j.scitotenv.2020.139866.
103	Valine AE, Peterson AE, Horn DA, Scully-Engelmeyer KM, Granek EF, 2020. Microplastic Prevalence in
104	4 Oregon Rivers Along a Rural to Urban Gradient Applying a Cost-Effective Validation Technique.
105	Environmental Toxicology and Chemistry 39, 1590-1598. 10.1002/etc.4755.
106	Wang G, Lu J, Li W, Ning J, Zhou L, Tong Y, et al., 2021. Seasonal variation and risk assessment of
107	microplastics in surface water of the Manas River Basin, China. Ecotoxicology and Environmental
108	Safety 208, 111477. 10.1016/j.ecoenv.2020.111477.

Table S3.	Forms of	Microplast	ics identifi	ed at Eacl	h Sampling	Point of	Ryadh and	Al_Jubail	(Items/L)
City	Site	R1	R2	R3	Mean	SDs	%	Mean %	RSD (%)
				Fibers					
Riyadh	А	3.1	2.2	3.8	3.0	0.80	62	59	5.2
	В	1.2	2.0	1.5	1.6	0.40	57		
	С	3.2	3.1	2.9	3.1	0.15	60		
	D	1.2	0.9	1.0	1.0	0.15	55		
	F	1.0	1.5	1.5	1.3	0.20	63		
Al-Jubail	G	0.2	0.1	0.09	0.1	0.04	58	60	2.1
	Н	0.2	0.3	0.2	0.2	0.09	60		
	Ι	0.1	0.1	0.1	0.1	0.01	60		
	J	0.4	0.4	0.1	0.3	0.14	61		
							Total	60	3.9
					Spheru	ıles			
Riyadh	А	0.7	1.0	0.6	0.8	0.21	16	15	15.9
	В	0.4	0.5	0.4	0.4	0.06	16		
	С	1.0	0.9	0.8	0.9	0.10	18		
	D	0.3	0.25	0.34	0.3	0.04	16		
	F	0.4	0.3	0.01	0.2	0.20	11		
Al-Jubail	G	0.03	0.02	0.04	0.03	0.005	14	14	8.9
	Н	0.07	0.05	0.07	0.06	0.012	16		
	Ι	0.05	0.01	0.03	0.02	0.013	13		
	J	0.12	0.07	0.01	0.07	0.055	13		
							Total	15	13.3
					Fragme	ents			
Riyadh	А	0.6	0.9	0.6	0.7	0.173	14	15	14.6
	В	0.6	0.2	0.3	0.4	0.208	13		
	С	0.5	1.2	0.8	0.8	0.351	16		
	D	0.2	0.4	0.4	0.3	0.115	18		
	F	0.3	0.3	0.2	0.3	0.058	13		
Al-Jubail	G	0.03	0.04	0.02	0.03	0.008	14	15	8.5
	Н	0.05	0.07	0.07	0.06	0.012	16		
	Ι	0.01	0.01	0.05	0.02	0.022	13		
	J	0.09	0.10	0.04	0.08	0.032	15		
							Total	15	11.7
					Othe	er			
Riyadh	А	0.52	0.58	0.18	0.4	0.216	9	10	19.9
	В	0.78	0.02	0.78	0.5	0.439	10		
	С	0.39	0.37	0.59	0.4	0.122	8		
	D	0.16	0.17	0.12	0.5	0.026	11		
	F	0.42	0.34	0.41	0.5	0.044	12		
Al-Jubail	G	0.02	0.00	0.06	0.03	0.033	13	11	19.6
	Н	0.12	0.18	0.04	0.11	0.070	10		
	Ι	0.05	0.00	0.02	0.02	0.023	11		
	J	0.11	0.03	0.01	0.05	0.053	10		
							Total	10	16.7

с 1 π. • 1 <u>/т</u> /**T** .

City	Site	R1	R2	R3	Mean	SDs	%	Mean %	RSD (%)
					White/Tr	ansparent			
Riyadh	А	2.1	1.9	2.1	2.0	0.12	41	38	20
	В	1.2	1.1	1.0	1.1	0.10	40		
	С	2.0	3.0	1.9	2.3	0.62	45		
	D	0.7	0.7	0.0	0.5	0.41	25		
	F	0.9	1.0	0.7	0.8	0.15	40		
Al-Jubail	G	0.1	0.1	0.1	0.1	0.02	40	43	15
	Н	0.1	03	0.2	0.2	0.10	40		
	I	0.1	0.1	0.1	0.1	0.02	53		
	I	0.1	0.1	0.1	0.1	0.11	40		
	J	0.5	0.2	0.1	0.2	0.11	Total	40	18
					D	ad	10141	40	10
D'ara illa	•	1.02	1.50	1.20	1.2	0.14	27	25	2.0
Riyadh	A	1.23	1.50	1.50	1.5	0.14	27	25	5.9
	B	0.75	0.68	0.62	0.7	0.06	25 25		
		0.45	0.42	0.52	1.5	0.11	25		
		0.45	0.45	0.52	0.5	0.05	25		
A 1 T 1 '1	F	0.55	0.01	0.45	0.5	0.04	25	20	20.0
Al-Jubail	G	0.13	0.04	0.05	0.07	0.05	37	28	20.9
	Н	0.04	0.16	0.10	0.10	0.06	25		
	l	0.05	0.03	0.05	0.04	0.01	25		
	J	0.18	0.15	0.05	0.13	0.06	25		
						1	Total	27	14.6
					BI	ue	• •	• •	
Riyadh	A	0.98	0.94	1.04	1.0	0.050	20	20	1.5
	B	0.60	0.60	0.50	0.6	0.059	21		
	C	1.02	1.11	0.93	1.0	0.092	20		
	D	0.36	0.34	0.42	0.4	0.038	20		
	F	0.44	0.49	0.34	0.4	0.073	20		
Al-Jubail	G	0.05	0.00	0.05	0.03	0.028	16	19	11.6
	Н	0.03	0.13	0.08	0.08	0.048	20		
	Ι	0.05	0.00	0.05	0.03	0.029	22		
	J	0.14	0.10	0.05	0.10	0.045	19		
							Total	20	7.4
					Gre	een			
Riyadh	А	0.20	0.20	0.20	0.2	0.000	4	4	13.1
	В	0.15	0.14	0.12	0.1	0.013	5		
	С	0.25	0.28	0.23	0.2	0.023	4		
	D	0.05	0.05	0.10	0.1	0.029	4		
	F	0.10	0.10	0.05	0.1	0.029	4		
Al-Jubail	G	0.05	0.00	0.00	0.02	0.029	8	7	13.2
	Н	0.00	0.05	0.05	0.03	0.029	5		
	Ι	0.00	0.00	0.05	0.02	0.029	11		
	J	0.05	0.00	0.00	0.02	0.029	3		
							Total	6	13.1
					Bla	ack			
Riyadh	A	0.15	0.20	0.20	0.18	0.030	4	5	31.9

Table S4. Colors of Microplastics identified at Each Sampling Point of Ryadh and Al_Jubail (Items/L)

	В	0.10	0.15	0.15	0.13	0.029	5		
	С	0.15	0.17	0.14	0.18	0.014	4		
	D	0.05	0.05	0.05	0.13	0.002	7		
	F	0.10	0.10	0.05	0.08	0.029	4		
Al-Jubail	G	0	0	0	0	0	0	0	0.0
	Н	0	0	0	0	0	0		
	Ι	0	0	0	0	0	0		
	J	0	0	0	0	0	0		
							Total	5	31.0
					Ot	ther			
Riyadh	А	0.1	0.1	0.05	0.2	0.003	4	1	39.8
	В	0.2	0.2	0.2	0.2	0.029	4		
	С	0.5	0.2	0.2	0.05	0.002	4		
	D	0.05	0.00	0.00	0.03	0.029	4		
	F	0.00	0.00	0.00	0.05	0.000	4		
Al-Jubail	G	0	0	0	0	0	0	0	
	Н	0	0	0	0	0	0		
	Ι	0	0	0	0	0	0		
	J	0	0	0	0	0	0		
							Total	4	39.8

City	Site	R1	R2	R3	Mean	SDs	%	Mean %	RSD (%)
					<50	μm			
Riyadh	А	0.4	0.6	0.5	0.5	. 0.09	10	10	1
	В	0.2	0.3	0.2	0.3	0.05	10		
	С	0.4	0.7	0.5	0.5	0.14	10		
	D	0.1	0.2	0.2	0.2	0.04	10		
	F	0.2	0.3	0.2	0.2	0.07	10		
	G	0.0	0.0	0.0	0.0	0.00	10	10	-
Al-Jubail	G	0.0	0.0	0.0	0.0	0.00	10	10	5
	H	0.0	0.1	0.0	0.0	0.03	10		
	I I	0.0	0.0	0.0	0.0	0.00	10		
	J	0.1	0.1	0.0	0.0	U.US Total	10	10	3
					50-10	0 μm		10	5
Riyadh	А	1.6	1.7	1.9	1.7	0.14537	35	35	0.2
5	В	1.0	1.0	0.9	1.0	0.05685	35		
	С	1.6	2.1	1.7	1.8	0.23731	35		
	D	0.6	0.6	0.7	0.7	0.08769	35		
	F	0.7	0.9	0.6	0.7	0.14557	35		
	~								•
Al-Jubail	G	0.1	0.1	0.1	0.07	0.009	35	35	2.0
	H	0.1	0.2	0.1	0.14	0.093	36		
	I	0.1	0.0	0.1	0.05	0.014	35		
	J	0.2	0.2	0.1	0.17	0.087	35	25	1.0
					>100.2	250 um	lotal	35	1.2
Rivadh	Δ	1 23	1 1 2	1.40	/100-2	Δ130 0 130	25	25	0.4
Kiyaun	R	0.75	0.65	0.67	1.5	0.139	25	25	0.4
	C	1.27	1.33	1.25	1.3	0.043	25		
	D	0.45	0.41	0.56	0.5	0.043	25		
	F	0.55	0.59	0.46	0.5	0.062	25		
	-	0.000	0.07	0110	0.12	0.002			
Al-Jubail	G	0.06	0.04	0.05	0.05	0.011	25	25	1.2
	Η	0.04	0.15	0.11	0.10	0.057	25		
	Ι	0.05	0.02	0.05	0.04	0.013	26		
	J	0.18	0.14	0.05	0.12	0.063	25		
							Total	25	0.8
D' 11		0.74	0.61	>250-	-500 μm	0.126	1.5	1.5	1.7
Riyadh	A	0.74	0.61	0.88	0.7	0.136	15	15	1.5
	В	0.45	0.35	0.42	0.4	0.048	15		
		0.76	0.72	0.79	0.7	0.033	15		
	D E	0.27	0.22	0.35	0.3	0.066	15		
	Г	0.33	0.32	0.29	0.3	0.019	15		
Al-Jubail	G	0.04	0.02	0.03	0.03	0.008	15	15	2.8
	Н	0.02	0.08	0.07	0.06	0.031	15		
	Ι	0.03	0.01	0.03	0.02	0.009	15		
	J	0.11	0.08	0.03	0.07	0.036	14		

Table S5. Size of Microplastics identified at Each Sampling Point of Ryadh and Al_Jubail (Items/L)

							Total	15	2.0
		>500-100	0 µm						
Riyadh	А	0.49	0.42	0.57	0.494	0.074	10	11	19.3
	В	0.30	0.24	0.27	0.272	0.027	10		
	С	0.51	0.50	0.51	0.494	0.005	10		
	D	0.18	0.15	0.23	0.272	0.038	15		
	F	0.22	0.22	0.19	0.210	0.018	10		
Al-Jubail	G	0.02	0.01	0.02	0.020	0.005	10	10	0.0
	Н	0.02	0.06	0.04	0.039	0.021	10		
	Ι	0.02	0.01	0.02	0.016	0.006	10		
	J	0.07	0.05	0.02	0.049	0.024	10		
							Total	10	31.0
					>1000	um			
Riyadh	А	0.2	0.2	0.3	0.24	0.054	5	7	45.4
	В	0.1	0.1	0.2	0.15	0.035	5		
	С	0.3	0.2	0.3	0.24	0.042	5		
	D	0.1	0.1	0.1	0.15	0.020	8		
	F	0.1	0.1	0.0	0.26	0.003	12		
Al-Jubail	G	0.0	0.0	0.0	0.01	0.004	5	5	58.3
	Η	0.0	0.0	0.0	0.01	0.010	4		
	Ι	0.0	0.0	0.0	0.01	0.004	5		
	J	0.0	0.0	0.0	0.03	0.009	7		
							Total	6	41.1

- **Table S6.** Sn of the different polymers according to Lithner et al. (2011), average % of each polymer found in this study, and average values of HI

Polymer	Sn (category)	Mean % of polymers	HI
PP	1 (II)	26	26
PE	10.5 (II)	21	220.5
PS	30 (II)	19	570
PET	4 (I)	16	64
Total Value	Categor III		881.45

Table S7. Calculation of PLE at each sampling point and for each city

		Items/L	Cfi	VCFi =PLE	Site	
Riyadh	А	4.92667	33	33	3565609	20
	В	2.72667	18	18		
	С	5.09333	34	34		
	D	1.86667	12	12		
	F	2.12000	14	14		
Al-Jubail	G	0.20000	1	1	12	2
	Н	0.40000	3	3		
	Ι	0.15333	1	1		
	J	0.50000	3	3		