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ACRONYMS  

 
 

ACRONYMS WP3 

AVHRR Advanced Very High Resolution Radiometer  

AMSR-E Advanced Microwave Scanning Radiometer  

CIMR Copernicus Imaging Microwave radiometer 

Chl Chlorophyll 

CHIME Copernicus Hyperspectral Imaging Mission 

CMEMS Copernicus Marine Environment Monitoring Services 

CLMS Copernicus Land Monitoring Services 

CO2M Copernicus Anthropogenic Carbon Dioxide Monitoring 

CRISTAL Copernicus Polar Ice and Snow Topography Altimeter 

DA Data Assimilation 

ECV Essential Climate Variables 

ECMWF European Centre for Medium-Range Weather Forecasts 

FORUM Far-infrared Outgoing Radiation Understanding and Monitoring 

IR Infra-Red 

JAXA Japan Aerospace Exploration Agency 

HPCM High Priority Copernicus Missions 

LSTM Copernicus Land Surface Temperature Monitoring 

METOP ESA’s Meteorological Operational (METOP) 

MODIS Moderate Resolution Imaging Spectroradiometer 
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PFT  Plankton Functional Types 

PMR Passive Microwave Radiometers 

RA Radar altimeter 

RCM Radarsat Constellation MIssion 

ROSE-L Radar Observing System for Europe at L-band  

SAR Synthetic Aperture Radar 

SMOS Soil Moisture and Ocean Salinity 

SSMIS 
 

Special Sensor Microwave Imager Sounder  

 SSM/I Special Sensor Microwave Imager 

SMMR Scanning Multichannel Microwave Radiometer 

 TRMM Tropical Rainfall Measuring Mission  

PALSAR Phased Array Type L-band Synthetic Aperture Radar 

 
 

Executive Summary 

The main objectives of the WP3 are:  1) to identify the potential for retrieving additional variables 
from EO data linked to the state of the Polar Regions that are required for assimilation into models 
and forecasts of meteorological and environmental processes and their variations and  2) to assess 
the capabilities of future satellite missions (with special focus on the Copernicus Expansion Missions) 
for environmental monitoring and for providing data for integration/assimilation into 
modelling/forecast products, considering different In situ and airborne field measurement scenarios. 

To achieve these objectives we have prepared a comprehensive review of the current status of 
remotely sensed parameters acquired over Polar Regions and compared them with the products 
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provided by the Copernicus service to identify current data gaps. Besides, an assessment of future 
satellite missions (in particular the HPCMs) has been performed, in terms of their benefit for 
environmental monitoring and their integration/assimilation in modelling/forecast products. We have 
also identified possible synergies between parameters obtained from different satellite missions to 
enhance the information content of specific data products considering the end-users requirements. 
Finally, we have identified the limitations of the currently assimilated variables as well as the potential 
of new variables that are relevant for assimilation into models for simulations and forecasts of 
conditions in the Polar Regions. Moreover, a concept for a move forward on data assimilation is 
presented. 

Important note: In this report we have analysed sea ice, land and ocean parameters. Greenland and 
Antarctica ice sheets and glaciers as well as atmospheric parameters are not covered in the inventory 
below.  

 
In Section 1 we have reviewed the state of the art of sea ice, land, and ocean parameters acquired 
with current remote sensing missions. We have provided a review of the technologies used to 
measure each parameter, its resolution (temporal and spatial), the latency, the uncertainty of the 
available products, and also the validation techniques. We have also assessed the main known 
limitations and gaps for each parameter retrieval.  
 
The inventoried parameters for land are: snow cover fraction, snow water equivalent, snowmelt, snow 
depth, snow avalanches, snow albedo, lake ice, permafrost and soil moisture; for sea ice: 
concentration, thickness, drift and deformation, ice type, ice edge position,  snow on sea ice, surface 
albedo, characteristics of melt pond fraction, and ice surface temperature. The ocean parameters 
analysed are: ocean surface biogeochemical compounds and light, sea surface temperature, sea 
surface salinity, sea surface height, surface currents, and surface stress (winds). 

 Summary of the identified gaps and recommendations for improving the monitoring of the 
Polar Regions, based on Remote sensing observations in Table ES. 2. 

In Section 2 data gaps on the products distributed by Copernicus have been identified. Several 
parameters are not delivered by Copernicus or they distribute the models outputs only, while the 
parameters can be measured with remote sensing techniques. We identify the remote sensing 
parameters which Copernicus is not currently serving while datasets with acceptable maturity are 
available from different providers, such as universities and research institutes. These parameters are 
listed below: 

 Sea ice parameters: Sea ice age, melt pond areal fraction, sea ice albedo, the areal 

https://docs.google.com/document/d/1MvXLZGkSoMxWJO11XVCPTKpsZTe4xJxX/edit#heading=h.6ej3biystk82


 

8 | Page 

   

fraction of leads. 
 Land parameters: Lake ice thickness and duration, snowmelt, snow depth, snow 

avalanche monitoring, inland water chlorophyll and turbidity, permafrost properties 
(combined with models). 

 Ocean parameters: Surface currents, surface stress (wind), wave spectra, ocean 
albedo. 

 Recommendation for Copernicus: to include the above 14 remotely sensed parameters in 
the future evolution of Copernicus Services. 

 

In Section 3 we compiled the list of those parameters which can be acquired/estimated with future 
missions (already planned or under discussion). This section is specially focused on the EU HPCM 
missions (CIMR, CRISTAL, ROSE-L, CO2M, CHIME, LSTM). The expected quality of the parameters and 
the advantages of the future instruments, with regards to the current missions, are summarized here. 
Besides, other missions are also assessed correspondingly.  

This review emphasizes the great potential that the 3 future HPCM polar missions (CIMR, CRISTAL 
and ROSE-L) have for the monitoring of the Polar Regions with better resolution and accuracy with 
respect to the current missions.  The main objectives of these missions are:  

 CIMR, with a passive microwave sensor at 1.41, 6.9, 10.7, 18.7, 36.5 GHz as payload: 
 Land: snow extent, snow water equivalent, lake ice extent and thickness. 
 Sea-ice: sea ice concentration, sea ice thickness for thin ice, snow-depth on ice, sea 

ice drift, ice type/age, ice surface temperature. 
 Ocean: sea surface temperature, sea surface salinity and surface winds. 

 
 CRISTAL, with a synthetic aperture radar (SAR) altimeter operating at Ku-band (13.5 GHz) and 

Ka-band (35.75 GHz) as a payload: 
 Land: land surface elevation and permafrost. 
 Sea-ice: thick sea ice thickness with better accuracy (>1m), snow-depth on ice, 

icebergs detection and height. 
 Ocean: Sea level 

 ROSE-L, which carries a synthetic aperture radar (SAR) working at L-band (1.275 GHz): 
 Land: snow water equivalent, snow avalanche occurrence, lake ice extent and 

thickness, permafrost extent and properties. 
 Sea-ice: high-resolution sea ice concentration and ice edge position, sea ice drift and 

deformation, iceberg occurrence and areal density, ice type. 
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 The main conclusion is that the future HPCM missions have a great potential for improving 
the monitoring of the Polar Regions, especially with the three polar missions: CIMR, CRISTAL 
and ROSE-L.  

 

In Section 4 we evaluate the current and potential synergies to improve the quality and resolution of 
remote sensing data products for the Polar Regions.  

Synergies are achievable by combining data from satellite instruments operated at different 
frequencies/wavelengths, in passive or/and active modes, with different spatio-temporal resolutions, 
different penetration depths into the ground, which means to have different sensitivities to the 
geophysical parameters.  

Some of the results are listed below: 

 Eight potential synergies of different types of sensors are presented for land, eight more for 
ocean and ice and two for biogeochemistry parameters, most of them already demonstrated 
in the scientific literature. From those potential 18 synergies, only 4 will be operational in 
Copernicus by the end of phase 1, the rest are experimental. 

 The type of user (intermediate users or end-users land /ocean who can benefit from the new 
product) is specified, as well as the impact for the users (high, middle, low) of producing these 
enhanced products. Most of the proposed parameters are appropriate for intermediate users 
and in a later stage will have an important impact for end-users. 

 Larger number of similar observations (similar instruments onboard different missions) would 
improve the measurement uncertainty as well as the temporal resolution. 

 
Table ES. 1 shows a matrix of potential synergies that could be put into operation with current and 
future capabilities. The synergies mentioned are already tested experimentally.  
 
 
 

Table ES. 1: Matrix of potential synergies that could be put on operation with current and 
future HPCM satellites. The synergies mentioned are already tested experimentally. The green 
boxes are synergies for land applications, light grey for ice and sea applications. Text in red 
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means an operational product in Copernicus phase 1 (2021). Parameters with high impact for 
intermediate and end-users are marked with bold. 

 

Sensors PMR 

(e.g. CIMR) 

RA 

(e.g. CRISTAL) 

IR  

(e.g.LSTM) 

Optical 

(e.g. 
CHIME) 

SAR 

(e.g. ROSE-L) 

PMR   lake ice thickness  Soil moisture 

downscaling 

Snow Water 
Equivalent 

Soil moisture 

RA SIT1, ice type, snow 
depth 

  Phytoplankton 
groups 

 

IR SIT, ice surface 
temperature, 

sea surface temp 

SIT, ice type    

Optical  SIC, ice type  ice type 
MPF 

 Phytoplankton 
groups, 
phytoplankton 
dynamics 

snow extent 

snow wetness 

snow avalanche 

lake ice extent 

SAR  SIC, SIDrift sea ice deformation 
evolution 

iceberg properties, 
snow depths on sea 
ice 

ice type SIC, ice type  

 
 

This section puts special effort on synergies achievable with the three polar HPCM missions (CIMR, 
CRISTAL, ROSE-L), and emphasizes the need for combined data acquisition strategies that enable 
overlapping data acquisition within sufficiently short time intervals.  
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 Recommendation for Copernicus: to promote the production and distribute the products 

resulting from the synergies described in Table ES. 1, especially the ones with a higher 
impact for the user (marked in bold). The tables also specify the community who will benefit 
from the synergy and the degree of impact. 

 

 
The gap analysis of the remote sensing parameters (section 1),  the analysis of new parameters derived 
by the planned future missions (section 3) and the feasible synergies (section 4) have allowed us to 
perform a list of recommendations to improve the Copernicus services for Polar monitoring.  The 
recommendations are summarized in Table ES. 2, organized by: general, land, sea-ice and ocean 
applications recommendations, and by the time required to achieve the objective, as well as the 
impact to the users. 

Table ES. 2: Gaps and recommendations to improve the monitoring of Polar Regions. Timeline to 
achieve the goal, its impact and user beneficiary. 

Objectives  for the improvement of  RS data of Copernicus  
for the Polar regions 

Objectives Time period 

 
Impact 

 
Users  

Enhancements needed and recommendations for achieving 
them 

Time period: short term (<5 years, Copernicus next phase), mid-term (current and future technology <10 
years, HPCM missions), long term (future technology >10 years, Sentinel-NG’s) 
Impact : level of impact to achieve the challenge (high, mid and low) 
Users: marine end-users (as WP1 T1), land end users (as WP1 T2), intermediate users (as WP1 T3) 

General 

Increase in situ 
observations 

mid term 
 

high impact 
 

intermediate 
users 

 
 

In situ measurements in polar regions are very scarce in 
Copernicus and in general. This is a clear gap, since this In situ 
data is needed to improve and validate parameter retrievals and 
products derived from the remote sensing data. 
 
Recommendations: Acquisition and archiving of a more 
extensive In situ dataset, with a more active role in managing it 
played by the Copernicus In situ Component. This would allow 
provision of  a more robust quality assessment of satellite 
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products and improve the geophysical retrieval algorithms. 

Reduce polar 
observation hole 

mid term 
 

mid impact 
 

intermediate 
users 

 

New polar missions should consider the extent of their polar 
observation hole in the design phase, and reduce it as much as 
possible within the constraints of the mission’s objectives. This 
is particularly important for visible/infrared imagers, for which 
twilight acquisition mode should be part of the core mission 
requirements.  
 
Recommendations:  Carefully consider the twilight acquisition, 
and more generally polar data coverage, when designing future 
missions, e.g. the Sentinel-NG missions. 
 

Enable low 
timeliness of 
Copernicus polar 
missions data 
flow   

short term 
 

high impact 
 

intermediate 
and end 

users 

Sea ice is constantly on the move, avalanches can happen at any 
time, Search and Rescue operations require timely sea-ice 
imagery and forecasts. The requirements from the end-users for 
low timeliness in the access to imagery, derived products, and 
forecasts prompt for low latency in data downlink and 
processing. 
 
Recommendations: ensure near-real-time (<1h) or better for 
critical operational missions (e.g. ROSE-L, CIMR) in the Arctic 
region, e.g. through pass-through downlink, several receiving 
stations, on-site processing. 

Land monitoring 

Snow cover short term 

 
high impact 

 
intermediate 

users 
 

Existing snow cover services (CCI Snow, Copernicus Snow) focus 
all on latitudes below the Arctic circle where light conditions and 
favourable cloud cover allows consistent products and services 
using medium resolution optical radiometers (MODIS/Sentinel-
3). To monitor Arctic environments considerable efforts need to 
be done to take into account results from alternative sensors 
(passive and active microwaves) and perhaps also use signals in 
the infrared end of the spectrum from radiometers. A complete 
and consistent Arctic snow cover product will probably involve 
using all types of data available, in addition to multi-temporal 
interpolation techniques.  
 
Recommendations:   Demonstrate multi-sensor snow services 
for Arctic regions (above Arctic circle) and integrate them in 
existing PanEuropean/global services for completeness of ECV. 
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Snow avalanche 
monitoring 

short term 

 
high impact 

 
land end 

users 
 

Snow avalanches can be detected using SAR. This has been 
demonstrated in Northern Norway and for specific Arctic 
regions, and should be applicable for mountain areas too. Snow 
avalanche monitoring can be an important input to snow 
avalanche services, and improve the accuracy of avalanche 
warning. Extended activity within this field could be valuable in 
sparsely populated areas where limited observations are 
available.  
 
Recommendations: Extend near-real-time avalanche 
monitoring across, at the least, European mountains based on 
S1. 

Soil moisture short term 
mid to high  

impact 

 
intermediate 
& land end 

users 

Current operational algorithms for soil moisture (PWR or SAR for 
higher resolutions) retrieval do not take properly into account 
freezing/thawing in Arctic regions. This parameter is used on fire 
risk indexes. 
 
Recommendations: Additional sensors or retrieved products, 
such as snow extent products from optical sensors (or higher-
order products using SAR/PMR/models), could be used to 
remove erroneous detections. CIMR and ROSE-L will provide SM 
products. 

Lake ice short term 

 
mid impact 

 
intermediate 
& land end 

users 
 

Lake ice products based on MODIS data exist only for a limited 
area in Scandinavia (Copernicus) and do only cover mid-
winter/ice break up periods. The freeze-up periods are not 
covered.  
 
Recommendations: Future services should be based on 
combinations of SAR and optical instruments (maybe also with 
Sentinel 2 and 3) to assure data also during polar night 
conditions. This will also allow for observations of lake ice 
conditions in the Arctic.  

Snow water 
equivalent/Snow 
depth 

long term 

 
high impact 

 
intermediate 

& 
land end 

users 
 

Coarse-resolution SWE products at high latitudes exist. They are 
not applicable in mountain areas. ROSE-L could be a potential 
solution for this problem using the interferometric phase. 
Cal/Val sites with a good characterization of snow parameters 
(SWE, depth, density, grain size, wetness, layering, etc.) are 
important to build up in the Arctic mountains to verify the 
proposed approach.  
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Recommendations: Enhanced efforts to measure SWE in Arctic 
and mountain regions are highly needed. Build up of 
competencies alongside the development of ROSE-L. 

Permafrost long term 

 
high impact 

 
intermediate 

& 
land end 

users  
 

More advanced development is needed to have a good 
assessment of permafrost. Only sparse In situ evaluations of the 
permafrost fraction are available, strongly complicating 
validation for this parameter. The quality of the active layer 
thickness predictions depends strongly on the quality of the 
prescribed ground stratigraphy. 
 
Recommendations: Uptake products from the ESA Permafrost 
CCI project, where data from RS and reanalyses are combined 
with the CryoGrid model to derive permafrost parameters. 
Additional estimates of the permafrost extent could be provided 
in some cases based on the detection of land surface 
movements. CRISTAL and ROSE-L will provide these retrievals. 
The new European Ground Motion service, currently being 
implemented as a new Copernicus Service Element, should be 
extended to cover the circumpolar Arctic area.  

Sea-Ice monitoring 

Snow depth on 
sea-ice 

mid term 

 
high impact 

 
intermediate 

users 

Not measured remotely with proper accuracy. This parameter is 
very important on its own, and to properly measure sea ice 
thickness from altimetry, among others. 
 
Recommendations: Assess possible synergies, new HPCMs 
(CIMR, CRISTAL and ROSE-L)  will contribute to improve the 
retrieval of this parameter. 
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Near real time 
high resolution 
ice analysis  

mid term 

 
high impact 

 
intermediate 

&  
marine end 

users 

High resolution (sub kilometers) ice analysis is today done 
manually based on SAR images, and it is necessary to automatize 
it to handle ever-increasing volumes of data and to meet the 
demand for increased detail (ice rheology). Progress is also 
limited by the fact that radar altimetry and passive microwave 
radiometry satellites for sea ice thickness have a period of 
operation outside of summer months, which is when data of sea 
ice conditions are most important.  
 
Recommendation: Enhanced automation of high resolution 
(sub km) ice chart production to handle increased satellite data 
volumes and provide additional detail. 
Further research to improve sea ice parameter retrievals in 
summer. 

Improved sea ice 
concentration 
for forecasting 

mid term 

 
high impact 

 
intermediate 

users 
 
 

Ice concentration retrievals rely on semi-operational or 
outdated passive microwave radiometer satellite missions 
(AMSR2 and SSMIS). With increased forecast model resolution, 
coverage and increased accuracy, SIC data is required at the ice 
edge and in the coastal zones. 
 
Recommendation: Fully operational missions with long-term 
continuity are needed.  Synergy with SAR and/or optical must be 
further explored. 

Multi-sensor 
sea-ice drift 
analyses. 
 

mid term 

 
mid impact  

 
intermediate 

users 
 
 

There is to date no satellite product (operational or research-
based) that combines accurately radiometry-based and SAR-
based sea-ice drift data. This would, however, fill a key 
observation gap (complete daily coverage, with higher spatial 
resolution and accuracy where SAR is available), particularly in 
the Antarctic where SAR coverage is sparse. The same yields for 
mosaicking of several SAR-based sea-ice drift products (e.g. 
Sentinel 1 A-B-Cs, the RCMs, etc.). Propagation of the 
uncertainties into the Level-4 analysed sea-ice drift product 
must be treated as well.  
 
Recommendation: Develop and implement operational multi-
sensor sea-ice drift analyses, e.g. in CMEMS. 

Summer Sea ice 
concentration 

medium & 
long term 

 
high impact 

During melting periods the accuracy of PMR-based SIC estimates 
considerably decrease. In the presence of melt-ponds, PMR can 
only sense the ice surface fraction. PMR algorithm must be 
refined to achieve better observation of the ice surface fraction. 
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intermediate 

users 
 

In parallel forecast models must be developed to ingest the Ice 
Surface Fraction 
 
Recommendation: Improve accuracy and generate melt-pond-
fraction data products from visible/infrared imagers (such as 
OLCI-Sentinel3, Sentinel-2, MODIS, MERIS, VIIRS, ...). Investigate 
if modern SAR sensors (Sentinel-1) can accurately measure MPF 
at a basin scale. In parallel, further develop melt-pond 
parameterization in forecast models to exploit the ice surface 
fraction products routinely.  

Sea ice thickness long term 

 
high impact 

 
intermediate 

& marine 
end-users 

 

High temporal resolution ice thickness products covering the 
whole range of thickness are missing. A higher spatial resolution 
sea ice thickness product (sub km) is also missing. Coverage for 
the melt season is also lacking. Snow depth measurement with 
enough precision is crucial for deriving SIT with good accuracy.  
 
Recommendation: Supplement microwave remote sensed data 
sources with optical satellite and In situ data during summer. 
Further research into snow retrievals over sea ice. 

Ocean monitoring 
 

Surface ocean 
biogeochemical 
compounds (also 
for inland 
waters) 

mid term 

 
high impact 

intermediate 
users 

 

Parameters on ocean productivity, biogeochemical fluxes and 
radiation. The main limitations are due to the low temporal 
coverage,  sea ice cover,  unfavourable light and rough weather 
conditions. Higher spatial resolution (of order 10–100 m) data 
to retrieve parameters from bays and estuaries at the polar 
coasts and in inland waters are necessary. Missions providing 
such data are focused on land applications (e.g., Sentinel 2 or 
Landsat 8) which only cover the Arctic coasts below 74°N and 
not the Antarctic continent. Products on phytoplankton 
functional types are currently released but limited to S3 and 
need higher spatial scale which would help to improve 
predictions for water quality, HABs, fishery, coastal 
management by themselves but also indirectly by improving the 
quality of Chl products. 
 
Recommendations: Merging satellite data can improve this 
tremendously. In situ data are sparse for validation and the 
implementation and further development of autonomous In situ 
bio-optical measurements need to be promoted. Promote 
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CHIME also for pan polar applications. 

Sea surface 
salinity 

mid term 

 
mid impact  

 
intermediate 

users 
 

This parameter is provided by L-band microwave radiometers 
only. It  is very important for the assessment of freshwater fluxes 
changes. Its accuracy is limited, mainly due to the sparse In situ 
data available. 
 
Recommendations: Promote CIMR mission since it also carries 
onboard an L-band radiometer. More In situ measurements are 
required to enhance satellite salinity products.  

Wind speed long term 

 
mid impact 

 
intermediate 

users 
 

An improvement on the accuracy of wind speed observations 
over ice and ocean is needed since the wind controls the surface 
ocean circulation and hence freshwater transport rates and 
pathways. 
 
Recommendations: To add Doppler capability to future 
scatterometers, allows for simultaneous measurements of 
surface winds and currents and improves directional accuracy. 

 

In Section 5 we analyse the status quo in data assimilation, showing that many observations are 
routinely assimilated, some with success, some with potential for improvement, and several not being 
assimilated at all for various reasons.  

The parameters that are assimilated into CMEMS models (some of them with important constraints) 
are assessed in the document and itemized below, classified by its degree of limitations: 

 Parameters assimilated with severe limitations: SST (from IR), SIT, Ice Drift, Chl 
 Parameters assimilated with a medium level of limitations: SIC 
 Parameters with quality of assimilation not sufficiently documented: SSH, SST (from PMR) 

 
There is to our knowledge no assimilation of satellite land data as part of the Copernicus Land nor 
Climate Change Services as of today. 
 
The remotely sensed parameters that are not being assimilated and are recommended for data 
assimilation are summarized below, organized by the time required to achieve each goal. The specific 
problems faced by each parameter are explained in the report. 
 
 Short term: sea surface salinity. 
 Mid-term: snow cover, permafrost extent, sea ice drift, wave height, ocean colour Chl, ocean 
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colour PFT. 
 Long term: soil moisture, river level, sea ice surface temperature, melt pond areal fraction. 

 
Besides, the assimilation of satellite information at lower processing levels has been investigated. 
We explore how services would benefit from going beyond the current status-quo (assimilation of 
daily/weekly/monthly averaged gridded satellite products) and start assimilating individual swaths 
(and/or scenes) of satellite-derived product in swath projection, and even directly raw satellite data. 

The recommendations to be considered when new data assimilation approaches are assessed are 
stated below organized by the time required to achieve the goals: 

 
 In the mid term: 

 Working towards the development of higher-resolution regional ocean/ice 
forecasting systems: test, refine, and adopt data assimilation of sea-ice parameters at 
Level-2 (in a swath or along the track). This is a necessary preparatory step for the 
optimal ingestion of Level-2 data products from the HPCM CIMR and CRISTAL.   

 Foster the collaboration and enable further dialogue between the modelling and 
Earth Observation communities, to get the benefit of the expertise in both 
communities. 

 In the long term:  
 Continue the development of fully-fledged yet efficient microwave emission models 

for sea-ice and snow. Community models -such as SMRT- should be preferred, ideally 
coupled and reconciled with radiative transfer models for the atmosphere and ocean 
surface. 
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Section 1: State of the Art of Polar Remote Sensing Parameters   

 
1.1 Land Parameters: 
1.1.1.Snow cover 
1.1 Snow Cover Fraction 
1.1.1. Technologies used and retrieval methods   

The main technology used for snow cover fraction estimation is medium resolution 
spectrometers such as AQUA/TERRA MODIS, Envisat MERIS/AATSR, AVHRR and in the last 
years VIIRS and Sentinel-3. More or less consistent climate records can then be established 
from 1980 - today. Most of the techniques are based on utilizing the NDSI=(Radiance Visible 
ch- Radiance Near IR CH)/(Radiance VIs + Radiance NIR). The NDSI is then typically scaled 
linearly to a snow cover fraction (Salomonson and Appel, 2004) between 0-100%. The typical 
resolutions based on these instruments are 250 -1000m. 
 
Emerging from the launch of Landsat-8 and Sentinel-2 higher resolution snow fraction 
estimates seems to be possible with resolutions down to 10-30m. This can be of high value 
for local and regional monitoring.  
 
1.1.2 Characteristics of the parameter  

- Temporal Resolution:  Daily 
- Spatial Resolution 250-500m 
- Latency: Typically, a few hours after acquisition. 

 
1.1.3 Validation  
Medium resolution products such as MODIS and S3 are validated using simultaneous high-
resolution products from S2 or Landsat-8. Under ideal conditions the accuracies are typically 
in the range 90-95% (Metsämäki et al., 2012). 
 
1.1.4 Error sources/Accuracy/uncertainty 
Clouds - Optical instruments can not measure snow fraction under clouds. Partial cloud cover 
and shadows from clouds can also affect the quality of the product. 
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Patchy snow: Sub-pixel scaled patch snow cover can often be challenging to measure 
accurately. 
 
Forested area: Dense forests often completely absorb the signatures from snow on the 
ground.   
 
Shadows from slopes: Steep mountainous terrain leads to shadows at north slopes, and 
incorrect estimates of the snow cover fraction if the terrain is not properly corrected for. 
 
1.1.5 Known limitations and gaps 
Polar night is challenging. Due to consistency many services do not start before March and 
end in October. In particular, the estimates of the first snowfall in the autumn is uncertain 
due to a combination of cloudy conditions and if the first snowfalls are late, occurring after 
the sun is very low and the services stop. 
 
1.2. Snow Water Equivalent 
Snow water equivalent (SWE) is an ECV. SWE is the density multiplied by the depth of the 
snow and indicates the amount of liquid water that a snow-mass in a unit area (1m2) will 
translate into. 
 
1.2.1. Technologies used and retrieval methods   
SWE can be measured using passive microwave instruments such as SSM/I and AMSR-E. PMR 
techniques to measure SWE utilizes the fact that radio waves at different frequencies have 
different extinction coefficients (damping) by the snow. By utilizing the measurements at e.g. 
the 18 and 37GHz a simple retrieval model assumes that SWE= constant * [TB(37)-TB(18)] 
where is TB the brightness temperature measured by the satellite.  
 
In several projects (e.g. GlobSnow and CCI Snow) the Finnish Meteorological office (Pulliainen, 
2006) together with collaborators have developed a global service that utilizes PWM together 
with data from the meteorological weather station network to provide global estimates of 
SWE (http://www.globsnow.info/). 

http://www.globsnow.info/
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Fig 1. Example of the GlobSnow SWE product for 15 February 2008. 
 
1.2.2 Characteristics of the parameter  

- Temporal Resolution  Daily 
- Spatial Resolution    25km 
- Latency    NRT 

 
1.2.3 Validation  
Validation is done using In situ measurements from meteorological stations (usually from 
snow depth and assuming density) or other transects. There is a big uncertainty in obtaining 
representative measurements of SWE over a large 25x25km pixel, and the technique does 
hence only work for flat terrain where the snow depth is fairly constant. 
 
1.2.4 Error sources/Accuracy/uncertainty 
PMR does not work in mountains and complex terrain. Impurities at the sub-pixel scale such 
as lakes or coastlines can also affect the result. 
 
Melting snow can be a problem since radio waves do not penetrate to ground, and may lead 
to large errors although the algorithms usually try to detect and mask out areas affected. 
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The theory is based on some assumptions about the snow grain size. This can lead to over or 
underestimations in certain conditions. 
 
1.2.5 Known limitations and gaps  
The main problem with PMR techniques is its inability to measure SWE in mountains. GCOS 
requires a spatial resolution of 1 km.  Possible improvements have been targeted by several 
authors, and with a few possible technologies. The main satellite-based possibilities lie in 
either using radar backscatter changes over variable snow water equivalents using high-
frequency SAR (X and Ku-band) or using the change in the interferometric phase under 
variable SWE.  
 
The first method was targeted in the ESA Earth Explorer 7 candidate CoReH2O (Rott et al., 
2010). This sensor concept was unfortunately not chosen by ESA in the final selection, but will 
probably be suggested in other contexts. The sensor applied both X and Ku-band and two 
polarizations (VV,VH) thus providing four measurement channels used to retrieve SWE. The 
suggested retrieval algorithm was based on a radial transfer model where SWE and snow 
grain size are the most sensitive parameters.  
 
An alternative to relate changes in backscatter to changing SWE, is to directly measure the 
changes in interferometric phase Φ from one acquisition to a repeated satellite pass (typically 
6 -35 days later). SWE can be shown to be directly proportional to the phase change. (ΔSWE= 
k*ΔΦ). This approach was already suggested using C-band SAR with ERS-tandem by 
Guneriussen et al. (2001). Unfortunately, later research showed that C-band is very sensitive 
to decorrelation and phase wrapping effects, and in practice the technique is not very 
applicable for mountainous snow when large snowfalls can happen hours. L-band SAR 
interferometry (Rott et al., 2003) has been suggested as a remedy for avoiding the problems 
with C-band decorrelation effects. At present there are several planned launches (NISAR and 
ROSE-L) using L-band SAR. SAOCOM-CS or ALOS-2 are also options, but there is little data 
available.  
 
1.3. Snow Melt 
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Can be monitored using C-band SAR at good spatial resolution (50-100m), weekly temporal 
resolution is somewhat poor but might be improved with full utilization of the Radarsat 
Constellation Mission (RCM). 
 
1.3.1. Technologies used and retrieval methods   
Wet snow can be detected using passive instruments at coarse (25km) resolution. This can be 
regarded as a bi-product of the Snow Water Equivalent services. Higher resolution sensors 
such as scatterometers can also be used (5 km), but in mountainous terrain C-band SAR seems 
to be the best option. The main technique for measuring the presence of wet snow is by 
change detection against a dry snow reference or preferably an average over as many dry 
snow scenes as possible. Nagler and Rott (2000) suggested this method for ERS-1. 
 
1.3.2 Characteristics of the parameter  

- Temporal Resolution: 2-7 times per week depending on latitude. 
- Spatial Resolution: 50-100m allows good speckle filtering 
- Latency:  NRT is achievable 

 
1.3.3 Validation  
Validation of wet snow maps against simultaneous optical snow classifications indicates that 
the accuracy of the algorithms is around 90% for most scenarios using Sentinel-1 (Nagler et 
al., 2016). In cases where not all snow can be assumed wet, it is much harder to assess the 
accuracies as only In situ data can be used for comparison. Some studies are underway but it 
appears that there are great challenges in finding In situ datasets indicating snowmelt status 
and presence of snow for representative areas (i.e. outside cities where contamination of the 
SAR signal is probable) . 
 
1.3.4 Error sources/Accuracy/uncertainty 
The main error sources for SAR derived melting snow maps are the variability in radar 
backscatter signatures for various land cover types (forest, farmland, glaciers, etc.) leading to 
needs for adaptations in the classification algorithms. 
 
1.3.5 Known limitations and gaps 
In addition to flagging the status of melting snow it would also be desirable with more precise 
quantification of the liquid water content in melting snow. LWC can be an important 
parameter for both hydrologists and avalanche forecasters. Present algorithm developments 
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have focussed on the classification scope, but since there is also a sensitivity in radar 
backscatter to variable LWC, new studies should also take this into consideration. 
 

1.4. Snow-depth 
 

Snow depth (SD) is related to snow water equivalent (SWE) since SWE=SD*�, where � is the 
mass density of snow.  At large scales snow depth is controlled by climate processes and varies 
typically from low densities (0.1g/cm3) in early winter to high densities (0.3g/cm3)  late in the 
winter after several compression and melting events (Borman et al., 2013). At local scales in 
e.g. mountains wind drift and topography play an important role (Nolin, 2010).   

1.4.1. Technologies used and retrieval methods    
Snow depth can potentially be measured by space-borne LIDARS.  Airborne LIDAR 
experiments (Paintner et al., 2016) and ground-based terrain scanning laser measurements 
(TLS) show high accuracies within a few cm. Similar results have not been reported from 
spaceborne LIDARS (ICESat & ICESat-2).  
 
A more viable approach for wide-scale retrieval seems to be to derive SD from SWE retrievals 
using microwave instruments (passive microwave for coarse-scale and active radar for high 
resolution, see section 1.2). By making assumptions about the density one can provide SD. 
These assumptions can be based on snow process models (e.g. Crocus or SnowPack) forced 
by meteorological inputs and can provide estimates of density. Synergistic use of EO data and 
snow process models can also be an approach to improve estimates (Xiao et al, 2018; Kim et 
al., 2019). In a study in China (Qiao et al., 2018) the Globsnow dataset was used to estimate 
snow depth assuming a constant density of 0.24 g/cm3.  
 
Lievens et al. (2019) reports a high correlation between the cross-pol ratio �VH/�VV and snow 
depths on a 1km scale for Sentinel-1. Using an empirical change detection approach, they 
found correlations in the range 0.6-0-8 when compared with In situ measurements of snow 
depth worldwide in mountainous areas. The authors can, however, not explain the 
correlation theoretically with volume scatter theory. They even claim that the method works 
when the snow is wet, although theoretically volume scatter from the snowpack should then 
be absorbed completely in the top layer of the snow. This result is hence still controversial, 
although being able to retrieve SD with Sentinel-1 is a very attractive capability. 
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1.4.2 Characteristics of the parameter  

• Temporal Resolution: Daily 
• Spatial Resolution: 25km 
• Latency: NRT 

 
1.4.3 Validation  
Snow depth measurements can be validated against the In situ measurements. These exist on 
many meteorological stations. The problem is, however, often that the point measurements 
from a station are hard to relate to an average over a large pixel (e.g. 25km x 25km as for 
passive microwave instruments). In this case one should ideally use distributed 
measurements of snow depth (snow stretches or other sampling strategies to capture the 
variability in SD over the pixel).  
 
1.4.4 Error sources/Accuracy/uncertainty 
Passive microwave radiometers (PMR) and other means for measuring SWE/SD have several 
error sources. For coarse resolution PMR retrieval the sub-pixel problem is challenging. Sub-
pixel contamination of sea, lakes, glaciers and forests may have severe effects on the retrieval 
accuracy. 
 
1.4.5 Known limitations and gaps 
Passive microwave methods for retrieving SWE, and thus snow depth have saturation effects 
for deep snow (~1m) due to the use of high-frequency bands in PWM (18-36GHz).  PMR 
derived SWE and hence SD is usually masked in mountainous terrain and glaciers due to high 
variability. 
 
  
1.5. Snow avalanches 
 

1.5.1. Technologies used and retrieval methods   
The technology used for snow avalanche (hereafter called avalanche) detection depends on 
the spatiotemporal scale of a monitoring or detection purpose. For regional avalanche 
forecasting, daily knowledge of spatiotemporal avalanche activity is critical. The main 
technology used for such a monitoring task is high resolution, radar satellite data. Studies 
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have shown the potential of C-band Radarsat-2 data and in recent years, C-band Sentinel-1 
data (e.g. Eckerstorfer et al., 2017; Vickers et al., 2016). Especially the Sentinel-1 constellation, 
which covers the majority of snow-covered mountain areas worldwide, has the highest 
potential in consistent and reliable avalanche activity monitoring over large regions. For the 
quantification of single high magnitude avalanche periods, very high-resolution optical data 
is the preferred sensor (Bühler et al., 2019). Although highly expensive, the very high spatial 
resolution allows for detailed mapping of avalanche activity during cloud-free conditions. 
  
For avalanche hazard mapping or avalanche activity monitoring in communities, in ski resorts 
or on single slopes, terrestrial sensors are the favored choice of technology (Eckerstorfer et 
al., 2016). Both optical time-lapse cameras and terrestrial LiDAR scanners have been 
successfully deployed for continuous slope-scale avalanche activity monitoring. Optical and 
radar satellite sensors can be used for slope-scale monitoring as well, however, the 
application of these sensors is highly dependent on the acquisition repeat frequency. 
Continuous monitoring with seconds to minutes sampling rates are obviously not possible. 
 
1.5.2. Current state of automatic detection 
The application of algorithms for automatic avalanche detection was first tested in very high-
resolution optical airborne images (Bühler et al., 2009) and optical satellite images (Lato et 
al., 2012). These algorithms were based on object-oriented image interpretation which 
employed segmentation and classification methods to detect avalanches. Achieved 
accuracies ranged over 90 % with errors of commission as low as 5 %. However, in recent 
years, no follow-up studies explored automatic avalanche detection in optical satellite images 
any further. On the contrary, the most recent study deployed expert interpretation of very 
high-resolution Spot 6 images (Bühler et al., 2019). 
Using radar satellite images, the development occurred the other way around. First, proofs-
of-concept studies were carried out with expert interpretation of SAR images (Eckerstorfer 
and Malnes, 2015), before the first study on automatic classification and segmentation of SAR 
images appeared (Vickers et al., 2016). With the vast amount of Sentinel-1 data freely 
available, this automatic avalanche detection algorithm was developed further and integrated 
into a near-real-time processing system that is currently used by the Norwegian Avalanche 
Centre in daily, public avalanche forecasting (Eckerstorfer et al., 2019). At the same time, a 
handful of studies emerged very recently, testing the use of neural networks for avalanche 
segmentation in SAR images (Bianchi et al., 2019; Kummervold et al., 2018; Sinha et al., 2019; 
Waldeland et al., 2018).  
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1.5.3. Retrievable parameters 
Using either optical or radar satellite imagery for avalanche detection, the following 
parameters are retrievable: 
 
Reference (Eckerstorfer et al., 2019) (Bühler et al., 2019) 

Sensor SAR Optical 

Satellite Sentinel-1 Spot6/7 

Resolution 20 m 1.5 PAN 

Min. avalanche size 501-10000 m2 10-500 m2 

Avalanche type No Yes 

Wet / Dry snow Yes Yes 

Starting zone No Yes 

Continues detection Yes No 

Temporal resolution Daily at high latitudes Daily 

Latency Typically, a few hours after 
acquisition 

Typically, a few hours after acquisition 

Costs Free Several 1000 USD per image 

 
1.5.4. Validation  
Satellite-borne SAR avalanche detection: 
Eckerstorfer et al. (2019) validated their automatic avalanche detection system in Sentinel-1 
images by comparing the automatic detections with the expert interpretation of SAR images 
as well as to a database of field-observed avalanches. Compared to the field-observed 
avalanches (N=243), manual interpretation achieved a probability of detection of 77.3 %, 
while automatic detection achieved a POD of 57 %. The POD of 77.3 % for manual 
interpretation is likely the maximum detection probability using satellite-borne SAR data for 
avalanche detection. Considering manual interpretation as the golden standard, the accuracy 
for automatic detection is 79 %. This means that 79 % of the manually found avalanches were 
detected automatically, of which large to very large avalanches (> 10000 m3) were detected 
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with an accuracy of over 90 %. Moreover, automatic detection works better on wet snow 
avalanches due to the more backscatter energy being reflected back to the sensor. 
However, Bianchi et al. (2019) recently showed that using a fully convolutional neural network 
for avalanche segmentation significantly outperforms the algorithm used by Eckerstorfer et 
al. (2019). Compared to manual identification of 99 avalanches in a Sentinel-1 image, the FCN 
achieved an accuracy of 66.6 % compared to 38.1 % by the conventional algorithm. 
 
Satellite-borne optical avalanche detection: 
Bühler et al. (2019) digitized validation images from helicopter reconnaissance to validate 
manual avalanche detections in Spot 6/7 images. The overall achieved accuracy was 73 % with 
an omission and commission error of 16 % and 11 % respectively. In illuminated areas, the 
accuracy was at 80 % compared to an accuracy of 64 % in shaded areas. Especially the 
omission error was high in shaded areas (25 %). 
 
1.5.5. Error sources/uncertainty/limitations 
Satellite-borne SAR avalanche detection: 
Using SAR for avalanche detection is challenging since both avalanches and their surroundings 
consist of snow. Moreover, it cannot be deduced from the SAR images, if there is dry snow or 
no snow on the ground. There are parts of mountain landscapes that exhibit relative 
backscatter change over a couple of days and resemble avalanches in their shape. Talus 
slopes, avalanche fans or debris flow tracks are examples of geomorphological features that 
can lead to false alarms. Glaciers exhibit also highly dynamic backscatter change and are thus 
another source of error. There is thus a general level of uncertainty in using SAR for avalanche 
detection. As an error source mitigation measure, all areas that are not considered avalanche 
runout areas (e.g. areas where avalanches are most likely to stop) are masked out.  
The high variability of backscatter from snow-covered landscapes makes simple backscatter 
thresholding that separates avalanches from non-avalanches dynamic as well. Of special 
importance is the evolution of snow wetness in time when temporal backscatter change 
between two SAR image acquisitions are used for avalanche detection. If the snow transforms 
from wet to dry snow, a net increase in backscatter takes place, blurring the backscatter 
difference between avalanches and surrounding undisturbed snow. In such cases, false alarm 
rates are high. 
Since satellite-borne SAR sensors are side looking instruments, radar shadow and layover 
areas occur that make detection impossible in affected regions. This is especially concerning 
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when only one geometry (ascending or descending) is available, and certain slope aspects 
cannot be monitored. 
The problem of SAR data availability is a geographical one when it comes to Sentinel-1 data. 
The European satellites focus mainly on European landmasses and adjacent waters, as well 
as selected hotspots worldwide. Mountain regions in North America for example are covered 
to a minor degree with 12 days repeat cycle. The planned Sentinel-1 acquisition scenario can 
be downloaded from here: https://sentinel.esa.int/web/sentinel/missions/ sentinel-
1/observation-scenario.  
Other SAR data that can be used for avalanche detection provided for example by Radarsat-
2 or TerraSAR-X are behind paywalls, however, they have the advantage of pre-ordered 
acquisition timing, at least when the satellites are available at the desired acquisition time. 
Both Radarsat-2 and TerraSAR-X provide very high-resolution SAR data (1-3 m spatial 
resolution), compared to high-resolution data provided by Sentinel-1 (20 m). This allows for 
the detection of smaller avalanches that are not detectable in Sentinel-1 images (Eckerstorfer 
and Malnes, 2015). 
 
Satellite-borne optical avalanche detection: 
Thus far, only very high-resolution optical satellite data has been used for avalanche 
detection. Both QuickBird and Spot 6/7 data have sub-meter spatial resolution in their 
panchromatic channels. Compared to ground truth, automatic avalanche detection in 
QuickBird data achieved higher accuracy than in SAR data. Nevertheless, these detection 
algorithms were not transferred to freely available Sentinel-2 data. The most recent study by 
Buehler et al. (2019) used Spot 6/7 data to manually detect avalanches, achieving high 
accuracy compared to ground-truthing. Optical satellite data is in best-case scenarios highly 
suitable for avalanche detection as all parts of an avalanche, from its starting zone to its 
deposit can be clearly visible. However, cloud cover is a serious problem, especially for the 
rapid detection of avalanche activity after high magnitude events, as well as for consistent 
monitoring throughout an entire winter. One is highly dependent on ground visibility to be 
able to detect avalanches. Thus darkness, for example during the Polar Night or the short mid-
latitude winter nights as well as shaded areas pose problems for using optical satellite data.  
It seems, moreover, that visual interpretation of avalanches requires very high-resolution 
optical data. Eckerstorfer et al. (2016) showed nevertheless the potential of avalanche 
detection in Landsat-8 data in its panchromatic channel. Large wet avalanches were perfectly 
manually detectable. 
 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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1.5. Albedo   
Surface Albedo is defined as an ECV by the WMO. The Surface Albedo is defined as the ratio 
between the hemispherical reflected radiation and the hemispherical incoming radiation. 
Normally this is integrated over the solar radiation range (0.32 - 2.8um) and sometimes 
referred to as broadband albedo.  

1.5.1. Technologies used and retrieval methods    
Snow broadband albedo is retrieved from satellites, airborne measurements and ground-
based measurements. Each measurement method has different challenges making it difficult 
to compare and cross-validate the products. 
Satellite sensors do not measure broadband irradiance directly and due to the measurement 
geometry of imaging satellites, the albedo is retrieved through modelling where the 
measured upwelling spectral radiance is converted to upwelling irradiance and corrected for 
BRDF (bidirectional Reflectance Distribution Function) effects and atmospheric contributions 
and Top of Atmosphere (TOA) downwelling irradiance corrected to downwelling surface 
irradiance. On land, one of the major challenges is to correct for terrain slopes and shading 
as BRDF (Bidirectional Reflectance Distribution Function) is anisotropic and depends on snow 
surface type and structure, and one has to correct for the sun-surface-sensor geometry. This 
implies the albedo will vary with the angular distribution of the incoming radiation and slope. 
There are multiple approaches to retrieving albedo from satellite data an overview is given in 
(He et.al, 2014). 

Regular satellite-based broadband albedo time series go back to 1979 based on the Advanced 
Very High Resolution Radiometer  (AVHRR) on the NOAA POES satellites. Since 2000 the 
MODIS instruments on the NASA Terra and Aqua satellites, and from 2015 the MSI on the 
Sentinel-2 satellites have been used to produce global albedo products. The albedo product 
based OLCI instrument on the Sentinel-3 satellites launched in 2016 and 2018 have lower 
spatial resolution than the multispectral instrument (MSI) on board Sentinel-2 but have 4 
times larger swath width, hence more frequent cover. Intercomparison between MODIS and 
OLCI in Kokhanovsky et. al, 2019 indicates that the ILCI product has slightly higher accuracy 
(within about 1% absolute albedo value). The  Copernicus program and the Sentinel satellites 
will ensure high quality high spatial and temporal resolution high Arctic albedo products 
needed to produce consistent long time series of this ECV. 
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Airborne albedo measurements are done either by multispectral imaging band instruments, 
often simulating satellite bands, or by hyperspectral imagers. The latter has the advantage of 
avoiding the need for modelling the spectrum before integrating over wavelengths to 
calculate the broadband albedo. Hyperspectral imagers commonly do not cover the SWIR 
range, hence requires modelling to get the full broadband, though imaging SWIR instruments 
are now available. Aircraft could also be instrumented with up and down looking broadband 
pyranometers with hemispheric fields of view to directly measure broadband albedo. The 
disadvantage of these sensors is that the aircraft have to fly very low and the footprint is large, 
instrument response time is long and sensors need to be level. Which means that spatial 
resolution will be very poor. 

Ground-based albedo measurements are usually done with down looking sensors mounted 
on a boom from a tower and upward-looking hemispheric instruments often on solar trackers 
to split direct solar and diffuse components of the downwelling irradiance. Most 
measurement sites have a combination of hyperspectral, multispectral and broadband 
sensors. 

 1.5.2 Characteristics of the parameter  
 Temporal Resolution - from 12 hrs, daily, 8 and 16-day mosaiced products common. 
 Spatial Resolution -  

 AVHRR   from 1.1 km, swath width 2500 km 
 MODIS from 250 m, swath width 2330 km 
 Sentinel-2 MSI from 20 m, swath width 290 km 
 Sentinel-3 OLCI from 300m, swath width 1270 km 

 Latency      
 
1.5.3 Validation  
There are multiple validation studies of snow surface albedo products. These are done in a 
combination of intercomparison between different satellite sensors and towards ground 
validation instrumentations. In particular long-term monitoring sites such as the DOE ARM 
sites (www.arm.gov) and the WCRP baseline Surface Radiation Network (BSRN) sites. A 
validation study on the Sentinel 2 MSI albedo can be found in Li et. al, 2018. A snow albedo 
validation study for MODIS is i.e. found in Williamson et. al, 2016. A snow product validation 
and product evaluation for the Sentinel 3 OLCI instrument is found in Kokhanovsky et. al, 
2019.  

http://www.arm.gov/
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1.5.4 Error sources/Accuracy/uncertainty 
Suggested absolute averaged accuracy requirement of surface albedo products for climate 
models is approximately 0.02–0.05  (Henderson-Sellers and Wilson, 1983; Sellers et. al, 1995). 
The main sources of error lie in the conversion from spectral remote sensing reflectance to 
broadband albedo, failure of cloud discrimination, thin cirrus clouds in the particular and 
accurate calibration of the sensors. The satellite products from MODIS, MSI and OLCI are 
shown to have absolute accuracy within 0.02 (Kokhanovsky et. al, 2019). Validation study 
used sites up to 80 deg. N and for SZA less than 70 deg, hence valid for the high Arctic Region. 
 
1.5.5 Known limitations and gaps 
To correctly model satellite and airborne albedo based on point remote sensing reflectance 
measurements, corrections for sun, ground and sensor geometry must be done. This requires 
knowledge of the surface BRDF. The BRDF will depend on the snow surface properties and 
errors tend to be larger the lower the solar elevation is and the further from nadir the 
observation direction. BRDF functions used in the retrieval of surface albedo have been 
developed through modelling and semi-empirical methods. Based on multiple passes over a 
16 day period, daily BRDF products have been developed based on MODIS and VIIRS (Liu et. 
al, 2017). These BRDF data are used in albedo retrieval from the Sentinel-2 MSI 
Black-sky and white-sky albedo (Li et. al, 2018). 
 

With regard to the early satellite albedo products retrieved from the AVHRR instruments on 
the NOAA POES satellites there are challenges discriminating between snow and clouds in the 
Arctic Region, caused by inconsistent temperature differences between the cloud top and 
snow cover due to frequently strong temperature inversions. This was mitigated with a new 
SWIR Channel (3A 1.58–1.64um) on the NOAA-15 and later satellites (Khlopenkov and 
Trishchenko, 2007). Due to small spectral response deviations on the same channels on the 
different AVHRR instruments (Trishchenko et al. 2002; Trishchenko, 2006) it is challenging to 
construct long time series from these data.  

 
1.1.2. Lake ice (ice extent, ice thickness, snow depth, ice duration, river ice)  
 
Lake ice occurs at high latitude lakes and in high mountain lakes during wintertime. Typical 
ice seasons are from December to May.  Lake ice extent, ice duration and river ice can be 
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observed with both optical and radar sensors, but the spatial resolution of the sensor must 
match the size of the lake/river.  Ice thickness and snow depth are challenging parameters 
that no sensor/product can deliver with satisfactory accuracy/coverage presently. Dugay et 
al. (2015) gives a review of the development in the field. 
 
2.1. Technologies used and retrieval methods   
Lake ice extent can be monitored at an appropriate scale using optical or SAR sensors.  Optical 
sensors (MODIS) have been used for operational monitoring of lake ice (CCL Lakes, Copernicus 
Global Land Product). The fact that lake ice forms at high latitudes makes it, however, hard to 
detect the ice formation period (Dec-Jan). Also cloud cover can impede the detection of lake 
ice during the ice breakup period and lead to uncertainties. Future lake ice monitoring 
services should focus on combining optical and SAR data to improve the accuracy. Wang et al 
(2018) has demonstrated highly accurate lake ice classification using RS2 in Canada. 
Scatterometers can also be used to assess the presence of ice on lakes using ASCAT (Bergstedt 
et al., 2018) and Quikscat (Howell et al., 2009). 
 
Lake ice duration can be derived from the time series of lake ice extent products given that 
the extent products can be delivered during the ice formation and ice break up periods. For 
Arctic lakes this demands that SAR sensors are involved. 
 
River ice has similar features as lake ice (Duguay et al., 2015) but the demands for high spatial 
resolution imply that only S1 and S2 or sensors with similar high spatial resolution can be 
used. Several experiments and demonstrations have shown the feasibility of monitoring river 
ice break up periods (e.g. demonstrations in EU FP7 CryoLand for Tana and Torne rivers). A 
river ice monitoring service could be devised using S1 and S2 for Northern Europe with special 
attention to ice jams and resulting flooding.    
 
Lake ice thickness can be derived using passive microwave data for some large lakes. Kang et 
al. (2014) have shown that AMSR-E brightness temperature at 18GHz has a linear dependence 
with the ice thickness (measured on In situ stations). Du et al. (2017) used AMSR-E/2 to 
provide thickness/phenology for 71 selected large lakes with 5km resolution for the period 
2002-2015 with good results. 
 
The presence of snow on lake ice can be monitored with optical instruments. MODIS/S3 and 
Landsat8/S2 are suitable instruments as the contrast between clear ice and snow-covered ice 
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is good. Snow-covered lake ice is an operational product within the Copernicus Global Land 
Service for northern Europe. To determine the snow depth on lake ice is, however, a much 
more challenging task. Given that the water level and the ice thickness is known, it is probably 
possible to estimate the snow depth from lidar and/or SAR altimeters.  
 
Retrieval of lake ice thickness and snow depth on lake ice is in general a very challenging task 
for satellite remote sensing. In a general scenario where lakes of arbitrary size need to be 
considered, only high-resolution SAR perhaps in tandem with radar and lidar altimeters could 
provide the needed information. Radar backscatter models for lake ice need to consider 
parametrization of the whole system (ice roughness, slush ice with variable liquid water 
content, snow depth, snow grain size, layering, etc.). This is in practice a multi-dimensional 
retrieval problem with many challenges. 
  
2.2 Characteristics of the parameter  
In the table below, we indicate lake ice products that could be derived based on existing 
sensors.  
 

Parameter Sensor Temp res Spatial res. Latency 

Lake ice extent MODIS Daily* 250m < 1 day 

Lake ice extent S3 Daily* 300m < 1 day 

Lake ice extent S2 2 days* 10m < 1 day 

Lake ice extent S1 1-6**  250m < 1 day 

Lake ice duration S1/S2  Daily 10m Annually 

River ice extent S1/S2  Daily 10m < 1 day 

Lake ice thickness PMR Daily*** ~5-20 km < 1 day 

Snow depth  TBD    

*) Limited by cloud cover 
**) Limited by SAR coverage 
***) Limited to large lakes 
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Snow cover on lake ice is observable in optical data, due to a good contrast between bare lake 
ice and snow-covered lake ice, and is a separate class in the Copernicus Global Land Service - 
Lake ice product provided by SYKE based on MODIS/250m. The product covers, however, only 
northern Europe. 
 
2.3 Validation  
The Copernicus Global Land Service - Lake ice product provided by SYKE is based on 
MODIS/250m from March 2017 to the present. The product covers northern Europe. It has 3 
classes (open water, snow-covered ice, partial/snow-free clear ice). The quality has been 
validated against In situ observations of a few lakes in Finland and the difference between In 
situ and satellite-derived ice disappearance date is around +3 days and median of the dataset 
being +2 days, the standard deviation being 5.2 days.  
 
SAR remote sensing of lake ice has been validated using manual ice charts with an overall 
accuracy of 90% (Wang et al, 2018).  
 
2.4 Error sources/Accuracy/uncertainty 
The various lake/river ice products have a variety of sources that may lead to errors. 
 
Optical lake ice monitoring: The main sources of error would be poor cloud masking, mixed-
pixel contamination of land in lake pixels and light conditions in the dark parts of the winter.  
 
SAR lake extent monitoring: Poor contrast between water and thin ice. Challenges in 
separating surface water and lake ice during various wind conditions. For large lakes it can be 
a problem that many SAR swaths only cover parts of the lake. Also, the variability in 
backscatter for various stages of melting snow on lake ice may confuse the classification 
algorithms. 
 
Scatterometers: Scatterometers have typical 2-5 km spatial resolution and will hence have 
challenges for small to medium-sized lakes with mixed land/water pixels.  Other sources of 
errors are similar to SAR, e.g. separability between thin ice and water, separability between 
melting snow and wind-roughened water. In addition, partial ice cover can be hard to resolve 
at these scales. 
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Passive microwave instruments: PMR instruments like SSM/I, AMSR-E have very coarse 
resolution 10-20km and can probably only be used on the very largest lakes. Mixed pixels are 
in general a big source of errors (water/ice, ice/land). Thin ice, and various stages of melting 
of snow and ice can also harm the error budget in an ice thickness retrieval algorithm. 
 
Altimeters: Laser altimeters (ICESat-1/2) can capture the top of the snow on a lake. By 
combining this information with simultaneous (or nearly simultaneous) information from the 
first return (freeboard) over the same lake using a radar altimeter could potentially be used 
to derive ice thickness and snow depth, but still there are error sources related to the 
permittivity of snow/ice leading to uncertainties in the estimation of freeboard. The water 
level is also a source of error since many lakes experience variability in the water level due to 
seasonal cycles and/or climate changes.  Under optimal conditions (Beckers et al., 2017) SAR 
altimeters (CS2) can separate the return from the ice-lake interface and the snow-ice 
interface and thus determine the ice thickness.  
 
2.5 Known limitations and gaps  
Lake ice monitoring has not reached the same level of attention as sea ice monitoring. Some 
services have been launched (CCI Lakes and Copernicus Global Land Product) based on optical 
instruments The main gap in operational lake ice monitoring seems to be that SAR or coarser 
sensors have not been included, and thus there are many problems with the ice products 
during cloud cover or polar darkness.   
 

1.1.3. Permafrost  
 
Knowledge of permafrost distribution and dynamics is relevant both for operational activities 
(transport, construction) and for understanding its interactions with ecosystems and climate 
change. The main permafrost variables (Bartsch et al., 2014) 

· ground temperature profile (required parameter by GCOS for the permafrost ECV) 
· active layer thickness (required parameter by GCOS for the permafrost ECV) 
· permafrost extent/fraction 

cannot be directly observed from space. However, in some cases, they can be estimated 
based on proxies (land cover, ground deformation, water storage, lake extent) or determined 
from a combination of modeling and satellite data products of ground temperature, soil 
moisture, vegetation cover, and snow cover.  
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Several methods based on these two basic approaches (or combinations of both) have been 
described in the literature (Trofaier et al., 2017). The proxy approach is generally not 
operational and has several limitations. Proxy-permafrost relationships established from field 
measurements are usually only valid locally. Other known issues are errors related to 
changing surface conditions due to snow, soil moisture, and vegetation, and to the 
heterogeneity of ground-surface conditions, as described in Trofaier et al. (2017). 
 
Currently, there is no consistent and frequently updated global map of the parameters 
permafrost temperature and active layer thickness, as required by GCOS (GCOS-200) based 
on Earth Observation (EO) records, so that permafrost change detection is only possible at 
localized sites with In situ observations. ESA’s Permafrost_CCI service 
(http://cci.esa.int/Permafrost) will for the first time provide such information for different 
epochs, attempting to meet user requirements as well as possible. 
 
3.0.1. Technologies used and retrieval methods  (for all three permafrost variables): 
 
Several methods to generate permafrost ECVs based on combining modeling with EO have 
been developed and evaluated both within the ESA Permafrost_CCI and also the ESA 
GlobPermafrost (https://www.globpermafrost.info/cms) project. These methods are 
(Bartsch et al., 2019): 
   
A) ESA GlobPermafrost: Equilibrium permafrost modeling driven by land surface temperature 
(LST) time series. In ESA’s GlobPermafrost project, a simple TTOP equilibrium permafrost 
model was used to transfer freezing and thawing degree days from remotely sensed LST (from 
the MODIS sensor), remotely sensed land cover for ESA CCI landcover and snow information 
to produce a global 1 km map of ground temperatures and permafrost fraction (Obu et al., 
2019). The employed equilibrium model is simple and computationally efficient, but it has 
two distinct disadvantages in the context of the Permafrost_cci: first, it can only deliver an 
average ground temperature for periods on the order of a decade, so it is not suitable for 
change detection. Second, it cannot deliver active layer thickness. However, the general 
agreement of the resulting map with existing permafrost maps suggests that the employed 
input data sets are in general suited for permafrost models. Furthermore, the scheme 
demonstrated that ensemble methods (i.e. modeling many different realizations for a pixel 

http://cci.esa.int/Permafrost
https://www.globpermafrost.info/cms
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using slightly perturbed input data) can deliver meaningful values for permafrost fraction 
within 1 km pixels. 
 
B) Transient permafrost modeling driven by LST time series from EO, without ensemble 
representation. Recently, Westermann et al., (2017) demonstrated a transient approach 
based on the CryoGrid 2 model (Westermann et al., 2013) to infer ground temperature and 
active layer thickness on a regional scale for the Lena River Delta in Northeast Siberia, based 
on similar input data as employed by the ESA GlobPermafrost project (described above). Here, 
it is crucial to prescribing the spatial variability of ground thermal properties in terms of a 
typical ground stratigraphy. In the presented 1 km approach, subgrid variability is not taken 
into account, so permafrost fractions can only be computed in a binary (yes/no) way. 
  
C) ESA Permafrost_cci: Method (B) can be further improved by combining it with the global 
input data sets and the ensemble approach established in ESA GlobPermafrost. 
  
In Bartsch et al. (2019) it is demonstrated that method (C) is best suited to consistently 
characterize all three permafrost variables. Variable features are provided below (from 
Bartsch et al., 2019) based on using the method (C) for the generation of permafrost ECVs. 
 
 
3.1 Ground temperature  
 
3.1.1 Characteristics of the parameter  
  
  
Temporal resolution: 8 days 
Spatial resolution: 1 km 
Vertical extent: 15 m 
Vertical resolution: 50 cm (exponential) 
 
3.1.2 Validation  
Validation has been accomplished with a collection of In situ ground temperatures in 
boreholes, comprising 359 boreholes in the GTN-P (Global Terrestrial Network for Permafrost, 
Biskaborn et al., 2015), 392 in the TSP (Thermal State of Permafrost) network (International 
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Permafrost Association, 2010), and 169 MAGT measurements from different publications in 
China (overview in Obu et al., 2019). 
 
3.1.3 Error sources/Accuracy/uncertainty 
A comparison with 920 borehole sites, using the years 2003-2012 for comparison at a depth 
2m was selected since it is well below the active layer for most borehole sites, but at the same 
time close to the “top of permafrost temperature” (TTOP) inferred in ESA GlobPermafrost. 
The comparison shows no significant overall bias and a Root Mean Square Error (RMSE) of 
1.85 to 1.95 K, depending on the employed ground stratigraphies. 
Precision: 0.1 K  
 
3.1.4 Known limitations and gaps 
Neither time of acquisition nor the depth of the temperature measurement are standardized 
in the validation borehole data, thus strongly limiting the value of a comparison with 
algorithm output at a specific depth and time. 
 
3.2 Active Layer Thickness 
 
3.2.1 Characteristics of the parameter  
Temporal resolution: 8 days 
Spatial resolution: 1 km  
 
3.2.2 Validation  
For active layer thickness, In situ data by the CALM program downloaded from 
https://www2.gwu.edu/~calm/data/north.html is employed. At this stage, only exemplary 
comparisons are provided by the Permafrost_CCI project. 
 
3.2.3 Error sources/Accuracy/uncertainty 
In summary, the CCI+ permafrost algorithm appears capable of reproducing measured active 
layer thickness at CALM sites, if suitable ground stratigraphies can be made available. This is 
an important point, since ground stratigraphy products are likely improved in the future, so 
that the performance regarding active layer thickness will gradually improve. Published global 
studies with global focus have reached an RMSE with respect to In situ measurements of 0.53 
m (Aalto et al., 2018, using machine learning without EO data) and a correlation coefficient 

https://www2.gwu.edu/%7Ecalm/data/north.html
https://www2.gwu.edu/%7Ecalm/data/north.html
https://www2.gwu.edu/%7Ecalm/data/north.html
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(R2) of 0.7 (based on 303 individual sites), or a correlation coefficient of 0.76 (Park et al., 2016; 
no comparable RMSE provided). 
Precision: 10 cm  
 
3.2.4 Known limitations and gaps 
In transient permafrost modeling, as with CryoGrid CCI, the modelled active layer thickness is 
almost completely controlled by the applied ground stratigraphy. Therefore, a spatially 
distributed product of ground stratigraphies is required as input to CryoGrid CCI in order to 
achieve a satisfactory performance for the active layer thickness. At present, such a product 
does not exist globally, so generic stratigraphies compiled for six landcover classes employed 
in ESA GlobPermafrost have been employed to compile preliminary benchmarks with respect 
to the active layer thickness. 
 
3.3 Permafrost extent/fraction 
 
3.3.1 Characteristics of the parameter  
Temporal resolution: 8 days 
Spatial resolution: 1 km 
 
3.3.2 Validation  
For permafrost fraction, only a few In situ data sets are available, as already pointed out by 
previous studies (Chadburn et al., 2017). Here, in particular existing maps can serve as a 
benchmark, but also spatially distributed measurements of ground surface or near-surface 
ground temperatures with arrays of temperature loggers (e.g. Gisnås et al., 2014). 
 
3.3.3 Error sources/Accuracy/uncertainty 
A significant advantage of the Permafrost_cci algorithm (C) compared to the algorithm (B) is 
that also ground surface temperatures can be employed for validation, and not only 
temperatures measured in deeper layers. This makes it possible to directly employ 
temperature distributions provided by spatially distributed temperature logger arrays, which 
have been installed at several locations in the past five years. For individual cases it can be 
shown that the model ensemble is generally in the right temperature range, it is cold-biased 
by about 1°C (highest density of the ensemble members around -3°C instead of -2°C) and it 
does not represent the “warmer” locations” between -1.5 and 0°C. Despite the small bias, the 
comparison clearly shows the strengths of the ensemble approach taken in Permafrost_cci, 
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in that the scheme indeed represents a range of temperatures within a pixel instead of a single 
temperature as e.g. in method (B). 
 
3.3.4 Known limitations and gaps 
Only sparse In situ evaluations of permafrost fraction are available, strongly complicating 
validation for this parameter (see Chadburn et al., 2017). 
 
 

1.1.4. Soil Moisture 

Soil moisture (SM) is one of the most important variables in land surface hydrology. It 
regulates the energy exchange at the land surface/atmosphere interface through the latent 
and sensible heat fluxes, and controls the water exchange providing key information about 
evaporation, transpiration, infiltration and runoff. Furthermore, SM was recognized as the 
Essential Climate Variable (ECV) in 2010 (GCOS, 2010). With global warming, extreme weather 
conditions and wildfires in regions as Siberia, Alaska and Scandinavia become more frequent. 
It is important to mention that a better knowledge of SM can give us an insight into wildfire 
probability and propagation, being a relevant variable in fire risk indices. Therefore, this 
variable has a high impact on end-users for wildfires prevention and extinction. 

4.1. Technologies used and retrieval methods    
Main technologies to remotely measure global SM are based on the use of passive 
(radiometers) or active (scatterometers or radars) microwave sensors. A microwave 
radiometer is sensitive to SM with high accuracy and temporal resolution (few days), 
however, the measured brightness temperature (TB) has a coarse spatial resolution (tens of 
km), which is primarily limited by the antenna size. By contrast, a microwave Synthetic 
Aperture Radar (SAR) provides backscatter measurements at high spatial resolution (tens of 
meters to km), but it has a limited accuracy to SM sensing due to its high sensitivity to surface 
roughness and vegetation scattering and a low temporal resolution (some days and even 
weeks).  

Different microwave frequency bands were used to measure SM from  L-band (1-2 GHz) to K-
band (18-36 GHz). Currently, the L-band is considered the optimal band to retrieve SM. Signals 
at L-band are significantly less affected by rain and atmospheric effects than those at higher 
microwave frequencies, being the atmosphere nearly transparent (Crane, 1971). The 
radiation emitted by the Earth’s surface at L-band can also pass through sparse up to 
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moderate canopies, which corresponds to 70% of non-frozen land areas on Earth, excluding 
dense forest. In addition, the soil penetration depth at L-band (around 5 cm) is higher than 
the higher microwave bands. Notwithstanding, the soil penetration depth also depends on 
the SM content, being higher in dry than in wet soils (Owe and Van de Griend, 1998). In 2020, 
two active satellites are carrying an L-band radiometer: Soil Moisture and Ocean Salinity 
(SMOS) from ESA and Soil Moisture Active Passive (SMAP) from NASA. 

Several passive and active microwave sensors have been used to measure SM, since the late 
’70s. In the next section a table resume of the satellite, type of the sensors and the frequency 
used are reported. 

During the last decade, two strategies were investigated to improve the spatial resolution of 
SM by the combination with ancillary data at higher resolution: i) synergy of passive 
microwave + optical and thermal infrared (TIR) data and ii) synergy of passive + active 
microwave data. The resulting resolution ranges between 100 m and 10 km. A brief 
explanation of these two synergies is included in the Synergy section 4.  

4.2. Characteristics of the parameter  

The following table summarizes the main characteristics of the SM variable measured by 
different technologies. 

Type Sensor Band  Frequency 
(GHz) 

Spatial 
resolution 

Temporal 
resolution Latency 

Passive 
sensors 

SMMR C 6.6 150 km 2 days daily 

SSM/I & 
SSMIS K 19.35 43 x 69 km 0.5 days daily 

TMI X 10.65 38 km 2 days daily 

AMSR-E C 6.925 75 x 43 km 2 days daily 

WinSAT C 6.8 39 x 71 km 8 days daily 

AMSR-2 C 6.925 35 x 62 km 
10 km 2 days daily 
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SMOS L 1.413 35-70 km 3 days daily 
3h 

Aquarius L 1.413 
76 x 94 km  

84 x 120 km  
96 x 156 km  

7 days daily 

SMAP L 1.413 39 x 47 km 
~9 km 3 days daily 

Active 
sensors 

SCAT C 5.3 50 km 3 days daily 

RADARSAT 
 1 & 2 C 5.3 10-100 m 24 days  

ASAR C 5.33 30 m-1 km 7 days 3 days 
3h 

PALSAR L 1.27 10-100 m 46 days  

ASCAT C 5.25 25-50 km 2 days daily 
3h 

Sentinel 1  
A & B  C 5.4 5-40 m 6 days  

 SMAP L 1.26 1-3 km  3 days daily 

 

4.3. Validation 

The classical strategy to validate remotely sensed SM is the temporal comparison of selected 
pixels over the study area against collocated and concurrent In situ observations provided by 
a network or acquired during a field campaign (i.e., point scale measurements that are 
overlapped by the pixel and are obtained at the same day or the time-overpass of the remote 
sensor) (Entekhabi et al., 2010). In general, when the network is sparsed the comparison is 
performed for each measurement (pixel vs. station), while in dense networks it is done for 
the study area (pixel vs. area), after upscaling In situ data. A variety of upscaling methods 
were used, including the simple average, inverse distance weighting average, kriging, Voronoi 
and other geostatistical interpolations (Wang et al., 2015). The triple collocation (TC) 
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technique was also used to validate SM, employing 3 independent datasets and assuming that 
their errors are uncorrelated (Gruber et al., 2016).  

4.4. Error sources/Accuracy/Uncertainty 

Uncertainties affecting TB and backscatter measurements are translated to the SM variable 
through their retrieval models.  

SMOS data is provided mainly by three processing data centers: Centre d’Etudes Spatiales de 
la Biosphère (CESBIO), the Barcelona Expert Center (BEC) and INRA (Institut National de la 
Recherche Agronomique) with the so called SMOS-IC algorithm.  

The SMOS data uncertainties: 
 - Nominal accuracy: 0.04 m3/m3 at a spatial resolution of 35-50 km and a revisit time 

of 1-3 days,  (Kerr et al., 2012).  
- CESBIO SMOS L3 SM: correlation with validation data is 0.6-0.8 and the STD 0.05-0.1 

m3/m3 for L3 and 0.04-0.08 m3/m3 for L2 (Al Bitar et al., 2017). 
- BEC SMOS L3 SM: Correlation with In situ data of 0.8-0.9 and errors of 0.04 m3/m3 

computed with Triple Collocation technique (González-Zamora et al., 2015).  
- SMOS-IC from INRA L3 SM has a better agreement with ECMWF SM than for CESBIO 

L3 SM (Fernández-Moran et al., 2017).  
- A dry bias was found in all SMOS products. 
 

The SMAP data uncertainty:  
- Nominal accuracy: 0.04 m3/m3 at 10 km resolution and 3-day average.  
- The passive only SM product at 36 km obtained correlations with validation site of 

about 0.6-1 and STD of 0.02-0.06 m3/m3,  
- The active/passive SM at 9 km showed correlations of 0.4-1 and errors of about 0.02-

0.08 m3/m3 (Colliander et al., 2017).  
 
In RADARSAT 2, a target accuracy of 5% is achieved at a sub-18m final spatial resolution 
(Agriculture and Agri-Food Canada, 2016). Using ASAR, the STD was 4.0 and 5.8% for the 
image and wide modes, respectively (Loew et al., 2006). In ASCAT, the expected STD of the 
soil water index is about 2.5%, which corresponds to about 0.03-0.07 m3/m3, depending on 
soil type (EUMETSAT, 2017).  

4.5. Known limitations and gaps 
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An important error source in SMOS and SMAP SM is the presence of Radio Frequency 
Interference (RFI) (Oliva et al., 2016; Mohammed et al., 2016). RFIs produce an increase of TB 
and, consequently, a drier SM is obtained. In an interferometric radiometer or a SAR, RFIs do 
not only affect a particular point but also degrade the entire image due to an effect of blurry. 
In addition, the characterization of some input parameters, especially those related to 
vegetation and surface roughness, has a relevant impact on the resulting SM accuracy. This 
causes higher SM errors in estimates over densely vegetated than over bare soils. 

An issue to consider when validating remotely sensed SM is the different representative 
spatial scale (area-average of the sensor footprint) with respect to In situ observations (point-
scale). In this regard, the upscaling techniques applied to In situ data try to avoid this 
mismatch, as previously commented. Another thing to take into account is the limitation of 
the penetration depth using space-borne sensors. In the best case (i.e., using L-band) the 
penetration depth is 0-5 cm. However, knowledge of the SM at the root zone, defined down 
to 1 m below the soil surface, had a growing interest, particularly for agriculture. To overcome 
this limitation, different land-surface or hydrological models were developed to estimate root 
zone SM (Wagner, 1999; Muñoz-Sabater et al., 2007; Draper et al., 2011). The spatial 
resolution of the SM measured by radiometry (tens of kms) is another limitation. Several 
synergies were developed to obtain disaggregated SM at 100 m-10 km, as previously 
commented. Nevertheless, the combination of passive microwave + optical and TIR data 
results in SM maps affected by cloud cover. 
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1.2 Sea Ice Parameters: 
 
1.2.1. Sea ice concentration 
 

1.1 Technologies used and retrieval methods   
 
The most prevalent measurement of SIC is via multi-frequency passive microwave 
radiometers (e.g. AMSR2, SSMIS, MWRI), typically recording the Earth leaving radiation at 
microwave window channels (e.g. C-band: ~6.9 GHz, Ku: ~19 GHz, Ka: ~37 GHz, W: ~90GHz). 
These frequency channels do not require solar light, and are not blocked by clouds. They thus 
offer the all-weather capability and work during the polar night. For a given space-borne 
passive microwave radiometer, channels with higher microwave frequency (and shorter 
wavelength) have a better spatial resolution (e.g. AMSR2 89 GHz channels have a resolution 
of ~5km, while the 36.5 GHz channels are at ~12km). However, one obtains better SIC 
accuracy by using low-frequency channels as these are less susceptible to atmospheric 
effects. Thus, remote sensing of sea-ice concentration from microwave radiometry is always 
a trade-off between accuracy and spatial resolution (Comiso et al., 1997). The PMR satellite 
can produce daily SIC products (sub-daily over polar regions), thanks to the large swath. For 
all existing passive microwave sensors, the characteristics of the orbit, and the width of the 
swath leave a small unobserved region around the poles (polar observation hole). Many sea-
ice concentration algorithms have been developed in the past decades. A recent inventory 
was compiled in the context of the ESA Climate Change Initiative (CCI) Sea Ice projects 
(Ivanova et al., 2015). It is also recognized that the algorithms that combine brightness 
temperatures into SIC estimates are not the only elements making a good SIC product. 
Atmospheric correction (requiring Radiative Transfer Models), Weather Filtering, correction 
for land spill-over effects, dynamic tuning of the algorithm tie-points are all elements of a 
modern SIC processing chain.  An assessment of SIC retrievals from L-band radiometry has 
also been done (Gabarro et al., 2017)  
 
SIC maps can be obtained from SAR imaging missions (e.g Sentinel-1, RADARSAT-2,...), 
independently of the polar night, and mainly independent from the weather. Weather effects 
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such as wind and precipitation over the ocean yield ambiguities in the single, co-polarization 
channel of older SAR sensors. The SAR-based products have substantially higher resolution 
than those from microwave radiometry. A limitation is that the spatial coverage is limited to 
relatively narrow (4-500 km) SAR scenes, and pan-Arctic maps require several days of 
aggregation, or more satellites1, while some regions (e.g. the region around Svalbard and the 
Barents Sea) are mostly covered daily using the two Sentinel-1 satellites. Discrimination of 
water from sea ice is better when using the cross-polarization channel of multi-polarization 
SAR systems (e.g. the dual-polarization of RADARSAT-2 or Sentinel-1).   
 
Optical spectrometry (e.g. Sentinel-3 OLCI, Sentinel-2, MODIS, VIIRS,...) is another tool for 
monitoring sea-ice concentration, but here the main limitation is cloud cover and the need 
for sunlight. In the light season, and cloud-free conditions, high-resolution images can be 
classified in ocean/ice pixels and aggregated to the desired spatial resolution. Thin, high-
altitude clouds can sometimes prevent automatic algorithms to work on such images, 
although they can still be useful for visual/manual interpretation. Interestingly, this type of 
imagery is the only technology allowing mapping of melt ponds on sea ice in the Arctic 
summer (e.g. Rösel et al., 2012, Istomina et al., 2015a,b) as it can discriminate the lighter blue 
of the pond water from the darker blue of the ocean water in leads and cracks. Thermal 
infrared imagery that can be recorded also during the Polar night is also used for ice 
monitoring during the Winter period where the surface temperature of ice is significantly 
lower than that of water. 
 
Interestingly, several investigators have recently adopted multi-sensor approaches to 
combine the strong points of the individual techniques and reduce ambiguities. For example, 
sea-ice concentration products based on a merging of passive microwave and SAR are 
(independently) studied at the Finnish, Danish, and Norwegian meteorological institutes (e.g. 
Karvonen, 2014). Also, Ludwig et al. (2019) attempted to merge passive microwave with 
MODIS cloud-free imagery. In all these cases, the rationale for adopting a multi-sensor 
approach is to build upon the nearly daily complete coverage of the passive microwave 
products and improve the spatial resolution where SAR or visible imagery is available. These 
multi-sensor techniques should receive more attention.   

 

1   Even using two Sentinel-1. The situation is expected to improve when S1C is 
operational, and when/if the Radarsat Constellation Mission (RCM) is seamlessly available to 
Copernicus users. 
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SAR images are the main input for National Ice Services to produce their ice charts, which are 
targeted at end-users for navigation. The process is at present mostly manual, with trained 
ice analysts drawing and labelling polygons. These polygons encompass classes of similar sea-
ice conditions, and the labels assign several characteristics to the polygon following 
nomenclatures standardized by WMO [WMO No. 259]. The principal characteristics attached 
to the polygons are the total sea-ice concentration, reported in tens (e.g. 3/10s, 8/10s,...), and 
sea ice type based on the observed stage of development. 
 
Sea ice can be detected with a variety of other satellite techniques, including altimetry, 
scatterometry, and even GNSS signals. But none of these techniques allow the mapping and 
quantification of sea-ice concentration. 
 
1.2. Characteristics of the parameter 
 

 Spatial resolution Frequency Latency 

Based on Passive 
Microwave 

5-25 km (highly 
depends on sensor 
and frequency 
channels used) 

Sub-daily in both polar 
regions from a single 
mission (polar 
observation hole) 

Often collected as 
daily maps, but latency 
can be less than 3h 
after sensing for swath 
data. Target <1h 
achievable. 

SAR 80-100m (sometimes 
aggregated to <1km) 

Varies regionally. No 
full Arctic coverage 
from single missions. 

At present no 
automatic SIC 
products based on SAR 
only.  

Optical imagery 10s meter to 1km Varies regionally and 
with the season. The 
main limitations are 
solar light and cloud 
cover.  

Can be less than 3h 
after sensing for swath 
data. 

  
1.3 Validation 
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The validation of sea-ice concentration is far from a simple task, as no In situ observation 
technique exists that is autonomous and covers scales that are directly comparable to those 
of the satellite products. An additional difficulty is that sea ice is always on the move, so that 
accurate space/time collocation between the ground estimate and the satellite product is 
difficult.  
 
One can split the validation of sea-ice concentration in three broad aspects: validation at very 
high (100% SIC) and very low (0% SIC) conditions, validation at intermediate conditions 
(typically in the Marginal Ice Zone), and validation in specific conditions (thin sea ice, melt 
ponds,...). 
 
Validation at the 0% SIC range is possibly one of the most straightforward aspects. Indeed, it 
is not difficult to detect large areas of open-ocean conditions in navigational ice charts, and 
assess the accuracy of the other satellite products there. It is a more useful exercise if the 
open-ocean conditions are sampled not too far from the actual sea ice, in order to be 
representative of the conditions (ocean temperature, wind waves, atmospheric conditions) 
prevailing at the ice edge. However, it is noteworthy that many products use techniques to 
actually report 0% SIC in open-ocean conditions. These techniques range from Weather 
Filters, to climatology masks, to using SST products for masking warm waters. As a result, 
validating over open ocean targets does not always result in useful information for improving 
the products or assigning accuracy numbers. 
 
Validation at 100% SIC has long been a difficult task, as it is apriori challenging to detect where 
and when large extents of sea ice are fully closed. Andersen et al. (2007) used visual inspection 
of SAR images to detect the location and time of 100% SIC conditions in the high-Arctic and 
used these conditions to intercompare SIC algorithms. Kwok (2002) used a related but 
different method by selecting convergence/divergence zones as observed by a SAR-based 
sea-ice motion product (in that case the Radarsat Geophysical Processor System). This 
approach was adopted and expanded upon during the ESA CCI project (Ivanova et al. 2015; 
Pedersen et al. 2019) using motion vectors derived from the CMEMS/DTU-Space product 
based on Sentinel-1 data. Areas identified as converging over at least two days, and -in 
addition- in winter freezing conditions are considered as 100% SIC, and used to validate SIC 
products from microwave radiometry in Lavergne et al. 2019 and Kern et al., 2019. Limitations 
to this validation method are the coverage of the underlying SAR ice motion product, and the 
applicability to the winter season only (local convergence while surface melting does not 
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guarantee 100% SIC). It is noteworthy that the validation statistics close to 100% SIC are 
largely influenced by the cut-off applied to most SIC products to the =< 100% SIC range. 
Indeed, geophysical retrieval noise (e.g. of algorithms using microwave radiometry) results in 
values being both lower and above 100% SIC. This symmetric noise distribution is very seldom 
made available to the users, and thus validation teams, because SIC products are thresholded 
to the physical range [0%;100%]. Recently, Kern et al. (2019) investigated how the non-
thresholded, symmetric distribution of noise can be inferred from thresholded products. 
 
There is a general lack of accurate validation data for the intermediate range of SIC. Very often 
(higher resolution) satellite products are used as validation sources for (coarser resolution) 
satellite products, e.g. SIC derived from Landsat or MODIS is used as validation data for 
passive microwave estimates. This is however problematic as all satellite products have their 
challenges and short-comings that should first be characterized via validation. Also, relying 
for example only on visible imagery to validate microwave products might induce a bias 
towards spring/summer (sunlight) or cloud-free condition. 
 
Some ship-based manual visual observations exist, and are collected from the bridge of ice-
going vessels. Two protocols exist, one for the Antarctic (ASPeCt) and one for the Arctic (Ice 
Watch - Arctic Shipborne Sea Ice Standardization Tool (ASSIST)). The ASSIST protocol builds 
upon that of ASPeCt and adds focus on observing and reporting melt ponds. Observers are 
tasked to survey the sea-ice conditions around the ship at regular intervals (typically hourly). 
The line of sight and the motion of the ship along its track typically result in an elongated field 
of view. Depending on the protocol, and the level of training of the observer, both the total 
sea ice concentration, the concentration of ice types, the fraction of melt ponds, the sea-ice 
thickness, etc… are estimated and reported. The interested reader is directed to a newly 
compiled dataset of both ASPeCt and Ice Watch ASSIST reports in Kern et al. (2019) and 
references cited there. Using such ship-based observation to validate (especially coarser 
resolution) satellite products is challenging both due to the accuracy of the observation, 
preferential sampling, and the mismatch of scales between the observation and satellite 
product. Alternative sampling methods could include drone-based camera systems that 
would survey a larger area around the ship (because flying higher) and whose imagery would 
be processed automatically. 
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Despite its key importance to both climate and near-real-time applications in the polar 
regions, the validation of satellite-based sea-ice products is a very challenging task that should 
receive more attention.    
 

 
1.4 Error sources/Accuracy/uncertainty 
 
The error sources and accuracy of sea-ice concentration retrievals vary widely with the 
methodology used. In the following, we review these characteristics for the main techniques 
outlined at the beginning of this section. 
 
Using microwave radiometry, the standard deviation of the error against ground truth is 
typically between 1% to 7% for the most widely used algorithms (Ivanova et al. 2016). These 
values are valid for winter freezing conditions, and the accuracy is often slightly better in the 
Southern Hemisphere because of the relative preponderance of first-year ice. Lavergne et al. 
(2019) report uncertainties below 2% over open ocean for their EUMETSAT OSI SAF - ESA CCI 
Climate Data Records (thanks to an explicit correction of the brightness temperatures with 
radiative transfer models). At 100% SIC conditions, the same CDRs show uncertainty of ~2% 
when using C-band frequency channels (6.9 GHz) and ~3.5% when using the “classic” Ku and 
Ka bands (18.7 GHz and 36.5 GHz). More recently Kern et al. (2019) validated and 
intercompared 10 SIC products derived from passive microwave radiometer data (including 
those from OSI SAF - CCI). They found uncertainty values ranging from 4% to 7% at 100% SIC 
conditions. Algorithms using higher frequency channels (e.g. ASI using near 89 GHz channels) 
exhibit the largest uncertainties. Interestingly, Kern et al. (2019) also reveal that some 
products are biased high by a few percents. Such a high-bias (after truncation to the =< 100% 
SIC range) results in removing and hiding a larger uncertainty in some products. Despite these 
seemingly small uncertainty values, there still exist large differences between products on a 
daily basis (e.g. Comiso et al., 2017). These differences result from the algorithms themselves, 
and the way they combine frequency channels, that result in different sensitivity to error 
sources such as sea-ice type, the effective temperature at the emission layer, the snow-depth 
on sea-ice, the thickness and brine content of sea ice (for thin ice), the atmospheric wetness, 
etc… Differences in daily SIC products translate into differences in monthly trends of sea-ice 
extent and area (Comiso et al., 2017; Kern et al., 2019). Part of these differences in integrated 
quantities arise from differences in grid spacing, projection, land mask, etc. and others from 
the SIC algorithms. Part of these discrepancies are attributed to the Weather Filters used by 



 

52 | Page 

   

all products, but that has so far not received as much attention as the SIC algorithms 
themselves (Ivanova et al., 2016). 
 
Due to the lack of ground truth data, it is very difficult to provide accuracy measures for 
automatic SAR-based SIC products or those derived from optical imagery. Most of the time, 
the validation of such products is based on evaluating how the algorithm performs on 
reference scenes/images that were for example classified by visual inspection. 
 
The accuracy associated with manually drawn ice charts is an area of open research. The lack 
of validation data led to relying more on comparing ice charts (the polygons themselves 
and/or the SIC value assigned to polygons) from different analysts (e.g. Karvonen et al., 2015; 
Cheng et al., 2019). Given the importance of sea-ice charts, more efforts should be put into 
validating them and provide uncertainty estimates. 

 
1.5 Known limitations and gaps 
 
The retrieval of SIC can be achieved using several satellite technologies (microwave 
radiometry, radars, visible imagery, etc.). However, with the current observing systems, none 
of these techniques fully answer the user requirements (both for navigation and ingestion in 
forecasting models). 
 
The applicability of microwave radiometry to generate global daily-covering products is 
limited by the rather coarse resolution achieved by these products. At the time of writing, the 
best resolution that can be achieved  (just below 5km) is only available from one satellite 
mission (JAXA’s AMSR2), and by relying on imaging channels with high microwave 
frequencies, which result in rather large uncertainties. This trade-off between spatial 
resolution and accuracy will be partly solved with the Copernicus Imaging Microwave 
Radiometer (CIMR) mission. 
 
At the other end of the resolution spectrum, Synthetic Aperture Radar missions continue to 
improve, both in coverage (better power allowing longer duty cycle) and technology (dual-
frequency imagery). Nevertheless, at the time of writing, there are no fully automated 
algorithms that solely rely on SAR images and return SIC maps and that are not limited by 
ambiguities. Automatic classification of SAR images is even more difficult because of 
persistent artifacts in the imagery itself (thermal noise, Park et al. 2018), a problem that 
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central processing facilities have not solved despite the missions being in the in orbit for 
several years. 
 
Although several teams are actively researching efficient algorithms to provide multi-sensor 
SIC products (e.g. that merge microwave radiometry and SAR), we are at the infancy of such 
approaches for global or regional mapping of SIC, and more efforts are needed generally to 
make better use of multi-sensor capabilities to automatically map SIC on an operational basis. 
 
As the case for many (if not all) sea ice variables, the existing capabilities work best in freezing 
conditions. When temperatures rise near the melting point and further when surface snow 
starts melting and melt ponds form at the top of sea ice, the accuracy of most algorithms is 
greatly reduced. Not only the accuracy is reduced, but there is doubt about what SIC products 
actually measure -the total sea-ice concentration, or the ice surface fraction? Simply put, are 
melt ponds on top of sea ice accounted as water or sea ice). Answering these questions and 
reducing our uncertainties in summer SIC (and Sea Ice Area) is required to address key 
questions of the future of sea-ice in a changing climate, such as when the Arctic Ocean would 
be ice-free during the summer (Niederdrenk and Notz, 2018). 
 
1.2.2. Sea ice thickness 
     
Sea ice thickness is a physical parameter that indicates the distance from the bottom of the 
ice pack, which is in contact with the seawater, and the sea ice upper surface. Sea ice thickness 
is becoming an increasingly important parameter for climate change monitoring due to the 
thinning of the sea ice and the increase of the thin sea ice extent (i.e. less than one meter). 
This is due to the fact that thin sea ice dominates the ocean-atmosphere heat exchange in 
polar regions. Sea ice thickness is also very important for operational ice monitoring (Ice 
charting) although today no large scale higher resolution observational capability exists. Ice 
chart estimates of ice thickness is therefore mostly based on indirect information from ice 
type observations and meteorological data (freezing degree days). 

 
2.1. Technologies used and retrieval methods   
 

a) Altimetry (Cryosat) 
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The altimeters measure the ice freeboard, and then the hydrostatic equilibrium equation is 
used to derive the ice thickness as a function of the ice freeboard. Freeboard is obtained as 
the difference between the local sea surface and the ice pack surface height. 
The discrimination of the echo is based on the surface reflectivity variation. This variation 
depends on whether the echo is dominated by specular or diffuse reflections (leads or ice 
floes). Two main parameters are used to characterise the surface, the “pulse peakiness” and 
the “stack standard deviation” based on the multilplemodes the sensor collects the data in 
(Laxon et al., 2013). The freeboard measurements are averaged in order to reduce the speckle 
size.  
 
A major technological change from the “conventional” low-resolution measurement (LRM) 
sensors was the introduction of instruments with a delay-Doppler or SAR Measurement 
(SARM) processing capability. This latter mode of operation enables a finer along-track 
resolution and lower noise levels due to the accumulation of looks (multi-looking) from 
multiple viewing geometries. The resultant radar echoes (“waveforms”) have a narrower 
shape. This technology was first demonstrated by CryoSat-2 and has become more 
operational with Sentinel-3A and the recently-launched Sentinel-3B (Quartly et al., 2019). 
 

b) Lidar Altimetry (ICESat2) 
 
Sea ice thickness is derived using freeboard measurements. Freeboard is obtained as the 
difference between the local sea surface and the ice pack surface height. This is a relative 
measurement and it is not affected by the error sources that affect absolute height 
measurements, such as geoid error, long-wavelength laser pointing error, tidal error and 
dynamic ocean topography (Zwally et al., 2008).  
 
A first calculation of the relative height is calculated using a 20 km running mean which is 
considered the reference level. The reference sea level is afterward estimated from this 
relative altimetry profile using leads. The reference sea level is calculated from the average 
of the lowest 2% of the relative heights in a 50 km section profile. Freeboard height is 
calculated as the difference between the relative height and the reference sea level. Finally, 
sea ice thickness is obtained by converting the freeboard values to ice thickness by making 
some assumptions on ice and snow densities and snow depth through the hydrostatic 
equilibrium equation (Zwally et al., 2008).  
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However, at the moment of writing this document, no operational data is available (no real-
time data is processed), since this is a research mission, so data might not be useful for the 
final user. 
 

c) L-band radiometry (SMOS, SMAP)  
 
L-band radiometry can retrieve sea ice thickness from brightness temperatures (Kaleschke et 
al., 2012). This methodology relies on the fact that the brightness temperature of sea ice is 
related to ice thickness. The retrieval of ice thickness using this method is limited to the 
thickness of less than ~0.5-0.8 meters (Kaleschke et al., 2012; Huntemann et al., 2014). The 
spatial resolution is also limited to ~35 km. Temporal resolution is daily for the sea ice 
thickness product in the Arctic region, however the sensor leaves a gap at the north pole 
(~83ºN). 
 
There are two types of retrieval methods. The theoretical retrieval, developed by Kaleschke 
et al. (2012), Tian-Kunze et al. (2014) and the empirical retrieval implemented by Huntemann 
et al. (2014) and Gupta et al. (2019). The theoretical retrieval algorithm begins with an initial 
guess from the algorithm developed by Kaleschke et al. (2012). This initial guess is used in 
conjunction with a parameterization of the ice temperature and salinity to estimate a 
modelled temperature brightness (TB). The difference between the observed TB and the 
modelled one is used to produce a new estimation of the ice thickness until convergence is 
reached (Tian-Kunze et al., 2014). The empirical retrieval is trained with In situ measurements 
and data from models to obtain daily sea ice thickness estimates. Huntemann et al. (2014) 
calibrated the empirical retrieval with model-based sources such as: HIRLAM, the Cumulative 
Freezing Degree Days (CFDD) algorithm, NCEP and TOPAZ.  
 

d) Optical sensors (MODIS) 
 
This type of retrieval is based on the use of thermal imagery. Moderate Resolution Imaging 
Spectroradiometer (MODIS) is used for retrieving thin sea ice thickness (Mäkynen et al., 
2013). The ice surface temperature is acquired under cloud-free night-time conditions. 
MODIS RGB images are generated from bands 20 (red), 31 (green) and 32 (blue). The band 
differences 32-31, 31-22 and 31 are used in the manual cloud-masking procedure. Further 
cloud masking of MODIS night-time data is essential in order to obtain reliable sea ice 
thickness. The thickness of ice is estimated from the observed ice temperature by using a 
model that relates both quantities and other physical parameters (mainly radiative fluxes and 
latent heat fluxes) estimated from the HIRLAM model (Mäkynen et al., 2013). The estimated 
thickness is adjusted for the presence of snow over the ice.This type of retrieval is heavily 
affected by the presence of clouds on the scenes. Therefore, a continuous track of the ice 
over a location is difficult. Also, a snapshot of a large geographical region is most of the time 
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impossible and weekly products are provided as a replacement for a result with a 
geographical continuous coverage. The maximum retrievable ice thickness is 35-59 cm 
considering typical weather conditions (Mäkynen et al., 2013). 
 

e) SAR  
 

Single attempts have been made to use SAR data for the retrieval of the thickness of thinner 
ice on local and regional scales. Correlations between the ice thickness and radar intensities 
at different polarizations or the co-polarization ratio HH/VV were noticed by Wakabayashi et 
al. (2004) and Nakamura et al. (2009). The sensitivities to ice thickness are similar at C- and L-
band. L-band radar signatures are less affected by the small-scale roughness of the ice surface 
and are more strongly influenced by deeper portions of the ice. The difference between the 
radar intensities at VV- and HH-polarization is affected by the dielectric constant of the near-
surface ice layer, which changes depending on the near-surface ice salinity. In one study from 
the Antarctic, even ice thicknesses up to about 1.2 m could be retrieved with a sufficient 
accuracy based on the co-polarization ratio at C-band (Nakamura et al., 2009). As a special 
case the thickness of pancake ice covers can under certain conditions be retrieved from wave 
dispersion retrieved from SAR images (e.g. Wadhams et al. 2018). 
 
2.2. Characteristics of the parameter 
 
Some products provide the sea ice thickness data onto a user-friendly 5 km square Polar 
Stereographic grid by averaging all thickness measurements within a 25 km radius of the 
centre of each grid cell, with all points receiving equal weighting. 
 

 Temporal 
resolution 

Spatial 
Resolution 

Accuracy and 
precision 

Latency of the 
geophysical 
parameter 

Radar Altimeter 
CCI sea ice 
thickness 
products 

Monthly 
EASE2 
(Hendricks 2018) 

25 Km (Hendricks 
2018)  

STD: 0.624m 
At 0.4º(lon) 
*4º(lat) (Laxon et 
al., 2013) 

15 days 

Laser Altimeter 
Not operational 

Sea ice freeboard 
NSICD: 90 days  
(Kwok et al., 
2019) 

variable 0.02+/-0.72m 
(Kern and Spreen, 
2015) 

15 days 
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Passive 
Microwave 
 

Daily up to 85º 
latitude (Kerr et 
al., 2010) 
25km  

35km at nadir 
and 50km at 60º 
incidence angle  

Retrieval 
uncertainty varies 
with thickness 
(Tian-Kunze et al., 
2014). Best 
retrieval in the 
10-30 cm range 
(Kaleschke et al., 
2016) 

12 h 

Optical Sensor Bad coverage 
during freeze-up 
periods. Weekly 
(Mäkynen et al., 
2013) 

1km at nadir. At a 
scan angle of 40º: 
~2 km (Mäkynen 
et al., 2013) 

Accuracy is best 
for the 15-30 cm 
thickness range:  
~38% (Mäkynen 
et al., 2013) 

12h 

 
2.3 Validation procedure 
 
There are several methods to evaluate the satellite-derived sea-ice freeboard and thickness. 
Satellite altimetry, In situ observations, airborne campaigns, submarines, and drifting and 
moored buoys have all been used through the years. However, such observations are still 
sparsely distributed in space and time (Quartly et al., 2019). 

 
There are two reasonably extensive datasets for a direct satellite sea-ice freeboard 
evaluation. One is from NASA’s Operation IceBridge (OIB), with the sea-ice freeboard given 
by the total freeboard (snow + sea ice) measured by a laser altimeter minus the snow depth 
measured by the snow radar. The other is from the airborne campaigns carried out as part of 
ESA’s CryoSat Validation Experiment (CryoVEx), where an airborne version of the CryoSat-2 
SIRAL altimeter provides coincident Ku-band radar freeboard data. 
 
Other observations commonly used to evaluate satellite-derived SIT are from upward-looking 
sonars (ULS) either from submarine cruises or moored buoys (for example, during the 
Beaufort Gyre Experiment -BGEP). The Ice Mass Balance (IMB) buoys have also been used for 
validation (Laxon et al., 2013, Quartly et al., 2019). Nonetheless, this data needs to be 
resampled (temporally and spatially) in order to be comparable with the sea ice thickness 
analysed. Given the scarcity of the reference data for validation some studies use the gaussian 
error propagation for estimating the uncertainty in sea-ice thickness (Kern and Spreen, 2015). 
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The correlation between OIB and CryoSat-2 SIT estimates is often found to be lower than with 
submarine, moored buoys and AEM observations. The cause of this is still unclear and subject 
to further investigation (Quartly et al., 2019). 
 
SMOS derived sea-ice thickness presents its peculiarities (i.e. retrieval of thin ice) which 
prevents the usage of most of the validation data available. Electromagnetic induction 
systems (EM) on a helicopter have been used to validate the SMOS data, but those 
measurements are usually acquired during the end of March and April, when the ice is mostly 
thick. ULS has also been used for the validation of L-band estimates of sea ice thickness. An 
extensive field ESA campaign took place in the Barents Sea during March 2014 with the RV 
Lance ship for L-ban radiometry validation. Moreover, sea ice thickness was measured using 
an EM system from the bow of the boat and another EM-system towed below the helicopter 
(Kaleschke et al., 2016).  
 
The lack of reference validation data is reported in many studies (Huntemann et al., 2014). A 
similar issue is found when validating MODIS derived ice thickness, compounded by the 
presence of clouds difficulting a timely acquisition of ground truth (Mäkynen et al., 2013). 

 
2.4 Error sources/Accuracy/uncertainty 
 
The document ‘User Requirements for a Copernicus Polar Mission Phase 2 Report - High-level 
mission requirements’ set the accuracy requirement (goal) of the sea-ice thickness (thin and 
thick) as following: for thickness larger than 0.5 m: 0.5m  while for thin ice (thickness < 0.5 m) 
the accuracy goal is 0.1. 
 
Despite these challenges and the many assumptions in the processing chain, recent studies 
find relatively good correlations (0.5–0.9) with mean differences − 0.21 to 0.12 m between 
the CryoSat-2-derived SIT products and the evaluation data in the central Arctic winter 
(October–March) (Tilling et al., 2018). 
 
Individual freeboard measurements have a standard deviation averaging 9 cm Arctic-wide 
and can be calculated through the propagation of errors as the root-sum-square combination 
of the two sources of error. The standard deviation arises through (a) uncertainties in the floe 
height measurement due to speckle in the radar echoes, and (b) uncertainties in sea surface 
height. When gridding monthly data (typically 4 or more passes) results in a 2 cm freeboard 
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uncertainty. This scales to 20 cm thickness, or 11% of a typical  growth  season thickness  of  
1.8 m for gridded monthly thicknesses (Tilling et al., 2018 ).  
 
The monthly CryoSat-2 data have been compared to EM bird data, both data sets were 
gridded onto the same 0.4º latitude by 4º latitude grid. The root-mean-square difference 
includes both the errors in CS-2 ice thickness and the EM data and differences due to the 
temporal and spatial sampling of the two data sets. The mean difference between In situ and 
CS-2 data is 0.066m and the STD 0.624 m (Laxon et al. 2013, Graham et al., 2019). 
 
ICESat2 sea ice thickness estimates within 25-km segments have an uncertainty of ~0.7 m and 
this figure is dependent on the relative thickness of the total freeboard and snow depth (Kern 
and Spreen, 2015). The mentioned uncertainty is higher over thicker multi-year ice. The main 
contributors to thickness uncertainty are freeboard and snow depth (accounting for more 
than 80% in all cases).  
 
For the L-band radiometers, the retrieval uncertainty varies with the thickness (Tian-Kunze et 
al., 2014). But, the best retrieval varies in the range of 10-30 cm (Kaleschke et al., 2016).  
 
The optical sensors can measure sea ice thickness with enough accuracy for the thickness 
range of 15-30 cm  and the accuracy is ~38% (Mäkynen et al., 2013) 
 
2.5 Known limitations and gaps  
 
a) Radar altimetry: Operational applications today require high-resolution products over the 
Arctic with a minimal time delay, which is not achieved nowadays. 
 
One important limitation of altimeter measurements is the lack of precise snow depth 
measurements, which are fundamental to derive the ice thickness from freeboard 
measurements. However, this parameter (snow depth) has a large uncertainty.  
 
The operational Sentinel-3 mission (2 satellites) covers areas up to about 81 degrees of 
latitude which leaves a significant pole hole in the Arctic which the CRISTAL HPCM mission 
aims at filling in. 
 
b) Laser altimeters: A clear limitation of Laser altimeters is that no operational mission exists 
and none is planned, so data is for science purpose only.  
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c) L-band radiometers: permit estimating sea ice thickness with high temporal resolution 
(daily product), but the spatial resolution if poor (25 Km) and can only estimate thin ice 
thickness below half a metre.  Also, for L-band radiometry of thin ice thickness there are 
currently only science missions but the CIMR HPCM could take over. 
 
e) SAR: In the retrieval of ice thickness with SAR instruments, “disturbing” factors such as frost 
flowers or rafting processes that influence the radar signature have to be taken into account 
and may overlay the effect of ice growth. The methods tested for the retrieval of ice thickness 
from SAR image analysis are in a very preliminary stage of development and not suited for 
operational applications.  
 
Therefore, a sea ice thickness product with high temporal resolution covering the whole ice 
thickness range is missing. A higher resolution sea ice thickness product (100s of meters to a 
few kilometer resolution) is also missing. 
 
1.2.3. Sea ice drift and deformation 
 
3.1 Technologies used and retrieval methods: 
 
(a) Measurements of position changes of buoys deployed on sea ice (“Lagrange approach”: 
continuous tracking of a single object), are described, e.g., in Itkin et al. (2017).  
 
(b) The use of satellite image pairs for drift retrieval has been investigated in several studies 
(Lavergne et al., 2010; Hollands et al., 2011; Girard-Ardhuin et al., 2012; Karvonen, 2012;  Berg 
et al., 2014; Muckenhuber et al., 2016; Korosov et al., 2017; Demchev et al., 2017). Two 
approaches are popular: correlation techniques and tracking of distinct features. In the 
former approach, small windows are distributed as regular grids in the master image. For each 
window its shift of position in the second image is systematically determined by applying 
spatial correlation (“pattern matching”). The search can be organized in resolution pyramids 
and cascades. Feature tracking works by identifying distinct ice cover structures such as 
ridges, leads, cracks in the master image and trying to find them in the slave image. Image 
data originating from optical, SAR, scatterometer or passive microwave sensors are used. Drift 
vectors obtained from pattern matching are mostly shown on the vertices of a fixed eulerian 
approach. If single distinct features are tracked, the grid resulting from connecting single 
adjacent drift vectors is irregular. Pattern matching and feature tracking can be combined. 
The rotational motion requires additional retrieval procedures. The advantage of using 
satellite images is the high spatial density of drift vectors, which, however, depends on the 
spatial resolution of the image. The Radarsat Geophysical Processor System (RGPS) employs 
a temporal sequence of satellite images covering the same region to follow ice structures 
identified in the first image over a longer period (at maximum as long as those structures can 
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be identified in the successive images). This approach creates an irregular grid composed of 
single cells with their vertices on the tracked features. In particular, when using passive 
microwave radiometers and scatterometers, a Laplacian filter is applied on daily images for 
enhancing the structures in the ice that are to be tracked. Ice displacements are calculated 
based on the Continuous Maximum Cross Correlation (CMCC) method (Lavergne et al., 2010). 
The CMCC relies on a continuous step for optimizing the components of the motion vector, 
located at the maximum of the cross-correlation function between a reference and a 
candidate block. In practice, virtual image pixels are interpolated from neighboring pixels in 
each candidate block. The main effect of using the CMCC is the removal of the quantization 
noise. 
 
(c) When sea-ice drift estimates are available from different sensors, they can be merged for 
generating a multi-sensor drift product. The multi-sensor product aims at gaining confidence 
in the retrieved ice motion by a synergetic use of several instruments and reducing the 
number of missing data. The merging methodology is based on two steps. First, all grid 
locations where at least one single-sensor product has a valid motion vector are assigned a 
merged motion vector, as a weighted average of the available estimates. Weights are related 
to the standard deviations of single-sensor datasets. The second merging step consists of a 
spatial interpolation of missing vectors from the motion vectors in the closest vicinity. Current 
merging methodologies are rather crude and limited in scope (see known limitations and gaps 
below). 
  
(d) While methods of the category (b) need pairs of satellite images as input and output the 
two-dimensional displacement field, the instantaneous (sub-second) sea ice motion along the 
line-of-sight (LoS) between the radar and a surface element can be retrieved from the Doppler 
frequency derived from SLC (single-look complex) data based on a single SAR scene (Kræmer 
et al., 2015, Kræmer et al., 2018) 
 
(e) Instantaneous LoS components of drifting ice can also be derived from along-track 
interferometry, but in this case, again two images are required from a satellite tandem (two 
identical SAR instruments) for which the along-track (temporal) baseline is on the order of 
milliseconds and the across-track baseline is short enough to minimize the influence of ice 
topography on the interferometric phase (Dammann et al. 2019). The spatial resolution is 
higher than for the Doppler approach (c). From methods (c), (d), single sub-second LoS 
velocity component fields are obtained, which are usually separated by hours to days. In 
which way they are representative for an assessment of the actual two-dimensional ice 
velocity field and its changes on temporal scales of hours is still unclear. Whether split-beam 
InSAR processing (to obtain the azimuthal component of velocity, see Bechor et al. (2006)) 
can be applied for sea ice has to be checked. 
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3.2. Parameter Characteristics 
 
 Ocean and Sea Ice Satellite Application Facility OSISAF (EUMETSAT)  

http://osisaf.met.no/p/ice/#lrdrift 
The sea ice drift product in the OSISAF product's portfolio is based on low resolution (10-15 
km) passive and active microwave instruments such as SSMIS, AMSR-E, and ASCAT. The spatial 
resolution of the drift field is 62.5 km, projected on a Polar Stereographic Grid similar to the 
one used for the other OSISAF sea ice products. It is a 2 days (48 hours) ice drift dataset 
processed daily. 
 
 EU Copernicus Marine Service / Technical University of Denmark 

http://resources.marine.copernicus.eu/documents/PUM/CMEMS-OSI-PUM-011-006.pdf 
Drift data are provided near-real-time on a 10 km grid (originally from Envisat ASAR, then 
Radarsat-2, now Sentinel-1 at 300 m spatial resolution), based on the application of the 
maximum cross-correlation method on single geographically overlapping image pairs from 
consecutive dates. Also available is a 24-hour mean-value composite. 
 
 Centre ERS d'Archivage et de Traitement (CERSAT) at IFREMER 

http://cersat.ifremer.fr/data/products/catalogue 
CERSAT makes available a continuous winter time (beginning of September to end of May) 
series of drift vectors over the Arctic, provided on a polar stereographic grid every 62.5 km, 
over 3-days or 6-days overlapping periods. A monthly drift is also available. The drift field is 
inferred from the combination of the respective sea-ice drift vectors retrieved separately 
using respectively QuikSCAT (from winter 1999-2000)/ASCAT (available from 2007-2008) and 
SSM/I (in horizontal and vertical polarization, from winter 1991-92) observations. The 
estimation of sea-ice drift for each one relies on a correlation technique applied to the field 
of the second spatial derivative of 12.5km resolution composite maps separated by a few days 
(backscatter maps for QuikSCAT/ASCAT and brightness temperature for SSM/I. This time 
series is ongoing. Archived Arctic drift fields from AMSR-E (Oct 2002 – April 2011) are also 
available. 
 
 Research-based on SAR imagery 

The spatial resolution of the drift field varies between 300 m and 10 km, dependent on the 
SAR image mode and the size of grid cells. The temporal resolution depends on the time 
interval between revisits of a single satellite or different satellites over a given area (note that 
also SAR images acquired at different frequencies can be combined for drift analysis). The 
time between revisits decreases with increasing latitude. For the Sentinel-1a and 1b 
constellation, e.g., this is less than a day in the Arctic.   
 

http://osisaf.met.no/p/ice/#lrdrift
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ICE DRIFT 

Resolution OSISAF-
EUMETSAT 

Copernicus-DTU CERSAT SAR 

Temporal daily daily   

Spatial 62.5 km 10 km 62.5 km 300 m - 10 km 

Accuracy and 
Precision 

2-5km/2days 300 m/day   

Latency 48h NRT 1.5-3 day < 1 day 

 Latency: time from observation (satellite pass) to product readiness. If a product is 
generated every 3 days (average of measurements from day D0, D0-1, D0-2), then on 
average latency is 1.5 days. 

 
 
3.3 Validation procedure 
 
(a) Displacements derived from the tracking of sea ice buoys, beacons or drifters are used as 
a reference for judging results of retrievals from satellite data. This, of course, requires to 
consider the uncertainties in buoy positions. In the framework of the International Arctic Buoy 
Programme (http://iabp.apl.washington.edu/), e.g., positions of about 200 buoys drifting in 
the Arctic and of 120 buoys in operation in Antarctic waters can be obtained (status end April 
2019). The areal density of buoys, however, is in general not sufficient for rigorous validation 
of satellite drift products. This type of validation procedure was applied, e.g., in studies by 
Korosov et al. (2017), Lindsay et al., (2003), Muckenhuber et al. (2017). 
 
(b) The error of ice displacements automatically retrieved from a pair of two satellite images 
can be achieved by manually determining displacement vectors using the same image pair. 
Since this requires the existence of clearly identifiable structures that show up in both images, 
this method corresponds to the automated feature tracking but can also be used in 
comparisons to results from pattern matching. This approach was employed, e.g., in Hollands 
et al. (2011). 
 
(c) Lindsay and Stern, 2003, estimated the tracking error (which is caused by imprecisions in 
pattern matching or feature tracking applied on pairs of satellite images) by combining two 
efforts of automated retrieval of displacements applied on the same satellite image. They 
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compared results from two RGPS-processors, implemented at different places, with different 
initializations (i.e. identifications of trackable features in the first image). 
 
 
3.4 Error sources/Accuracy/uncertainty 
 
(a) Buoys: Error sources are spatial and temporal uncertainties of position readings. The 
accuracy of the absolute buoy position includes both a possible bias and a random component 
and may be larger for drifting than for stationary buoys. Magnitudes are given, e.g., as 25 m 
for stationary buoys (Itkin et al 2017), but these numbers vary depending on buoy type. E.g. 
uncertainties of buoy locations from the International Arctic Buoy Program (IABP) "C" data 
set are 0.5 km (https://nsidc.org/data/eg/nsidc0116-icemotion-buoy), uncertainties of Argos 
buoys (Argo 2000) are between 350 m and 150 m, and of buoys with GPS receivers below 50 
m (http://imkbemu.physik.uni-karlsruhe.de/~eisatlas/ HTML/ eisatlas_buoydoc.html). In 
arrays of buoys (spatial extension of a few kilometers), position uncertainties relative to one 
another are on the order of 1-2 m (J. Hutchings, pers. com. 2019). The accuracy of the GPS 
time is better than a millisecond. Hence, the temporal error can be ignored. 
 
(b) Satellite images: Displacements retrieved from a pair of satellite images are prone to geo-
location errors of the two images, and to the tracking error (Lindsay and Stern, 2003). (Note 
that the tracking error is zero for buoys). Already for Envisat ASAR, e.g., the position 
(geolocation) error was better than 0.04 times the pixel size of the corresponding image 
product, and for the modern satellite missions it has even further improved  (Small et al., 
2005, Schubert et al., 2008, Schubert et al., 2017). Position errors can hence be neglected for 
satellite images. In comparison to manually derived displacements, Hollands and Dierking 
(Holland et al., 2011) found uncertainties (standard deviations) of displacements retrieved 
from Envisat wide-swath images pairs acquired under winter conditions between 0.8 and 1.6 
times the size of an image pixel (here 150 m). These numbers were given for time intervals of 
2 to 6 days between the acquisitions of the two images used for drift retrieval and represent 
the tracking error. When applying Envisat Image mode (pixel size 25 m), the corresponding 
numbers are between 0.9 to 1.2 for winter image pairs (time intervals 2 to 6 days), and 1.5 
for one summer pair (1.2 days). However, in single cases tracking errors were up to 4.8 pixels 
for winter and even 11.6 pixels for the summer pair (both: Image mode). Lindsay and Stern, 
(Lindsay et al., 2003) reported a tracking error of 100 m for Radarsat ScanSAR images (pixel 
size 100 m) for a time interval of 3 days (based on results from two different RGPS processors). 
In comparison with buoys, they found differences in displacements of 320 m (median). These 
differences include the geolocation error of the buoys and the satellite images (in which the 
latter may be negligible) and the tracking error. Muckenhuber and Sandven (2017) did their 
retrievals based on Sentinel-1 Extra Wideswath (EWS) image pairs (40 m pixel size) and in 
comparison to buoys found displacement differences of 540 m (HH-polarized images) and 350 



 

65 | Page 

   

m (HV-polarization) (median). Korosov and Rampal (2017), also used Sentinel-1 EWS image 
pairs and found uncertainties between 1.2 and 1.4 km for the x- and y- components of 
displacements relative to ice drifters. Kraemer et al. (2018) compared Doppler line-of-sight 
sea ice drift velocities derived from Sentinel-1A EWS data with GPS tracks from a drifting ice 
station as well as with vector fields obtained using a conventional cross-correlation approach. 
They found that in EW mode it is not possible to obtain Doppler estimates with the required 
precision for typical Arctic ice drift speeds, which vary mainly between 0.03-0.2 m/s. 
 
(c) Validation of OSISAF low-resolution sea ice drift dataset was conducted in the Arctic 
against In situ drifters. Trajectories were made available as hourly (and sub-hourly) GPS 
records for an optimum temporal collocation. The validation exercise extended over 3 Arctic 
winters starting October 2006 and ending April 2009. Statistical results and graphs document 
an excellent agreement between the OSISAF low-resolution sea ice drift datasets and the 
reference data. 
 
Provision of uncertainty information 
Usually, magnitudes of errors derived empirically in single studies are taken as information 
on the error to be expected in general. However, since the retrieval of displacement vectors 
from satellite images depends on the temporal stability of visible features or patterns in the 
ice that can be traced over image sequences, it can be expected that the tracking error varies 
spatially and temporally. In the case of radar intensity images and images of brightness 
temperatures (passive microwave sensors), the contrast between features/patterns may 
considerably change during the transition phase between freezing and melting conditions. To 
be able to automatically provide a preliminary judgment of the retrieval quality that only 
depends on the characteristics of the image pair/sequence, Hollands et al. (2015) used a 
“confidence factor” (CFA) that combines thresholds for the cross-correlation coefficient and 
selected image texture parameters. The magnitude of the CFA (quantifying how often 
thresholds are exceeded) is used to identify regions of less reliable displacement information, 
in which pattern matching is difficult due to the lack of distinct ice structures or due to very 
low-intensity contrasts. A second possibility for judging the reliability is back-matching, i.e. 
the displacement field is calculated twice. In the first calculation image 1 is employed as a 
reference, in the second image 2. Drift vectors are regarded as less reliable if results obtained 
from image constellations 1-2 and 2-1 reveal larger differences. For this approach it is 
necessary to carry out calculations for pair 1-2 on a grid different from pair 2-1, otherwise the 
difference is always zero. It must be noted that the reliability metrics introduced by Hollands 
et al. (2015) is not directly correlated with the uncertainty. There is at present no accepted 
algorithm for uncertainty propagation adapted for sea-ice drift products. 
 
 Retrieval of deformation 
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The calculation of deformation parameters (divergence/convergence, vorticity, shear, total 
deformation) is carried out based on the retrieval of displacements, e.g. (Weiss et al., 2013). 
Such data can be obtained from arrays of buoys (Itkin et al 2017) or pairs of satellite images 
(Lindsay and Stern, 2003), with the restrictions regarding spatial density or temporal 
resolution as discussed above. Hence, uncertainties in the displacement vectors affect the 
estimates of deformation parameters. The latter is calculated from line integrals that are 
calculated on the boundary of grid cells (in the case of satellite images) or of buoy arrays. In 
addition, one has to consider the so-called boundary-definition error when the grid cell 
boundaries and deformation zones are unfavourable oriented to each other. Solutions to 
reduce this effect are proposed in (the latter showing up as discontinuities in the 
displacement field) . 
 
 
3.5 Known limitations and gaps  
 
(a) It is necessary to agree on standard procedures so that products showing drift or 
displacement fields are comparable. It has to be stated which type of uncertainty is shown: 
only the tracking error, or a combination of tracking and geolocation errors. In the latter case, 
the geolocation errors can be provided for the satellite images and buoys/beacons/drifters. 
The tracking error depends on the intensity contrast of the satellite images, e.g. on the 
visibility of structures on/in the ice that can serve as objects for feature tracking and pattern 
matching. Hence, a set of image parameters is needed that quantifies the expected 
uncertainty of the displacement field. 
 
(b) For satellite images, the temporal resolution is often not sufficient to reflect hourly and 
sub-hourly changes of the magnitude of drift velocity and the direction of the drift vector. 
 
(c) While the advantage of buoys is a high temporal resolution of the drift pattern, the 
disadvantage is that the spatial coverage is sparse. Another drawback is that buoys are usually 
deployed on thicker, more stable ice. 
 
(d) The strategy of merging drift vectors from different satellite sensors includes the loss of a 
certain level of dynamic and aliasing during the merging process. As a consequence, rapidly 
changing drift patterns, such as when a low-pressure system travels over sea ice, might be 
better described by single-sensor datasets than in the multi-sensor product. It should 
however be recognized that only limited effort was put so far in designing advanced merging 
algorithms for sea-ice drift estimates. There is for example to date no operational product 
that merges radiometry-based with SAR-based sea-ice drift products, which would however 



 

67 | Page 

   

fill a key gap (complete daily coverage, with higher resolution and accuracy where SAR is 
available). 
 
      

1.2.4. Ice type and ice edge 

4.1. Technologies used and retrieval methods    

Ice chart production in operational services is mostly carried out using SAR images at wide-
swath modes. With scatterometer and passive microwave radiometer, which offer a much 
wider coverage at the cost of lower spatial resolution, the entire Arctic and Antarctic can be 
covered within a short time and long-term temporal variations of regional ice type 
distributions can be monitored. While most pixels in SAR images cover only one ice type, the 
much larger pixels in scatterometer images may often contain mixtures of different types. 
However, as stand-alone these coarse-resolution instruments are not well suited for 
operational ice mapping. Even today ice charts are still generated based on manual 
interpretation of experienced ice analysts. Nevertheless, there is an interest in applying 
automated procedures as is demonstrated in several published studies. The separability of ice 
types in SAR images and scatterometer data depends on radar frequency, polarization, 
incidence angle, and the spatial resolution. The interpretation and analysis of the images rely 
on the intensity and textural variations which are caused by differences in surface roughness, 
volume inhomogeneities (both on length scales of the radar wavelength), and macro-scale ice 
structures (e.g. ice ridges, leads, floe margins), all of which can vary considerably with the 
time of year and prevailing environmental conditions. 

Methods that can potentially be used for automated ice classification are, e.g., knowledge-
based thresholds, Bayesian classifiers, decision trees, Neural Networks, Support Vector 
Machine (SVM), and the Random Forest Classifier. These methods require training data 
(supervised classification schemes). Clustering techniques such as k-Means and Isodata 
identify pixels with similar statistical properties and do not depend on training data. 

Two advanced automated processing schemes for the production of ice charts from SAR 
images are ARKTOS (Advanced Reasoning using Knowledge for Typing of Sea ice), and MAGIC 
(Map-Guided Ice Classification). ARKTOS mimics the decision strategies of ice analysts when 
they categorize ice conditions (Soh et al., 2004). Besides SAR, ARKTOS uses sea ice 
concentration from passive microwave radiometers and ice climatology data. Different ice 
regions are first separated through the application of a watershed algorithm. For each region, 
a set of parameters is then calculated based on image intensity, texture, and geometric 
properties. Those parameters are based on the criteria used in the visual ice classification and 
are applied for the final ice type labelling. MAGIC makes use of the polygons manually drawn 
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by the ice analysts (Ochilov and Clausi, 2012). For each polygon, an unsupervised pixel-wise 
classification is performed. Whereas a manually drawn ice chart only provides information on 
average ice conditions for each polygon, a pixel-level characterization can be achieved when 
using MAGIC. Details of the processing chain, including the iterative region growing with 
semantics (IRGS) and automatic labelling can be found in different publications, e.g. Yu and 
Clausi, (2007), Maillard et al. (2005), and Ochilov and Clausi (2012). Neither approach has 
performed to a sufficiently satisfactory level to be used in an operational context (see 4.4). 

If quad-polarization SAR images are available, various polarimetric parameters can be used 
for separating ice types. The major shortcoming for operational ice charting is the small swath 
typical for the fully polarimetric imaging mode. This problem does not occur for the compact-
polarimetric data acquisitions (but the information content is less). The practical gain of quad-
pol measurements is the availability of two additional parameters besides the like- and cross-
polarization intensities, namely correlation and phase difference between VV- and HH-
polarization. From the basic polarimetric data, different polarimetric parameters can be 
calculated that are valuable for enhancing the visual interpretation and the automated ice 
classification. Examples are given in, e.g., Scheuchl et al. (2004), Moen et al. (2013) Geldsetzer 
et al. (2015). Investigations on the optimal combination of polarimetric features in terms of 
ice separability, computational effort, and robustness are still ongoing. Algorithms developed 
for single intensity data can also be applied to individual polarimetric parameters. More 
efficient is the use of feature vectors as input, i.e. combination of intensities and/or 
polarimetric parameters that differ between ice types (e.g. Moen et al., 2013). 

The combination of different frequencies is another issue, which has been investigated using 
airborne SAR imagery and to a lesser extent satellite data (see section 3.2.4.2). Combinations 
of radar bands L+C or L+X are most useful. The same algorithms can be used for polarimetric 
data.  

The spatial arrangement of grey tones (texture) in a satellite image can be quantified by, e.g. 
elements from the grey-level co-occurrence matrix (GLCM), Gabor filters and Markov Random 
Fields. Clausi (2001) found that the GLCM achieved the highest accuracy in classifying sea ice 
types in SAR images compared to the two other methods. From the GLCM, many different 
texture parameters can be calculated for either separating several ice types (Maillard et al., 
2005; Zakhvatkina et al., 2017) or for distinguishing ice and water for the determination of ice 
concentration (Leigh et al., 2014). In contrast to intensity and many polarimetric parameters 
are texture parameters usually only weakly sensitive to the incidence angle. However, 
windows are required for their calculation, which blurs sharp boundaries between ice types. 
The systematic comparisons of texture features and their relative importance for ice type 
separation, however, are rare. 
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On a global scale, several techniques for separating ice types exist using scatterometer or 
passive microwave radiometers, or a combination of both. As for sea ice concentration, multi-
frequency passive microwave radiometers have been common to use in the classification of 
sea ice, among others the NASA Team algorithm and the Bootstrap algorithm, see e.g. 
Cavalieri et al. (1984), Comiso (1990, 2012) and references therein. 

In Belmonte Rivas et al. (2018), ice and water are distinguished in scatterometer data by 
applying an ocean-wind and a sea ice geophysical model function (GMF). The sea ice GMF is 
empirically derived from stable wintertime intensity levels because backscattering intensities 
of single ice types change during the melting season. Parameters that can be derived from 
scatterometer data are radar intensity, its azimuthal anisotropy and incidence angle gradient, 
and polarization difference or ratio (e.g. for QuikSCAT). 

Remund et al. (2000) propose a method that combines brightness temperatures measured at 
different frequencies and polarizations with the radar intensity at a fixed incidence angle and 
the gradient of the intensity with respect to the incidence angle. If parameters are measured 
in very different units, data fusion techniques can be used to give equal weighting to all of the 
data. The number of parameters available for classification may be reduced by employing a 
principal component analysis. The final ice separation is achieved by using, e.g., a Bayesian 
classifier or by applying one of the other methods mentioned above. 

The EUMETSAT OSI SAF sea ice edge and type are both multi-sensor products which have 
been available operationally since 2005 (Aaboe et al. 2016). For their retrieval is used a 
Bayesian approach to combine active backscattering and spectral gradient ratio of brightness 
temperature at the vertically polarized 19 GHz and 37 GHz channels, plus the polarisation 
ratio at both low and high frequency to detect the ice edge. A similar approach is used in 
Lindell and Long (2016). The operational OSI SAF algorithm is trained by a dynamical set of 
training data updated on a daily basis in order to take into account temporal variabilities of 
the surface signatures and to be more flexible when adding or replacing sensors. The 
Copernicus Climate Change Service (C3S) has modified the operational classification algorithm 
from OSI SAF in order to receive long climate consistent data records based on passive 
microwave radiometers back to 1979 and up to the present time, with daily updates (Aaboe 
et al. 2018). 

4.2 Parameter Characteristics  

The table below shows spatial and temporal resolution requirements for monitoring of 
different ice parameters that are considered in ice charting based on SAR images. The table 
is based on Flett et al. 2004 and Scheuchl et al. 2004. It is distinguished between strategic and 
tactical information. The former refers to the regional survey as provided in the daily ice 
charts (useful for ship route planning), the latter refers to the judgement of the ice conditions 
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in the vicinity of a vessel to support immediate operations. Ice concentration can be regarded 
as a special case of ice classification, i.e. separation of ice and water areas. The latency for the 
availability of satellite data is between less than one hour and two hours in Canada (D. Flett, 
CIS, personal communication, 2018). However,  this is not the case for European ice charts 
where latency can often be up to 6h (Charts are issued at 15 UTC based on satellite 
acquisitions in the early morning (6-8 UTC). 

      

 strategic  tactical  

Parameter spatial resol. temp.  resol. spatial resol. temp. resol. 

Ice edge location 
   

5 km 
 
  

daily 
 
  

< 1 km 
 
  

6 hours 
 
  

ice concentration 
   

< 100 m   
(±10% accuracy) 
 
  

daily 
 
  

< 25m 
(±5% accuracy) 
 
  

6 hours 
 
  

ice types 
50 – 100 m daily  < 20 m  6 hours 

leads/polynyas 
50 – 100 m daily < 20 m 6 hours  

ridges    < 50 m  
daily < 10 m 6 hours  

ice decay stage 
20 km weekly 5 km  daily 

iceberg location < 50 m daily  < 5 m hourly 

(Polynyas are openings in the ice with sizes between 10 and >10000 km2 that occur if strong 
katabatic winds from land push the ice away from the coast or if a spot of warm surface water 
hampers ice growth.) 
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4.3 Validation  

Automatically generated ice classification maps are mostly validated by comparing them with 
manually generated ice charts. The latter are in general based on SAR images but consider 
visual observations from ships and airplanes. At the Canadian Ice Service (CIS), e.g., the 
production of ice charts which is mainly based on RADARSAT-2 dual-pol ScanSAR Wide 
imagery is supplemented by Sentinel-1 IW and EW images, data from AMSR-2 (Advanced 
Microwave Scanning Radiometer 2), VIIRS (Visible Infrared Imaging Radiometer Suite), MODIS 
(Moderate Resolution Imaging Spectroradiometer), and GOES (Geostationary Operational 
Environmental Satellite). Also considered are meteorological conditions. The most recent ice 
charts are cross-checked with the results of preceding analyses. Optical images are also a 
useful complementary source but only for snow- (and cloud-) free ice areas. If the occasion 
arises, satellite images are compared with In situ observations of ice conditions and/or with 
observations from airplanes and helicopters. Such comparisons are very much limited in time 
and space. Results from scatterometer and passive microwave radiometers are usually 
validated in comparison to classification results obtained from high-resolution data such as 
SAR images. However, passive microwave ice concentrations are typically more accurate than 
these validation data, so this validation method is unsatisfactory. 

 

4.4 Error sources/Accuracy/uncertainty 

The process of ice classification is complicated by the fact that the discernibility of ice types 
and structures in SAR images depends on the relative influence of cm-scale ice properties 
such as small surface undulations or air bubbles in the ice on the backscattered radar signal. 
These properties do not differ consistently between different ice types and may cause false 
interpretations. 

With respect to the accuracy of classification results of automated procedures, studies carried 
out in close collaboration with the ice centers can be regarded as the most reliable. For 
MAGIC, classification accuracies between 71% and 89% (assessed by the ice analyst) were 
reported in Maillard et al. (2005) for conditions with three to six different ice classes. For the 
automatic separation of ice and water, Leigh et al. (2014) found an average accuracy of 96% 
when using MAGIC, and Ochilov et al. (2012) reported pixel-level accuracies between 78% 
and 100% and region accuracies between 81% and 100%. With ARKTOS, Soh et al. obtained 
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mean absolute differences between 4.3% and 23.5% for ice type separation and 8.4% for the 
determination of ice concentration. Nevertheless, automated procedures are yet not fully 
implemented in the production of ice charts. 

Another issue arises with regard to the number of different characteristics that have to be 
taken into account to describe ice conditions. Moen et al. (2013) describe the results of 
manual analyses of a satellite SAR image (acquired in polarimetric mode) carried out by two 
ice analysts. The SAR image was complemented by additional information from a field 
campaign. The two independently generated ice charts revealed considerable differences 
which were attributed to the fact that the selected classification scheme was too detailed. 

4.5 Known limitations and gaps 

During the summer season, ice mapping based solely on C-band SAR is extremely challenging 
both for manual ice chart interpretation and automated methods, since the separability of ice 
types decreases under melting conditions. Signature contrasts between FY and MY ice are 
larger at L-band during the beginning and end of the melting season but can be very low at 
both C- and L-band when melting is strong (Casey et al., 2016). Classification in temporal 
sequences of SAR images is particularly difficult when meteorological conditions alternate 
between melting and freezing within short time intervals. Algorithms specifically designed 
and optimized for ice type separation under melting conditions have yet not been published. 

The characterization of an ice “type” or “class” (whereby “class” can be viewed as a collection 
of “types”) requires the knowledge of different ice characteristics. Different ice parameters 
that are regarded as essential or useful for a most detailed mapping of ice types – but are not 
available on a basis suitable for operational monitoring - are thickness (see above), the degree 
of deformation (e.g. expressed as a percentage of ridged ice), and stage of melting. 
 
1.2.5. Snow on sea ice 
 
Snow (depth) on sea-ice is at present the “holy grail” of sea-ice remote sensing. It is an 
especially important parameter, both for the retrieval of sea-ice thickness from (radar) 
altimetry and for ingestion in forecast models (due to the insulation effect of snow). Snow-
depth on sea ice also has a key role in navigation, as it slows down ice breaking. 
    
5.1. Technologies used and retrieval methods    
 
Several techniques are being investigated for the retrieval of snow-depth on sea ice. Three 
classes of methods are: (a) from microwave radiometry (especially using low-frequency 
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channels such as those of SMOS, AMSRs, and CIMR), (b) from dual-frequency altimetry (e.g. 
Ka/Ku altimetry combining AltiKa and CryoSAT2, or CRISTAL), and (c) from modelling 
approaches (snow precipitation from atmospheric reanalysis are advected and accumulated 
using ice drift information). At this stage, none of these techniques outperforms the others, 
and all show rather limited accuracy wrt validation data. 
 
5.2 Characteristics of the parameter  
To our knowledge, there are no operational snow-depth on sea ice products. What can be 
said at present is that the variable is snow-depth (measured in meters) although as for land 
surfaces, this depth can be associated with different snow densities (also a rather unknown 
parameter) to yield snow water equivalent.  
 
5.3 Validation 
 
The validation data available for sea-ice thickness (see section 2 Sea ice) often contain 
valuable information on snow-depth. These include Ice Mass Balance buoys (IMBs) with 
transistor chains, snow-depth buoys with sonic ranging sensors, helicopter- and sled-borne 
ElectroMagnetic (EM devices), airborne radars (Operation Ice Bridge -OIB- and CryoVex), and 
snow-pit manual observations. Also, snow-depth can be reported as part of the ASPeCt and 
ASSIS/IceWatch ship-based protocols. 
 
Collecting, processing, and quality control of these validation data is time consuming and is 
currently mostly limited to research efforts (maybe to the exception of OIB, but here again, 
several versions exist). Validation of snow-depth can be very time-dependent because of 
wind-driven snow redistribution processes (snow is easily advected by winds).  
 
5.4 Error sources/Accuracy/uncertainty 
 
There are many caveats for the retrieval of snow-depth on sea ice from satellite data, one of 
which is the lack of dedicated satellite missions (CRISTAL could be one in the future) and the 
relative lack of validation data. 
Snow processes (depth, insulation, layering, grain size, etc.) have often been considered as 
error sources in the retrieval of other variables such as sea-ice concentration and sea-ice type, 
and it is only rather recently that the community have focused on measuring it from space.  
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5.5 Known limitations and gaps 
 
Being an area of active research, with prototype algorithms and products only, the whole 
“snow-depth on sea ice” variable is a gap, that will hopefully be bridged as more teams 
investigate its retrieval, and new validation campaigns are carried upon. In that respect, the 
integrated on-ice laboratory deployed with MOSAiC will hopefully bring the community 
forward.  At present, the first gap is the lack of an international, community-driven, 
intercomparison exercise, that would help to take the pulse of the snow-depth on sea ice EO 
community, and get a status of what the current state-of-the-art is with each technique.   
 
1.2.6. Albedo  
 

The sea ice Albedo is mainly measured with the same technologies and similar retrievals than snow 
albedo. Therefore, we encourage the reader to read albedo on land chapter 5 from land parameters. 

6.1. Technologies used and retrieval methods     
 
Sea ice albedo can be computed with the optical AVHRR sensor. Albedo is also computed with 
MERIS data, onboard EnviSAT. The broadband sea ice albedo is calculated as an average of 
the six spectral albedo values at 400–900 nm in steps of 100 nm.  
 
6.2 Characteristics of the parameter  
Specific available products of sea ice albedo have the following characteristics:  
University of Bremen - MERIS: 

- Temporal resolution:  daily average sea ice albedo products 
- Spatial resolution: gridded on a 12.5 km polar stereographic grid, for May-September 

2002-2011 
-  https://seaice.uni-bremen.de/melt-ponds/.  

 
6.3 Validation 
See validation of albedo on land section 7 and Melt Pond validation Section 7. 
 
6.4 Error sources/Accuracy/uncertainty 
The Error of specific products of sea ice albedo is:  

- uncertainty from AVHRR: 0.028 

https://seaice.uni-bremen.de/melt-ponds/
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- uncertainty from MERIS product: 0.068-0.089 (Istomia et al., 2015) 
 

6.5 Known limitations and gaps 
An important limitation of the sea ice albedo products is that the optical sensors 
measurements are limited when solar light is illuminating the target (so from March to 
September in the Arctic circle) and when not dense clouds are present on the sky, which is 
not very frequent in the Arctic Ocean summer period. More limitations can be found in albedo 
on snow, chapter 5 from land parameters. 
 
1.2.7. Melt ponds  

The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the 
Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which 
has consequences for the heat balance and mass balance of sea ice.  In the context of changing 
Arctic climate, knowledge of melt pond fraction, its spatial distribution and the length of the 
melt season are required to reflect and predict the role of the sea ice cover in the radiative 
balance of the region (Istomina et al., 2015). 

The temporal dynamics of the melt can be subdivided into four stages (Eicken et al., 2002): 

1. Melt onset: widespread ponding and lateral meltwater flow. 
2. Drainage: both the surface albedo and melt pond fraction decrease due to the 

removal of snow cover and due to pond drainage. 
3. Melt evolution: the meltwater penetrates deeper into the ice, the pond coverage 

continues to evolve and melt pond fraction to grow. 
4. Freeze-up: surface albedo is still affected by the now over-frozen ponds. 

The melt pond fraction during each of these stages, their duration and the date of their 
onset/end are specific to sea ice type and can provide a lot of information on the state of the 
sea ice and its change. 

Satellite retrieval of the melt pond fraction and albedo allows to observe the melt evolution 
and how it is reflected in the surface optical properties throughout the whole Arctic summer. 

Melt pond fraction information is also required to validate and improve as much as can be 
done summertime sea-ice concentration products based on passive microwave data (see the 
section above). Due to the penetration depth of microwave radiation in water, passive 
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microwave sensors cannot distinguish between the ocean and meltwater. At the same time, 
the microwave emissivity of bare, melting sea-ice in between ponds is largely unknown. These 
two factors strongly limit our capacity to improve estimates of summer sea-ice concentration 
from passive microwave radiometry. There is an urgent need for more, longer, and better 
melt-pond fraction information products to improve other satellite products (e.g. summer 
sea-ice concentration) and to develop and tune parameterization in forecast models (e.g. 
Kern et al. 2016, Kern et al. 2020).  

 
7.1. Technologies used and retrieval methods    
 

a) Optical sensors 
 

Different algorithms are used to derive melt pond fraction products from optical frequency 
sensors. 
 
a1) ESA-MERIS:  Zege et al. 2015 describes an algorithm to derive the melt pond fraction from 
ESA - MERIS (MEdium Resolution Imaging Spectrometer) sensor data onboard EnviSat. This is 
based on an analytical solution for the reflection from the sea ice surface, called Melt Pond 
Detector (MPD). This algorithm produces maps of the melt ponds area fraction and the 
spectral albedo of sea-ice, from the MERIS Level 1B data, including the radiance coefficients 
at ten wavelengths and the solar and observation angles (zenith and azimuth).  This algorithm, 
in contrast to other algorithms, does not use a priori values of the spectral albedo of the sea-
ice constituents. The algorithm includes the correction of the sought-for ice and ponds 
characteristics with the iterative procedure based on the Newton–Raphson method. Also, it 
accounts for the bi-directional reflection from the ice/snow surface, which is particularly 
important for Arctic regions where the sun is low. The algorithm includes an original 
procedure for the atmospheric correction, as well. The numerical verification shows that the 
MPD algorithm provides more accurate results for the light ponds than for the dark ones. The 
spectral albedo is retrieved with high accuracy for any type of ice and ponds. Istomina et al., 
2015a presents the validation against In situ data, aerial and ship observations. University of 
Bremen offers daily average melt pond fraction products, gridded on a 12.5 km polar 
stereographic grid, for May-September 2002-2011 retrieved from MERIS based on the MPD 
algorithm, in https://seaice.uni-bremen.de/melt-ponds/. Validation, case studies and weekly 
trends are presented by Istomina et al. (2015 a,b). 

https://seaice.uni-bremen.de/melt-ponds/
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a2) NASA - MODIS:  
MODIS surface reflectances are used to retrieve three surface fractions: open water, snow 
and ice, and melt ponds.  In situ spectral measurements of spectral albedo and Bidirectional 
Reflectance Distribution Function (BRDF) were performed by Tschudi et al. (2008) on the sea 
ice with significant ponding in order to characterize the surface reflectances of each ice and 
water surfaces types. Once the spectral reflectances were defined, a set of linear equations 
are used to characterize the contribution of each surface component to the total spectral 
reflectance from the MODIS sensor. However, the surface reflectances are described by linear 
equations that are not well-conditioned.  
 
To constrain the interval of the solution between zero and one, a cost function is introduced. 
by Rösel et al., 2012 and use an artificial neural network to accelerate the processing. This 
algorithm uses a level 3 MODIS surface reflectance product. The root-mean-square errors 
range from 3.8 % -  11.4 % depending on the dataset. University of Hamburg offers an 8-day 
composite product at a 12.5 Km grid point based on MODIS for the period 2000-2011. This  
product is available at https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/ arctic-
meltponds.html 
 
University of Bremen is working on running an algorithm to derive the melt pond fraction 
from OLCI on Sentinel-3 (personnel communication from Gunnar Spreen). 
 

b) SAR 
Multiscale feature extraction algorithms can be used for automatically extracting melt ponds 
and derived statistics. A comparison of high-resolution spaceborne SAR systems (e.g. 
TerraSAR-X) against airborne SARs has shown that the former is unable to resolve small melt 
ponds and, when detected, the estimated area is smaller than the actual one. Furthermore, 
the estimated melt pond fraction from spaceborne systems is significantly smaller. 
 
More recently, machine learning processes have been used to classify high-resolution SAR 
dual-polarization imagery (e.g. TerraSAR-X). The two algorithms used in the classification 
were the decision tree and the Random Forest (RF) (Han et al., 2016). RF showed its superior 
performance when used with the HH backscatter coefficient as the most contributing variable 
to the RF model. Other contributing variables to the RF model are the co-polarization phase 

https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/arctic-meltponds.html
https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/arctic-meltponds.html
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differences and the alpha angles (Han et al., 2016). The melt pond fraction estimated in such 
a way has an RMSD of 4.9%. 
 
Sentinel-1 40 meters resolution SAR images were used for estimating the melt pond fraction 
in the Canadian Arctic region (Scharien et al., 2017). The analysis demonstrated that melt 
pond fraction using backscatter from HH polarization can be characterized with a RMSE of 
0.09. This value is close to the error bounds of estimations using optical and radar data (Rösel 
et al., 2012; Istomina et al., 2015). 
 
7.2 Characteristics of the parameter  
 
Melt pond products consist of providing the % of the pixel which is covered by melt pond. 
Due to cloud cover, current datasets often consist of daily or 8-day composites of the melt 
pond fraction and broadband albedo for May-September. 
 
The mean melt pond fraction per grid cell for the entire Arctic Ocean derived from MODIS 
satellite data of the last 12 years shows a strong increase in June. By the end of June the 
maximum with a mean melt pond fraction above 15 % is reached, followed by a second 
maximum at the end of July. 
 

 

 Temporal 
resolution 

Spatial 
Resolution 

Latency  Error 

Optical Sensor MERIS daily 12.5 Km  6.5 - 22 % 

Optical Sensor MODIS 8-day 12.5 Km  3.8-11% 

SAR - 40m  4.9%-9% 

 
7.3 Validation  
 
The melt fraction products are usually validated against In situ field campaign sites spread 
over the entire Arctic, airborne measurements and ship cruise, hourly bridge observations 
and visual estimation (Istomina et al., 2015a, b). 
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In general, the airborne measurements are performed with high-resolution digital imagery 
acquired by Aerosonde unmanned aerial vehicle (UAV) flights within the area of interest. 
 
Some of the specific campaigns to validate melt pond products are: C-ICE 2002 (Yackel 
(2005)), HOTRAX 2005 Ship cruise (Perovich et al. (2009)), POL-ICE 2006,  MELTEX 2008 
(Birnbaum et al. (2009)), Barrow 2009 (Polashenski 2011), NOGRAM-2 2011 (Lehmann 
(2012)), TransArc 2011 (Nicolaus et al. (2012)), among others. Recently, Buckley et al. (2020) 
extracted melt-pond coverage and indication of depth (colour) in High Resolution Operation 
Ice Bridge Imagery. 
 
These validation data sets contain a wide range of pond fractions and were obtained over 
landfast ice, FYI and MYI of various ice concentrations. Therefore, the performance of the 
satellite retrieval can be thoroughly tested for a variety of conditions and conclusions on the 
more or less suitable conditions for the application of the MPD retrieval can be drawn. 
 
7.4 Error sources/Accuracy/uncertainty 
 
The uncertainty of the different products are the following which depends on the time and 
region: 

- Optical Sensor- Meris RMS: between 0.065  and 0.22 depending on the validation 
campaign 

- Optical Sensor MODIS RMS: between 0.038 and 0.11, depending on the validation 
campaign 

- SAR:   between 4.9% and 9% 
 

It is important to remember that this parameter can not be measured with optical sensors 
during night periods and if clouds are present. 

 
 

7.5 Known limitations and gaps 
 
An important limitation of the melt pond products, as well as the albedo one is optical sensors 
measurements are limited when solar light is illuminating the target (so from March to 
September in the Arctic circle). Moreover, a clear sky is required to observe the ice, so not 
dense clouds in the sky, and this is not very frequent in the Arctic Ocean summer period. 
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To discriminate between open water in leads and meltwater in ponds requires enough 
imagery channels in the blue/green region of the spectrum. In the past, these types of 
channels have not been selected onboard heritage missions such as AVHRR, and this limits 
our ability to process a long time series of melt-pond fractions. 
 
Several prototypes, research-based melt-pond fraction products exist (see some example 
above). There is a lack of concerted initiative to improve the maturity of these algorithms and 
products, and to prepare the needed long-term and error characterized data records that are 
required to improve other EO products (e.g. sea-ice concentration) or tune parameterizations 
in forecast models. By the same token, there are no operational, near-real-time satellite-
based products of the melt-pond fraction. 
 

1.2.8. Ocean and Ice Surface Temperature 
 

The Ice Surface Temperature (IST) is one of the most important components in the Arctic 
surface-atmosphere energy balance. The surface temperature strongly affects the 
atmospheric boundary layer structure, the turbulent heat exchange, and sea ice temperature 
controls sea ice melting and growth rates. Advanced thermodynamic sea ice models treat the 
temperature of the snow and ice surfaces as vital parameters for freezing and melting of sea 
ice. 
 
8. 1. Technologies used and retrieval methods     
 

a) Thermal infrared sea surface and ice surface temperature  
 

Measurements of the Sea Surface Temperature (SST) and Ice Surface Temperature (IST) using 
satellite infrared radiometry is a challenge because of difficulties in distinguishing clouds from 
snow-covered surfaces, as both appear white in the visible and cold at thermal infrared 
wavelengths. However, recent initiatives show that the IST at L2 is retrievable within a 
standard deviation of 3.0ºC compared to drifting buoys, and 1.5ºC compared with 
radiometers, using state of the art multispectral cloud masking (Eastwood et al., 2018). This 
accuracy is sufficient for using this data in model assimilation and validation schemes, if there 
is a quantitative description of the uncertainty provided. 
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OSISAF is serving the product OSI-203a/b L3 SST/IST which is a 12 hourly product based on L2 
Metop-B AVHRR and NPP VIIRS SST/IST, with a resolution of 5 km polar stereographic grid. 
The input to compute the SST/IST is thermal infrared data from the Advanced Very High 
Resolution Radiometer (AVHRR) on-board the EUMETSAT Metop satellites and the Visible 
Infrared Imaging Radiometer Suite (VIIRS) on the Joint Polar Satellite System (JPSS) National 
Polar-orbiting Partnership (NPP) satellite. 
 
The input data used to compute the surface temperature and cloud probability algorithms 
are: Tb and reflectances, sun/satellite/earth geometrical information and the cloud mask 
data. Daily SST climatologies from the OSTIA system (Donlon, 2012) provided by the UK 
MetOffice are also used by the daytime SST algorithm as a first SST guess. All other data are 
ancillary fields of information that can be used as filters (Eastwood et al. 2017).  
 
SLSTR (Sea and Land Surface Temperature Radiometer) instrument onboard Sentinel-3, also, 
provides sea, ice and land surface temperatures. The accuracy of the global sea-surface 
temperature maps is better than 0.3 ºC, with a spatial resolution of 0.5 Km2.  
 
NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) also serves Ice Surface 
Temperature products at the ice surface including snow and meltwater on the ice. The VIIRS 
IST provides surface temperatures retrieved at 750-meter spatial resolution for snow/ice-
covered oceans for both day and night. The IST algorithm uses two VIIRS Infrared bands, and 
is based on the Advanced Very High Resolution Radiometer (AVHRR) legacy IST algorithm.  
 
  

b) Multi-spectral microwave radiometry  
 
Deriving the temperature profile through the snow and ice layers, from the surface down to 
0.5 m into the ice, is feasible from a combination of the available satellite data. The satellite 
data used here are thermal infrared (TIR) and microwave radiation data at different 
wavelengths and polarizations from 1.4GHz (SMOS and SMAP) to 89GHz (AMSR). The satellite 
data are compared with coincident data from Ice Mass-balance Buoys and numerical weather 
prediction data. This combined dataset is analyzed for empirical relationships between the 
satellite measurements and different snow conditions, and ice parameters are derived using 
linear regression, for particular the snow and ice temperature profile. 
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The satellite channels of lower frequencies can retrieve temperatures from deeper levels in 
the snow and ice (ICE-ARC H2020 report). The comparisons between measured and simulated 
temperatures derived with the empirical models show a high correlation with R2-values 
ranging from 0.43 to 0.90. The differences in correlation between the IMB buoys indicate a 
spatial dependency, as well as strong dependency on differences in snow and ice thickness. 
The models derived in this study are based on conditions with intermediate snow and ice 
thickness. 
 
However, this is a science product and is not served in a continuous mode, so this is not an 
operation product at the moment. 
 
8.2 Characteristics of the parameter  
Monthly accuracy requirements (Target precision) for SST and IST for OSI-205-a/b. IST 
requirements split between validation against radiometers and buoys. 
 
The target precision of the sea surface and sea ice surface temperature data are 1.0 K and 4.0 
K, respectively, expressed as the standard deviation of the difference with traditional buoy 
measurements (extracted from ATBD for OSISAF SST and IST L2 OSI-205-a/b processing chain 
SAF/OSI/CDOP2/DMI/SCI/MA/223, EUMETSAT) 

 

Parameter Target accuracy 
Std Dev. / Bias   

Temporal 
Resolution 

Spatial 
Resolution
  

Latency  

SST OSISAF 203-a/b Day: 1-2ºC / 0.8ºC 
Night: 0.5 C/0.8ºC 
(Eastwood et al. 
2011) 

12 h 5 km  6h 

IST OSISAF 203-a/b 
against Buoys 

Day: 3ºC / 3.5ºC 
 
Night: 4.0ºC / 4.5 ºC 

12 h  5 km  6h 
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IST OSISAF 203-a/b 
against radiometer 

 12 h  5 km  6h 

OSISAF 205-a/b 
against Buoys 
 

Monthly accuracy 
3ºC / 3.5ºC 
(Dybkjær et al., 2018) 

12h 0.75/1km 6h 

OSISAF 205-a/b 
against radiometer 

Monthly accuracy 
2ºC / 1.5ºC 
(Dybkjær, et al., 2018) 

12 h 0.75/1km 6h 

 
8.3 Validation  
 
In situ observations of ice surface temperatures in Arctic regions are typically measured by 
buoys on the sea ice. Such measurements are often dubious because the instrument can be 
buried under snow or sticking up in the air and thus measuring either internal snowpack 
temperatures or air temperatures. Snow, snow skin and air temperatures can in fact be 
several degrees apart and validation of the skin temperatures measured from a satellite is 
therefore complicated. For this reason, the validation requirements products have been split 
in two, one set of requirements for validation based on In situ IR radiometers and one set for 
validation based on In situ temperature buoys. The requirements for IST radiometer 
validation are more precise and accurate than those for buoy validation, since radiometers 
provide a more representative observation of the temperature that the IST product delivers. 
The IST requirements are partly based on Stammer et al. (2007). 
 
8.4 Error sources/Accuracy/uncertainty 
 
The uncertainty on the satellite SST and IST retrievals have been divided into three 
components: a random uncertainty, a locally systematic uncertainty and a large-scale 
systematic uncertainty. These uncertainty components represent errors that have distinct 
correlation properties and have been modelled (see (Steiner et al. 2018) for additional 
details).  
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The target (expected) accuracy, named std and bias values are 1.0  and 0.7 for SST and 3.0 
and 3.5 for IST,  as specified by scientists. The OSI-203-a accuracy of the SST is within target 
accuracy (1.0 of std and 0.7 of bias), while the IST during day time is within the target (3.0 of 
std and 3.5 of bias).  At night time the OSI203a is not within the target requirement, but within 
the threshold requirement of 4.0 K standard deviation for SST and within or close to the 
threshold requirement of 4.5 K bias for IST.  
 
8.5 Known limitations and gaps 
 
Satellite infrared radiometry has difficulties in distinguishing clouds from snow-covered 
surfaces. 

 
The satellite sensors are sensitive to changes in snow emissivity, associated primarily with 
snow precipitation and snow cover metamorphosis processes and with melting processes 
initiated by surface air temperatures around the freezing point of water. This is primarily 
affecting the simulated temperature estimates in the snowpack.  
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1.3 Ocean Parameters:  

1.3.1. Surface ocean biogeochemical compounds and light  

Ocean colour is the change in the colour of the ocean, and other water bodies such as seas 
and lakes, due to the substances dissolved and particles suspended within the water. Ocean 
colour remote sensing primarily aims to derive the spectrum of marine or other surface water 
reflectance (also defined as remote sensing reflectance, RRS) from satellite observations. In 
turn, RRS can be used to determine inherent optical properties (absorption and back-
scattering coefficients, marine fluorescence) and concentrations of optically significant 
constituents present in the upper layer of the ocean. 

Among these is the concentration of chlorophyll-a (Chl), a photosynthetic pigment found in 
phytoplankton cells. Ocean colour remote sensing is thus the only satellite remote sensing 
technique that opens a window onto ocean biology. Also suspended sediments and coloured 
dissolved organic matter (CDOM) can be derived from RRS. Chl is present in all phytoplankton 
and a good indicator of phytoplankton biomass, which represents about 1-2 % of the global 
plant’s biomass. However, phytoplankton contributes to about 50% of the World’s primary 
production, Chl, but also other ocean colour products related to other particles, decaying 
organisms, underwater light are used parameters for assessing, developing, and assimilated 
in local, regional and global biogeochemical and ecosystem models (which can be coupled to 
ocean or Earth System model) with a wide range of applications in climate and biodiversity 
research and water quality, fisheries, coastal management.  

Considering the various products that can be derived from marine reflectance data as well as 
the role of marine phytoplankton in the carbon cycle (responsible for approximately half of 
the Earth's total carbon fixation), the Global Climate Observation System lists both the 
spectrum of marine reflectance and the chlorophyll-a concentration as Essential Climate 
Variables (ECV). 
 
1.1. Technologies used and retrieval methods     
The so-called “ocean colour” products are derived from optical sensors with between five to 
ten spectral bands between 400 to 700 nm at least 20 nm band resolution and an SNR above 
400. Algorithms and products described for standard products require atmospherically 
corrected top of atmosphere data (LTOA; provided as L1 products) to derive the water-leaving 
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radiance and by accounting for the incoming radiance the RRS (sr^-1, Level-2 products) at 
each waveband is derived. Only about 10% of the radiance measured by a satellite instrument 
in visible blue and green wavelengths originates from the water surface and significantly less 
in the red. The sensors thus require very low radiometric and spectral uncertainties and a high 
signal to noise ratio (SNR), particularly for the ‘blue’ bands (~400-450 nm). Ocean colour 
instrument design must therefore incorporate extremely sensitive and stable radiometry, 
dedicated on board calibration and spectral channels located at wavelengths of specific 
interest 

RRS are derived from multispectral sensors with several, e.g. nine for MODIS sensors on Aqua 
and Terra satellite (since 2002 and 1999, respectively) and 21 for OLCI on Sentinel-3 (since 
2016 and 2018 on S-3A and S3B, respectively) wavebands from 400 to 1080 nm suitable for 
ocean colour exploitation and its atmospheric correction. The later can be very challenging, 
especially in the polar oceans where the observations are generally taken under high zenith 
angles (therefore the light is not penetrating much into the ocean the RRS signal is low) and 
the adjacent effect of sea ice and higher possibility of cloud cover introduce more uncertainty. 
Most ocean color sensors, such as SeaWiFS, MODIS, MERIS and OLCI are low earth polar-
orbiting satellites flying in a sun-synchronous orbit, therefore acquiring also polar 
observations and if sunlight, sea ice and weather conditions allow, several orbits per day can 
be achieved, Only one ocean colour sensor in the past measured the entire spectrum in the 
visible (128 bands with 5.7 nm bandwidth between 380 to 1080 nm). However, since the HICO 
sensor was operated from the ISS, it was not providing any polar observations. In addition to 
the RRS products at each waveband, also the daily average photosynthetically available 
radiation (PAR) at the ocean surface (in Einstein m-2 d-1) is available which is similarly retrieved 
from the LTOA data but further using plane-parallel radiative transfer modelling to assess the 
whole PAR spectrum (e.g. Frouin et al., 2002; Aiken and Morre, 1997). PAR is defined as the 
quantum energy flux from the Sun in the 400-700nm range. For ocean color applications, PAR 
is a common input used in modeling marine primary productivity. Implementation of this 
algorithm is contingent on the availability of observed LTOA in the visible spectral regime that 
does not saturate over clouds. 

The RRS product is an ECV. It is useful to assess the radiation budget in the ocean and serves 
as input data for retrieving surface ocean biogeochemical compounds and information on the 
underwater light environment (all Level-2 products). In the following we list available 
products from OLCI, MODIS and merged (currently from SeaWiFS, MODIS and MERIS) OC-CCI. 
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(Products only available from OC-CCI are indicated with * and only from OLCI with **). Chl (in 
mg/m3), the diffuse downwelling irradiance attenuation (KD in m-1) at 490 nm (KD490), the 
total absorption (at*, in m-1), the absorption of CDOM  and non-algal particles (adg, in m-1; for 
OLCI only available as case-2 water product at 443 nm) and particle back-scattering (bbp, in 
m-1) coefficients at the RRS wavebands. The KD490 products are often used as an indicator 
for turbidity. 

Chl, KD490, particulate inorganic carbon (PIC) and particulate organic carbon (POC) -the latter 
two are only available from MODIS- can be retrieved with simple band ratio algorithms (still 
used for all operational case-1 products) using the blue and green bands with coefficient 
derived from fitting a large set of In situ data (e.g., O’Reilly et al., 1998; Morel et al., 2007; 
Balch et al., 2005; Stramski et al., 2008) or via semi-analytical algorithms e.g. the quasi 
analytical algorithm by Lee et al. (2002) which is used for MODIS and OC-CCI products and 
first retrieves the IOPs (at, adg, bbp and phytoplankton absorption aph, the later is only 
available from MODIS) and from that retrieves KD490 (OC-CCI product only), and Chl (often 
directly derived from aph443 by an empirical factor derived from a large In situ database). 
The merged GlobColour ocean colour Chl products are available from band-ratio (Chl_avg) 
and semi-analytical (Garver-Siegel-Maritorena 2002; Chl-GSM) algorithms. 

Standard products are typically developed for open ocean waters where phytoplankton also 
determines the abundance of other optical constituents such as coloured dissolved organic 
matter (CDOM) and non-algal particles. However, band-ratio algorithms which mostly show 
the best global performance when compared to In situ, often fail in coastal and inland waters 
(so-called case-2 waters), where the abundance of these constituents is not correlated. On 
the other hand semi-analytical algorithms often succeed there since they allow the 
determination of these compounds independent from Chl. For MERIS and OLCI also case-2 
water products for Chl (Chl_nn) are available together with adg443 and TSM. These are 
derived following Doerffer and Schiller (2007) from neural nets trained with case-2 water 
collocated In situ data on apparent (RRS) and inherent (at, bbp, adg, aph) optical properties 
(AOP and IOP, respectively) and geophysical quantities (Chl, TSM) which are further amplified 
via bio-optical modelling to allow optimal training of the net to obtain reliable values for 
Chl_nn, adg443_nn and TSM. 

1.2 Characteristics of the parameter   
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-        Temporal Resolution The operational data are acquired close to daily at the 
equator for each MODIS sensor and the two S3 OLCI sensors together, while 
several orbits per day across the polar regions are likely. The non-operational but 
high spatially resolved ocean colour data from Sentinel-2 (with two instruments in 
orbit) and Landsat-8 are much less well temporally resolved with about five to 10 
days between overpasses at the equator at the same spot. 

-        Spatial Resolution: The spatial resolution currently ranges from 300m (OLCI on 
Sentinel-3) to 1 km (MODIS) for globally acquiring ocean colour sensors. The 
merged SeaWiFS-MODIS-MERIS-VIIRS data sets provide 4 km resolution globally, 
but are available at 1 km scale for the Arctic and European region. Non-operational 
products for turbidity and even Chl are available from Landsat-8 and MSI/Sentinel-
2 at 100 and 10 m scale. 

-        Latency: However, ocean colour is limited to the light lit time of the year, so at 
SZA below 60° no ocean colour data can be acquired in addition to that cloud-and 
high glint-free conditions are required. In the polar oceans this leads rather to a 
weekly than daily resolution of the ocean colour data during the sun-lit time of the 
year which is mainly limited to April to September for the Arctic and October to 
March for the Antarctic Ocean. 

1.3 Validation  
 
To infer in-water properties such as chl-a from satellite observations of ocean colour requires 
retrieval of the RRS that, as noted above, may be less than 10% of the top of atmosphere 
detected signal and, hence, requires high precision in the satellite sensor calibration (Groom 
et al. 2019). To achieve the required ocean colour product uncertainties, in addition to 
instrument pre-launch and onboard calibrations, a System Vicarious Calibration (SVC) must 
be applied (see e.g., Sentinel-3 Mission Requirements Traceability Document; IOCCG Report 
13; Zibordi et al., 2012). SVC uses highly accurate In situ measurements of water-leaving 
radiances, which are the best quality radiometric Fiducial Reference Measurements (FRMs) 
for ocean colour. SVC employs these FRMs to reduce residual biases in Level-2 products. 

Validation is focused on independently assessing the accuracy and stability of the satellite 
products. For ocean colour this involves inter-comparisons with high-quality ground-truth In 
situ measurements (FRMs) of both the radiometry and bio-optical parameters and inter-
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comparisons with corresponding products from other stable missions and climatologies. In 
ocean colour, In situ FRMs provide critical knowledge of the ground truth but are sparse due 
to the complexity of radiometric and bio-optical measurements from ships and instrumented 
platforms. Mission inter-comparisons allow for large-scale global time-series evaluations. 
Since most measurements have to be obtained from ships, the ground-truth data coverage is 
low and biased to certain regions. Especially the polar oceans are sparsely sampled due to the 
difficult access of these remote areas and harsh environmental conditions. 

Lately, validation data sets are complemented by inline measurements of continuously 
operated optical sensors either operated on ships (e.g., Brewin et al., 2016; Liu et al., 2018) 
or even on autonomous platforms such as bioARGO floats (Organelli et al., 2017; Wojtasiewicz 
et al., 2018). These enable better to characterize the spatial and temporal variability of 
satellite products, such as Chl, RRS, KD490, bbp, adg and even enable real-time validation. 
However, the require thorough validation with FRMs themselves. 

In addition also cross-comparisons among satellite sensors are necessary to assess the long-
term stability of sensors on a global scale. 

1.4 Error sources/Accuracy/uncertainty 
 
Since Chl and RRS (or normalized water-leaving radiance) are ECVs, for climate purposes, the 
Global Climate Observing System (GCOS) specifies the uncertainty requirements with 30% 
and 5% at blue and green wavelengths, and a stability per decade of 3% and 0.5%, respectively 
(https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-dataaccess-
matrix/gcos-ocean-biogeochemistry-ecv-ocean-color). 

In compliance to the above also the other ocean colour products would require similar 
uncertainties. Based on user consultation results, the uncertainty information delivered 
together with the parameter-related product in the OC-CCI products (except for the bbp 
product were no uncertainties could be provided due to the sparse In situ data set) contains 
the root mean square difference (RMSD) and bias, computed based on comparison to match-
up In situ data divided up into their membership to a specific optical water class based on 
their spectrum from the OC-CCI RRS data (Jackson et al. 2019). Uncertainty information 
provided with each product is critical for the design and set up of assimilation systems and 
for prediction quality assessment to users. 

https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-dataaccess-matrix/gcos-ocean-biogeochemistry-ecv-ocean-color
https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-dataaccess-matrix/gcos-ocean-biogeochemistry-ecv-ocean-color


 

90 | Page 

   

1.5 Known limitations and gaps 
 
The gap on spatial resolution: OLCI provides full ocean colour capability to 300 m but higher 
resolution (of order 10–100 m) to detect in bays or estuaries at the polar coasts. In addition, 
the observation of colour in inland waters are not adequately supported, since missions 
providing such data are focused on land applications (e.g., Sentinel 2 or Landsat 8). Such 
missions have limited capabilities for retrieval of SPM concentrations, and in some cases of 
Chl-a concentrations. Mission requirements to meet these needs were presented in 
International Ocean Colour Coordinating Group [IOCCG] (2018). Improvements to the 
capability of Sentinel 2 or Landsat 8 sensors could partly meet these requirements, along with 
HAP or nanosatellites, assuming that issues of calibration are addressed. 

Gap temporal resolution: Often the temporal resolution is too low, especially in the polar 
regions were often even during sun-light conditions weather conditions are not favorable 
(waves to high, too many clouds) and sea ice adjacency effects deteriorate retrievals. Merging 
of OC products from different sensors will improve the coverage. However, when there is very 
low or no sunlight, coupled bgc-ocean models well-calibrated with remote sensing products 
and FRMs must fill the gap. 

No products on phytoplankton functional types are available which would help to a) improve 
predictions for water quality, HABs, fishery, coastal management by themselves but also 
indirectly by improving the quality of Chl products, since they are biased towards 1) a global 
mean of phytoplankton absorption which is quite different in the polar oceans (in polar 
oceans they are much more adapted to low light conditions), and 2) a constant relationship 
to absorption by detrital and CDOM. While CDOM is particularly low in the Antarctic Ocean it 
is rather very high in the Arctic Ocean with very high Arctic riverine inputs. 

Information on chlorophyll fluorescence is only available as a product from MODIS with FLH; 
still, the product is difficult to use for interpretation further phytoplankton health and other 
physiological features (iron limitation, etc.). In general the retrievals are questionable for the 
polar oceans since in the spectral range they are retrieved RRS data are at the noise level due 
to the low sun in this region. 

Although In situ validation and other forms to ensure the assessment of OC product stability 
is mostly well-coordinated, it needs to continue and be sustained, because FRM protocols and 
round-robins to assess the FRMs uncertainty and to train researchers to obtain FRMs are still 
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sparse and need to be enlarged. Especially in the polar oceans sampling due to difficult access 
of the region is sparse and the exploitation of using autonomous platforms’ optical data needs 
to be further developed and harmonized, as it is well on the way for the bioARGO floats. 

Especially the SVC platforms need to be sustained, last year (2018) MOBY was not able to take 
measurements for most of the year and also Boussole was on and off, so only the coastal 
FRMs from AERONET-OC could provide SVC. This limited especially the ability to characterise 
S3B OLCI OC products and therefore its L2 products are still not operational. Therefore SVC 
needs to be sustained and enlarged by at least two more platforms to secure VC of sensors. 

1.3.2. Sea Surface Temperature  
 

Sea surface temperature (SST) is a key indicator of the Arctic changes and the role of the ice-
albedo feedback mechanism in any given summer melt season. As the area of sea-ice cover 
decreases, more incoming solar radiation is absorbed by the ocean and, in turn, the warmer 
ocean melts more sea ice. Summer SST in the Arctic Ocean is driven mainly by the amount of 
incoming solar radiation absorbed by the sea surface. Solar warming of the Arctic surface 
ocean is influenced by the distribution of sea ice (with greater warming occurring in ice-free 
regions), cloud cover, ocean optical properties, and upper-ocean stratification. In the Barents 
and Chukchi Seas, there is an additional source of ocean heat contributed by the advection of 
warm water from the North Atlantic and North Pacific Oceans, respectively.  

IMPORTANT NOTE: Since the instruments that measures SST is the same as the ones that 
measures Ice Surface Temperature (IST), the description of the instrument technology, 
parameter characteristics, validation and error sources of SST is with the description of IST in 
section 8: Ocean and Ice Surface Temperature, from the section SEA ICE PARAMETERS.  

1.3.3. Sea Surface Salinity  
 

Sea Surface Salinity (SSS) is a key indicator of the freshwater fluxes and an important variable 
to understand the changes the Arctic is facing. Since In situ salinity measurements are very 
sparse in this region, remote sensing salinity measurements are of special relevance. SSS has 
been observed from satellite since 2009 when the ESA SMOS (Soil Moisture and Ocean 
Salinity) mission was launched. This was the first satellite to measure this important 
oceanographic parameter.  
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3.1. Technologies used and retrieval methods    
 

The salinity of the ocean can be measured only by using L-band passive microwave 
radiometers. The three L-band missions—the SMOS mission; the NASA Aquarius mission; and 
the NASA SMAP (Soil Moisture Active Passive) observatory provide an unprecedented source 
of salinity information over the Arctic Ocean, which can be assimilated in the models and help 
to improve them. 
 
The retrieval of sea surface salinity in cold oceans is a challenge, since the sensitivity of the 
brightness temperatures to sea surface salinity get considerably reduced when the sea 
surface temperature is below 10ºC. Moreover, some undesired effects are present in the 
brightness temperatures acquired by the radiometers, such as the land-sea and ice–sea 
contaminations, which affect the quality of the salinity retrieval close to coasts and ice edges. 
 
The Barcelona Expert Center (BEC) is serving a dedicated product for the Arctic Ocean (freely 
available at: http://bec.icm.csic.es/ocean-arctic-sss/) (Olmedo et al., 2018). It has been 
derived by applying the debiased non-Bayesian salinity retrieval, a methodology focused on 
mitigating the systematic salinity biases (Olmedo et al., 2017). The on-going ESA Arctic+ 
Salinity project (Dec 2018 – June 2020) will contribute to reducing the knowledge gap in the 
characterization of the freshwater flux changes in the Arctic region by developing a better 
quality SMOS SSS product in the Arctic region (https://arcticsalinity.argans.co.uk/). The 
impact of assimilating the new SSS products in the TOPAZ system will be assessed. If an 
improvement is demonstrated, the assimilation of SMOS SSS products in TOPAZ will be part 
of the new Arctic reanalysis and forecast products on the CMEMS portal. 
 
The Laboratoire d’Océanographie et du Climat, Expérimentations et Approches Numériques 
(LOCEAN) has recently developed another SMOS SSS product in the Arctic Ocean. Very 
recently, they have shown that this data, first compared to ARKTIKA-2018 campaign, can be 
used for studying the variability of surface water masses of the Laptev and the East-Siberian 
seas (summer 2018) (Tarasenko et al., 2019, Supply et al., submitted).  
 
SMAP SSS data reveal a much stronger interannual variation of SSS than HYCOM. Given 
HYCOM’s relaxation of SSS to seasonal climatology and the use of seasonal climatology of 
river discharges, SMAP SSS may provide a more reliable dataset to study interannual 

http://bec.icm.csic.es/ocean-arctic-sss/
https://arcticsalinity.argans.co.uk/
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freshwater changes of the Arctic Ocean in regions where no or few In situ data are available 
to constrain HYCOM. 
 
SMAP SSS global products are served by two teams: NASA-JPL and REMSS which use different 
algorithms. Both are served at PODAAC data server (https://podaac.jpl.nasa.gov/dataaccess). 
 
 
3.2. Characteristics of the parameter  
 

Product Spatial 
resolution 

Temporal 
resolution 

STD error (from 
Fournier et al., 

2019 
SMOS BEC ARCTIC 
SSS product 

25 Km served daily - 

9 days average 

1.07 

SMOS CATDS Arctic 
SSS product 

25 Km 9 days 1.12 

SMAP L3 JPL global 
SSS product 

0.25º 8 days 2.38 

SMAP L3 REMSS 
global SSS product 

0.25º 8 days 0.84 

 
Latency is not important in this variable since it is not required for near-real-time. 
 
3.3 Validation procedure 
 
The quality assessment of the product is done by comparing it with In situ measurements. 
Much less Argo buoys are deployed in the Arctic Ocean than in the rest of the ocean. The In 
situ measurements used are: 

 

https://podaac.jpl.nasa.gov/dataaccess
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Argo floats: Most of the Argo buoys are located between 60ºN and 70ºN, and few of them 
are inside the Arctic Ocean. The uppermost salinity measurements (not deeper than 10 
meters) are considered and no measurements shallower than 0.5 m are used due to the 
formation of bubbles and foam.  
 
Tara Polar Circle Expedition dataset: This campaign took place in the Arctic Ocean from June 
to October 2013 (Reverdin et al., 2014), and a thermosalinograph (TSG) Seabird SB45 and a 
temperature sensor (SBE38) recorded sea surface temperature and salinity at 3 m depth 
during the whole cruise. Since TARA salinity data presents a large range of spatial variability 
in the Arctic Ocean (≈ 26 to 35), it becomes a very valuable source for assessing the annual 
SSS reference salinity field used for the generation of the SMOS SSS product. 
 
Transects of TSG: This salinity data source is provided by Copernicus (available on 
http://marine.copernicus.eu/services-portfolio/access-to-products/). 

 
3.4 Error sources/Accuracy/uncertainty 
 
The accuracy of the salinity reduces in cold oceans, since the sensibility to salinity gets 
considerably reduced when the temperature of the ocean is below 10ºC. The accuracy of the 
BEC SSS dedicated product for high latitudes (more than 50ºN,) varies between 0.4 and 0.8 
psu, depending on the region (Olmedo et al 2018), when compared with TARA In situ data. 
When comparing the BEC SMOS SSS product with Argo floats data the standard deviation 
ranges is between 0.2 psu and 0.35 psu, but take into account that Argo floats are located 
between 50ºN and 70ºN, and none are located inside the Arctic Ocean.  
 
The accuracy with SMAP data depends on the product developed as well as the averaged 
days. The accuracy varies between 0.84 to 2.38 as std deviation in the Arctic. 
 
3.5 Known limitations and gaps 
 
A known limitation is that measurements near the coast (less than 50 km) will suffer from 
land-sea contamination errors, and also on sea-ice contamination.  
 
The product could be improved if the combination of different sensors (ie. SMOS and SMAP) 
is assessed.  
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There is an urgent need for In situ measurements of salinity in the polar regions. Currently, 
there are very few In situ salinity data available in the areas North of the Arctic Circle. A 
sufficient In situ database would not only provide a robust assessment of satellite SSS 
uncertainties in the Arctic Ocean, but also support the retrieval algorithm refinement, leading 
to enhanced satellite salinity products. 
 
The precision degrades in cold water as the sensitivity of L-band radiometer signal to SSS 
decreases when SST decreases, even though this effect on temporally averaged maps is partly 
compensated by the increased number of satellite measurements at high latitudes.  
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1.3.4. Sea Surface Height  
 
4.1. Technologies used and retrieval methods    

Satellite measurements of Sea Surface Height are based on the data provided by Radar 
altimeters. Such instruments measure the range between sea surface and instrument 
antenna. Then, Sea Surface Height can be estimated, if satellite height is known. The resulting 
measurements, once corrected from atmospheric contributions, contain two main 
contributions: the oceanographic signal due to currents, tides, heat content and atmospheric 
load; and the undulations of the geoid. The oceanographic signal, away from the strongest 
currents, is of the order of 20 cm and variably in time. The undulation of the geoid, on the 
contrary, is much bigger and constant at typical oceanic scales. If the geoid is not sufficiently 
well known, which has been the case for most of the time, temporal anomalies have to be 
computed (Sea Level Anomalies) and the mean sea level due to ocean currents (Mean 
Dynamic Topography) has to be independently estimated and added (Robinson 2004). 

From a technological point of view, Radar Altimeters can measure Sea Surface Height at their 
nadir with a footprint of the order of 7 km (Robinson 2004). During the last years a new 
generation of radars that use the Synthetic Aperture approach have been developed (e.g. 
Sentinel-3constellation; e.g. Ray et al. 2015). In spite of the improvements in the instrument, 
all current altimetric measurements are flawed by the same problem: the sampling limitations 
due to their swath. To solve this limitation a new mission concept, the SWOT mission, has 
been proposed and is expected to be able to provide high resolution maps of sea level in the 
years to come. 

4.2. Characteristics of the parameter  

These are the characteristics of some of the most popular altimetric products. There are 
additional products devoted to the long-term evolution of sea level or to assimilate into ocean 
models. 

 

Product Spatial resolution Temporal resolution Latency 

CMEMS Global 
along-track L3 SSH 
NRT 

14 km instantaneous < 3 h 
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CMEMS Global 
gridded L4 SSH NRT 

¼ º irregular 1 day 

CMEMS Global 
gridded L4 SSH 
reprocessed 

¼ º irregular irregular 

4.3. Validation  

There are multiple strategies to validate measurements such as the comparison with GPS 
buoys and tide gauges. 

4.4. Error sources/Accuracy/uncertainty 

Radar altimeter data is noisy not only due to instrumental noise and errors in the atmospheric 
correction, but also due to the sea state. This has a major implication: when analysis along-
track data the effective spatial resolution of observations will change. Along-track products 
from Jason-2, for example, have an error range between 1.5 and 3.5 cm rms at 1Hz (Dufau et 
al. 2016). Obviously, at higher frequencies (20Hz) they are bigger. Another source of error is 
the errors due to the sampling, which can be theoretically derived when performing the 
optimal interpolation to generate two-dimensional maps. These errors are usually included 
in L3 and L4 altimetric products. 

4.5. known limitations and gaps 

Since current altimeters are only able to measure sea level in its nadir, measurements are 
composed of lines, which brings the need to perform spatio-temporal interpolations to 
retrieve two-dimensional fields. These maps have a limited resolution of about 100 km and a 
temporal frequency of the order of 10 days in spite of their higher nominal resolution and 
frequency. This is a major limitation since the Rossby radius of deformation is smaller and 
decreases with latitude. This is the so-called altimetric gap. Notice, however, that in the arctic 
area satellite tracks are closer. Finally, it’s worth mentioning, however, that this is not the 
only limitation. Smaller scales have smaller sea level amplitudes, which requires to reduce the 
noise level, and other dynamical processes such as internal waves, start to contribute to the 
signal. 
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1.3.5. Sea Surface Currents 

5.1. Technologies used and retrieval methods    

Measuring ocean currents from satellites is a key challenge of satellite oceanography. 
Although significant advances have been done in the recent years and new concepts have 
been proposed, current operational measurements mainly rely on indirect approaches and 
are constrained to surface currents. 

The basic principle of the direct measurement of velocities relies on the Doppler effect, i.e. 
on the change of frequency of the returned signal. Such measurements are currently done by 
Synthetic Aperture Radars (SAR), allowing for the retrieval of surface velocities (see Ardhuin 
et al. 2019 for a short review). Currently there are two approaches: use two interferometric 
SAR or the single centroid from the same instrument. While both approaches provide 
equivalent information, they have different resolutions and revisit capabilities (Romeiser et 
al. 2014). Present day, the European Space Agency provides Level-2 products with radial 
velocities, i.e. ocean surface velocities in the direction of the line connecting the sensor and 
the measured point. These products can be found for Envisat, Sentinel-1a and Sentinel-1b but 
their application for monitoring ocean currents is rather limited due to the difficulties to 
extract the geophysical signal from other contributions and, then, to separate the 
contribution of surface currents from the contribution of waves (Rodríguez et al. 2018). It 
worth mentioning that, during the recent years, different mission concepts, such as SEASTAR 
(Gommenginger et al. 2018); SKIM (Ardhuin et al. 2018); and WaCM (Chelton et al. 2019), 
have been proposed to measure ocean currents although two of them have been already 
discarded (SEASTAR and SKIM). 

The major consequence of the difficulties to retrieve ocean velocities from direct 
measurements is the need to estimate them from indirect approaches. At present, velocities 
can be estimated from Sea Surface Height, Sea Surface Temperature, Sea Surface Salinity, a 
sequence of tracer images or Surface Winds (see Isern-Fontanet et al 2017 for a review on 
this subject). However, the only truly operational approach to the retrieval of ocean velocities 
is based on applying the geostrophic approximation to Sea Surface Heights (SSH) 
measurements provided by altimeters and, eventually, complement these measurements 
with the wind-driven component derived from wind measurements. Within this framework, 
the link between velocities and SSH is direct where is sea surface topography (see the section 
on Sea Surface Heights), the vertical normal vector, is gravity and is the Coriolis parameter. 
Wind induced velocities, usually known as Ekman velocities, can be added to these 
geostrophic velocities to improve the estimation of currents. The approach followed consists 
of fitting an empirical model to the velocities derived from surface drifters, which is then used 
to estimate the Ekman component from Surface Winds (Isern-Fontanet et al. 2017). 
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5. 2. Characteristics of the parameter  

Here, we report the characteristics of the L4 global velocity fields provided by Copernicus 
Marine Service These total velocity fields are obtained by combining CMEMS NRT satellite 
Geostrophic Surface Currents and modelled Ekman current at the surface and 15m depth 
(using ECMWF NRT wind). This product has been initiated in the frame of CNES/CLS projects. 
Then it has been consolidated during the Globcurrent project (funded by the ESA User 
Element Program). 

 

Product Spatial resolution Temporal resolution Latency 

NRT CMEMS Global Total 
Surface Current 
(Geostrophic + Ekman) 
at 0m and 15m. 

1/4º 6h 1 day 

Reprocessed CMEMS 
Global Total Surface 
Current (Geostrophic + 
Ekman) at 0m and 15m. 

1/4º 3h 
 

1 year 

It’s worth mentioning that geostrophic velocities are easily derived from altimetric 
measurements and Ekman velocities can be estimated from surface wind data. Consequently, 
we refer the reader to the characteristics of these variables for further information about 
spatial and temporal resolution, as well as data latency. 

5.3. Validation  

The validation of surface products is based on the direct comparison with In situ 
measurements, which mainly consist of surface drifters (e.g. Rio et al. 2003). 

5.4. Error sources/Accuracy/uncertainty 

The standard approach for the estimation of ocean currents is based on the combination of 
geostrophic velocities derived from altimetric measurements with Ekman velocities derived 
from atmospheric models. This implies that there are three sources of errors: instrumental 
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noise, sampling limitations and theoretical limitations. Instrumental noise can be assessed 
and sampling errors can be theoretically derived. The validity of the theoretical approach 
used, e.g. the geostrophic approximation or the Ekman model use, is more difficult to assess. 
As a consequence measurement errors have to be determined empirically. Based on the 
GlobCurrent outcome, 15 cm/s can be considered as a global value for the product accuracy. 

5.5. known limitations and gaps 

The limitation of geostrophic velocities derived from altimetric measurements are well 
characterized and understood. On one side, there are the limitations due to the combination 
of noise level and sampling characteristics of the current constellation of altimeters (see the 
section on Sea Surface Heights). On the other side, the limitations due to the geostrophic 
approximation. 
 

1.3.6. Sea Surface Stress (wind) 

Ocean surface wind and wind stress observations are essential and relevant for a wide range 
of applications, e.g., coastal protection, ship routing, off-shore wind energy, climate-scale 
circulation, water cycle and ocean forcing. As meteorological analyses more and more focus 
on mesoscale processes, wind measurements are needed globally. Mid and high latitude, high 
wind events (cold air outbreaks) lasting several days can lead to the formation of deep water 
that helps drive global ocean circulation patterns. High winds also help exchange 
disproportionately large amounts of carbon dioxide. Moreover, high-latitude surface winds 
play an important role in the generation of polar lows. In addition, although satellite-derived 
surface winds can only be retrieved over ice-free ocean areas, such observations in 
combination with sea ice derived information helps in the understanding of ocean-ice 
interactions as wind-generated waves propagate into the sea ice covered regions. 

6.1. Technologies used and retrieval methods 

Space-borne microwave passive and active sensors are used to derive sea surface wind 
observations globally at various spatial and temporal resolutions. 

Passive microwave sensors or radiometers (e.g., SSM/I, TMI, GMI) measure the wind speed 
over the ocean. The retrieval is based on a physical radiative transfer model that calculates 
the microwave emission from flat and rough ocean surfaces and the absorption and emission 
by the Earth’s atmosphere (Meissner and Wentz 2012). Radiometers are usually equipped 
with multiple receiving channels (typically between 6 GHz and 37 GHz) to derive wavelength-
dependent emission characteristics of the atmosphere and Earth’s surface from the measured 
brightness temperatures (Ulaby and Long, 2014). However, the presence of rain is known to 
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degrade the quality of the retrieved wind speeds. Polarimetric radiometers (e.g., Windsat) 
provide complementary information on the wind direction relative to look direction (Yueh et 
al. 1999). This allows the determination of the ocean vector winds, i.e., both scalar wind speed 
and wind direction, although the latter is of poor quality below 8 m/s (Ricciardulli et al. 2012). 
L-band (1–2 GHz) radiometers (e.g., SMOS, Aquarius, SMAP) are minimally affected by rain or 
frozen precipitation and are sensitive to high and extreme winds (Reul et al. 2012; Meissner 
et al. 2017). However, due to their relatively low spatial resolution (around 50 km) they 
cannot well resolve high-gradient regions, such as the eye and eyewall of hurricanes. 
Moreover, the L-band signal is little sensitive to low and moderate winds. 

The altimeter measurements of the power and shape of the radar echo are not only used to 
determine significant wave height (SWH) and mean square slope (mss) of the ocean surface, 
but also near-surface wind speeds. Global Navigation Satellite System Reflectometry (GNSS-
R) techniques (i.e., bistatic radar configuration) have shown their capability to observe sea 
surface wind speed (Zavorotny and Voronovich, 2000). The GNSS-R wind inversion relies on a 
geophysical model function (GMF) which relates the measured Delay-Doppler Map (DDM) to 
the sea surface wind speed for a certain observing geometry. The wind speed sensitivity 
though sharply decreases for winds above 6-7 m/s and in turn the derived wind quality (Lin 
et al., 2019). Both altimeters (e.g., Saral Altika, Jason-2) and GNSS-R (TDS-1) winds have 
relatively limited coverage. 

At incidence angles above 20° (and especially above 30°), the radar backscatter over the 
ocean results from scattering off wind-generated capillary-gravity waves, which are 
generated by, and generally in equilibrium with, the near-surface wind vector over the ocean. 
Synthetic aperture Radars (SARs) can provide very high resolution information about the sea 
surface roughness and are particularly relevant in coastal areas and marginal ice zones. 
However, since SARs provide a single azimuth view, one cannot infer whether backscatter 
variations are due to wind speed or wind direction variation (Portabella et al. 2002). Several 
retrieval methodologies have been proposed to attempt overcoming such problem, by adding 
to the radar backscatter measurements either SAR imaging capabilities to detect wind streaks 
(Horstmann et al., 2002) or Doppler measurements of radial wind speed (Mouche et al., 
2012). In general, SAR lacks absolute calibration, temporal sampling, and complete 
information for wind vector retrieval (Gade and Stoffelen, 2019). 

Unlike SAR, the space-borne radar scatterometer samples the sea surface at different azimuth 
views, thus enabling sea-surface wind vector inversion from the backscatter measurements 
(Stoffelen, 1998). It is therefore a unique system in terms of its all-weather, global sea-surface 
wind (stress) vector capabilities. In fact, high quality, high resolution (20 km) scatterometer-
derived global sea-surface wind vectors are routine and successfully used in a wide variety of 
oceanographic, atmospheric, and climate applications, e.g., NWP data assimilation, 
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nowcasting, ocean forcing, wind energy, analyses of mesoscale processes such as moist 
convection and turbulence, etc. 

 

6.2. Characteristics of the parameter 

The table below summarizes the sea surface wind characteristics of the most widely used 
sensors (for wind applications) described above. 

Characteristics of widely used global ocean satellite wind measurement systems (Gade and 
Stoffelen, 2019) 

Parameter Sea surface wind 
vector 

Spatial 
Resolution 

Temporal 
Resolution 

Latency 

Radiometer 
Only speed a 50 km 12 h 3 h 

SAR 
Partial informationb 1 km Infrequent 3 h 

Scatterometer Yes 20 km 12 h 0.5-3 h 

aWindSat provides credible wind direction for speeds above 8 m/s 
bOnly one component is measured, with similar sensitivity to both speed and direction 

The temporal resolution refers to a single satellite/sensor. However, there is typically a 
constellation of such sensors (which varies with time), leading to improved temporal 
sampling. In particular, there are currently six scatterometers in different sun-synchronous 
orbits: the Advanced Scatterometer (ASCAT) on METOP-A, -B and -C, OSCAT on ScatSat-1, 
CFOSAT and HY-2B. The sea surface wind products from the first four are served in near real 
time (NRT), while the last two (CFOSAT and HY-2B) are expected to become available in NRT 
soon. 

6.3. Validation 
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The validation of satellite-derived sea surface wind products is generally carried out with the 
following auxiliary reference datasets: 

NWP model output: Global NWP model output, e.g., the ECMWF sea-surface wind output, is 
spatially and temporally interpolated to the satellite acquisitions. Global NWP winds well 
resolve the large scale wind although they largely miss small scale processes, such as moist 
convection. 

Moored buoy winds: The moored-buoy anemometer winds are widely used to calibrate and 
validate satellite sea surface winds. Several moored buoy arrays are used as reference. 
However, most of the buoys are either tropical (e.g., TAO, TRITOAN, PIRATA, RAMA) or coastal 
(e.g., NDBC, ODAS). Very few moored buoys are available at high latitudes, i.e., beyond 55°N 
or 55°S. 

Precipitation data: To analyse precipitation effects on the satellite wind retrieval quality, 
collocations with passive microwave systems are performed. Polar sun-synchronous systems 
like the SSM/I provide rain data at all latitudes. Other satellite rain products from more 
inclined (e.g., TMI or GMI) or geostationary (MSG) orbits are often use, but do not provide 
(reliable) precipitation information beyond 65°N or 65°S. 

Other validation sources: Inter-comparison between different satellite-derived wind products 
is also often used for validation purposes. For example, the C-band ASCAT is often used to 
analyse rain contamination effects on Ku-band scatterometer (Lin and Portabella, 2017) or 
radiometer winds. Also, at high latitudes, cloud imagery is used to verify how well satellite-
derived winds resolve polar lows (Furevik et al., 2015). 

6.4. Error sources/Accuracy/uncertainty 

The accuracy of the radiometer-retrieved wind speeds has been assessed through 
comparisons with NWP and buoys. While in rain-free scenes, the accuracy matches that of a 
scatterometer (Wentz et al. 2017), in precipitating scenes, significant errors start to appear in 
light rain (surface rain rates > 1 mm/h, Meissner and Wentz 2009). 

The SAR-derived wind quality is very much situation or image dependent. Because of its very 
high resolution, several non-wind-related atmospheric (e.g., gravity waves, rain cells) and 
oceanic (e.g., waves, tides, shallow-water bathymetry) processes can be seen in a SAR image, 
further negatively impacting the wind retrieval process. The SAR wind accuracy is reported to 
be around 2 m/s in favorable conditions. 

Scatterometer wind vector errors estimated through triple collocation analysis (Stoffelen, 
1998) are typically between 1 m/s (C-band systems) and 1.6 m/s (Ku-band systems, more 
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affected by rain and viewing geometry issues) (Vogelzang et al., 2011). At high latitudes, the 
scatterometer wind quality is not degraded (Furevik et al., 2015). 

6.5. Known limitations and gaps 

There are two main areas of ongoing concern for satellite-derived wind quality. The first is 
degradation of the retrievals in rain and the other is retrievals at high wind speeds, which in 
tropical and sub-tropical latitudes often occur with rain. 

Consecutive sun-synchronous orbits have gaps between them and thus only cover portions 
of the globe in one day. Multiple scatterometers greatly improve the temporal sampling 
(Stoffelen et al. 2019; Trindade et al. 2020), notably at high latitudes. 

One goal of the remote sensing community is to add Doppler capability to future 
scatterometers in a manner that allows for simultaneous measurements of surface winds and 
currents and improve directional accuracy (Rodriguez et al. 2018). Very few observations are 
made in the upper few meters where there is great deal of variation related to winds and 
waves. These variations impact the calibration of winds and stress and applications that 
depend on stress retrievals. 

Mesoscale air-sea interaction requires much finer scale observations, with grid spacing of 
roughly 5 km or finer. Observations on these scales, with sufficient averaging in space and 
time, would allow investigation of most mesoscale features. 
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Section 2: Current and in-development satellite products 
This section provides a link to the work done in work package 2 on the provision of Copernicus services 
for polar regions. WP2 provides an inventory of the products currently available in the two most 
relevant services for polar regions: CLMS and CMEMS. In addition, WP2 also highlights relevant 
products either provided by C3S or ESA related projects (ESA-CCI and ESA Data User Element, DUE). 
Here, we only provide a summary of the inventories from WP2 and refer to the deliverable reports 
D2.1 'Final report on ways to improve the description of the changing Polar Regions in the Copernicus 
Land Monitoring Service (CLMS)' and D2.2 'Final report on ways to improve the description of the 
changing Polar Regions in the Copernicus Marine Environment Monitoring Service (CMEMS)' for more 
details.  
 
Table 2. 1 details those variables presently served in Copernicus Marine Environment Monitoring 
Service and whether or not they can be derived from satellite measurements. Orange boxes 
emphasize that a RS product can be derived with sufficient quality, but is not today offered by 
Copernicus.  Therefore, we recommend Copernicus to provide these RS products in the future. This 
shall involve R&D activities to maturate the prototype products before they can be served in CMEMS. 
 
Table 2. 2 collects variables served in Copernicus Land Monitoring Service and whether or not they 
can be derived from satellite measurements. 
 
Table 2. 1: Cross-reference between sea parameters provided by CMEMS, both models and 
observations and which ones are/can be measured by remote sensing techniques, either in 
real-time or delayed mode. Note that In situ measurements are not considered here Orange 
boxes emphasize that a RS product can be derived with sufficient quality, but is not today 
offered by Copernicus. 

Theme Variable 
WP2.2 

CMEMS 
CMEMS product 
from models/RS1 

WP3.1/3.3 
Remote Sensing 

Sea Ice SIC Yes both Yes 

 SIT Yes both Yes 

 SIDrift Yes both Yes 

 IS Temperature Yes RS Yes 

 SIType Yes both Yes 

 SIAge Yes model Yes 

 Melt ponds No - Yes 
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 Sea ice Albedo Yes model Yes 

 Ice salinity No  - Not possible 

 Leads detection No  - Yes 

 
Pressure ridge size and 

distribution 
No  - Possible 

 Snow depths Yes model Possible 

Cross-
disciplinary Iceberg Density Yes RS Yes 

Physical Ocean SST (EOV) Yes both Yes 

 SSS (EOV) Yes both Yes 

 SSH (EOV) Yes both Yes 

 
Surface geostrophic 

currents (EOV) 
Yes RS Yes 

 Surface currents (EOV) Yes  model possible 

 
Subsurface 

Temperature (EOV) 
Yes model 

Not possible 

 
Subsurface salinity 

(EOV) 
Yes model 

Not possible 

 
Subsurface Currents 

(EOV) 
Yes model 

Not possible 

Sea state Sig. wave heights Yes both Yes 

 
Surf. Stress 

(Wind) 
No - 

Yes 

 Spectra 
No  model 

Possible (SWIM on 
CFOSAT) 

 Peak Period Yes model Yes (from spectra) 

 Ocean Albedo No - Yes 

Biogeochemical 
Ocean Oxygen (EOV) 

Yes model 
Not possible 

 Ocean Colour (EOV) Yes RS Yes 
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 Chl profiles (EOV) Yes model/RS(surface) Yes (surface) 

 

Nutrients 
(NO2, NO3, NH4, PO4, 

Si, Fe) (EOVs) 
Yes model 

Not possible 

 Zooplankton (EOV) Yes model Not possible 

 
Phytoplankton Group 

Chl (EOV) 
Yes RS 

Yes (surface) 

 
Phytoplankton 

(PHYC+PP) (EOVs) 
Yes model 

Not possible 

 Light Attenuation (KD)  Yes both Yes 

 1: See Deliverable WP2.2, Annexe 1, 2 and 3 to have more information on the type of model that produces each 
parameter.   
 

Table 2. 2: Cross-reference between land parameters provided by CLMS and which ones 
are/can be measured by remote sensing techniques. 

Theme Parameter WP2.1 
CLMS 

CLMS product from 
MODEL/RS 

WP3.1/3.3 
Remote Sensing 

Cryosphere 

Snow cover extent  Yes RS Yes 

Snow water equivalent Yes RS Yes 

Lake Ice Extent 
Yes 

 (Baltic 
region1) 

RS Yes 

Lake Ice duration No2 - Yes 

Lake Ice Thickness No - Yes3 

Snow melt No - Yes 

Snow depth No - Yes4 

Snow avalanche No  - Yes 

Permafrost No - No5  

Energy Surface albedo  Yes RS Yes 
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Land Surface 
Temperature 

Yes RS Yes 

Top Of Canopy 
Reflectance 

Yes RS 
Yes 

(Not considered in this 
document) 

1: Baltic region defined as upper left corner: 5ºE, 71ºN to lower right corner: 45ºE, 45ºN  

2: Can in principle be derived from the daily Lake Ice Extent product, but regionally limited to the 
Baltic Sea region. Polar night is also an issue in the north as the lake ice extent product is based on 
MODIS. The product needs to be complemented with SAR-observations to capture the ice formation 
period. 

3: Only for large lakes using PMR instruments. 

4: Depending on the validation of the method suggested by Lievens et al. (2019). Low-resolution 
products could be derived from SWE (based on PMR measurements) via models for density.  

5: Permafrost variables are not directly available via RS, but can be estimated in some cases by using 
certain parameters as proxies (ground deformation, land cover, water storage, lake extent), or by a 
combination of modelling and satellite data products of ground temperature, soil moisture, 
vegetation cover, and snow cover (see part 1 of this report).  
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Section 3: Parameters from future missions 
In this section, we discuss which impact the various upcoming satellite missions can have on the 
agreed list of land and sea parameters that Kepler wants to address. For each parameter/satellite 
combination where we see a synergy, we comment briefly on the impact the sensor could have on the 
retrieval of the parameter. In some cases, a new sensor could revolutionize the parameter retrieval, 
whereas for other parameters, information from the new sensor could advance knowledge, bridge 
gaps or by other means contribute to improvements in the product retrieval methods. 
 
Table 3. 1 reports the parameters observable mainly with the future ESA HPCMs missions, since of 
course we cannot assess all planned missions from all countries. We have also presented a few other 
satellites we think could have a large impact. Below, the parameter quality and the advantages with 
respect to the current missions are discussed per parameters and following the numbers used in Table 
3. 
 

Table 3. 1: Cross-reference between land/sea parameters of relevance to Kepler/Polar regions 
and future satellite missions. Numbers refer to comments in the sections following the table.  
 

Parameter HPCM Satellites 

Land CHIME CIMR CO2M CRISTAL LSTM ROSE-L FORUM Others 

Snow extent  1     2 3  

Snow wetness     1 2   

SWE 1 2  3  4  5,6 

Snow depth  1     2   

Snow albedo 1        

Avalanche      1   

Lake ice extent     1 2   

Lake ice 
thickness 

1   3  2   

Permafrost  1  2 3 4   
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Soil moisture  1    2   

Soil organic 
carbon content 
(SOC) 

11        

Biophysical 
vegetation 
parameters 
(e.g. LAI, 
FAPAR) 

11        

Inland water 
biogeochemical 
parameters 
(PFT, Chl, etc.) 

1       2 

Sea ice / Ocean CHIME CIMR CO2M CRISTAL LSTM ROSE-L FORUM Others 

SI 
Concentration 

 1    2   

SI Thickness 
(>1m) 

   1     

Thin SI 
Thickness 
(<0.5m) 

 1    2  3, 4 

SI Drift  1    2   

SI Type  1  2  3   

Snow-depth on 
SI 

 1  2  3   

Melt ponds        1 

Icebergs    1  2   

SI Surface 
Temperature 

 1       

Sea Surface 
Temperature 

 1       

Sea Surface 
Salinity 

 1      2 
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Ocean Winds  1    2  3 

Ocean Colour 1        

Atmosphere CHIME CIMR CO2M CRISTAL LSTM ROSE-L FORUM Others 

CO2 & CH4 
concentration  

  11      

1: These parameters are included here for completeness but are not discussed in Section 1 because 
the focus of this report is on cryosphere-relevant parameters. For more details on these parameters 
see Deliverable WP2.1 which reports on the parameters served in the Copernicus Land Monitoring 
Service.  

3.1 Land surfaces 
 

Snow extent/area 
1: <CIMR> shall generate L2 products of terrestrial total snow area with a standard total 
uncertainty of ≤ 10 % at a spatial resolution of ≤15 km with daily coverage of the Polar 
Regions. [MRD-950 in CIMR MRD v3] 
2: <ROSE-L> contribution with wet snow detection in multi-sensor approaches for snow cover 
fraction estimation (see also Snow wetness-ROSE-L). 
3: <FORUM> information from the far-infrared spectrum could be used for separating 
snow/bare ground during night time (polar darkness) when normal sensors have little 
sensitivity. The coarse-scale is, however, a challenge in matching products. 
 
Snow wetness 
1: <LSTM> Surface snow metamorphism can be studied. 
2: <ROSE-L> more penetration, potentially more sensitive to degrees of wetness. 
 
Snow Water Equivalent (SWE) 
1: <CHIME> can potentially be used to quantify surface snow grain size distribution (SSG). 
Snow grain size has an impact on radar backscatter on high frequencies (>8 GHz), and is 
important for several SAR retrieval algorithms for SWE (synergy with SWE5) [(CHIME MRD, 
section 3.2.3.2 Hydrology/ Cryosphere)].  
2: <CIMR> shall generate L2 products of terrestrial snow water equivalent (SWE) with a 
standard total uncertainty of < 40 mm at a spatial resolution of ≤15 km with daily coverage of 
the Polar Regions. [MRD-960 in CIMR MRD v3]. 
3: <CRISTAL>  (CRISTAL MRD). 
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4: <ROSE-L> SWE can be retrieved by repeat pass interferometric techniques. At L.band, the 
decorrelation is less critical (see below: snow depth). For incidence angles < 40 degrees, the 
relationship between phase delay and SWE is almost independent of snow density. Theory 
shows that an L-band (35 deg incidence angle) 130 mm water equivalent causes a phase shift 
of 2pi, which corresponds to about 0.5 m snow depth, whereas one fringe at C-band is 
equivalent to 11 cm snow depth. (ROSE-L MRD) 
5: X-band sensors such as Iceeye, in tandem with C-band or higher frequencies (Ku/Ka) can 
potentially be used in backscatter based retrieval algorithms to resolve ambiguities. 
6: NISAR and other 3rd party L-band SAR missions (see also SWE-ROSE-L) could improve SWE 
retrieval via interferometry. 
 
Snow depth 
1: <CIMR> snow depth information can be derived from CIMR SWE-product (see SWE2)  when 
density can be retrieved or assumed by other means.  
 
2 <ROSE-L> From theory it is concluded that snow depths up to 0.5 m can be retrieved without 
ambiguities of the interferometric phase at higher incidence angles (> 30 deg). At C-band, the 
2π phase ambiguities are already reached about 0.1 m snow depth. The use of L-band data is 
also beneficial because of the lower temporal coherence decay compared to C-band. 
Furthermore, the application of L-band has advantages in slightly vegetated areas because of 
the larger penetration depth compared to C- and X-band. In densely vegetated areas, snow 
depth retrieval also does not work at L-band (ROSE-L MRD). 
 
Snow albedo 
1: <CHIME> Hyperspectral information allows to derive knowledge of physical snow 
properties such as albedo. 
 
Avalanche 
1: <ROSE-L> Possible sensitivity to other types of avalanches. 
 
Lake ice extent 
1: <LSTM> Differentiate between various ice stages (snow-covered ice, bare ice, melting ice 
and partial ice) [LSTM MRD]. 
2: <ROSE-L> The combination of C- and L-bands improves the capability to distinguish ice and 
water and hence to determine lake ice extent. 
 
Lake ice thickness 
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1: <CIMR> L-band has the potential for measuring ice thickness (Tikhonov et al., 2018). 
2: <ROSE-L> SAR images acquired at X-, C-, and L-band have been used to distinguish between 
the floating ice and bedfast ice regime. Comparisons with field measurements revealed 
achievable accuracies of 93% using C-band imagery (Engram et al., 2018). L-band reveals less 
sensitivity since it is affected by the presence of large ebullition bubbles trapped under or in 
lake ice which may complement information related to studies of methane flux (Engram et 
al., 2013). X-band intensities were used in conjunction with an ice growth model to determine 
lake ice thickness and showed a good agreement (Antonova et al., 2016). Since the 
penetration depth is larger at L-band, ROSE-L data may also be useful for ice thickness 
retrieval.   
3: <CRISTAL> Snow depth (on sea ice and glaciers) is one of the objectives of CRISTAL (see 
MRD). Lake ice thickness and snow depth on lake ice can potentially also be measured on 
large and medium-sized lakes according to Beckers et al., 2017. 
 
Permafrost 
Permafrost variables are not directly observable from space, but can often be estimated from 
one or several proxies (ground deformation, land cover, water storage, lake extent) or a 
combination of modelling and satellite data products of ground temperature, soil moisture, 
vegetation cover, and snow cover. Thus, permafrost can particularly profit from synergistic 
use of several instruments. 
1: <CIMR> can generate products of snow cover and depth. 
2: <CRISTAL>  Land elevation change, and the snow and surface state are some of CRISTAL’s 
mission priorities (see MRD).  
3: <LSTM> Its main objective is the retrieval of land surface temperature with a spatial 
resolution target of 50 m. The thermal infrared sensor will enable day and night time 
measurements, and is designed to cover the full temperature range required for permafrost 
applications. 
4: <ROSE-L> interferometry can quantify land surface movements due to freeze/thawing of 
the active layer. The retrieval of ground movement and deformation in vegetated areas is 
hardly possible with C- and X-band systems. An L-band SAR penetrates further through the 
vegetation canopy and provides stable long-term coherent information on the surface 
movement. ROSE-L backscatter information can be used to quantify freezing/thawing of the 
active layer (similar to S1, but L-band penetrates deeper, and can thus provide 
complementary information). Also, the L-Band SAR mission will provide the ability to monitor 
soil moisture conditions below the vegetation canopy over most vegetated land cover types 
throughout the growing season, with a spatial resolution of 1 km for L2 products.  
 
Soil moisture 
1: <CIMR> can similarly to SMOS (L-Band) and AMSR2 (C-band) PMR generate soil moisture 
or drought indices, but only when the soil is not frozen and at a rather coarse resolution. This 
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can be useful as a precursor indication of forest fires. Since CIMR combines L- and C-band 
there is a potential for improved accuracy and resolution wrt SMOS and AMSR2. 
2:<ROSE-L> The L-Band SAR mission will provide the ability to monitor soil moisture 
conditions below the vegetation canopy over most vegetated land cover types throughout 
the growing season, with a spatial resolution of 1 km for L2 products.  
 
Soil organic carbon  
1: <CHIME> Topsoil organic carbon content can be derived from hyperspectral imagery, 
potentially relevant for the carbon stored in Arctic peatlands and permafrost regions. 
 
Biophysical vegetation parameter 
1: <CHIME> Remotely sensed hyperspectral data together with radiative transfer modelling 
has the potential to provide high accuracy complex biophysical parameters such as e.g. LAI or 
FAPAR. 
2: <ROSE-L> L-band enhances information and classification accuracy of land cover and land 
cover changes, in particular when combined with other Copernicus missions. L-band SAR 
generally provides clear distinction between vegetated and non-vegetated areas. It is hence 
useful for mapping forest/non-forest areas as well as the location and extent of broad forest 
types. 
 
Inland water biogeochemistry 
1: <CHIME> and 2: <NASA-PACE>: Hyperspectral imagery is expected to provide information 
on phytoplankton abundance, coloured dissolved organic matter and total suspended matter 
as can be derived from multispectral sensors such as OLCI. In addition, these hyperspectral 
satellite data sets are expected to reliably retrieve the abundance of phytoplankton types. 
For CHIME due to the sensor swath probably no open ocean region can be covered, however 
inland and coastal waters will be covered with a spatial resolution fine enough to resolve 
horizontal patterns in these waters. However, revisit time will be probably only every couple 
of days which probably only allows snapshots of these waters. However, NASA is planning to 
launch around 2023 the PACE hyperspectral ocean colour sensor which will allow for global 
ocean colour detection on a 1km scale within 1-2 days. It will especially deliver for the open 
ocean the possibility to retrieve phytoplankton types. The atmospheric satellite sensor 
SCIAMACHY (on Envisat) has been used to derive globally quantitative retrievals of major 
phytoplankton groups (see Bracher et al. 2009, Sadeghi et al. 2012). However, retrievals were 
limited by very large pixel size and low temporal resolution. Hyperspectral remote sensing 
reflectance data measured in water or above water (from stations or airplanes) have also 
been explored to enable the retrieval of phytoplankton groups at coastal or inland waters and 
develop further algorithms for future hyperspectral satellites like PACE and CHIME. National 
hyperspectral sensors have launched in the past (HICO, CHRIS-PROBA) so far have not 
delivered data sets on phytoplankton types, however the recently launched terrestrial 
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sensors DESIS and PRISMA are currently explored to show if even sensors with a rather low 
signal to noise ratio in the blue and green band can also be used for phytoplankton retrievals 
over water. All these efforts are important to have algorithms ready when suited sensors like 
PACE and hopefully also CHIME will provide on an operational scale well-calibrated 
hyperspectral data sets. 
 
3.2 Sea ice 
Sea Ice Concentration 
1: <CIMR> shall generate L2 sea ice concentration (SIC) and Sea Ice Extent (SIE) products at a 
spatial resolution of ≤5 km and a standard total uncertainty of ≤5% with sub-daily coverage 
of the Polar Regions and daily coverage of Adjacent Seas. [MRD-890 in CIMR MRD v3]. SIC is 
one of the two primary objectives of the CIMR mission. 
2: <ROSE-L> The separation of open water and sea ice is a special case of ice type classification 
with only two classes. Since C- and L-bands reveal different sensitivities to the influence of 
wind on scattering from the open ocean, they complement one another and may improve the 
ice-water separation (further investigations required). 
 
Sea Ice Thickness (>1m) 
1: <CRISTAL> The system shall be capable of delivering sea ice thickness measurements with 
a vertical uncertainty of less than 0.1 m. The horizontal resolution of sea ice thickness 
measurements shall be 80 m. The system shall be capable of delivering sea ice thickness at a 
grid-scale resolution of at least 3 km. It shall be capable of delivering sea-ice thickness 
measurements within 24 hours of acquisition. [Several requirements under section 4.2.1 Sea 
Ice thickness in CRISTAL MRD v2]. 
 
Thin SI Thickness (<0.5m) 
1: <CIMR> shall generate thin (≤0.5 m) sea ice thickness L2 data products in freezing 
conditions at a spatial resolution of <60 km, with a thickness standard total uncertainty goal 
of 10% and daily coverage of the Marginal Ice Zone in the Polar Regions and Adjacent Seas. 
[MRD-910 in CIMR MRD v3]. 
2: <ROSE-L> Correlations between ice thickness (up to 1.2 m) and the co-polarization ratio 
were reported at C-band. In another study, L-band was found to be less sensitive to the 
thickness of thin ice which may be due to a lower SNR. L-band offers the advantage of larger 
penetration depth and a lower sensitivity to frost flowers on thin lead ice. (Dierking et al., 
2013). 
3: <FSSCAT> They carry a dual microwave payload (a GNSS-Reflectometer and an L-band 
radiometer with interference detection/mitigation), and a multi-spectral optical payload to 
measure soil moisture, ice extent, and ice thickness, and to detect melting ponds over ice 
(Alonso-Arroyo et al.,  2017).  
4: <COSSM> The Chinese Ocean Salinity Satellite Mission will be launched in 2020 and will 
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carry different sensors. Two interferometric L-band radiometers: one in Y shape form (similar 
to SMOS), and the other with 1D array as well as an active L-band. Moreover, the satellite will 
also carry on C and K-band microwave radiometers. 
 
Sea Ice Drift 
1: <CIMR> shall generate daily sea ice drift L2 products with a standard total uncertainty of 
≤3 cm/s at a spatial resolution of ≤25 km with daily coverage of the Polar Regions and Adjacent 
Seas. [MRD-920 in CIMR MRD v3]. 
2: <ROSE-L> In general C- and L-band SAR images complement each other since single ice floes 
of different ages can be easier identified in C-band images, whereas structures such as ridges 
and cracks stand out more clearly at L-band. Both characteristics are useful for ice drift 
retrieval, the relative contribution of each frequency depends on the ice conditions. L-band 
SAR images provide more contrast during the melt and freeze-up periods and are hence 
preferable compared to C-band during the initial and final phase of the melting season (ROSE-
L MRD). 
 
Sea Ice Type / Stage of Development 
1: <CIMR> shall generate the L2 Ice stage of development/Ice type products at a spatial 
resolution of <15 km with daily coverage of the Polar Regions and Adjacent Seas [MRD-930 in 
CIMR MRD v3]. 
2: <ROSE-L> For ice charting, L-band delivers information that is complementary to C-band. L-
band is much better suited for the detection and characterization of ice deformation such as 
ridges, rubble fields and fractures, for delineation of ice floes, and for separating rough and 
smooth ice surfaces. This is necessary for operational ice services. Dependent on 
environmental conditions and ice cover characteristics, areas of thin ice may be easier to 
identify. L-band provides sufficient radar intensity contrast between first-year and multi-year 
ice during early melt onset and during the drainage phase of advanced melt.  (ROSE-L MRD) 
3: <FSSCAT> (GNSS-R + L-band radiometer): Sea ice edge, to be launched not before mid-2020 
(Alonso-Arroyo et al.,  2017). 
 
Snow-depth on Sea Ice 
1: <CIMR> shall generate snow depth on sea ice L2 products in freezing conditions with a 
standard total uncertainty of ≤10 cm at a spatial resolution of ≤15 km with daily coverage of 
the Polar Regions and Adjacent Seas. [MRD-940 in CIMR MRD v3]. 
2: <CRISTAL> The mission shall be capable of retrieving the depth of dry snow on sea ice. 
Derived from co-temporal observations at Ku- and Ka-band. The uncertainty of snow depth 
measurements over sea ice shall be less than 0.05 m. The horizontal resolution of snow depth 
retrievals over sea ice shall be identical to sea ice thickness. [Several requirements under 
section 4.2.3 Snow depth on sea ice in CRISTAL MRD v2]. 
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Icebergs 
1:<CRISTAL> Altimeters can measure the height of relatively tall and flat icebergs (more 
common in the Southern Ocean, Tournadre, et al. 2008). This is limited by the along-track 
visibility of the altimeter instrument. Knowing the height of an iceberg can improve the 
accuracy of forecasting its path. 
2:<ROSE-L> First investigations carried out by different operational ice centers and the 
International Ice Patrol IIP indicate that L-band may be more suitable to detect icebergs than 
C-band (report in preparation). More investigations are required, but in combination with 
Sentinel-1 C-band imagery, an L-band mission at least enhances iceberg detection. One 
reason is that L-band reveals a lower sensitivity to wind-effects on the ocean surface than C-
band (ROSE-L MRD). 
  
Sea Ice Surface Temperature 
1: <CIMR> shall generate L2 products of Ice Surface Temperature (IST) in freezing conditions 
with a standard total uncertainty of ≤1.0 K at an effective spatial resolution of ≤15 km with 
daily coverage of the Polar Regions and Adjacent Seas [MRD-970 in CIMR MRD v3]. 
 
3.2 ocean 
 

Sea Surface Temperature 
1: <CIMR> shall generate L2 Sea Surface Temperature (SST) products at a resolution of 15 km 
in the open ocean, with a standard total uncertainty of 0.2 K for 95% global coverage and sub-
daily coverage in the Polar Regions and Adjacent Seas [MRD-900 in CIMR MRD v3]. SST is one 
of the two primary objectives of the CIMR mission. 
 
Sea Surface Salinity 
1: <CIMR> shall generate daily L2 products of sea surface salinity (SSS) over the 95% global 
ocean from at a resolution of <60 km and a standard total uncertainty of ≤0.3 pss over 
monthly timescales [MRD-980 in CIMR MRD v3]. 
2: <COSSM> The Chinese Ocean Salinity Satellite Mission will be launched in 2020 and will 
carry different sensors. Two interferometric L-band radiometers: one in Y shape form (similar 
to SMOS), and the other with array form (one dimension) as well as an active L-band. 
Moreover, the satellite will also carry C and K-band microwave radiometers.  
 
Ocean Winds 
1: <CIMR> shall generate daily L2 products of wind speed and direction over 95% global ocean 
at a resolution of <40 km (TBC) and a standard total uncertainty of ≤2 ms -1 [MRD-990 in CIMR 
MRD v3]. 
2: <ROSE-L> Enhancements to existing information obtained at C-band are expected since L-
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band may likely reveal a higher sensitivity to high wind speeds due to lack of saturation in the 
signal. This promises better measurements needed for, e.g., better predictions of the fate of 
hurricanes (ROSE-L MRD). 
3: <COSSM> The Chinese Ocean Salinity Satellite Mission will be launched in 2020 and will 
carry different sensors. Two interferometric L-band radiometers: one in Y shape form (similar 
to SMOS), and the other with a 1D array as well as an active L-band. Moreover, the satellite 
will also carry C and K-band microwave radiometers. L-band radiometer can detect very high 
winds (Reul et al., 2016).  
 
Ocean Colour 
1: <CHIME> For coastal waters, see text under Inland Water Biogeochemistry 
 
Melt Ponds 
1: <FSSCAT> This mission will carry a dual microwave payload (a GNSS-Reflectometer and an 
L-band radiometer with interference detection/mitigation), and a multi-spectral optical 
payload that could be used for the detection of melting ponds over ice (Alonso-Arroyo et al.,  
2017).  
 
3.4 Atmosphere 
 

CO2 & CH4 

1: <CO2M> provides total column concentrations of CO2 and CH4 in the atmosphere, which is 
an integrated signal of air-sea and air-land exchange fluxes of these greenhouse gases [CO2M 
MRD]. 
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Section 4: Feasibility of synergies 
For the HPCM missions, synergies between the Radar Observing System for Europe at L-band (ROSE-
L), the Copernicus Imaging Microwave Radiometer (CIMR), and the Copernicus polar Ice and Snow 
Topography ALtimeter (CRISTAL) are recently under discussion. The findings reported below are 
derived from former radar, passive radiometer, and radar altimeter missions and are hence of a 
broader validity. Synthetic Aperture Radar (SAR), scatterometers, passive microwave radiometers 
(PMR) and radar altimeter (RA) missions differ considerably in their technical design and major 
monitoring tasks, as defined in other sections of this report. 
 
The tables below review the potential synergies that have been identified, organized by land, sea-ice 
and ocean targets. The proposed synergies are supported by published papers that emphasize the 
feasibility of those new products. Moreover, the HPCM missions which could also provide new 
products are also specified. Users of these new products are identified following the WP1 definition 
(intermediate users,  land end-users and ocean end users). Finally, the type of societal impact is 
assessed in three categories: high, middle and low impact. 
 

4.1 Synergies for land applications 

A wide range of synergies can be envisaged for the land parameters we consider (snow cover fraction, 
snow water equivalent, snow depth, snow wetness, avalanche and lake extent/thickness, soil 
moisture). By using SAR together with optical sensors several studies have shown that retrieval of 
snow cover fraction can be improved during periods of cloud cover. Similarly, snow water equivalent 
products may be improved at the edge of the snow cover or for low values of SWE (limited sensitivity) 
by combining SWE estimates (at low spatial resolution) with snow cover fraction (at higher spatial 
resolution) see e.g. Muñoz et al. (2013). Also in the case of SWE retrieval using ROSE-L, optical or even 
C-band SAR snow products may play a synergistic role in masking out false SWE retrievals during no-
snow conditions, or low estimates of SWE during wet snow conditions.  Snow wetness (using C-band 
SAR) can also be improved by taking into account optical snow cover data to allow separation between 
dry snow and bare soil, which C-band SAR data usually are insensitive towards.  Within snow avalanche 
monitoring there is a potential to combine SAR detection of avalanches with optical detections. In a 
study at Greenland (Aberman et al., 2019) showed that some avalanches were only observable by 
optical sensors (S2), whereas many others were only seen by SAR (S1). Combining the observations 
would obviously result in better mapping.  

Current Lake ice extent products based on medium resolution optical sensors (MODIS/S3) can be 
improved significantly in Arctic regions by combining them with SAR derived ice cover, in particular 
during the polar night period when ice formation occurs, but also allowing more precise mapping of 
the ice break up period when the timing is crucial and optical observations often suffer due to 
cloudiness.  Lake ice thickness estimates can potentially be improved by combining radar altimeter 
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measurements with other sensors like Lidar (ICESat-2) even other sensors (SAR, optical or even passive 
microwave sensors for the largest lakes).  

Permafrost variables are not directly observable from space, but can often be estimated from one or 
several proxies (ground deformation, land cover, water storage, lake extent) or from a combination 
of modelling and satellite data products of ground temperature, soil moisture, vegetation cover, and 
snow cover. Thus, permafrost can particularly profit from synergistic use of several instruments, 
specifically CIMR (snow cover & depth, soil moisture), CRISTAL (snow & surface state, land surface 
movements), LSTM (land surface temperature), and ROSE-L (land surface movements, freeze/thawing 
data, soil moisture).  

Soil moisture products are based on L-, C-, X and K-band radiometers or SARs. In general, soil moisture 
estimated from radiometry is more accurate than that from SAR, but radiometers have a coarse spatial 
resolution. In the last decade, several polynomial or physical-based methods have addressed the soil 
moisture disaggregation (with a resulting resolution of 100 m-10 km). Two different strategies were 
used: i) synergy of passive microwave + optical and thermal infrared (TIR) data and ii) synergy of 
passive + active microwave data. For instance, SMOS was combined with optical and TIR data from 
MODIS in a soil evaporative efficiency model (Merlin et al., 2008) and in a linear model (Piles et al., 
2011; 2014; Portal et al., 2018). SMAP was also combined with ASTER and Landsat-7 data (Merlin et 
al., 2013) and SEVIRI data (Piles et al., 2016). In SMAP, active and passive L-band data were combined 
(Das et al., 2014) and also passive L-band with C-band SAR data from Sentinel 1 (Das et al, 2019). 

The above synergies are resumed in Table 4. 1. 

Table 4. 1: Synergies for land applications, specifying the HPCM sensor who could provide the 
synergy and references. 

Parameter Sensor 
combinations Synergy aspect HPCM 

provide the 
synergy 

Current 
synergy & 
Reference 

Snow 
extent 
 

SAR + optical 
+ PMR 

Optically based Snow extent products 
can be improved during polar nights and 
cloudy conditions by taking SAR (wet 
snow) and PMR (dry snow/presence of 
snow). In complex terrain where PMR 
fails, ROSE-L SWE retrievals may play a 
role. 
 
Beneficiary: Intermediate Users 

ROSE-L, 
CIMR, 
CHIME 

S1/S2/S3 
AMSR-2 



 

121 | Page 

   

Impact: high impact 

Snow 
water 
equivalent/ 
Snow 
depth 

PMR + SAR + 
optical 

SWE estimates from PMR can be 
improved taking into account higher 
resolution products.  
 
Beneficiary: Intermediate Users and land 
end users 
Impact: high impact 

CIMR, 
ROSE-L 
CHIME 

S1, S3, 
AMSR-
2Muñoz et 
al. (2013) 

Snow 
wetness / 
LWC 
(Liquid 
water 
cont.) 

SAR, Optical Optical snow extent products can be 
used to differentiate between dry 
snow/bare soil in wet snow detections 
from SAR.  LWC retrieval should be 
considered. Assimilation with 
hydrological models is needed to 
quantify LWC. 
 
Beneficiary: Intermediate Users  
Impact: middle impact 

ROSE-L, 
CHIME 
 

S1, S2 , S3 

Snow 
Avalanche 
monitoring 

SAR, Optical Optical sensors can contribute to 
improving SAR detections of avalanches 
under unfavourable conditions (masked 
terrain/small avalanches). 
 
Beneficiary: Land end users 
Impact: high impact 

ROSE-L, 
CHIME 
 

S1, S2 

Aberman 
et al., 2019 

Lake ice 
extent 

Optical, SAR SAR can improve optically based lake ice 
extent products during polar 
night/cloudy conditions 
 
Beneficiary: Intermediate and land end 
users  
Impact: middle impact 

ROSE-L, 
CHIME 

S2/S3 + S1 
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Lake ice 
thickness 

RA, LIDAR, 
PMR, 
SAR, 
Optical 

Several sensor combinations could be 
used to quantify errors in thickness 
estimates from RA and generalize the 
estimates outside the RA-footprints on 
the lakes (similarities of ice types). 
 
Beneficiary: Intermediate and land end 
users 
Impact: middle impact 

CIMR, 
CRISTAL, 
CHIME 
 

RA 
(CryoSat)+ 
S1/S2/S3 

Permafrost PMR, RA, 
Thermal, SAR 

Permafrost estimation by combining 
several RS proxies and/or RS data and 
model runs. 
 
Beneficiary: Intermediate and land end 
users 
Impact: high impact 

CIMR, 
CRISTAL, 
LSTM, 
ROSE-L 

RA 
(CryoSat), 
S1 
Landsat, 
TerraSAR-
X, MODIS, 
GRACE 
 
Trofaier et 
al., 2017 

Soil 
Moisture 

PMR, Optical, 
SAR  

Improved spatial resolution 
 
Beneficiary: Intermediate and land end 
users 
Impact: middle to high impact 

CIMR, 
CHIME, 
ROSE-L 

SMOS, 
SMAP, 
MODIS, 
SEVIRI, 
ASTER, 
Landsat7, 
S1. 
 
Piles et al, 
2016; 
Portal et 
al., 2018; 
Merlin, et 
al., 2013; 
Das et al., 
2019. 
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The practical implementation of the respective data fusions, however, depends on the 
designs of the different missions regarding orbit constellations and acquisition times relative 
to each other. 

4.2 Synergies for ocean and ice applications 

Over the oceans, SAR systems are used, e.g., for wind speed and wave spectrum retrieval, oil spill 
monitoring, ship and iceberg detection, and sea ice classification, and drift retrieval. Data from 
scatterometers are beneficial for their synoptic coverage, e.g., for wind speed and direction retrieval 
over the ocean, for monitoring of snow cover and sea ice extent, sea ice classification, retrieval of sea 
ice drift, and start and end of the melting season over sea ice and the ice sheets. Passive microwave 
imagers can be employed to determine, e.g. surface temperature, wind speed and direction, sea 
surface salinity, ice concentration, ice extent, thin sea-ice thickness,  ice drift and timing and duration 
of the ice melting season over the ocean, or timing and extent of melting of the Greenland and 
Antarctic ice sheets. The primary objectives of radar altimeters are to measure and monitor the 
variability of Arctic and Southern Ocean sea-ice thickness, as well as the surface elevation and changes 
of glaciers, ice caps and the Antarctic and Greenland ice sheets. This list demonstrates that synergies 
are possible by combining instruments with different spatial resolutions and spatial coverage, 
different penetration depths into the ground, and different sensitivities to single geophysical 
parameters. A caveat to this is that all microwave sensors have limitations as to their utility over ice 
and snow surface during melting conditions. As this is the period of most activity in the polar regions, 
additional synergies with cloud-free optical data, and other sources of data including In situ and 
forecast models are necessary. 
 
The feasible synergies on sea ice and ocean applications are resumed in Table 4. 2. It also contains 
information on the User (intermediate or end-user) and the impact of the synergy. 
 

Table 4. 2: Possible synergies for sea ice and ocean applications with the list of the possible 
HPCM providing them and references. 

Parameters/Task Sensor 
 combi

nations 

Synergy aspect HPCM 
provide 

the 
synergy 

Current 
synergy & 
reference 
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Global sea-ice 
concentration  and 
sea ice type 
separation. 

SAR and PMR With their hemispherical view, PMR 
data define the boundary conditions 
for regional maps of SAR 
concentration/type mapping. SAR 
images are used to “sharpen” the 
PMR data, reduce ambiguities, and 
potentially provide coverage of sea 
ice concentrations below the level 
of PMR detectability. 
 
Beneficiary: Intermediate users 
Impact: middle to high impact 

 
CIMR &  
ROSE-L 

AMSR-2, S1 
 
For SIC: 
Karvonen, 
2014. Wang 
et al. (2016)
 
  

Global sea ice drift 
mapping 

SAR and PMR 
(potential VIS/IR 
as well) 

With their hemispherical view, PMR 
data define the boundary conditions 
for regional maps of ice drift. Within 
SAR coverage, PMR adds more 
frequent revisits. VIS/IR can 
complement at intermediate 
resolution (cloud permitting). 
 
Beneficiary: intermediate users 
Impact: middle impact 

CIMR & 
ROSE-L 

AMSR2 and 
S1 (not 
realized 
today). 

Calibration and 
validation of PMR 
data products 

SAR, PMR and 
optical/thermal 
radiometers 

The high spatial resolution of SAR 
and optical/thermal radiometers 
permits the calibration and 
validation of data obtained from 
PMR. 
 
A key element is the summer 
season where sea ice concentration, 
type, and melt-pond fractions are 
available from SAR or 
optical/thermal radiometers but are 
an ambiguity for PMR. 
 
Beneficiary: Intermediate users 
Impact: middle to high impact 

CIMR,  
ROSE-L & 
CHIME 

AMSR-2, S1, 
S3 
For melt-
ponds: Kern 
et al. 2020.
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High-resolution 
sea ice mapping 
concentration and 
type mapping to 
support maritime 
end users. 

SAR and 
optical/thermal 
radiometers 

Improved automatic classification of 
sea ice concentration and type 
through a combination of multi-
polarimetric SAR at different 
frequencies. Low frequency (L-band) 
SAR provides greater penetration 
into the ice and higher contrast for 
deformation features. 
 
High spatial resolution of SAR and 
optical/thermal radiometers are 
complementary in providing 
information on sea ice rheology. 
 
Beneficiary: Intermediate users & 
Marine end users 
Impact: high impact 

S1 &  
ROSE-L, 
S2, S3 
CHIME 
 

S1, S2 and 
S3 
 
For SAR 
frequencies: 
Singha et al, 
2018. 

Thickness retrieval 
for thin ice classes 

SAR, PMR, and 
thermal 
radiometers 

The thickness of thin ice can be 
retrieved from PMR (L-band), 
thermal radiometers, and from L-
band SAR data. Scales are different: 
with PMR one obtains the average 
thickness over areas > 50 km in 
extension, whereas SAR and 
thermal radiometers are optimally 
suited for retrieving changes of thin 
ice thickness on scales of 10s of 
meters. Mutual comparisons of the 
thickness retrievals are helpful in 
judging the reliability and 
robustness of the individual results. 
 
Beneficiary: Intermediate users & 
Marine end users 
Impact: high impact 

CIMR,  
ROSE-L & 
CHIME 

SMOS, S1, 
S3 
 
Kaleschke 
et al. 2012; 
Dierking, 
2013 

 
  



 

126 | Page 

   

Ice type separation 
 
Ice age 

 
  

SAR, RA, and 
PMR. (specifically 
S1, ROSE-L, and 
CIMR), and 
optical/thermal 
radiometers 

CRISTAL is planned as a dual-
frequency altimeter system 
operating at Ku and Ka-band, which 
provides data along with profiles 
from which the thickness of sea ice 
and potentially of the snow layer on 
the ice can be retrieved with a 
horizontal resolution of 80m. Ice 
thickness profiles and indications of 
the presence of snow on the ice 
may be used to complement the ice 
classification based on SAR imagery. 

Sea ice type information can also be 
retrieved from PMR by exploiting 
the difference in emissivity of the 
different ice types.  

Sea ice age can be computed with 
ice drift from PMR, supplemented 
with In situ (buoys) or other satellite 
sensors including SAR or optical 
during the melt season, and used as 
an input to freeboard-to-thickness 
conversion, and to tune and quality 
control PMR-based sea-ice type 
information.  
Sea ice type classification from 
microwave sensor synergies will 
work outside of the melt season, 
but will be reliant on synergy with In 
situ data and optical sensors during 
the melt season. 

Beneficiary: Intermediate users  
Impact: middle impact 

CRISTAL, 
ROSE-L & 
CIMR 

AMSR-2, 
CryoSat, S1, 
S3 
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Tracking of sea ice 
thickness and 
deformation 
evolution  

RA and SAR Sea ice deformation data can be 
retrieved with lower frequency (L-
band) SAR, providing improved 
deformation mapping capability, RA 
data deliver ice thickness profiles. 
 
Beneficiary: Intermediate users  
Impact: middle impact 

CRISTAL, 
ROSE-L 

CryoSat, S1 
 
Hendricks 
et al., 2011 

Retrieval of 
iceberg properties 

RA and SAR
 
  

For icebergs that are equal or larger 
than the altimeter footprint, RA may 
deliver iceberg height and SAR areal 
extension (i.e.horizontal cross-
section). Low frequency (L-band) 
SAR provides better detection of 
icebergs within sea ice. 
 
Beneficiary: Intermediate users & 
Marine end users 
Impact: middle impact 

CRISTAL, 
ROSE-L 

Tournadre 
et al., 2008 

Global Sea-ice 
thickness maps 

(already 
operational in 
CMEMS) 

RA and PMR  
Outside of the melt season; 
1) Sea-ice thickness maps for all 
range of thickness can be obtained 
by merging RA thick sea- ice 
thickness and L-band PMR thin sea-
ice thickness, and 
 
2) PMR provides ice age which can 
either be input to ice thickness 
calculations or directly approximate 
ice thickness.  
 
Beneficiary: Intermediate users  
Impact: high impact 

CIMR & 
CRISTAL 

CryoSat, 
SMOS 
Ricker et al., 
2017 

 

Guerreiro et 
al. 2017, Liu 
et al. 2020 

Sea and Ice 
Surface 
Temperature  

PMR and IR 
imagery 

PMR (with C-band microwave 
frequency) can measure cold polar 
SST, IST through clouds. IR 
radiometers can measure it more 
accurately, but not through clouds. 

CIMR and 
Sentinel-
3 (SLSTR) 

S3, ASMR-2 
 
Dybkjær et 
al., 2018 
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(already 
operational in 
CMEMS) 

PMR and IR imagery can be 
combined to achieve improved SST 
and IST products, particularly for the 
coastal zone. 
 
Beneficiary: Intermediate users  
Impact: high impact 

 

4.3 Synergies for ocean biogeochemistry applications  

Synergies between different sensors retrieving information on surface biogeochemistry products in 
ocean, coastal and inland waters have been scarce. Two example studies by Losa et al. (2017) and 
Vanhellemont et al. (2014) have shown that the combination of different sensor types can improve 
especially the products temporal and spatial resolution and coverage (see Table below). 

By combining via optimal interpolation the hyperspectral SCIAMACHY with the multispectral OC-CCI 
PFT-CHL products the synergistic SynSenPFT algorithm has been developed (Losa et al. (2017)). This 
led to daily and 4 km by 4 km resolved PFT-CHL data set from 2002 to 2012 globally which enabled to 
overcome the limitations of the two input algorithms: SCIAMACHY PFT products which are based on 
analytical inversions are limited by the coarse spatial and temporal coverage of the atmospheric 
sensor SCIAMACHY. Multispectral ocean color PFT-CHL products are based on purely empirical derived 
functions for each PFT which have a good spatial and temporal coverage. Recently SynSenPFT products 
were used for evaluating the successful OC-CCI CHL data assimilation into a global coupled ocean 
biogeochemical global model predicting PFTs (Pradham et al. 2019) which would not have been 
possible for the low coverage SCIAMACHY products themselves. Applying analytical methods to 
retrieve PFTs from the current atmospheric sensor on S5P in synergy with the even higher spatially 
(300 m) resolved and slightly higher temporal (~1 day) resolution data of S3 ocean color sensor OLCI 
will prolongate the previous global PFT-CHL data set  supplying better  resolution needed in more 
dynamical systems such as the coastal ocean. Combining coastal or  inland water retrievals from high 
spatial but low temporal resolved hyperspectral data from national sensors (DESIS, PRISMA, EnMAP) 
and HPC-CHIME, with S3 OLCI data, will enable high spatial and temporal resolved PFT-CHL data in 
these waters which are urgently needed in these hotspots for human activities (recreation, pollution, 
fisheries,...). Similarly to PFT-CHL products also phytoplankton fluorescence products can benefit from 
combining hyperspectral land or atmospheric sensors with ocean color sensors. 

The geostationary meteorological sensor SEVIRI with a single visible band has demonstrated capability 
to observe suspended particulate matter (SPM) and turbidity dynamics, however, with high 
uncertainty (e.g., Kwiatkowska et al., 2016). SEVIRI turbidity and SPM products have been used in 
synergy with the same, but high quality and high spatially resolved, products of polar-orbiting ocean 
colour sensor MODIS-A  (Vanhellemont et al., 2014).  The resulting product is an improvement over 
both data sources especially in the highly dynamic coastal waters. A geostationary ocean colour sensor 
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over Europe would provide invaluable data concerning our marine environment. The cost of increasing 
the spatial resolution of a geostationary sensor is very high, so combining a lower spatial resolution 
geostationary ocean colour sensor with a high resolution polar orbiting sensor, can provide a high 
frequency synergetic product with high spatial resolution. Likewise, the forthcoming Meteosat Third 
Generation meteorological-focused Flexible Combined Imager has three visible bands and simulations 
have shown CHL retrieval capability if data are averaged in space and time (Lavigne and Ruddick,2018). 
In addition, combining geostationary hyperspectral Sentinel-4 UVN PFT-CHL retrievals with S3 could 
enable even much higher coverage of PFT-CHL products over the entire Atlantic and European Waters. 

Table 4. 3 : Synergies for ocean biogeochemistry applications, specifying the HPCM sensor who 
could provide the synergy and references 

Parameter Sensor 
 combi

nations 

Synergy aspect 
HPCM 

provide the 
synergy 

Current 
synergy & 
reference 

Global 
Ocean PFT 
CHL 

High spectral 
atmospheric 
(SCIAMACHY) 
and multispectral 
ocean color  
sensor 

Phytoplankton group biomass (PFT 
CHL) at high temporal (daily) and 
spatial (4 kmx4 km) resolution in the 
global open ocean, in future also for 
coastal and inland applications and 
also for marine CHL-fluorescence; 
currently S3/S-5P synergy developed. 
 
Beneficiary: Intermediate users  
Impact: high impact 

HCPM + 
Sentinels  SCIAMACHY, 

S2, S3 

Losa et al. 
2017 

Total 
suspended 
matter, 
turbidity, 
PFT-CHL   

Geostationary 
SEVIRI with 
ocean color 
MODIS-A 

Combination of high temporally 
resolved but bad quality geostationary 
data enabled to enlarge tremendously 
the temporal resolution of standard 
ocean color products, such as SPM and 
turbidity. In the future with CHIME and 
S4 also PFT-CHL should be possible. 
Beneficiary: Intermediate users  
Impact: high impact 

HCPM 
(CHIME) + 
Sentinel 4 

Modis, S4 
Vanhellemont 
et al. 2014 
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Section 5: Analysis of the assimilation of parameters into models 
Data assimilation is searching for an optimal compromise between a numerical model background and 
observations. Since both background and observations have uncertainties, the assimilation analysis 
cannot match them perfectly. In addition to that, data assimilation methods are based on basic 
statistical assumptions that are often violated in reality, so the use of data assimilation may at times 
lead to “collateral damage” or assimilation biases that would otherwise not appear without the use of 
data assimilation. This means that there are various reasons why the assimilation of some types of 
observations may be of limited efficiency or at worst left out completely. Depending on the variables, 
one may blame the observations, the models or the assimilation methods (or any combination of the 
three as the least observed processes are often the least well simulated).  
In the present section, we have considered the data assimilative models used in the Copernicus 
services CMEMS, C3S and CLMS and reviewed their data assimilation capabilities, problems and 
deficiencies. Data assimilation demonstrations outside Copernicus that have been published but not 
yet taken up by Copernicus Services will appear in Section 4.2 below.  In situ data are not taken into 
account in this review, this has been done separately in a survey from the Copernicus In situ initiative 
(cf. EEA and EuroGOOS).  
 
5.1 Study the constraints/limitations of the parameters already being assimilated 
 

5.1.1 Marine: Ocean, sea ice and biogeochemical models  
The limitations and constraints will be discussed based on scientific literature and to the best of the 
authors’ knowledge of the field, see Table 5. 1. References are given when available. The “Severity” 
colour coding is a subjective measure of the quality of assimilation, which could ideally be replaced by 
a signal-to-noise ratio (to be defined, for example, as the forecast error divided by the climatological 
variability, or any other measure able to penalize incomplete coverage in space and time), we have 
not come that far however. The absence of colour coding signifies that the quality of assimilation is 
not sufficiently documented or known to the partners to emit a judgement.  
 
Table 5. 1: list of variables currently being assimilated, the type of analysis, the sensor and the 
limitations. 

Assimilated 
Variable 

Real-time / 
reanalysis 

Sensor Cause / Blame 

Ocean 

SSH (anomaly + 
mean) 

NRT+RAN RA + Gravi Obs: ice masking 
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SST NRT+RAN IR Obs: Clouds 

SST NRT+RAN PMR Obs: Low resolution  

Sea Ice  

SIT RAN RA, LA Obs: auxiliary data2, Seasonal  

SIT RAN+NRT PMR  Obs: Detection limit (thin ice)3. Seasonal  

Ice Drift RAN+NRT PMR Model4 

SIC RAN+NRT PMR Obs: Melt ponds5  

Biogeochemistry 

CHL RAN VIS Mixed: models, obs (clouds) & assimilation 

 
 Colour coding: Severely limited, medium level of limitation, small limitations.  
 
5.1.2 Land models 
There is to our knowledge no assimilation of satellite land data as part of the Copernicus Land nor 
Climate Change Services as of today (ERA5-Land appears as a free land model run6).  The CLMS 
provides observation products but no forecasts and the C3S Arctic reanalyses (by DMI and MET 
Norway) use land remote sensing data as a surface boundary condition, which does not constitute 
data assimilation sensu stricto.   
The assimilation of land remote sensing data (SMOS soil moisture and binary snow cover information 
from a combination of satellites) is however practiced in land models and coupled land-atmosphere 
models, which are not sensu stricto Copernicus services (the integrated forecasting system at ECMWF 
for example). So their potential use for CLMS and C3S is included in Section 5.2.2 below.  
 

 

2  Zygmuntkowska et al. 2014  
3  Kaleschke et al. 2016  
4  Sakov et al. 2012 
5  Ivanova et al. 2015  
6  https://www.ecmwf.int/en/newsletter/159/news/first-era5-land-dataset-be-released-
spring  

https://www.ecmwf.int/en/newsletter/159/news/first-era5-land-dataset-be-released-spring
https://www.ecmwf.int/en/newsletter/159/news/first-era5-land-dataset-be-released-spring
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5.2 Remotely sensed variables which are not yet being assimilated 
 

This issue can be confused with the assimilation of satellite products at lower processing levels (see 
section 5.3). We consider in Table 5. 2 and Table 5. 3 the satellite products that are not being 
assimilated, neither high nor low level of processing.  
 
5.2.1 Marine: Ocean, sea ice and biogeochemical models 
 

Table 5. 2: List of marine remote sensing variables which are not currently being assimilated, 
the type of analysis, the sensor and the limitations. Colour coding stands for: Severely 
limited, medium level of limitation, small limitations.  

Non-Assimilated 
Variable 

Real-time / 
reanalysis 

Platform Cause / Blame 

Ocean 

SSS NRT+RAN PMR Obs7 

Sea Ice  

SIT NRT RA, LA Obs: Timeliness8, Seasonality, 
representativeness9 

IST NRT+RAN IR Model  

Ice Type NRT+RAN PMR + Scat Assimilation10 

Ice drift NRT+RAN SAR Model11 

Ice deformation NRT+RAN SAR Assimilation 

 

7  A study is ongoing under the ESA Arctic+Salinity project.  
8  The timeliness of CryoSAT2 data is being improved from 30 days to ~7 days by the CMEMS SI TAC, 
this will remove the “timeliness” issue, however not the seasonality nor the representativeness.  
9  Zygmuntowska et al. 2014  
10  There are no methods available for multivariate assimilation of categorical data like ice type.  
11  Model ice drift is mostly a diagnostic variable.  
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Roughness NRT+RAN SAR Obs12 

Melt pond fraction NRT+RAN VIS Mixed13  

Albedo NRT+RAN VIS/IR  

Biogeochemistry 

Chl-a NRT VIS Assimilation 

Phytoplankton C NRT+RAN LA Obs not available14 

Optical properties NRT+RAN VIS Assimilation15 

PFT / SCC NRT+RAN VIS Assimilation16 

Waves 

Albedo NRT+RAN VIS/IR  

SWH  NRT+RAN RA Assimilation17 

Swell NRT+RAN SAR Assimilation18 

Other 

 

12  No explicit model relating sea ice state to SAR intensity.  
13  Zege et al. 2015  
14  Phytoplankton carbon is derived from particle backscattering measurements retrieved from lidar. 
Observations by Behrenfeld et al., 2016 are not publicly available. Only on demand.  
https://www.nature.com/articles/ngeo2861  
15  The assimilation of optical properties from ocean colour data has been demonstrated by Shulman 
et al. 2013, Ciavatta et al (2014, PML)  in other areas than the Arctic (e. g. North Sea). The tests in the Arctic 
remain to be done.   
16  Ciavatta et al. (2018, PML),  Skákala et al. (2018, PML), Pradhan et al. (2020, AWI). In the Arctic - to 
be done. 
17  Assimilation into the CMEMS ARC MFC wave model is planned for November 2020. It is already 
demonstrated in global models at Meteo-France (CMEMS GLO MFC, L. Aouf) and ECMWF (J. Bidlot).  
18  Same as above.  

https://www.nature.com/articles/ngeo2861
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Iceberg density NRT+RAN SAR, VIS Scope: downstream services  

 
5.2.2 Land models 
The CLMS is neither using models nor data assimilation at present, so the table below only refers to 
the land models used in C3S reanalyses. Land data are used as boundary conditions for atmospheric 
models rather than assimilated, so the efficiency of data assimilation cannot be commented on here. 
The suggestions below are based on research on land models. Greenland ice sheets and glaciers 
(Cryosphere) are not covered by the inventory below.  

 

Table 5. 3: List of land remote sensing variables that are not currently being assimilated, the 
type of analysis, the sensor and the limitations. Colour coding stands for  Severely limited, 
medium level of limitation, small limitations.  

Model  Non-Assimilated 
Variable 

Real-time / 
reanalysis 

Sensor Cause / Blame 

Hydrosphere 

Snow fSCA RAN VIS Atmospheric forcing19 

Snow SWE RAN PMR Obs: coarse resolution, forests, 
terrain20 

Land  Land surface 
temperature 

RAN IR  

Land Freeze-thaw RAN PMR Obs: coarse + terrain-dependent 

Permafrost Degradation21  RAN InSAR Obs: case studies only  

Soil moisture Surface soil 
moisture 

NRT+RAN Scat + 
PMR 

Mixed: Obs22 + Model 

 

19  Aalstad et al.,  2018  
20  Foster, et al.  2005. 
21  This is omitted from the permafrost ECV definition.  
22  Difficult retrievals in most Arctic land covers (rocks/mountains/lakes). Blyverket et al., 2019.  
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River Water level RAN+NRT RA Obs: rivers perpendicular to 
satellite tracks23 

Groundwater Mass changes RAN Gravi No large-scale model? 

Lake  Lake Ice Area 
concentration 

RAN+NRT PMR  

Lake Water level RAN+NRT RA  

Lake Lake Surface 
Temperature 

RAN+NRT VIS/IR  

Biosphere 

Land Cover Classification RAN VIS Classes not adequate for polar 
land 

Vegetation Above-ground 
biomass 

RAN VIS  

Fire Burnt Area RAN+NRT VIS/IR No large-scale model. 

Vegetation FAPAR / LAI RAN VIS  

Albedo Albedo (4 
channels) 

RAN VIS/IR  

 
5.3 Towards the assimilation of satellite information at lower processing levels 
 
In this section, we explore how Services (and generally modelling and forecasting applications) would 
benefit from going beyond the current status-quo (assimilation of daily/weekly/monthly averaged 
gridded satellite products) and start assimilating individual swaths (and/or scenes) of satellite-derived 
product in swath projection, and even directly raw satellite data. 
 
5.3.1 Definition of Processing Levels 
 

Satellite data producers use the terminology of “Processing Levels” to describe the type of processing 

 

23  ESA ArcFlux Deliverable 08 from DTU Space: Nielsen et al. 2018. EFAS from ECMWF is not using any 
data assimilation at present.  
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applied to a satellite product. The Processing Levels (often just “Levels”) range from Level-0 (raw 
satellite data, often only accessed by the Space Agencies in the ground segments) to Level-4 (fully 
processed, averaged, interpolated data), see Table 5. 4. The exact definition of each processing level 
leaves some room for interpretation, but the general rule is that higher processing levels are further 
away from the raw satellite measurements. Here we reproduce a well-accepted description of 
Processing Levels by the World Meteorological Organization (WMO, from data to products). 
 
 

Table 5. 4: Description of Data processing level 

Level 
Generic description of data processing levels 
(to be adapted to each instrument) 

0 Instrument and auxiliary data reconstructed from satellite raw 
data after removing communication artefacts 

1 Instrument data extracted at 
full original resolution, with 
geolocation and calibration 
information 
 
Sub-levels named 1a, 1b, 1c for 
LEO data and 1.0, 1.5 for GEO 
data 

1a (1.0) - Instrument counts 
with geolocation and 
calibration information 
attached but not applied 

1b (1.5) - Geolocation and 
calibration information applied 
to the instrument counts 

1c - Instrument specific 

For example, 1b data 
converted to Brightness 
temperature (IR) or 
Reflectance factor (VIS) 

1d - Instrument specific 

For example, same as level 1c 
with cloud flag ( for sounding 
data) 

2 Geophysical quantity retrieved from single instrument data in 
original instrument projection 
Note: For example, temperature, humidity, radiative flux 

http://www.wmo.int/pages/prog/sat/dataandproducts_en.php
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3 
Geophysical quantity retrieved from single instrument data, 
mapped on uniform space and time grid 

Note: Can be retrieved on a multi-orbital (LEO) or multi-temporal 
(GEO) basis. 

4 Composite multi-sensor and/or multi-satellite product or result 
of model analysis of lower level data 

   
Level-0 products are only accessed in the ground segments to prepare Level-1 products (calibrated 
and geo-localized satellite observations). The geo-physical processing starts from Level-1”b” and 
results in a Level-2 product (e.g. sea-ice concentration, sea surface temperature,...) that is still in the 
sensing geometry of the satellite (e.g. a single swath of the instrument). Such Level-2 files are then 
processed and combined in several ways to produce “Level-3” files, that are generally resampled and 
reprojected to a fixed Earth-referenced grid (e.g. polar stereographic, rotated lat-lon, etc…). Some 
communities make the difference between Level-3S products (single orbits remapped on a fixed Earth-
referenced grid) and Level-3C (several orbits remapped on an Earth-referenced grid, typically 1 day 
worth of satellite observations). Finally, Level-4 files generally involve combining data from several 
satellite sensors (sometimes adding In situ observations), and filling remaining data gaps in the map 
(e.g. the polar observation hole). These are general and broadly accepted descriptions but, as noted 
earlier, communities have their own sub-conventions and the lines are sometimes blurred between 
the processing levels.  
 
Interestingly enough, the democratization of satellite Earth Observation data as promoted by the 
Copernicus programme contributed to moving the lines between the Processing Levels, since satellite 
observations are prepared to be more easily understood and ingested by non-expert users. This 
typically leads to remapping the satellite data at an earlier stage than Level-3, and performing the 
geophysical retrieval on these remapped data. This is typically the case for Sentinel-2 (all imagery 
prepared on tiles) and even some Sentinel-3 (SLSTR and OLCI) products. A typical example is CIMR, 
that will have a Level-1C product to hold calibrated measurements of brightness temperature (thus in 
the accepted Level-1 sense), but remapped into an Earth-referenced grid one swath at a time (thus 
with traits of a Level-3S). 
 
We also note that the definition of these Processing Levels will typically have significant programmatic 
implications, since different entities might be in charge of the various elements. Taking the Copernicus 
programme as an example, the ground segments from Level-0 to Level-2 are typically handled by 
Space Agencies (ESA and EUMETSAT) and/or their sub-contractors, while the higher processing levels 
are often taken care of in the Services (e.g. CMEMS TACs or CLMS). 
 
In any case, the availability of several Processing Levels for a given product (e.g. sea-ice concentration 
at Level-2, Level-3, Level-4) means that the users can choose the most appropriate Level for their 
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application. Such a choice often involves trade-off analysis between usability (higher processing levels 
are “easier” to use) and needed accuracy (higher processing levels involve compositing and smoothing 
that might not be adequate for the application at hand). One such application is Data Assimilation in 
forecast models. 
 
5.3.2 Data Assimilation of satellite-derived products at different processing levels 

At present, the vast majority of the ocean and sea-ice forecasting models access and assimilate sea-
ice products at high processing levels, which is Level-3 or above. Some forecasting centers use Level-
2 observations of sea surface temperature (SST) or sea-level anomalies (SLA), but all have so far been 
using sea-ice products at Level-3 and above. Some data producers prepare sea-ice products at Level-
2 (e.g. SIC by EUMETSAT OSI SAF or the University of Bremen) but these are not yet assimilated, even 
at expert centers like ECMWF. Assimilation of Level-1 (satellite radiances) is in use for weather 
prediction, but to our knowledge not in ocean/ice forecasting.  
 
In this section, we discuss the challenges and opportunities of assimilating satellite-derived sea-ice 
products (among others) at different processing levels. 
 
Status-quo: Data Assimilation of satellite-derived products at Level-3/Level-4 
 

 
Figure 5.1: Data Assimilation of satellite-derived products at Level-3/Level-4. 

 
Figure 5.1 illustrates the Data Assimilation of satellite-derived products at Level-3/Level-4. In black 
starting from the top-left corner is the classic satellite processing chain implemented in the ground 
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segments or Copernicus Services and introduced earlier in this section. The raw satellite observations 
(Level-1) are combined through a geophysical algorithm into a Level-2 product (in satellite swath 
projection), which itself is further processed into a Level-3 (and/or Level-4) product. For DA purposes, 
it is important to note that the processing chains not only transfer observations (O) from Level-1 to 
Level-3/Level-4, but also the associated uncertainties (�). 
  
In green at the bottom of the diagram, the forecast model and its Data Assimilation scheme produces 
an analyzed model state ẋt, from which the forecast to xt+1 is initialized. The DA scheme combines the 
now-state xt (typically from a previous forecast) with observations. The bold green arrow is the 
Observation Operator and, in the case of DA at Level-3/Level-4 is identity (or a simple space/time 
interpolation in the model grid). 
 
The interface between the Satellite Production (black) and the model forecast and DA “world” is 
symbolized with a horizontal dash line “Interface”. Today, this Interface is often an interface between 
two distinct scientific communities: the Earth Observation experts do not know the details of the DA 
schemes, and the DA and modelling experts are not well known with how the satellite products are 
derived. The interface is also materialized physically by-product “files” (prepared by the satellite 
production schemes and accessed by the DA schemes) and by-product “documents” that aim at 
providing information on the content of the product files, the algorithms involved, known limitations, 
etc… 
 
In the diagram above, which represents the status-quo for the ocean (and especially sea-ice) at time 
of running the KEPLER project, we note the transfer of uncertainty to Level-3 (�L3) is striked through, 
indicating that the chain of uncertainties is broken, and that appropriate uncertainty is not available 
to users at Level-3. This interruption in the chain of uncertainties is for two main reasons: nature, and 
storage of the uncertainty information. The Level-3 processing step involves projecting the 
observations at Level-2 (in satellite swath projection) onto a fixed Earth-referenced grid. Thus, grid-
cells in the Level-3 product files are assigned an observation value (e.g. an average of neighbouring 
Level-2 observations, weighted by the distance from the grid cell center to the position of the Level-2 
observations). While computing these grid-cells values is unproblematic, the provision of associated 
uncertainties is a challenge as they typically include a non-negligible level of cross-correlation between 
neighboring grid cells, especially when the grid of the Level-3 product (or forecast model) is finer than 
the true resolution of the satellite observation at Level-2 (e.g. think of a satellite Field-Of-View 
covering several Level-3 grid cells). These covariances are by nature more difficult to compute, and -
in any case- not possible to store in the Level-3 product files that are the interface between the 
satellite observations and the DA schemes. We note the difficulty to estimate and store Level-3 
uncertainty will grow as the resolution of the forecast models increase (e.g. towards sub-km regional 
ocean/ice models to better serve marine operations) while the satellite observations stay at 
somewhat the same resolution (until new generations of satellites are available). We also note that 
when the spatial resolution of the satellite observation is much finer than that of the Level-3 product 
or model grid, there are fewer issues with storing the uncertainties (since the correlations of the 
uncertainties between grid cells are limited). 
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Still in the same diagram, the second non-optimal element when assimilating Level-3/Level-4 satellite 
products is the poor timeliness/latency this approach allows. Since these types of products typically 
involve aggregating a day (sometimes 12 hours) worth of satellite data, they are made available once 
or twice a day, and the observations are several hours old when they reach the forecast model. This 
is maybe adapted when forecasts are initialized once a week or every few days, but if higher resolution 
ocean/ice forecast models are developed with DA in the future, they should fully benefit from the high 
timeliness of satellite observations in the Arctic region. This is even more so for sea-ice parameters 
like SIC and SIDrift that vary very rapidly (sub-daily), while ocean parameters like SST and SLA evolve 
more slowly in time. 
 
In summary, the assimilation of Level-3/Level-4 sea-ice products in forecast models (status-quo) is 
suboptimal due to 1) the difficulty to prepare and transfer uncertainties associated to the satellite 
observations (especially when the forecast models evolve towards higher resolution), and 2) the limit 
this imposes on timeliness and access to up-to-date satellite observations. 
 
In the next two sections, we will introduce and comment on the feasibility to assimilate satellite 
observations at lower processing levels (Level-2 and Level-1). Before doing so, we note that there also 
are good reasons for assimilating at Level-3/Level-4. Firstly, not all Data Assimilation methods can 
cope with Level-2 (or Level-1) data. For example, DA methods like Optimal Interpolation or nudging 
cannot handle well holes in space/time coverage of observations: they require complete grids of 
observations at all analysis times (one observation per grid cell). This is certainly one of the reasons 
why Level-3/Level-4 are prepared by satellite data products, and are still in wide use today. Second 
(and this is somewhat related), the basic DA methods cannot handle multi-variate transformations 
from the model state variables: only the model-state variables can be assimilated and there is no room 
in the formulation for Observation Operators that are not the Identity. 
 
It must also be noted that, once having described the “theoretical” limitations of assimilating Level-
3/Level-4 product files, we are not urging a change of Data Assimilation at all costs (increased software 
and mathematical complexity, increased data volumes, etc…). The adoption of lower-level products in 
Data Assimilation will be driven if and when the “theoretical” limitations imputed to the gridding 
process of the Level-3 files translate into sub-optimal forecasting skills. 
 
In the next sections, we shortly describe the implications of adopting lower-level products (Level-2 
and Level-1) in Data Assimilation for ocean/ice regional forecasting, as an approach to be developed 
in the middle term (Level-2) and long term (Level-1). 
 
 
Mid-term: Data Assimilation of satellite-derived products at Level-2 
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Figure 5.2 Data Assimilation of satellite-derived products at Level-2. 

 
The diagram in Figure 5.2 illustrates the assimilation of satellite-derived data products at Level-2. We 
recall that Level-2 products are observations OL2 (and their uncertainties �L2) of geophysical quantities 
(e.g. SIC) in the satellite swath projection, and thus with the geometrical characteristics of the satellite 
sensor (e.g. Field-Of-View). 

Compared to the previous diagram, the satellite production chain is shorter (no more Level-3/Level-4 
production, at least for this purpose), and the Observation Operator (green arrow) is longer and is no 
more “Identity”. The “Interface” between the EO and modelling worlds is shifted. 

The longer Observation Operator arrow symbolizes that it has to simulate more processes to link the 
model state variables to the (satellite) observation, than is the case for Level-3/Level-4. In the case of 
Level-2 products, the Observation Operator will primarily have to simulate somewhat accurately the 
geometry of the satellite view, and be able to reproduce satellite swath projection from the model 
grid. This includes the simulation of the shape, size, and orientation of the satellite Field-Of-Views, in 
order to simulate the “satellite view” of a model field. In the case of a satellite sensor with similar or 
higher spatial resolution than the model grid, the operator will only include the distortion of the model 
grid due to the various parameters of the view geometry (swath path, scanning principle, etc...) of the 
satellite sensor. When the model grid is finer (or becomes finer) than the Field-Of-View of the satellite 
sensor, the operator will also include the aggregation/integration of the information from several grid 
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cells into a single satellite Field-Of-View. This aggregation is exactly the mechanism that leads to 
significant spatial correlation lengths in Level-3/Level-4 products, but here by including it in the 
observation operator, we avoid the need to express and store the correlated uncertainties in a product 
file. In terms of uncertainties, the Level-2 product files only store (uncorrelated) uncertainties per-
FoV.  

Obviously, assimilating Level-2 product files also solves the timeliness issue. Level-2 product files are 
typically the endpoint of the ground processing chains implemented by the Space Agencies (e.g. ESA 
and EUMETSAT), and are the product levels on which timeliness requirements are established (e.g. in 
the Mission Requirement Documents). The timeliness requirements are stringent and drive the 
optimization of data downlink (number of downlink stations, strategy for downlink, etc.) as well as the 
optimization of ground processing. Level-2 products are typically made available within 1-3 hours of 
satellite sensing (Near-Real-Time), and are directly ready for ingestion in a Data Assimilation cycle that 
can run daily or sub-daily. Being able to ingest Level-2 products would mean the most recent 
observations can make an impact at all times, skipping the delay of aggregating observations in Level-
3/Level-4 files. 

Of course, to assimilate Level-2 product files does not go without challenges. As noted earlier, not all 
DA methodologies can ingest observations with irregular space/time grids and data gaps like the Level-
2 products are. Even when the DA methodology is advanced enough, the software for the Observation 
Operator will be more complex, and it has to be incorporated into the DA scheme implemented at the 
forecasting center. Depending on the adopted DA methodology (Variational DA, Ensemble Kalman 
Filter, hybrid, etc…) the Observation Operator code might have to be supplemented with its 
adjoint/tangent-linear model, which adds further complexity (although Automatic Differentiation 
techniques exist). The adoption of Level-2 products in DA systems is not straightforward, and the 
benefits in forecasting skills must significantly offset the additional complexity. From the experience 
of the Numerical Weather Prediction community, we know this path is both feasible and beneficial if 
sufficient R&D and implementation efforts are devoted. 

We finally note that although the satellite processing chain is shorter (stopping at Level-2), there is 
very much need for satellite remote sensing knowledge to specify and build the Observation 
Operators, as these will best be developed by Earth Observation experts (in collaboration with the DA 
experts for the necessary trade-offs). This opens for many collaboration possibilities, and the diverse 
communities in and around the Copernicus Services can be the ideal framework to realize such 
collaborative developments. 

Long-term: Data Assimilation of satellite observations at Level-1 
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Figure 5.3: Data Assimilation of satellite-derived products at Level-1 

 
The diagram in figure 5.3 illustrates the assimilation of satellite-derived data products at Level-1. We 
recall that Level-1 is the observations OL1 (and their uncertainties �L1) of the “raw” (but calibrated) 
(e.g. brightness temperature) in the satellite swath projection, and thus with the geometrical 
characteristics of the satellite sensor (e.g. Field-Of-View). 

The observation operator now has to handle the whole translation chain from the state variables in 
the model grid to the observation of radiances in the satellite view. The operator involves both the 
geometry aspects as in the Level-2 case, but also the simulation of the emission, reflection, scattering 
processes that control the interaction of electromagnetic radiation with the state variables in the 
model, also known as Radiative Emission and Transfer Modelling (RTM). A clear complication is when 
significant parts of the radiation interactions to be simulated involve processes that are not handled 
in the forecast model, either they involve variables that are not relevant for the forecast itself (e.g. 
snow grain size, surface roughness, etc… are not needed for a forecast of the sea-ice edge position 
but are key for radiative transfer modelling) or variables that are outside the model domain (e.g. 
emission and scattering in the atmosphere, that is not part of the ocean/ice model). 

Both complicating aspects are the reason why there are not many experiments with such Observation 
Operators for sea-ice parameter retrievals. They often involve Passive Microwave Radiometer 
instruments and low microwave frequencies. For example, Richter et al. (2018) simulate brightness 
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temperatures of SMOS L-band (1.4 GHz) channels and compare them to actual measurements. They 
observe a general agreement, controlled by the sea-ice cover and sea-ice thickness, and conclude 
there is a potential for direct data assimilation of Level-1 SMOS data. More recently, Burgard et al. 
(2020a and 2020b) investigated an Observation Operator for AMSR2 C-band (6.9 GHz) channels from 
the MPI-M climate model. They show good agreement between the simulations and observations 
(except during the summer melt season) and point at the potential for evaluating (climate) models on 
their simulated brightness temperatures, rather than their simulated sea-ice concentration. In these 
studies, L- and C-band channels are preferred because the atmosphere is mostly transparent at these 
frequencies, and the changes in brightness temperatures are directly linked to sea-ice surface 
characteristics. Both studies are relevant for preparing observation operators for the HPCM CIMR 
mission, but to fully exploit the improved spatial resolution of higher frequency channels (e.g. 18.7 
and 36.5 GHz channels), the existing sea-ice emissivity and radiative transfer models must be further 
developed before the simulations can be used in a retrieval or Data Assimilation framework. Scott et 
al. (2012) and Scarlat et al. (2020) use an Observation Operator into an inversion framework to 
estimate sea-ice concentration from AMSR-E brightness temperatures (including 18.7 and 36.5 GHz 
channels) but in both cases, the bulk of the radiative transfer modelling is in the free-ocean surface 
and atmosphere (including wind speed, cloud liquid water, water vapour, etc…) while the sea-ice 
emissivity modelling is based on more simple parametrization. 

All the examples above involve microwave radiometer data. The simulation of active microwave 
instruments (like SAR or altimeter) over sea-ice is not as advanced as for microwave radiometry. One 
can mention efforts to simulate the echo signal from radar altimeters like in Landy et al. (2019) but 
they are so far aiming at improving satellite retrievals of sea-ice freeboard and thickness, not the direct 
assimilation of altimeter raw data in forecast models. 

In conclusion for this section, there is certainly a need for the development and testing of fast forward 
model code for sea ice emissivity as a function of sea ice model variables. We recommend the further 
development of these fully-fledged Observation Operators, so that they become alternatives to the 
assimilation of Level-2 products in the future. When supporting the development of such emission 
and radiative transfer models it is preferable to extend support to community, open-source models. 
One such model is the Snow Microwave Radiative Transfer model (SMRT, Picard, et al. 2018). It is 
nonetheless certain that the road is long before satellite observations will be directly assimilated in 
operational ocean/ice forecasts systems.  

Other types of “less processed” satellite products 

So far we have discussed satellite products in the widely accepted terms of processing levels (Level-1 
to Level-4). This is however not the only way to think about the level of processing of satellite products. 
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For example, in the case of sea-ice thickness from altimeter data, the concept of “less processed” 
product can refer both to the assimilation of along-track observations (rather than weekly or monthly 
aggregated maps), but also to assimilate sea-ice freeboard rather than sea-ice thickness. In the 
retrieval of sea-ice thickness from altimeter data, an early stage in the processing is the estimation of 
the “radar freeboard” (scattering horizon within the snow/ice layer), which is then transformed into 
a “sea ice freeboard” (scattering horizon at the snow/ice interface), and finally the so-called 
“freeboard to thickness” conversion (Tilling et al. 2017). All these transformations (and especially the 
last one) involve auxiliary information of sea-ice type, snow depth and snow density that are not 
derived from the altimeter missions. Because this auxiliary information about the snow cover are 
rather uncertain while having a large impact on the retrieval accuracy (Zygmuntowska et al. 2014), 
there have been attempts at direct assimilation of the altimeter freeboard observations (both radar 
and sea-ice freeboards). One recent example is in Kaminski et al. (2018) where the assimilation of 
radar freeboard, sea-ice freeboard, and sea-ice thickness are compared in a Qualitative Network 
Design approach. 

Another aspect of using “less processed” products is illustrated in Lavergne (2017). In that case, the 
sea-ice concentration retrieved from satellite radiometry is not less processed per se, but rather 
interpreted as a less processed product by the modelling world. For example, sea-ice concentration 
from microwave radiometry is known to underestimate the true sea-ice concentration in the presence 
of thin (<20 cm) sea-ice. The forecasting models thus can “simulate” a passive microwave sea-ice 
concentration from their “true” sea-ice concentrations in the case of thin sea-ice. Another key 
example is the case of the same sea-ice concentration products during the summer melt season in the 
Arctic: because of the very limited penetration depth of microwave radiation in liquid water, these 
instruments cannot distinguish between melt pond water and open water between the floes. In the 
presence of melt-pond, such SIC products should thus rather be used and assimilated as net Ice 
Surface Fraction. This would however require the forecasting models to rely on melt-pond 
parametrization that also requires further developments. At this stage, and as noted earlier in this 
report, there is a lack of melt-pond fraction information from satellite products to calibrate other sea-
ice concentration products and improve the melt-pond parameterization in forecast models. Once the 
products and formulation are improved, the assimilation of summer sea-ice concentration could be 
based on a net Ice Surface Fraction information, thus a “less processed” product. 

5.3.3. Summary on DA of satellite-derived products at the lower processing level 
In this section, we give an overview of the challenges and potential benefits with assimilating satellite-
derived sea-ice data products at lower processing levels than is currently done in operational 
ocean/ice forecasting centers, including the CMEMS MFCs. 

We first recall the concept of processing levels, from Level-1 (raw satellite observations), to Level-2 
(geophysical products in satellite swath geometry), to Level-3 (daily aggregated geophysical products 
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on fixed Earth-referenced grids) and finally Level-4 (multi-satellite analyses with no data gaps and that 
can involve In situ measurements). We then go through 3 stages of increasing complexity (from the 
Data Assimilation point of view): the status-quo where sea-ice data are assimilated as Level-3/Level-4 
products, a mid-term evolution where sea-ice data are assimilated as Level-2 products, and a long-
term evolution where they are assimilated as Level-1 products. We also discuss other ways of thinking 
about less processed products, not based on processing levels but the targeted quantity (e.g. 
freeboard instead of thickness, net ice surface fraction instead of sea-ice concentration). 

The following recommendations are made: 

1. Towards the development of higher resolution regional ocean/ice forecasting systems: test, 
refine, and adopt Data Assimilation of sea-ice parameters (primarily sea-ice concentration and 
thickness) at Level-2 (in a swath or along the track). This is a necessary preparatory step for 
the optimal ingestion of Level-2 data products from the HPCM CIMR, and CRISTAL. In parallel, 
efforts should be continued for DA of ocean and land variables at Level-2. 
 

2. Foster the collaboration and enable further dialogue between the modelling and Earth 
Observation communities, so that the Data Assimilation framework of tomorrow (including 
their Observation Operators) are co-designed, and benefit of the expertise in both 
communities. 
 

3. Continue the development of fully-fledged yet efficient microwave emission models for sea-
ice and snow. Community models -such as SMRT- should be preferred, ideally coupled and 
reconciled with radiative transfer models for the atmosphere and ocean surface. 

  



 

147 | Page 

   

Section 6: Conclusions and Recommendations 

 
6.1 Conclusions and recommendations from Section 1 
 
In Section 1 we have reviewed the state of the art of sea ice, land, and ocean parameters acquired 
with current remote sensing missions. We have provided a review of the technologies used to 
measure each parameter, its resolution (temporal and spatial), the latency, the uncertainty of the 
available products, and also the validation techniques. We have also assessed the main known 
limitations and gaps for each parameter retrieval.  
 
The inventoried parameters for land are the following: snow cover fraction, snow water equivalent, 
snowmelt, snow depth, snow avalanches, snow albedo, lake ice, permafrost and soil moisture; for sea 
ice: concentration, thickness, drift and deformation, ice type, ice edge position,  snow on sea ice, 
surface albedo, characteristics of melt pond fraction, and ice surface temperature. The ocean 
parameters analysed are: ocean surface biogeochemical compounds and light, sea surface 
temperature, sea surface salinity, sea surface height, surface currents, and surface stress (winds). 

Greenland and Antarctica ice sheets and glaciers are not covered in the inventory, since they are out 
of the scope of this project, as well as atmospheric parameters. 
 

6.2 Conclusions and recommendations from Section 2 

In Section 2 we have provided a summary of the Copernicus products of Polar regions that are 
currently available. This section is therefore linked to the work carried out in WP2 'Polar Regions 
provision in Copernicus Services' and summarizes the main findings of WP2 as documented in its two 
deliverable reports (one for CMEMS (Deliverable D2.1) and one for CLMS (Deliverable 2.2). In addition, 
this section highlights both marine and land parameters that are observable using remote sensing 
techniques with acceptable accuracy (either alone or in combination with appropriate models) but 
not covered in the two Copernicus services (CMEMS and CLMS). The identified parameters 
observable with remote sensing which are not distributed on Copernicus services are summarized 
in Table 6. 1. 
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Table 6. 1 Remote sensing parameters available which are not distributed by Copernicus 
nowadays.  

Remote sensing products with mature R&D pre-cursors that are not distributed in Copernicus nowadays 

Sea Ice Sea Ice Age 

 Melt pond fraction 

 Sea ice Albedo 

 Leads fraction 

Land Lake Ice duration 

 Lake ice thickness 

 Snow melt 

 Snow depth 

 Snow avalanche monitoring 

 Permafrost* 

 in land water chlorophyll and turbidity 

Physical Ocean 
and Sea state 

Surface currents 

 Surf. Stress (Wind) 

 Wave Spectra 

 Ocean Albedo 

*combining models and RS. 

We recommend the inclusion of the above remotely sensed parameters in the future evolution of 
Copernicus services. 
 
6.3 Conclusions and recommendations from Section 3 

In Section 3, we have evaluated the parameters, which could be acquired/derived from future 
missions already planned or under discussion and we compiled the results in a table. This section is 
specially focused on the EU HPCM missions (CIMR, CRISTAL, ROSE-L, CO2M, CHIME, LSTM). The 
expected quality of the parameters and the advantages of the future instruments, with regards to the 
current missions, are summarized in this section. Besides, other missions are also assessed 
correspondingly, e.g. ESA FORUM  
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The main impacts of the three polar HPCM are:  

 CIMR:  
 Land: snow extent, snow water equivalent, lake extent and thickness. 
 Sea-ice: sea ice concentration, sea ice thickness for thin ice, snow-depth on ice, sea 

ice drift, ice surface temperature, ice type/age. 
 Ocean: sea surface temperature, sea surface salinity and surface winds. 

 CRISTAL:  
 Land: land elevation and permafrost. 
 Sea-ice: thick sea ice thickness with better accuracy (>1m), snow-depth on ice, 

icebergs detection and height. 
 Ocean: sea level 

 ROSE-L: 
 Land: snow water equivalent, snow avalanche occurrence, lake ice extent and 

thickness, permafrost extent and properties. 
 Sea-ice: high-resolution sea ice concentration and ice edge position, sea ice drift and 

deformation, iceberg occurrence and areal density, ice type. 

The main conclusion is that the future HPCM missions have a great potential for improving the 
monitoring of the Polar Regions, especially with the three polar missions: CIMR, CRISTAL and ROSE-
L.  

 
6.4 Conclusions and recommendations from Section 4 

In Section 4 we have evaluated the current and potential synergies to improve the quality and 
resolution of remote sensing data products for the Polar Regions.  

Synergies are achievable by combining data from satellite instruments operated at different 
frequencies/wavelengths, in passive or/and active modes, with different spatio-temporal resolutions, 
different penetration depths into the ground, which means to have different sensitivities to the 
geophysical parameters.  

We have analysed the combination of the following instruments: Passive Microwave Radiometers 
(PMR), Radar Altimeters (RA), Infrared Radiometers (IR), Optical Radiometers and Synthetic Aperture 
Radars (SAR). Notice that the Lidar technology (Optical radars) has not been included since Europe 
does not have any satellite with this kind of technology. Each one of the future HPCM satellites is 
designed to use one of the above sensor technologies. 

Eighteen parameter synergies that could be achieved with the current satellite data and/or with the 



 

150 | Page 

   

future HPCM data once flying, are described in the text. We explain feasible instrument combinations 
and their advantages concerning individual measurements, all of them supported by published 
papers. The matrix table in Table 6. 2 synthesizes the synergies explained in the section. The red text 
in the table indicates the operational synergies available by the end of Copernicus Phase 1 (2021). It 
evidences that many new possibilities and improvements could be achieved if more enhanced 
synergies are performed. Most of the future synergies are experimental nowadays and are supported 
by scientific literature.  
 

Table 6. 2:  Matrix of potential synergies that could be put on operation with current and 
future HPCM satellites. The synergies mentioned are already tested experimentally. The green 
boxes are synergies for land applications, light grey for ice and sea applications. Text in red 
means the operational product at Copernicus phase 1 (2021). Parameters with high impact 
for intermediate and end-users are marked with bold. 

Sensors PMR 

(e.g. CIMR) 

RA 

(e.g. CRISTAL) 

IR  

(e.g.LSTM) 

Optical 

(e.g. 
CHIME) 

SAR 

(e.g. ROSE-L) 

PMR   lake ice thickness  Soil moisture 

downscaling 

Snow Water 
Equivalent 

Soil moisture 

RA SIT1, ice type, snow 
depth 

  Phytoplankton 
groups 

 

IR SIT, ice surface 
temperature 

sea surface temp. 

SIT, ice type    

Optical  SIC, ice type  ice type 
MPF 

 Phytoplankton 
groups, 
phytoplankton 
dynamics 

snow extent 

snow wetness 

snow avalanche 

lake ice extent 
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SAR  SIC, SIDrift sea ice deformation 
evolution 

iceberg properties, 
snow depths on sea 
ice 

ice type SIC, ice type  

1 Requires interferometric capability. 
 

In addition, synergies between similar observations (i.e. similar instruments onboard on different 
missions) can lead to improved accuracy and increased temporal resolution, for example the 
Phytoplankton groups and dynamics. 
 
Table 6. 2 emphasizes the great potential that the combination of simultaneous data from different 
satellites could provide to improve the monitoring of polar regions. Synergies between future  HPCM 
missions (in case they fly at the same time) also have enormous potential. However, the practical 
implementation of these future synergies depends on the designs of the different missions regarding 
orbit constellations and acquisition times relative to each other. 
 
This is a clear recommendation to Copernicus to enable the necessary R&D and initiate the 
production and distribution of the resulting synergy products described in this section.  
 
The gap analysis of the remote sensing parameters (section 1),  the analysis of new parameters derived 
by the potential future missions (section 3) and the feasible synergies (section 4) have allowed us to 
perform a list of recommendations to improve the Copernicus services for Polar monitoring from 
satellite remote sensing data.  The recommendations are summarized in Table 6. 3, organized by: 
general, land, sea-ice and ocean applications recommendations, and by the level of effort (time) 
required to achieve the objective, as well as the impact to the users. 

 

Table 6. 3:  Gaps and recommendations to improve the monitoring of Polar Regions. Timeline 
to achieve the goal, its impact and user beneficiary. 

Objectives for the improvement of  RS data of Copernicus  
for the Polar regions 

Objectives Time period 

 
Impact 

 
Users  

Enhancements needed and recommendations for achieving 
them 
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Time period: short term (<5 years, Copernicus next phase), mid-term (current and future technology <10 
years, HPCM missions), long term (future technology >10 years, Sentinel-NG’s) 
Impact : level of impact to achieve the challenge (high, mid and low) 
Users: marine end-users (as WP1 T1), land end users (as WP1 T2), intermediate users (as WP1 T3) 

General 

Increase In situ 
observations 

mid term 
 

high impact 
 

intermediate 
users 

 
 

In situ measurements in polar regions are very scarce in 
Copernicus and in general. This is a clear gap, since this In situ 
data is needed to improve and validate parameter retrievals and 
products derived from the remote sensing data. 
 
Recommendations: Acquisition and archiving of a more 
extensive In situ dataset, with a more active role in managing it 
played by the Copernicus In situ Component. This would allow 
to provide a more robust quality assessment of satellite 
products and improve the geophysical retrieval algorithms. 

Reduce polar 
observation hole 

mid term 
 

mid-impact 
 

intermediate 
users 

 

New polar missions should consider the extent of their polar 
observation hole in the design phase, and reduce it as much as 
possible within the constraints of the mission’s objectives. This 
is particularly important for visible/infrared imagers, for which 
twilight acquisition mode should be part of the core mission 
requirements.  
 
Recommendations:  Carefully consider the twilight acquisition, 
and more generally polar data coverage, when designing future 
missions, e.g. the Sentinel-NG missions. 
 

Enable low 
timeliness of 
Copernicus polar 
missions data 
flow   

short term 
 

high impact 
 

intermediate 
and end-

users 

Sea ice is constantly on the move, avalanches can happen at any 
time, Search and Rescue operations require timely sea-ice 
imagery and forecasts. The requirements from the end-users for 
low timeliness in the access to imagery, derived products, and 
forecasts prompt for low latency in data downlink and 
processing. 
 
Recommendations: ensure near-real-time (<1h) or better for 
critical operational missions (e.g. ROSE-L, CIMR) in the Arctic 
region, e.g. through pass-through downlink, several receiving 
stations, on-site processing. 
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Land monitoring 

Snow cover short term 

 
high impact 

 
intermediate 

users 
 

Existing snow cover services (CCI Snow, Copernicus Snow) focus 
all on latitudes below the Arctic circle where light conditions and 
favourable cloud cover allows consistent products and services 
using medium resolution optical radiometers (MODIS/Sentinel-
3). To monitor Arctic environments considerable efforts need to 
be done to take into account results from alternative sensors 
(passive and active microwaves) and perhaps also use signals in 
the infrared end of the spectrum from radiometers. A complete 
and consistent Arctic snow cover product will probably involve 
using all types of data available, in addition to multi-temporal 
interpolation techniques.  
 
Recommendations:   Demonstrate multi-sensor snow services 
for Arctic regions (above Arctic circle), and integrate them in 
existing PanEuropean/global services for completeness of ECV. 

Snow avalanche 
monitoring 

short term 

 
high impact 

 
land end 

users 
 

Snow avalanches can be detected using SAR. This has been 
demonstrated in Northern Norway and for specific Arctic 
regions, and should be applicable for mountain areas too. Snow 
avalanche monitoring can be an important input to snow 
avalanche services, and improve the accuracy of avalanche 
warning. Extended activity within this field could be valuable in 
sparsely populated areas where limited observations are 
available.  
 
Recommendations: Extend near-real-time avalanche 
monitoring across, at the least, European mountains based on 
S1. 

Soil moisture short term 
 

mid to high  
impact 

 
intermediate 
& land end 

users 

Current operational algorithms for soil moisture (PWR or SAR for 
higher resolutions) retrieval do not take properly into account 
freezing/thawing in Arctic regions. This parameter is used on fire 
risk indexes. 
 
Recommendations: Additional sensors or retrieved products, 
such as snow extent products from optical sensors (or higher-
order products using SAR/PMR/models), could be used to 
remove erroneous detections. CIMR and ROSE-L will provide SM 
products. 

Lake ice short term Lake ice products based on MODIS data exist only for a limited 
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mid-impact 

 
intermediate 
& land end 

users 
 

area in Scandinavia (Copernicus) and do only cover mid-
winter/ice break up periods. The freeze-up periods are not 
covered. Future services should be based on combinations of 
SAR and optical instruments to assure data also during polar 
night conditions. This will also allow for observations of lake ice 
conditions in the Arctic.  
 
Recommendations: Complement optical lake ice detections 
with SAR in Arctic regions.  

Snow water 
equivalent/Snow 
depth 

long term 

 
high impact 

 
intermediate 

& 
land end 

users 
 

Coarse-resolution SWE products at high latitudes exist. They are 
not applicable in mountain areas. ROSE-L could be a potential 
solution for this problem using the interferometric phase. 
Cal/Val sites with a good characterization of snow parameters 
(SWE, depth, density, grain size, wetness, layering, etc.) are 
important to build up in the Arctic mountains to verify the 
proposed approach.  
 
Recommendations: Enhanced efforts to measure SWE in Arctic 
and mountain regions is highly needed. Build up of 
competencies alongside the development of ROSE-L. 

Permafrost long term 

 
high impact 

 
intermediate 

& 
land end 

users  
 

More advanced development is needed to have a good 
assessment of permafrost. Only sparse In situ evaluations of the 
permafrost fraction are available, strongly complicating 
validation for this parameter. The quality of the active layer 
thickness predictions depends strongly on the quality of the 
prescribed ground stratigraphy. 
 
Recommendations: Uptake products from the ESA Permafrost 
CCI project, where data from RS and reanalyses are combined 
with the CryoGrid model to derive permafrost parameters. 
Additional estimates of the permafrost extent could be provided 
in some cases based on the detection of land surface 
movements. CRISTAL and ROSE-L will provide these retrievals. 
The new European Ground Motion service, currently being 
implemented as a new Copernicus Service Element, should be 
extended to cover the circumpolar Arctic area.  

Sea-Ice monitoring 
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Snow depth on 
sea-ice 

mid 
term 

 
high impact 

 
intermediate 

users 

Not measured remotely with proper accuracy. This parameter is 
very important on its own, and to properly measure sea ice 
thickness from altimetry, among others. 
 
Recommendations: Assess possible synergies, new HPCMs 
(CIMR, CRISTAL and ROSE-L)  will contribute to improving the 
retrieval of this parameter. 

Near real-time 
high resolution 
ice analysis  

mid term 

 
high impact 

 
intermediate 

&  
marine end-

users 

High resolution (sub kilometers) ice analysis is today done 
manually based on SAR images, and it is necessary to automatize 
it to handle ever-increasing volumes of data and to meet the 
demand for increased detail (ice rheology). Progress is also 
limited by the fact that radar altimetry and passive microwave 
radiometry satellites for sea ice thickness have a period of 
operation outside of summer months, which is when data of sea 
ice conditions are most important.  
 
Recommendation: Enhanced automation of high resolution 
(sub km) ice chart production to handle increased satellite data 
volumes and provide additional detail. 
Further research to improve sea ice parameter retrievals in 
summer. 

Improved sea ice 
concentration 
for forecasting 

mid term 

 
high impact 

 
intermediate 

users 
 
 

Ice concentration retrievals rely on semi-operational or 
outdated passive microwave radiometer satellite missions 
(AMSR2 and SSMIS). With increased forecast model resolution, 
coverage and increased accuracy, SIC data is required at the ice 
edge and in the coastal zones. 
 
Recommendation: Fully operational missions with long-term 
continuity are needed.  Synergy with SAR and/or optical must be 
further explored. 

Multi-sensor 
sea-ice drift 
analyses. 
 

mid term 

 
mid impact  

 
intermediate 

users 
 
 

There is to date no satellite product (operational or research-
based) that combines accurately radiometry-based and SAR-
based sea-ice drift data. This would, however, fill a key 
observation gap (complete daily coverage, with higher spatial 
resolution and accuracy where SAR is available), particularly in 
the Antarctic where SAR coverage is sparse. The same yields for 
mosaicking of several SAR-based sea-ice drift products (e.g. 
Sentinel 1 A-B-Cs, the RCMs, etc...). Propagation of the 
uncertainties into the Level-4 analysed sea-ice drift product 
must be treated as well.  
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Recommendation: Develop and implement operational multi-
sensor sea-ice drift analyses, e.g. in CMEMS. 

Summer Sea ice 
concentration 

medium & 
long term 

 
high impact 

 
intermediate 

users 
 

During melting periods the accuracy of PMR-based SIC estimates 
considerably decrease. In the presence of melt-ponds, PMR can 
only sense the ice surface fraction. PMR algorithm must be 
refined to achieve better observation of the ice surface fraction. 
In parallel forecast models must be developed to ingest the Ice 
Surface Fraction 
 
Recommendation: Improve accuracy and generate melt-pond-
fraction data products from visible/infrared imagers (such as 
OLCI-Sentinel3, Sentinel-2, MODIS, MERIS, VIIRS, ...). Investigate 
if modern SAR sensors (Sentinel-1) can accurately measure MPF 
at a basin scale. In parallel, further develop melt-pond 
parameterization in forecast models to exploit the ice surface 
fraction products routinely.  

Sea ice thickness long term 

 
high impact 

 
intermediate 

& marine 
end-users 

 

High temporal resolution ice thickness products covering the 
whole range of thickness are missing. A higher spatial resolution 
sea ice thickness product (sub km) is also missing. Coverage for 
the melt season is also lacking. Snow depth measurement with 
enough precision is crucial for deriving SIT with good accuracy.  
 
Recommendation: Supplement microwave remote sensed data 
sources with optical satellite and In situ data during summer. 
Further research into snow retrievals over sea ice. 

Ocean monitoring 
 

Surface ocean 
biogeochemical 
compounds (also 
for inland 
waters) 

mid term 

 
high impact 

intermediate 
users 

 

Parameters on ocean productivity, biogeochemical fluxes and 
radiation. The main limitations are due to the low temporal 
coverage,  sea ice cover,  unfavourable light and rough weather 
conditions. Higher spatial resolution (of order 10–100 m) data 
to retrieve parameters from bays and estuaries at the polar 
coasts and in inland waters are necessary. Missions providing 
such data are focused on land applications (e.g., Sentinel 2 or 
Landsat 8) which only cover the Arctic coasts below 74°N and 
not the Antarctic continent. Products on phytoplankton 
functional types are currently released but limited to S3 and 
need higher spatial scale which would help to improve 
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predictions for water quality, HABs, fishery, coastal 
management by themselves but also indirectly by improving the 
quality of Chl products. 
 
Recommendations: Merging satellite data can improve this 
tremendously. In situ data are sparse for validation and the 
implementation and further development of autonomous In situ 
bio-optical measurements needs to be promoted. Promote 
CHIME also for pan polar applications. 

Sea surface 
salinity 

mid term 

 
mid impact  

 
intermediate 

users 
 

This parameter is provided by L-band microwave radiometers 
only. It is very important for the assessment of freshwater fluxes 
changes. Its accuracy is limited, mainly due to the sparse In situ 
data available. 
 
Recommendations: Promote CIMR mission since it also carries 
onboard an L-band radiometer. More In situ measurements are 
required to enhance satellite salinity products.  

Wind speed long term 

 
mid impact 

 
intermediate 

users 
 

An improvement in the accuracy of wind speed observations 
over ice and ocean is needed since the wind controls the surface 
ocean circulation and hence freshwater transport rates and 
pathways. 
 
Recommendations: To add Doppler capability to future 
scatterometers, allows for simultaneous measurements of 
surface winds and currents and improves directional accuracy. 

 

6.5 Conclusions and recommendations from Section 5 
 
In this section, we have analysed the status quo in data assimilation, considering the data assimilation 
models used in the Copernicus services CMEMS, C3S and CLMS and reviewed their data assimilation 
capabilities, problems and deficiencies. Many observations are routinely assimilated, some with 
success, some with potential for improvement, and several not being assimilated at all for various 
reasons.  
 
Feasible data assimilation demonstrations published but not yet taken up by Copernicus Services have 
also been reported.  In situ data have not been taken into account in this review. 

Nowadays, several parameters are being assimilated into models, some of them with important 
constraints. We itemize below the parameters that are assimilated organized by its level of limitations 
based on scientific literature and to the best of the authors’ knowledge of the field: 
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 Parameters assimilated with severe limitations: SST (from IR), SIT, Ice Drift, Chl. 
 Parameters assimilated with a medium level of limitations: SIC. 
 Parameters assimilated successfully but the efficiency of assimilation is not sufficiently 

documented: SSH, SST (from PMR). 
 

There is to our knowledge no assimilation of satellite land data as part of the Copernicus Land nor 
Climate Change Services as of today. 
 
The Table 6. 4 below lists some of the identified parameters which are not yet being assimilated, 
organized by the time required to achieve the goal. 
 
The CLMS is neither using models nor data assimilation at present, so some suggestions based on 
research on land models are done on the corresponding section of the report. Land data are used as 
boundary conditions for atmospheric models rather than to be assimilated, so the efficiency of data 
assimilation of land parameters cannot be assessed.  

 

Table 6. 4: Parameters that are not yet being assimilated, with the time period required to 
achieve the goal. 

Recommendations on data assimilation 

Parameter Time period Recommendations on DA 

Short Term 

Ocean salinity Short term Assimilation of sea surface salinity in near real-time.  

Waves height Short term Optimized Arctic wave forecasts using satellite data. 

Mid Term 

Sea ice drift Mid term Efficient data assimilation of ice drift and ice deformations.  

Snow cover on 
land 

Mid term A yearly retrospective pan-Arctic simulation of the melt 
season at the hillslope scale would be useful for hydrological 
models. 

Permafrost Mid term A pan-Arctic permafrost model assimilating LST and snow 
cover would be necessary. 
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Ocean colour 
(Chl-a) 

Mid term Efficient assimilation of surface chlorophyll in a near real-time 
ocean biogeochemical model.  

Ocean colour 
(Optics) 

Mid term Assimilate optical properties of water in near-real-time. 

Long term 

Sea ice surface 
temperature 

Long term Assimilation of Ice Surface Temperature and ice albedo.  

Melt Ponds Long term Assimilation of melt pond fraction in near real-time.  

Rivers Long term Assimilate river levels in near real-time hydrological models.  

Soil moisture Long term Assimilate soil moisture from L-band PMR into near-real-time 
land models.  

Ocean colour 
(PFT) 

Long term Assimilate Plankton Functional Types.  

High resolution 
(all models) 

Long term Design ways to increase model resolution on energy-limited 
supercomputers. 

 
On the other hand, the assimilation of satellite information at lower processing levels has been 
investigated as well in this section. We have explored how modelling and forecasting applications 
would benefit from going beyond the current status-quo (assimilation of daily/weekly/monthly 
averaged gridded satellite products) and start assimilating individual swaths (and/or scenes) of 
satellite-derived products in swath projection, and even directly raw satellite data. 
 
We have gone through 3 stages of increasing complexity: the status-quo where sea-ice data are 
assimilated as Level-3/Level-4 products (maps), a mid-term evolution where sea-ice data are 
assimilated as Level-2 products (individual swath), and a long-term evolution where they are 
assimilated as Level-1 products. We also have discussed other ways of thinking about less processed 
products, not based on processing levels but the targeted quantity (e.g. freeboard instead of thickness, 
net ice surface fraction instead of sea-ice concentration). 

The recommendations to move forward on this new approach on data assimilation are resumed in 
Table 6. 5.  
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Table 6. 5: Recommendations to move forward on this new approach on data assimilation 

Assimilation of 
Level-2 satellite 
products 

Mid term Towards the development of higher resolution regional 
ocean/ice forecasting systems: test, refine, and adopt Data 
Assimilation of sea-ice parameters (primarily sea-ice 
concentration and thickness) at Level-2 (in a swath or along-
track). This is a necessary preparatory step for the optimal 
ingestion of Level-2 data products from the HPCM CIMR, and 
CRISTAL. In parallel, efforts should be continued for DA of ocean 
and land variables at Level-2. 

Co-design of 
Operators 

Mid Term Foster the collaboration and enable further dialogue between 
the modelling and Earth Observation communities, so that the 
Data Assimilation framework of tomorrow (including their 
Observation Operators) are co-designed, and benefit of the 
expertise in both communities. 

Towards direct 
assimilation of 
Level-1 satellite 
observations 

Long Term Continue the development of fully-fledged yet efficient 
microwave emission models for sea-ice and snow. Community 
models -such as SMRT- should be preferred, ideally coupled and 
reconciled with radiative transfer models for the atmosphere 
and ocean surface. 
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