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The detection and characterization of the stochastic gravitational wave background (SGWB) is one of
the main goals of gravitational wave (GW) experiments. The observed SGWB will be the combination of
GWs from cosmological (as predicted by many models describing the physics of the early universe) and
astrophysical origins, which will arise from the superposition of GWs from unresolved sources whose
signal is too faint to be detected. Therefore, it is important to have a proper modeling of the astrophysical
SGWB (ASGWB) in order to disentangle the two signals; moreover, this will provide additional
information on astrophysical properties of compact objects. Applying the cosmic rulers formalism, we
compute the observed ASGWB angular power spectrum, hence using gauge-invariant quantities,
accounting for all effects intervening between the source and the observer. These are the so-called
projection effects, which include Kaiser, Doppler, and gravitational potentials effect. Our results show that
these projection effects are the most important at the largest scales, and they contribute to up to tens of
percent of the angular power spectrum amplitude, with the Kaiser term being the largest at all scales. While
the exact impact of these results will depend on instrumental and astrophysical details, a precise theoretical
modeling of the ASGWB will necessarily need to include all these projection effects.

DOI: 10.1103/PhysRevD.101.103513

I. INTRODUCTION

The new run of observations from the LIGO/Virgo
Collaboration has recently started [1] and many new
gravitational waves (GW) from binary black hole (BH),
neutron star (NS), and black hole-neutron star mergers are
being detected. One of the most challenging targets remains
the detection (and characterization) of the background of
gravitationalwaves (GWB). Such a background is generated
by two contributions: a cosmological one originated from
early universe-related mechanisms, and an astrophysical

one, originated from the superposition of a large number of
unresolved astrophysical sources.
Among the cosmological sources ofGWswe canmention

the irreducible GW background due to quantum vacuum
fluctuations during inflation, which is expected to span over
a wide range of frequencies, and for which we have already
observational bounds from Planck [2]. In addition, inflation
and postinflation-related mechanisms can generate a sto-
chastic background of GWs at scales probed by interfer-
ometers like the Laser Interferometer Gravitational-Wave
Observatory (LIGO)/Virgo, the Laser Interferometer Space
Antenna (LISA), or the Einstein Telescope. For an overview
of early universe GWB sources see [3–6].
On the astrophysical side, there are many sources that

can contribute to form such a GW background (ASGWB),
which is the superposition of a large number of unresolved
sources and will be dominated by two types of events: the
first is compact object binaries, periodic long-lived sources
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such as an early inspiralling phase of binary systems and
captures by supermassive black holes, whose frequency is
expected to evolve very slowly compared to the observation
time. The second type consists of short-lived burst sources,
such as core collapse to neutron stars or black holes,
oscillation modes, r-mode instabilities in rotating neutron
stars, magnetars, and super-radiant instabilities (see [7,8]
for general reviews and references therein).
To characterize such backgrounds will be extremely

challenging but necessary in order to extract precise
cosmological information. To a first approximation a
cosmological background may be considered stationary,
isotropic, unpolarized and mainly Gaussian, while there are
attempts to characterize how a non-Gaussian and polarized
background can be probed with an interferometer like LISA
or ground based interferometers [9]. The ASGWB has been
usually characterized assuming that the distribution of
sources is homogeneous and isotropic (and Gaussian).
The quantity which is commonly used to characterize
the GWB, both of cosmological or astrophysical origin,
is the GW energy density ΩGW. Beyond its isotropic value
which has already invaluable information on the source of
GWs, it can have a directional dependence inherited from
the inhomogeneities of the matter distribution in the
Universe, in a way similar to the cosmic microwave
background (CMB) radiation. There has been a consid-
erable effort in the GW community to detect such a
background, but up to now we have only upper bounds
on the isotropic GW energy density component.
[LIGO/Virgo recent bounds are ΩGWðf ¼ 25 HzÞ <
4.8 × 10−8. Pulsar timing arrays (PTA), at low frequencies
(10−10 − 10−6 Hz), gave a bound ΩGW < 1.3 × 10−9 [10].]
Upper bound have been extracted also on its anisotropic
component by LIGO and PTA. [LIGO O1þ O2 runs gave
ΩGWðf ¼ 25 Hz; Þ < 6 × 10−8 as the upper limit [11] and
PTA set ΩGWðf ¼ 1 yr−1Þ < 3.4 × 10−10 at 95% C.L.
[12].] Such a background may be detectable with LIGO/
Virgo at design sensitivity, especially with the addition of
further interferometers to the global network (such as
KAGRA and LIGO India).
In a series of recent works it has been shown how the

anisotropy in the observed energy density of source
distribution and the effect of inhomogeneities on the
GW propagation can be used to infer astrophysical proper-
ties of the sources. A derivation of the angular power
spectrum of cosmological anisotropies, using a Boltzmann
approach, has been obtained in [9,13,14]. A derivation of
the angular power spectrum of cosmological anisotropies,
using a Boltzmann approach, has been obtained in
[9,13,14]. In the case of the ASGWB, the angular power
spectrum has been derived by [15–17], considering the
presence of inhomogeneities in the matter distribution and
working with a coarse graining approach which allows
one to probe GW sources on cosmological, galactic, and
subgalactic scales. Other predictions for the GW angular

power spectrum have been derived in [18,19], with both
analytical and numerical results using galaxy catalogs from
the Millennium Simulation. More recently, [20–22] have
analyzed the astrophysical dependence of the angular
power spectrum for different stellar models, while in
[23,24] the effect of shot noise on the angular power
spectrum has been considered, and a new method to extract
the true astrophysical spectrum by combining statistically
independent data segments has been proposed.
In this paper we present a consistent framework for

studying the ASGWB in a general covariant setting. We
obtain general coordinate-independent and gauge-invariant
results for all observables, accounting for all effects
intervening between the source and the observer.
Working to linear order in perturbations, we investigate
the effects of cosmological perturbations and inhomoge-
neities on the angular power spectrum of the GW energy
density. Applying the cosmic rulers formalism introduced
in [25,26] (see also [27] where the authors used this
prescription to study the effect of large-scale structures
on GW waveforms), we consider the observer’s frame as
the reference system. In this case, all of our results are
obtained at the observed frame, taking into account all
possible effects along the past GW cone of the GW energy
density. It is important to note that the ASGWB is
generated mostly by events that could be in principle
resolvable by precise and sensitive high resolution instru-
ments. In principle we might have a precise location of
ASGWB in the observed space frame. Indeed, the ASGWB
signal is resembling other astrophysical backgrounds, such
as e.g., the cosmic infrared background (CIB), that have
been studied in the past (see e.g., [28–30]).
Without any coarse graining but just mapping our

perturbed quantities in the observer’s frame, we obtain
the corrections due to the inhomogeneous spacetime
geometry. In a very general way, following [15], we
consider two types of sources: (1) events with short
emission, e.g., merging binary sources (BH-BH, NS-NS,
NS-BH) and SNe explosions; (2) inspiralling binary
sources which have not merged during a Hubble time.
We first work within a general framework without fixing
any gauge and we subsequently consider a ΛCDM con-
cordance model on cosmological scales. Using the per-
turbed GW energy density we then compute the observed
angular power spectrum of the ASGWB highlighting the
main local and integrated projection effects which give
relevant contributions on large scales, considering a toy-
model case: the ASGWB generated by black hole mergers
in the frequency range of LIGO-Virgo.
The paper is structured as follows. In Sec. II, we define

the GW energy density in a gauge-independent way using
the observer’s frame and we then give a general para-
metrization for the description of the GW sources we will
consider. In Sec. III, we study the past GW cone in the
observer’s frame setting up the map between the observer’s
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and real-space/physical frame and we then present a
general perturbation framework of the quantities that enter
in the GW energy density. In Sec. IV, we perform the
computation of the perturbed quantities at linear level
without fixing the gauge using the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric. In Sec. V, we focus on
ΛCDM and compute the angular spectrum of the energy
density using the synchronous-comoving gauge. In Sec. VI,
we compute the angular correlation between the energy
density from different directions. Finally, in Sec. VII, we
numerically evaluate the corrections for different contri-
butions. We summarize our conclusions in Sec. VIII.
Through the text we will use c ¼ 1 and ð−;þ;þ;þÞ
conventions.

II. COVARIANT FORMULATION OF THE
GW ENERGY DENSITY

The quantity that characterizes the SGWB is the
GW energy density per logarithmic frequency fo, defined
as [15,31]

ΩGWðfo;ΩoÞ ¼
fo
ρc

dρGW
dfodΩo

; ð1Þ

which represents the fractional contribution of gravitational
waves to the critical energy density of the Universe,
ρc ¼ 3H2

0=ð8πGÞ, and dρGW the energy density of GWs
in the frequency interval ff; f þ dfg. Such a quantity will
have both a background (monopole) contribution in the
observed frame, which is, by definition, homogeneous
and isotropic (Ω̄GW=4π),

1 and a direction-dependent con-
tribution ΩGWðfo;ΩoÞ. In this work we focus on the
angular power spectrum of this second contribution (for
other recent analyses, see [15,18]).
The total gravitational energy density in a direction n is

the sum of the all unresolved astrophysical contributions
along the line of sight contained in a given volume dVeðnÞ
dρGW
dfodΩo

¼ dEtot
GW

dfodT odAodΩo

¼
X
½i�

Z
n½i�h ðxαe ; θ⃗Þ

dE½i�
GWðxμe → xμo; θ⃗Þ
dfodT odAo

���� dVe

dΩodχ

����dχdθ⃗;
ð2Þ

where [i] is the index of summation over all unresolved
astrophysical sources that produce the background of GWs,
θ⃗ ¼ fMh;M�; m⃗; θ⃗�g, where Mh is the halo mass, M� is
the mass of stars that give origin to the sources, m⃗ are the
masses of the compact objects, and θ� includes the
astrophysical parameters related to the model (i.e., spin,

orbital parameters, star formation rate). Here, n½i�h is the

(physical) number of halos at given mass Mh, in the
physical volume dVe, weighted with the parameters θ⃗ of
the sources at xμe . The letter “e” stands for “evaluated at the
emission (source) position” while “o” denotes “evaluated at
the observed position.”
The physical volume dVe at emission is defined as

dVe ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðxαÞ

p
εμνρσuμðxαÞ

∂xf
∂x̄1

∂xρ
∂x̄2

∂xσ
∂x̄3 d

3x̄

¼ D2
AðzÞð−uμpμ

GWÞdΩodλ

¼ D2
AðzÞð−uμpμ

GWÞ
���� dλdχ

����dΩodχ; ð3Þ

where εμνρσ is the Levi-Civita tensor, uμ is the four velocity
vector as a function of comoving location, and we have
introduced the angular diameter distance DA and the GW
four-momentum pμ

GW. Let us point out that, as in [27], here
we consider the local wave zone approximation to define
the tetrads at source position (i.e., the observer “at the
emitted position” is a region with a comoving distance to
the source sufficiently large so that the gravitational field is
“weak enough” but still “local,” i.e., its wavelength is small
with respect to the comoving distance from the observer χ
(see for example [32]).
The four-velocity of the observer can be written using the

comoving tetrad

uμ ¼ dxμ

dT
¼ dxα̂

dT
Λμ
α̂ ¼ uα̂Λμ

α̂ ¼ Λμ
0̂
; ð4Þ

where T is the proper time of the observer and Λμ
α̂ is an

orthonormal tetrad. Choosing uμ as the timelike basis
vector,

uμ ¼ Λ0̂μ ¼ aE0̂μ and uμ ¼ Λμ
0̂
¼ a−1Eμ

0̂
; ð5Þ

where Eα̂
μ are the components of the comoving tetrad which

are defined through the following relations:

ĝμνEα̂
μE

β̂
ν ¼ ηα̂ β̂; ηα̂ β̂E

α̂
μE

β̂
ν ¼ ĝμν;

ĝμνEβ̂
ν ¼ Eβ̂μ; ηα̂ β̂E

β̂
ν ¼ Eβ̂ν; ð6Þ

and ηα̂ β̂ is the Minkowski metric. The graviton four-vector
is defined as

pμ
GW ¼ dχ

dλ
dxμ

dχ
¼ −

2πfo
a2

kμ; ð7Þ

where kμ is the comoving null four-vector of the GW,
uμ is the four-velocity of the observed at xμe , and λ is the
affine parameter that can be written (normalized) in the
following way2:

1Since it is related to an angular average in the observed frame.

2This suitable normalization in Eq. (8) can be completely
understood in Sec. III.
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dλ ¼ −
a2

2πfo
dχ; ð8Þ

from the source to the detector. Here χ is the comoving
distance, in real space, from the observer to the source of
the GW. Clearly, ð−uμpμ

GWÞ ¼ 2πfe.
The energy of gravitational waves emitted from the halo

at the observer is

dE½i�
GWðxμe → xμo; θ⃗Þ
dfodT odAo

¼ K½i�ðz; fe; xμe ; θ⃗Þ
ð1þ zÞ3D2

AðzÞ
; ð9Þ

where K½i�ðz; fe; xμeÞ encodes all physical effects of the GW
signal emitted where the superscript [i] is related to a
typical unresolved astrophysical source considered.

The quantity E½i�
GWðxμe → xμoÞ (to simplify the notation, we

will write it as E½i�
GWo), for a given type of source labeled by

[i], can be related to the energy spectrum per unit solid
angle in the rest frame of the observer (in the halo) that
includes all emitting sources at a given redshift z and
direction n, as

dE½i�
GWo

dfodT odAo
¼ dE½i�

GWo

dE½i�
GWe

dfedT e

dfodT o

dΩe

dAo

dE½i�
GWe

dfedT edΩe
; ð10Þ

where dE½i�
GWe=dfedΩe is the energy spectrum per unit solid

angle of the observer with z≡ ze.
Using the energy conservation

dE½i�
GWo

dE½i�
GWe

¼ 1

ð1þ zÞ ; ð11Þ

and the relations dfodT o ¼ dfedT e, and

dΩe

dAo
¼ 1

ð1þ zÞ2D2
AðzÞ

; ð12Þ

we can rewrite Eq. (10) as

dE½i�
GWo

dfodT odAo
¼ 1

ð1þ zÞ3D2
AðzÞ

dE½i�
GWe

dfedT edΩe
: ð13Þ

In general, for a particular type of source, dE½i�
GWe=dfe=

dT e=dΩe has a specific distribution function characterized
by local parameters of the source which depends on the
mass, environment, distribution of matter, velocity
dispersion of the matter and source, and the type of galaxies
within the host halo. We can thus distinguish two cases:
(I) events with short emission (burst sources), e.g., merging
binary sources (BH-BH, NS-NS, and/or NS-BH) and SNe
explosions; (II) inspiralling binary sources which have not
merged during a Hubble time, and hence GW emission is

averaged over several periods of the slow evolution of the
orbitals parameters (continuous sources). The resulting
energy in the two cases reads

dE½i�
GWe

dfedT edΩe
¼

8<
:

dN ½i�
GWe

dT e

dE½i�GWe
dfedΩe

for ðIÞ;

N ½i�
GWe

dAe
dΩe

dE ½i�
GWe

dfedT edAe
for ðIIÞ;

ð14Þ

where for case (I), dN ½i�
GWe=dT e is the merging rate of the

events for each halo and dE½i�
GWe=dfe=dΩe is the energy

spectrum per unit solid angle, while for case (II)

dE½i�
GWe

dfedT edAe
¼ hτ0̂ 0̂GW½i�ie ¼

1

16πG

� X
A¼ðþ;×Þ

f2eA2
eA

�
: ð15Þ

Here Ae is the amplitude at emission3 and we have
decomposed the above quantity in the two independent
modes of linear polarization of the GWs. The overline in
Eq. (15), denotes the “time average” of the observer.
Following [33], we have defined h…i as the average over
a region whose characteristic dimension is small compared
to the scale over which the background changes. The
average is over the emitted region whose characteristic
dimension is about the scale of the halo dimension (around
1–2 Mpc). We can thus identify the quantity K½i�ðz; fe; xμeÞ
as the energy at emission

dE½i�
GWe

dfedT edΩe
¼ K½i�ðz; fe; xμe ; θ⃗Þ ð16Þ

and obtain the following expression for the energy density:

dρGW
dfodΩo

¼
X
½i�

Z
aðx0Þ2 n

½i�ðxαe ; θ⃗Þ
ð1þ zÞ2 dχdθ⃗; ð17Þ

where we define the total GW density as

n½i�ðxαe ; θ⃗Þ≡ n½i�h ðxαe Þ
dE½i�

GWe

dfedT edΩe
ðz; fe; xμe ; θ⃗Þ: ð18Þ

III. GENERAL PRESCRIPTION

Let us define xμðχÞ the comoving coordinates in the real
frame (or real space, the “physical frame”), where χ is the
comoving distance, in real space, from the source to the
detector (the observer) and call observer’s the frame where
we perform observations; we will adopt the approach of
[27]. Assuming the usual concordance background model,
let us use coordinates which effectively flatten our past

3We are using the local wave zone approximation, hence the
coordinates are strictly related on the considered halo.
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gravitational wave cone so that the GW geodesic from the
source has conformal space-time coordinates:

x̄μ ¼ ðη̄; x̄Þ ¼ ðη0 − χ̄; χ̄nÞ: ð19Þ

Here η0 is the conformal time at observation, χ̄ðzÞ is
the comoving distance to the observed redshift, and n is
the observed direction of the GW, i.e., ni ¼ x̄i=χ̄ ¼
δijð∂χ̄=∂x̄jÞ. Using χ̄ as an affine parameter in the
observer’s frame, the total derivative along the past GW
cone is d=dχ̄ ¼ −∂=∂η̄þ ni∂=∂x̄i. We use again subscripts
“e” and “o” to denote respectively the position where the
GW is emitted and received. The frame defined in Eq. (19)
is the real observed frame in which we make observations
(also called “cosmic GW laboratory” in [27]). Therefore,
this is the correct frame where, for instance, we can
reconstruct 3D maps/catalogs of galaxies by using both
EM and GW signals. This frame is commonly used in
galaxy catalogs. If we use unperturbed coordinates we are
not able to interpret correctly the correlation between the
ASGWB and EM sources from observed galaxies since it
can induce a bias in our results.
Defining the photon 4-momentum pμ

GW ¼ −2πfokμ=a2,
where a is the scale factor, the comoving null geodesic
vector kμ reads

kμðχ̄Þ ¼ dxμ

dχ̄
ðχ̄Þ ¼ d

dχ̄
ðx̄μ þ δxμÞðχ̄Þ

¼ ð−1þ δf; ni þ δniÞðχ̄Þ; ð20Þ

with

k̄μ ¼ dx̄μ

dχ̄
¼ ð−1;nÞ: ð21Þ

The comoving coordinate in the physical frame can be
written as

xμðχÞ¼ x̄μðχÞþδxμðχÞ¼ x̄μð χ̄Þþdx̄μ

dχ̄
δχþδxμð χ̄Þ; ð22Þ

with

χ ¼ χ̄ þ δχ; ð23Þ

δxμ ¼ δxμo þ
Z

χ̄e

0

δkμdχ̄; ð24Þ

and where δkμ is computed using the geodesic equation for
the comoving null geodesic vector kμðχÞ ¼ ðdxμ=dχÞðχÞ.
More precisely,

dkμðχÞ
dχ

þ Γ̂μ
αβðxγÞkαðχÞkβðχÞ ¼ 0; ð25Þ

where Γ̂μ
αβ are the Christoffel symbol defined using the

comoving metric ĝμν ¼ gμν=a2. Expanding kμðχÞ and
Γ̂μ
αβðxγÞ up to linear order,

kμðχÞ ¼ kμð χ̄Þ þ δχ
dkμ

dχ
ð χ̄Þ;

Γ̂μ
αβðxγÞ ¼ Γ̂μ

αβðx̄γÞ þ Δxν
∂
∂x̄ν Γ̂

μ
αβðx̄γÞ; ð26Þ

we get

dkμð χ̄Þ
dχ̄

þ Γ̂μ
αβðx̄γÞkαð χ̄Þkβð χ̄Þ ¼ 0; ð27Þ

where kμð χ̄Þ ¼ k̄μð χ̄Þ þ δkμð χ̄Þ. We then need to evaluate
the scale factor and affine parameter at emission. For the
former,

a
ā
¼ 1þ Δ ln a ¼ 1þHΔx0; ð28Þ

where ā ¼ aðx̄0Þ and H ¼ ā0=ā is the conformal Hubble
factor. Here the prime is ∂=∂x̄0 ¼ ∂=∂η̄. As show in
Sec. IV, ā ¼ 1=ð1þ zÞ. Now, we have

dχ ¼
�
1þ dδχ

dχ̄

�
dχ̄; ð29Þ

with4

dδχ
dχ̄

¼ δf −
H0

H2
Δ ln a −

1

H
dΔ ln a
dχ̄

: ð30Þ

It then remains to study the total density, which depends
on halo mass, the environment around the halo, e.g., tidal
effects, velocity dispersion, and type of galaxies. Most of
these effects could change not only the background number
density of the halos but also the relation between the
density contrast of the halos and dark matter. It is therefore
essential to have a priori the knowledge of an astrophysical
model that connects all these quantities, e.g., see [34–38]
(see also [7] and refs. therein). Perturbing the total density,
we get5

4Here we used that δχ ¼ δx0 − Δx0 ¼ δx0 − Δ ln a=H.
5Note that

n½i�ðxαÞ ¼ n½i�ð0Þðx0Þ þ n½i�ð1ÞðxαÞ; and

n½i�ð0Þðx0Þ ¼ n½i�ð0Þðx̄0 þ Δx0Þ ¼ n̄½i�ðx̄0Þ þ ∂n̄½i�
∂x̄0 Δx0;

where n½i�ð0Þðx̄0Þ ¼ n̄½i�ðx̄0Þ.
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n½i�ðxαÞ ¼ n̄½i�
�
1þ d ln n̄½i�

d ln ā
Δ ln aþ δ½i�

�
; ð31Þ

where

δ½i� ¼ n½i�ð1Þðx̄αÞ
n̄½i�ðx̄0Þ : ð32Þ

We thus obtain

ΩGW ¼ fo
ρc

dρGW
dfodΩo

¼ Ω̄GW

4π
þ ΔΩGW; ð33Þ

where

Ω̄GW

4π
¼ fo

ρc

dρ̄GW
dfodΩo

¼ fo
ρc

X
½i�

Z
N½i�ðz; fe; θ⃗Þ
ð1þ zÞ dχ̄dθ⃗; ð34Þ

withN½i�ðz; fe; θ⃗Þ ¼ n̄½i�ðz; fe; θ⃗Þ=ð1þ zÞ3 the total comov-
ing number density at a given redshift, and

ΔΩGW ¼ fo
ρc

X
½i�

Z
N½i�ðz; fe; θ⃗Þ
ð1þ zÞ

×

�
δ½i� þ d lnN½i�

d ln ā
Δ ln a −

�
1þ H0

H2

�
Δ ln a

þ δf −
1

H
dΔ ln a
dχ̄

	
dχ̄dθ⃗: ð35Þ

A. Connection with halo and stellar mass functions
and with star formation rate

It is important to relate the above quantities to the halo
and stellar mass function, and to the star formation rate
(SFR). At background level, for each type of source, in
literature the comoving rate density is defined as [39]

R½i�ðz; θ⃗Þ≡ 1

ð1þ zÞ
dN½i�

GWðz; θ⃗Þ
dT e

χ2
dχ
dz

dΩe; ð36Þ

where N½i�
GW is the comoving number density of ASGW.

Precisely, N½i�
GWðz; θ⃗Þ depends on the mass of stars6 M� that

give origin to the sources that we are considering, i.e.,

dN½i�
GW ¼ dN½i�

GW

dM� dM�: ð37Þ

Following [42,43], the stellar massM�ðMhÞ is a function of
host halo mass Mh [in general, it could also depend on

many other parameters as the metallicity (e.g., see [40]),
etc.]. Then we have [42]

dN½i�
GW

d lnM� ¼
∂N½i�

GW

∂ lnMh

�
d log10M�

d log10Mh

�
−1
: ð38Þ

For a given halo mass Mh we can split N½i�
GWðθ⃗�;Mh;

M�; m⃗;T e; zÞ ¼ NhðMh; zÞhN ½i�
GWðθ⃗�;M�; m⃗; z;T eÞi, where

Nh is the comoving number density of halos in a mass
interval dMh around Mh. Comparing these relations
with the background quantities (in the observed frame),
described in the previous sections, we find

N½i�ðz; θ⃗Þ ¼ λ½i�ðz; θ⃗Þ dNhðM; zÞ
dMh

and

N ½i�
GWe ¼ hN ½i�

GWðθ⃗�;M�; m⃗; z; T eÞi; ð39Þ

where λ½i�ðz; θ⃗Þ is a generic function which depends on the
initial mass function M� and, in general, other parameters
of the sources. Because of the many simplifications we
have taken up here, we define

λ½i�ðz; θ⃗Þ ¼ Mh

M�

�
d log10M�

d log10Mh

�
−1
K̄½i�ðz; fe; θ⃗Þ: ð40Þ

Then we have

∂N½i�
GWðz; θ⃗Þ

dT e∂Mh
¼ dNhðMh; zÞ

dMh

dN ½i�
GWe

dT e
: ð41Þ

Now NhðMh; zÞ can be related to the fraction of mass
FðMh; zÞ that is bound at the epoch z in halos of mass
smaller than Mh, i.e.,

dNhðMh; zÞ
dMh

¼ ρ̄ðzÞ
Mh

dFðMhÞ
dMh

; ð42Þ

where ρ̄ðzÞ is the comoving background density. Here, for
example, we can use the Press and Schechter [44], the
Sheth and Tormen [45], or the Tinker [46] mass fraction.
Following [47,48], it is useful to define gðMÞ of halos

gðMhÞ ¼
dFðMh; zÞ
d lnMh

: ð43Þ

Finally let us introduce the (mean) star formation rate that it

is connected with N ½i�
GWe in the following way:

dN ½i�
GWe

dT e
¼ N ½i�

GWe × SFR: ð44Þ

Note that sðMh; zÞ defined in [47,48] can be related with
SFR in the following way: sðMh; zÞ ¼ ðM�=MhÞ × SFR.

6In principle, N½i�
GW should be a function on the stellar mass at

given z and M�, e.g., see [40,41]. Finally, more in general, we
could split this quantity in three parts: (i) contribution of central
galaxy, (ii) satellite galaxies, and (iii) all sources that are still
within the halo, but outside the host galaxies.
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We conclude that this analysis can be easily used for case
(I). Nonetheless we can use the above approach also for
case (II). Indeed, if we define the following new quantity

F ¼ d ln ðE½i�
GWe=dfedAeÞ
dT e

ð45Þ

then, substituting SFR with F , we can use again the above
prescription.

IV. FIRST ORDER METRIC TERMS

Let us now consider a spatially flat FLRW background,
perturbed in a general gauge at the linear order:

ds2¼ aðηÞ2½−ð1þ2AÞdη2−2BidηdxiþðδijþhijÞdxidxj�;
ð46Þ

where Bi ¼ ∂iBþ B̂i, with B̂i a solenoidal vector, i.e.,
∂iB̂i ¼ 0, and hij ¼ 2Dδij þ Fij, with Fij ¼ ð∂i∂j −
δij∇2=3ÞF þ ∂iF̂j þ ∂jF̂i þ ĥij. Here D and F are scalars
and F̂i is a solenoidal vector field, ∂iĥij ¼ ĥii ¼ 0.
Considering a four-velocity vector uμ at linear order,

u0 ¼ −að1þ AÞ; ui ¼ aðvi − BiÞ; ð47Þ

and using Eqs. (5), (6) and (47), we can deduce all

components of ΛðnÞ
âμ and EðnÞ

âμ , as follows:

Eð0Þ
0̂μ

¼ ð−1; 0Þ; and Eμð0Þ
0̂

¼ ð1; 0Þ ð48Þ

at background level and

Λ0ð1Þ
0̂

¼ E0ð1Þ
0̂

=a ¼ −A=a; Λið1Þ
0̂

¼ Eið1Þ
0̂

=a ¼ vi=a;

Λð1Þ
0̂0

¼ aEð1Þ
0̂0

¼ −aA; Λð1Þ
0̂i

¼ aEð1Þ
0̂i

¼ aðvi − BiÞ;

Λð1Þ
â0 ¼ aEð1Þ

â0 ¼ −avâ; Λð1Þ
âi ¼ aEð1Þ

âi ¼ 1

2
ahâi ð49Þ

at first order. The geodesic equation (27) yields7

d
dχ̄

ðδf − 2Aþ BkÞ ¼ A0 − Bk0 −
1

2
h0k ð50Þ

d
dχ̄

ðδni þ Bi þ hijn
jÞ ¼ −∂iAþ ∂iBk −

1

χ̄
Bi⊥

þ 1

2
∂ihk −

1

χ̄
Pijhjknk: ð51Þ

From Eq. (7), for χ̄ ¼ 0 we have

pGW
0̂o

¼ ðΛ0̂μp
μ
GWÞjo ¼ −2πfo;

pGW
âo ¼ ðΛâμp

μ
GWÞjo ¼ −2πfonâ; ð52Þ

and we find

ðΛ0̂μp
μ
GWÞjo ¼ −

2πfo
ao

ðE0̂μk
μÞjo ¼ −2πfo;

ðΛâμp
μ
GWÞjo ¼ −

2πfo
ao

ðEâμkμÞjo ¼ −2πfonâ: ð53Þ

Using Eqs. (20), (48), (49) and

ao ¼ aðη0Þ ¼ āðη̄0Þ þ δao ¼ 1þ δao ð54Þ

where we set āðη̄0Þ ¼ 1, at the observer we have

δfo ¼ −δao þ Ao þ vko − Bko; ð55Þ

δnâo ¼ δaonâ − vâo −
1

2
nihâio: ð56Þ

From Eqs. (50), (51) and the constraint from Eq. (55), we
obtain at first order with

δf ¼ −δao − ðAo − vkoÞ þ 2A − Bk − 2I ð57Þ

δni ¼ niδnð1Þk þ δni⊥; ð58Þ

where

δnk ¼ δao þ Ao − vko − A −
1

2
hk þ 2I; ð59Þ

δni⊥¼Bi⊥o−vi⊥oþ
1

2
nkhjð1Þko Pi

j− ðBi⊥þnkhjð1Þk Pi
jÞþ2Sið1Þ⊥ ;

ð60Þ

and

I ≡ −
1

2

Z
χ̄

0

dχ̃

�
A0 − B0

k −
1

2
h0k

�
; ð61Þ

Si ≡ −
1

2

Z
χ̄

0

dχ̃



∂̃i

�
A − Bk −

1

2
hk

�
þ 1

χ̃
ðBi þ nkhikÞ

�
;

ð62Þ

I is the integrated Sachs-Wolfe contribution and
∂̃i ≡ ∂=∂x̃i.
We can use the projector parallel and perpendicular to the

line of sight, defined in the Appendix A, to split Si in its
parallel and perpendicular components

7This is in agreement with photon perturbation analysis made
(see for example [25,26]).

PROJECTION EFFECTS ON THE OBSERVED ANGULAR … PHYS. REV. D 101, 103513 (2020)

103513-7



Si⊥¼−
1

2

Z
χ̄

0

dχ̃



∂̃i⊥

�
A−Bk−

1

2
hk

�
þ1

χ̃
ðBiðnÞ

⊥ þnkhkjPijÞ
�
;

ð63Þ

Sk ¼
1

2

�
Ao − Bko −

1

2
hko

�
−
1

2

�
A − Bk −

1

2
hk

�

þ I −
1

2

Z
χ̄

0

dχ̃
1

χ̃
ðBk þ hkÞ: ð64Þ

Note the relation

δnk þ δf ¼ A − Bk −
1

2
hk: ð65Þ

Using Eqs. (24), (57) and (59), we find at first order

δx0¼ δx0o− χ̄ðδaoþAo−vkoÞ

þ
Z

χ̄

0

dχ̃



2A−Bk þðχ̄− χ̃Þ

�
A0−B0

k−
1

2
h0k

��
ð66Þ

δxk ¼ δxko þ χ̄ðδao þ Ao − vkoÞ

−
Z

χ̄

0

dχ̃


�
Aþ 1

2
hk

�
þ ðχ̄ − χ̃Þ

�
A0 − B0

k −
1

2
h0k

��
;

ð67Þ

δxið1Þ⊥ ¼ δxi⊥o þ χ̄

�
Bi⊥o − vi⊥o þ

1

2
nkhjkoP

i
j

�

−
Z

χ̄

0

dχ̃

�
ðBi⊥ þ nkhjkP

i
jÞ

þ ðχ̄ − χ̃Þ


∂̃i⊥

�
A − Bk −

1

2
hk

�

þ 1

χ̃
ðBi⊥ þ nkhkjPijÞ

�	
; ð68Þ

δx0ð1Þ þ δxð1Þk ¼ δx0ð1Þo þ δxð1Þko − T; ð69Þ

where

T ¼ −
Z

χ̄

0

dχ̃

�
A − Bk −

1

2
hk

�
ð70Þ

is the Shapiro time delay [49].
The quantities δx0o and δxio, derived in the Appendix B

following [50,51], have their origin from the fact that the
physical coordinate time t0 ¼ tðη ¼ η0Þ ¼ tin þ

R
η0
ηin
aðη̃Þdη̃

does not coincide with the proper time of the observer T 0 in
an inhomogeneous universe. We have

δx0o ¼ δη0 ¼
Z

η̄0

η̄in

āE0
0̂
dη̃ ¼ −

Z
η̄0

η̄in

āðη̃ÞAðη̃; 0Þdη̃ ð71Þ

and

δxio ¼
Z

T 0

T in

δuidT̃ ¼
Z

η̄0

η̄in

viðη̃; 0Þdη̃: ð72Þ

Taking into account that aðη̄0 þ δηoÞ ¼ 1þH0δηo ¼
1þ δao, we are able to obtain the expression for
δa0 ¼ 1þ δa0,

δao ¼ −H0

Z
η̄0

η̄in

āðη̃ÞAðη̃; 0Þdη̃: ð73Þ

The next quantity that we need to compute explicitly is
Δ ln a. The observed redshift is given by

ð1þ zÞ ¼ ðuμpμ
GWÞje

ðuμpμ
GWÞjo

¼ ao
aðχeÞ

ðE0̂μk
μÞje

ðE0̂μk
μÞjo

; ð74Þ

where we used f ∝ 1=a. Quantities evaluated at the
observer have a subscript o, while other quantities are
assumed to be evaluated at the emitter (up to first order). As
we discussed above in Eqs. (53), (54) and (55), we know
that

ðE0̂μk
μÞjo¼1−δfoþAoþvko−Bko¼1þδao¼ao; ð75Þ

then we have

1þ z ¼ E0̂μk
μ

a
: ð76Þ

From Eq. (28), ā ¼ 1=ð1þ zÞ is the scale factor of the
observed frame. From Eqs. (28), (48), and (49), Eq. (76)
turns out to be

1 ¼ 1þ ðE0̂μk
μÞ

1þ Δ ln a
; ð77Þ

where

ðE0̂μk
μÞð0Þ ¼ 1: ð78Þ

Then from Eq. (77) we can find Δ ln a, such that

Δ ln a ¼ ðE0̂μk
μÞð1Þ ¼ Eð1Þ

0̂μ
kμð0Þ þ Eð0Þ

0̂μ
kμð1Þ

¼ −Eð1Þ
0̂0

þ niEð1Þ
0̂i

− δf ¼ Aþ vk − Bk − δf

¼ δao þ ðAo − vkoÞ − Aþ vk þ 2I: ð79Þ

Note that this result was already obtained for the photon
in [25,26]. In this case we are able to write explicitly
Eqs. (23) and (30), and obtain the final equation for the
affine parameter Eq. (29)
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δχ ¼ δx0o −
�
χ̄ þ 1

H

�
ðδao þ Ao − vkoÞ þ

1

H
ðA − vkÞ

þ
Z

χ̄

0

dχ̃



2A − Bk þ ðχ̄ − χ̃Þ

�
A0 − B0

k −
1

2
h0k

��

−
2

H
I ð80Þ

and

dδχ
dχ̄

¼ −
�
1þ H0

H2

�
ðδao þ Ao − vkoÞ þ

�
2þ H0

H2

�
A − Bk

−
H0

H2
vk þ

1

H



d
dχ̄

ðA − vkÞ þ
�
A0 − B0

k −
1

2
h0k

��

− 2

�
1þ H0

H2

�
I: ð81Þ

Hence it reads

ΔΩGW ¼ fo
ρc

X
½i�

Z
N½i�½z; foð1þ zÞ�

ð1þ zÞ
�
δ½i� þ

�
−b½i�e þ 3þ H0

H2

�
A − Bk

þ
�
b½i�e − 1 −

H0

H2

�
vk þ

1

H



d
dχ̄

ðA − vkÞ þ
�
A0 − B0

k −
1

2
h0k

��
þ 2

�
b½i�e − 2 −

H0

H2

�
I

þ
�
b½i�e − 2 −

H0

H2

�
ðδao þ Ao − vkoÞ

	
dχ̄; ð82Þ

where we have defined the evolution bias by

b½i�e ¼ d lnN½i�

d ln ā
¼ −

d lnN½i�

d lnð1þ zÞ : ð83Þ

Note that, in general, δ½i� is not a gauge-invariant quantity.

V. GRAVITATIONAL WAVE BACKGROUND
ANISOTROPY IN THE SYNCHRONOUS-

COMOVING GAUGE

Using the synchronous-comoving (SC) gauge within
ΛCDM allows us to synchronize observers on the same
spacelike hypersurface, as they are comoving with the
cosmic expansion. The metric can be then written as

ds2¼ a2ðηÞf−dη2þ½ð1−2RÞδijþ2∂i∂jE�dxidxjg; ð84Þ

where as previously η denotes conformal time and we set
g00 ¼ −1, g0i ¼ 0, and vi ¼ 0. Hence, A ¼ 0, Bi ¼ 0,
F¼2E, and R¼−Dþ∇2E=3 (or hij¼−2Rδijþ2∂i∂jE).
In the SC gauge the bias δ½i� ðSCÞ is a gauge-invariant

quantity. Moreover, in SC gauge, the spherical collapse
model has an exact GR interpretation and only in this frame
halos collapse when the linearly growing local density
contrast (smoothed on the corresponding physical mass
scale) reaches a critical value. Quantitatively, on large
scales, it can be defined as

δ½i� ðSCÞ ¼ b½i�ðηÞδðSCÞm : ð85Þ

To simplify notation, in what follows we drop the super-
script “SC,” but still use the SC gauge unless explicitly
specified otherwise.

We thus obtain

ΔΩGWðnÞ ¼
fo
ρc

X
½i�

Z
N½i�½z; foð1þ zÞ�

ð1þ zÞ

×

�
b½i�ðηÞδm −

1

H
∂2
kE

0

þ
�
b½i�e − 2 −

H0

H2

�
ð∂kE0 þ E00Þjχ̄o

þ
�
b½i�e − 2 −

H0

H2

�Z
χ̄

0

E000dχ̃
	
dχ̄: ð86Þ

The physics behind the different contributions is clear:
there are local terms taking into account the evolution from
source to the observer, including the galaxy density
perturbation (the first term within the curly brackets), the
Kaiser term [i.e., −ð1=HÞ∂2

kE
0], the Doppler effect (i.e.,

proportional ∂kE0 term), the local gravitational potential
term (proportional to E00), and finally the integrated Sachs-
Wolfe contribution (proportional to

R χ̄
0 E

000dχ̃).
While the structure is similar to the one found in [15–19],

our result is expressed in the observer’s frame, which, by
definition makes all quantities gauge invariant. We can then
evaluate the evolution bias related to the distribution of
objects along the line of sight. Note that since we are
working in the observer’s frame, we do not need to perturb
the effective luminosity. Nevertheless, for completeness we
also present our result in the Poisson gauge in Appendix B.

VI. ANGULAR POWER SPECTRUM

To characterize the ASGWB we compute the correlation
between the energy density coming from different
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directions. It is known that this is the appropriate quantity
to correlate [8,31], rather than the GW signal itself, which
would have a vanishing two point correlation, unless
signals with coherent phases are considered. Since we
measure it on a two-dimensional sky, the spherical sym-
metry allows us to work in spherical harmonics space.
Therefore, we expand the observed GW energy density as

ΔΩGWðnÞ ¼
X
lm

αlmYlmðnÞ; ð87Þ

where the coefficients αlm are given by

αlm ¼
Z

d2nY�
lmðnÞΔΩGWðnÞ: ð88Þ

The angular power spectrum then reads

CGW
l ≡ Xl¼m

l¼−m

hα�lmαlmi
2lþ 1

¼
X
i;j;α;β

C½ij�αβ
l ð89Þ

where

C½ij�αβ
l ¼

Xl¼m

l¼−m

hα½i�α�lm α½j�βlm i
2lþ 1

¼
Z

k2

ð2πÞ3 S
½i�α
l

�ðkÞS½j�β
l ðkÞPmðkÞdk; ð90Þ

with Pm the matter power spectrum today

hδðk; η0Þδ�ðk0; η0Þi ¼ ð2πÞ3δð3ÞD ðk − k0ÞPmðkÞ: ð91Þ

Therefore in spherical space

α½i�αlm ¼
Z

d3k
ð2πÞ3 Y

�
lmðk̂ÞS½i�α

l ðkÞδmðk; η0Þ; ð92Þ

where we defined the spherical transforms as

S½i�α
l ðkÞ≡4πil

Z
dχ̄W ½i�ðχ̄Þ

×
Z

χ̄

0

dχ̃



Wα

�
χ̄; χ̃;η; η̃;

∂
∂χ̃ ;

∂
∂η̃

�
ϒαðk; η̃Þjlðkχ̃Þ

�
;

ð93Þ

with

W ½i�ðχ̄ðzÞÞ ¼ fo
ρc

N½i�½z; foð1þ zÞ�
ð1þ zÞ : ð94Þ

For each contribution in Eq. (86) we define the operator
Wα, which encloses the different physical effects, and
ϒαðk; η̃Þ is a transfer function that maps the different

perturbed contributions at a given redshift to the density
contrast today. Precisely, in ΛCDM, taking into account
that E00 þ aHE0 − 4πGa2ρmE ¼ 0 (note that R0 ¼ 0), we
have

E0 ¼ −
H

ð1þ zÞ f∇
−2δm; ð95Þ

E00 ¼ −
H2

ð1þ zÞ2
�
3

2
Ωm − f

�
∇−2δm; ð96Þ

E000 ¼ −3
H3

ð1þ zÞ3Ωmðf − 1Þ∇−2δm; ð97Þ

R ¼ H2

ð1þ zÞ2
�
3

2
Ωm þ f

�
∇−2δm: ð98Þ

HereΩmðzÞ is the matter density and fðzÞ is the growth rate
defined as

f ¼ d lnD
d ln a

; δmðx; ηÞ ¼ δðSCÞm ðx; η0Þ
DðηÞ
Dðη0Þ

; ð99Þ

where D is the growing mode of δðSCÞm . In conclusion the
Sa
lðkÞ functions describe the different physical effects and

can be written as

S½i�δðSCÞm
l ðkÞ ¼ ð4πÞil

Z
dχ̄W ½i�ðχ̄Þb½i�gwðηÞ DðηÞ

Dðη0Þ
jlðkχ̄Þ;

ð100Þ

S
½i�∂2kE0

l ðkÞ ¼ ð4πÞil
Z

dχ̄W ½i�ðχ̄Þ

×


−
fðηÞ
k2

DðηÞ
Dðη0Þ

�
 ∂2

∂χ̄2 jlðkχ̄Þ
�
; ð101Þ

S
½i�∂kE0

l ðkÞ ¼ ð4πÞil
Z

dχ̄W ½i�ð χ̄Þ


b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�

×



HðηÞfðηÞ

k2
DðηÞ
Dðη0Þ

�
 ∂
∂χ̄ jlðkχ̄Þ

�
; ð102Þ

S½i�E00
l ðkÞ¼ ð4πÞil

Z
dχ̄W ½i�ð χ̄Þ



b½i�e ðηÞ−2−

H0ðηÞ
H2ðηÞ

�

×



HðηÞð3

2
ΩmðηÞ−fðηÞÞ
k2

DðηÞ
Dðη0Þ

�
jlðkχ̄Þ; ð103Þ

DANIELE BERTACCA et al. PHYS. REV. D 101, 103513 (2020)

103513-10



S
½i�ð∂kE0Þo
l ðkÞ ¼ −

ð4πÞH0f0il

3k
δKl1

Z
dχ̄W ½i�ð χ̄Þ

×



b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�
; ð104Þ

S½i�ðE00Þo
l ðkÞ ¼ −

2
ffiffiffi
π

p
H2

0i
l

k2

�
3

2
Ωm 0 − f0

�

× δKl0

Z
dχ̄W ½i�ð χ̄Þ



b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�
;

ð105Þ

S
½i�
R

E000

l ðkÞ ¼ ð4πÞil
Z

dχ̄W ½i�ð χ̄Þ


b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�

×
Z

χ̄

0

dχ̃


3H̃3Ω̃mðf̃ − 1Þk−2 Dðη̃Þ

Dðη0Þ
�
jlðkχ̃Þ:

ð106Þ

In Appendix D we will give a alternative definition of the
gravitational wave background anisotropy. As mentioned
above, this is reminiscent of the CIB case, where projection
effects provide also a large contribution to the signal (see
[29], where they are called GR corrections).

VII. RESULTS

Here we compute the effect of projection effects on the
inferred energy density through the correlation function
obtained analytically in the previous section. To study the

importance of these projection effects, we consider a toy-
model case: the ASGWB generated by black hole mergers
in the frequency range of LIGO-Virgo and the Einstein
Telescope. Given the similarities between this formalism
and the one used to compute the angular power spectrum of
the galaxy number counts, we have modified the public
code CLASS to compute the ASGWB anisotropies angular
power spectrum. The details of the code will be presented in
a companion paper in preparation [52].
Given that only unresolved sources contribute to the

SGWB, the merger rate of black hole binaries has to be
corrected with the detector efficiency. In particular, we
assume a network of detectors composed by LIGO
(Hanford and Livingston) and Virgo. The merger rate
and detectability of merging events has been computed
following the prescriptions of Ref. [53], while the GW
waveform is computed as in Ref. [54], considering
also the source orientations. In the following we consider
the GWs emission in the fo ¼ 50 Hz and fo ¼ 200 Hz
channels, assuming that all black hole binaries have
members with masses ðMBH;1;MBH;2Þ ¼ ð15.0; 15.0Þ and
zero spin ðχ1; χ2Þ ¼ ð0; 0Þ.
On the cosmological side, we compute the halo bias

using the fitting formula calibrated on numerical simula-
tions provided in Ref. [55]. The evolution bias is computed
using the halo number density distribution of Ref. [56], also
calibrated on numerical simulations. For simplicity, in the
following we assume that all the events come from halos
with mass Mhalo ¼ 1012 M⊙.
In Fig. 1 we report the relative difference of the

angular power spectra including different contributions
with respect to the angular power spectrum obtained using
only density contributions [here for simplicity we are
neglecting Eqs. (104) and (105), evaluated at the observer

FIG. 1. Relative contribution of different projection effects on the angular power spectra, for the 50 Hz (left panel) and 200 Hz (right
panel) channels. In both cases we assume that all the events come from the merger of two 15 M⊙ BHs with no spin, inMhalo ¼ 1012 M⊙
dark matter halos, and we consider a second generation network of detectors. The solid thin line at zero indicates intrinsic clustering; the
blue dashed line shows the contribution of the Kaiser term, the dot-dashed orange line is the Doppler effect, the dotted green line shows
the contribution of gravitational potential terms, and the red solid line shows the effect of all projection effects combined.
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position]. The two panels show results for two different
frequency channels, 50 and 200 Hz. The solid thin line at
zero indicates the intrinsic clustering, the blue dashed line
shows the contribution of the Kaiser term, the dot-dashed
orange line is the Doppler effect, the dotted green line
shows the contribution of gravitational potential terms, and
the red solid line shows the effect of all projection effects
combined. We showed relative contributions to both
emphasize the effect of different terms and to isolate this
from astrophysical and instrumental uncertainties. The
results presented show that the contribution of different
effects (i) is larger at the lowest angular multipoles, and
(ii) depends on the frequency of the signal measured. By
looking at the relative amplitude of the different effects, we
can clearly see that they are all of the same order of
magnitude, with the Kaiser term being, in our toy model,
the most important at all scales. At the largest scales, Kaiser
and Doppler, gravitational potential terms contribute up to a
few tens of percent of the total power spectrum amplitude.
In fact, the relative importance of different contributions

depends on the choice of sources and detectors, i.e., on the
W ½i� function which has the role of a weight in Eqs. (100)–
(106). This means that the relative importance of different
effects depends on the assumed case, detector specifica-
tions, and astrophysical models. A detailed investigation of
these dependencies and their effect on cosmological and
astrophysical model measurements will be presented in the
follow-up paper [52].

VIII. CONCLUSIONS

The detection and characterization of the astrophysical
gravitational wave background will be another milestone in
the GW community. It will represent a further step toward
studying astrophysical properties of black holes and cos-
mological model tests and be a crucial part in the search for
a gravitational wave background of cosmological origin,
which would shed light on the physics of the early universe.
Many efforts have been already made to study the ASGWB
from analytical, numerical, and map-making points of
view, and the importance of a precise understanding of
both the astrophysical dependencies and propagation
effects have been studied. Such a process requires the
development of consistent tools which can be directly
compared to observations.
In this paper we compute the observed gravitational

wave power spectrum, i.e., we use gauge-invariant quan-
tities accounting for all the effects intervening between the
source and the observer. We use the “cosmic rulers”
formalism and we have taken into account all the correc-
tions (at linear order) to the GW energy density. The signal
we are after is the stochastic superposition of unresolved
astrophysical sources; it is generated by events that will be
in principle resolved by higher precision instruments. Thus,
this signal depends upon the instrument response and the
survey strategy and is affected by projection effects. It is

analogous to other astrophysical backgrounds, and by its
nature different from the primordial, inflationary generated,
GW background. It is therefore crucial to analyze (and
before that, theoretically model) the signal, including all
intervening effects and in the appropriate frame. Mapping
our perturbed quantity in the observed frame we are able to
pick up information on the astrophysical properties of the
GW sources and to obtain corrections due to GW propa-
gation in an inhomogeneous universe. We considered
two categories of sources: (I) events with short emission,
e.g., merging binary sources and SNe explosions, and
(II) inspiralling binary sources which have not merged. We
derive expressions for all the (linear) contributions and
investigate their relative contributions to the observed
ASGWB. Our results show that the contribution of different
effects is larger at the lowest angular multipoles, and at the
largest scales, Kaiser and Doppler, gravitational potential
terms contribute up to a few tens of percent of the total
power spectrum amplitude, and their importance is also
frequency dependent. Among these, the Kaiser term plays a
relevant role, as in the case of other astrophysical back-
grounds like the CIB [29] and radio-continuum and
intensity mapping, as shown in [57,58]. From our plots
we see that the Kaiser term is dominant on large angular
scales, while becoming negligible on small scales. Finally,
let us mention that when the integration along the line of
sight is performed, one should also consider the normalized
selection window function, whose form depends, besides
redshift, on the sensitivity/characteristics of the detector
(e.g., interferometers in the case of GW).
Therefore, with the caveat of astrophysical and instru-

mental dependencies, which will need to be investigated in
more detail, we see an indication that projection effects will
need to be included in all theoretical modeling of
the ASGWB.
A follow-up paper in preparation [52] will describe the

numerical implementation of this formalism, a more
advanced astrophysical modeling and realistic black hole
mass functions, and will present a detailed analysis in order
to estimate the astrophysical parameters derived for astro-
physical background sources.
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APPENDIX A: DEFINITION OF SOME
PARALLEL AND ORTHOGONAL

PROJECTOR OPERATORS

In our analysis we often prefer to work with projected
quantities, in order to identify the various contributions
along and perpendicular to the line of sight. Imagine
considering a three-dimensional Cartesian reference frame
in which the z axis connects us (the observers) to the
starting point of the GW we detect, thus defining the so-
called line of sight which is basically identified with the
direction n̂ and the x-y plane is perpendicular to the line of
sight and passes through the source position. With this in
mind we can define and projected along or perpendicular to
the line of sight. In this way the quantities we work with as
derivative operators, vectors, and tensors can be defined as

Ak ¼ ninjAij; Bi⊥ ¼ PijBj ¼ Bi − niBk; ðA1Þ
where Pi

j ¼ δij − ninj. The same can be done with deriv-
atives which become

∂̄k ¼ ni
∂
∂x̄i ; ∂̄2

k ¼ ∂̄k∂̄k; ∂̄⊥i ¼ Pj
i ∂̄j ¼

∂
∂x̄i − ni∂̄k;

∂nj
∂x̄i ¼

1

χ̄
Pj

i ;
d
dχ̄

∂i⊥ ¼ ∂̄i⊥
d
dχ̄

−
1

χ̄
∂i⊥; ðA2Þ

and we have

∂Bi

∂x̄j ¼ ninj∂̄kBk þ ni∂̄⊥jBk þ ∂̄⊥jBi⊥ þ nj∂̄kBi⊥ þ 1

χ̄
Pi

jBk;

∇̄2⊥ ¼ ∂̄⊥i∂̄i⊥ ¼ δij
∂
∂x̄i

∂
∂x̄j − ∂̄2

k −
2

χ̄
∂̄k: ðA3Þ

APPENDIX B: PROOF OF δx0o AND δxio

We compute here explicitly δx0o and δxio, which arise from
the fact that the physical coordinate time t0 ¼ tðη ¼ η0Þ ¼
tin þ

R
η0
ηin
aðη̃Þdη̃ does not coincidewith the proper time of the

observer T 0 in an inhomogeneous universe. We have

dxμ

dT
¼ uμ ¼ Eμ

0̂

a
; ðB1Þ

then for μ ¼ 0 and considering the physical coordinate dt ¼
aðηÞdη at the observer we have

t0 − tin ¼ T 0 − T in þ
Z

T 0

T in

E0
0̂
dT :

Now t0 ¼ t̄0 þ δto, where t̄0 is the time coordinate of the
observer and, therefore, it has to coincide with the proper
time, i.e.,

t̄0 − tin ¼ T 0 − T in

and δto ¼ āoδηo ¼ δηo, and we have

δx0o ¼ δηo ¼
Z

η̄0

η̄in

āE0
0̂
dη̃ ¼ −

Z
η̄0

η̄in

āðη̃ÞAðη̃; 0Þdη̃: ðB2Þ

Finally, for μ ¼ i

δxio ¼
Z

T o

T in

δuidT̃ ¼
Z

η̄0

η̄in

viðη̃; 0Þdη̃; ðB3Þ

as reported in the main text.

APPENDIX C: POISSON GAUGE

In this section we write all GR effects in Poisson Gauge
(P). Starting from Eq. (46) in P gauge we have AðPÞ ¼ Ψ,
BðPÞ
i ¼ 0, hðPÞij ¼ −2Φδij, F

ðPÞ
ij ¼ 0, where Ψ and Φ are the

Bardeen potentials. By assuming the concordance back-
ground model and, at first order, neglecting the anisotropic
stress, we have Ψ ¼ Φ and

ds2 ¼ aðηÞ2½−ð1þ 2ΦÞdη2 þ δijð1 − 2ΦÞdxidxj�: ðC1Þ
In this gauge vk ¼ nivi ¼ n̂ · v (where vi ¼ ∂iv), δao ¼
−H0

R η̄0
η̄in
āðη̃ÞΦðη̃; 0Þdη̃, the (Shapiro) time-delay term is

TðPÞ ¼ −2
Z

χ̄

0

dχ̃Φ; ðC2Þ

and

IðPÞ ¼ −
Z

χ̄

0

dχ̃Φ0 ðC3Þ

is the integrated Sachs-Wolfe effect. For dark matter
particles in general relativity we have v0þHvþ∇Φ¼0
and the GWs overdensity in Poisson gauge is written as

δ½i�ðPÞ ¼ δ½i�ðSCÞ − beHvþ 3Hv

¼ b½i�ðηÞδ½i�m − beHvþ 3Hv; ðC4Þ
where we used Eq. (85),

ΔΩGWðnÞ ¼
fo
ρc

X
½i�

Z
N½i�½z; foð1þ zÞ�

ð1þ zÞ
�
b½i�δ½i�m þ

�
b½i�e − 2 −

H0

H2

�
n̂ · v −

1

H
∂kðn̂ · vÞ − ðb½i�e − 3ÞHv

þ
�
3 − b½i�e þ H0

H2

�
Φþ 1

H
Φ0 þ 2

�
2 − b½i�e þ H0

H2

�Z
χ̄

0

dχ̃Φ0

þ
�
b½i�e − 2 −

H0

H2

�

−H0

�Z
η̄0

η̄in

dη̃
Φðη̃; 0Þ

ð1þ zðη̃ÞÞ
�
þΦo − ðn̂ · vÞo

�	
dχ̄: ðC5Þ
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APPENDIX D: ALTERNATIVE DEFINITION
OF THE GRAVITATIONAL WAVE
BACKGROUND ANISOTROPY

Rewriting the background energy density in the follow-
ing way,

Ω̄GW

4π
¼

X
½i�

Ω̄½i�
GW

4π
; ðD1Þ

where

Ω̄½i�
GW

4π
¼ fo

ρc

Z
N½i�ðz; feÞ
ð1þ zÞ dχ̄; ðD2Þ

we are able to define a new quantity, i.e., the GW energy-
density overdensity,

ΔGW ¼ ΔΩGW

Ω̄GW=4π
¼

X
½i�

f½i�GWΔ
½i�
GW; ðD3Þ

where

f½i�GW ≡ Ω̄½i�
GW

Ω̄GW
ðD4Þ

is the weight of the relative contribution of the sources
which is bounded to be f½i�GW ∈ ½0; 1�. Here Δ½i�

GW is the GW
energy-density contrast for each contribution. Note that,
using this new definition, it is possible to describe quickly
both the ASGW and CSWG, and compute the angular
power spectrum of the GW energy-density contrast

DGW
l ¼

X
i;j;α;β

D½ij�αβ
l ðD5Þ

where

D½ij�αβ
l ¼ f½i�GWf

½j�
GW

Xl¼m

l¼−m

hβ½i�α�lm β½j�βlm i
2lþ 1

¼ f½i�GWf
½j�
GW

Z
k2dk
ð2πÞ3 S̃

½i�α�
l ðkÞS̃½j�β

l ðkÞPmðkÞ; ðD6Þ

with

β½i�αlm ¼
Z

d3k
ð2πÞ3 Y

�
lmðk̂ÞS̃½i�α

l ðkÞδmðk; η0Þ ðD7Þ

and

S̃½i�αðkÞ≡4πil
Z

dχ̄W̃ ½i�ðχ̄Þ
Z

χ̄

0

dχ̃

×



Wα

�
χ̄; χ̃;η;η̃;

∂
∂χ̃ ;

∂
∂η̃

�
ϒαðk;η̃Þjlðkχ̃Þ

�
: ðD8Þ

Here we have defined a new weight function

W̃ ½i�ðχ̄Þ ¼ fo
ρc

4π

Ω̄GW

N½i�½z; foð1þ zÞ�
ð1þ zÞ : ðD9Þ

Finally, S̃a
lðkÞ functions read as

S̃½i�δðSCÞm
l ðkÞ ¼ ð4πÞil

Z
dχ̄W̃ ½i�ð χ̄Þb½i�gwðηÞ DðηÞ

Dðη0Þ
jlðkχ̄Þ;

S̃
½i�∂2

kE
0

l ðkÞ ¼ ð4πÞil
Z

dχ̄W̃ ½i�ð χ̄Þ


−
fðηÞ
k2

DðηÞ
Dðη0Þ

�
 ∂2

∂χ̄2 jlðkχ̄Þ
�
;

S̃
½i�∂kE0

l ðkÞ ¼ ð4πÞil
Z

dχ̄W̃ ½i�ð χ̄Þ


b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�

HðηÞfðηÞ

k2
DðηÞ
Dðη0Þ

�
 ∂
∂χ̄ jlðkχ̄Þ

�
;

S̃½i�E00
l ðkÞ ¼ ð4πÞil

Z
dχ̄W̃ ½i�ð χ̄Þ



b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�

HðηÞð3

2
ΩmðηÞ − fðηÞÞ
k2

DðηÞ
Dðη0Þ

�
jlðkχ̄Þ;

S̃
½i�ð∂kE0Þo
l ðkÞ ¼ −

ð4πÞH0f0il

3k
δKl1

Z
dχ̄W̃ ½i�ð χ̄Þ



b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�
;

S̃½i�ðE00Þo
l ðkÞ ¼ −

2
ffiffiffi
π

p
H2

0i
l

k2

�
3

2
Ωm 0 − f0

�
δKl0

Z
dχ̄W̃ ½i�ð χ̄Þ



b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

�
;

S̃
½i�
R

E000

l ðkÞ ¼ ð4πÞil
Z

dχ̄W̃ ½i�ð χ̄Þ


b½i�e ðηÞ − 2 −

H0ðηÞ
H2ðηÞ

� Z
χ̄

0

dχ̃



3H̃3Ω̃mðf̃ − 1Þk−2 Dðη̃Þ

Dðη0Þ
�
jlðkχ̃Þ: ðD10Þ
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