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The detection and characterization of the stochastic gravitational wave background (SGWB) is one of
the main goals of gravitational wave (GW) experiments. The observed SGWB will be the combination of
GWs from cosmological (as predicted by many models describing the physics of the early universe) and
astrophysical origins, which will arise from the superposition of GWs from unresolved sources whose
signal is too faint to be detected. Therefore, it is important to have a proper modeling of the astrophysical
SGWB (ASGWB) in order to disentangle the two signals; moreover, this will provide additional
information on astrophysical properties of compact objects. Applying the cosmic rulers formalism, we
compute the observed ASGWB angular power spectrum, hence using gauge-invariant quantities,
accounting for all effects intervening between the source and the observer. These are the so-called
projection effects, which include Kaiser, Doppler, and gravitational potentials effect. Our results show that
these projection effects are the most important at the largest scales, and they contribute to up to tens of
percent of the angular power spectrum amplitude, with the Kaiser term being the largest at all scales. While
the exact impact of these results will depend on instrumental and astrophysical details, a precise theoretical

modeling of the ASGWB will necessarily need to include all these projection effects.

DOI: 10.1103/PhysRevD.101.103513

I. INTRODUCTION

The new run of observations from the LIGO/Virgo
Collaboration has recently started [I] and many new
gravitational waves (GW) from binary black hole (BH),
neutron star (NS), and black hole-neutron star mergers are
being detected. One of the most challenging targets remains
the detection (and characterization) of the background of
gravitational waves (GWB). Such a background is generated
by two contributions: a cosmological one originated from
early universe-related mechanisms, and an astrophysical
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one, originated from the superposition of a large number of
unresolved astrophysical sources.

Among the cosmological sources of GW's we can mention
the irreducible GW background due to quantum vacuum
fluctuations during inflation, which is expected to span over
a wide range of frequencies, and for which we have already
observational bounds from Planck [2]. In addition, inflation
and postinflation-related mechanisms can generate a sto-
chastic background of GWs at scales probed by interfer-
ometers like the Laser Interferometer Gravitational-Wave
Observatory (LIGO)/Virgo, the Laser Interferometer Space
Antenna (LISA), or the Einstein Telescope. For an overview
of early universe GWB sources see [3—6].

On the astrophysical side, there are many sources that
can contribute to form such a GW background (ASGWB),
which is the superposition of a large number of unresolved
sources and will be dominated by two types of events: the
first is compact object binaries, periodic long-lived sources

Published by the American Physical Society
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such as an early inspiralling phase of binary systems and
captures by supermassive black holes, whose frequency is
expected to evolve very slowly compared to the observation
time. The second type consists of short-lived burst sources,
such as core collapse to neutron stars or black holes,
oscillation modes, r-mode instabilities in rotating neutron
stars, magnetars, and super-radiant instabilities (see [7,8]
for general reviews and references therein).

To characterize such backgrounds will be extremely
challenging but necessary in order to extract precise
cosmological information. To a first approximation a
cosmological background may be considered stationary,
isotropic, unpolarized and mainly Gaussian, while there are
attempts to characterize how a non-Gaussian and polarized
background can be probed with an interferometer like LISA
or ground based interferometers [9]. The ASGWB has been
usually characterized assuming that the distribution of
sources is homogeneous and isotropic (and Gaussian).
The quantity which is commonly used to characterize
the GWB, both of cosmological or astrophysical origin,
is the GW energy density Qgw. Beyond its isotropic value
which has already invaluable information on the source of
GWs, it can have a directional dependence inherited from
the inhomogeneities of the matter distribution in the
Universe, in a way similar to the cosmic microwave
background (CMB) radiation. There has been a consid-
erable effort in the GW community to detect such a
background, but up to now we have only upper bounds
on the isotropic GW energy density component.
[LIGO/Virgo recent bounds are Qgw(f =25 Hz) <
4.8 x 1073, Pulsar timing arrays (PTA), at low frequencies
(10719 — 1076 Hz), gave a bound Qgw < 1.3 x 1077 [10].]
Upper bound have been extracted also on its anisotropic
component by LIGO and PTA. [LIGO O1 + O2 runs gave
Qaw(f =25 Hz,) < 6 x 1078 as the upper limit [11] and
PTA set Qgw(f=1yr ') <3.4x1071% at 95% C.L.
[12].] Such a background may be detectable with LIGO/
Virgo at design sensitivity, especially with the addition of
further interferometers to the global network (such as
KAGRA and LIGO India).

In a series of recent works it has been shown how the
anisotropy in the observed energy density of source
distribution and the effect of inhomogeneities on the
GW propagation can be used to infer astrophysical proper-
ties of the sources. A derivation of the angular power
spectrum of cosmological anisotropies, using a Boltzmann
approach, has been obtained in [9,13,14]. A derivation of
the angular power spectrum of cosmological anisotropies,
using a Boltzmann approach, has been obtained in
[9,13,14]. In the case of the ASGWB, the angular power
spectrum has been derived by [15-17], considering the
presence of inhomogeneities in the matter distribution and
working with a coarse graining approach which allows
one to probe GW sources on cosmological, galactic, and
subgalactic scales. Other predictions for the GW angular

power spectrum have been derived in [18,19], with both
analytical and numerical results using galaxy catalogs from
the Millennium Simulation. More recently, [20-22] have
analyzed the astrophysical dependence of the angular
power spectrum for different stellar models, while in
[23,24] the effect of shot noise on the angular power
spectrum has been considered, and a new method to extract
the true astrophysical spectrum by combining statistically
independent data segments has been proposed.

In this paper we present a consistent framework for
studying the ASGWB in a general covariant setting. We
obtain general coordinate-independent and gauge-invariant
results for all observables, accounting for all effects
intervening between the source and the observer.
Working to linear order in perturbations, we investigate
the effects of cosmological perturbations and inhomoge-
neities on the angular power spectrum of the GW energy
density. Applying the cosmic rulers formalism introduced
in [25,26] (see also [27] where the authors used this
prescription to study the effect of large-scale structures
on GW waveforms), we consider the observer’s frame as
the reference system. In this case, all of our results are
obtained at the observed frame, taking into account all
possible effects along the past GW cone of the GW energy
density. It is important to note that the ASGWB is
generated mostly by events that could be in principle
resolvable by precise and sensitive high resolution instru-
ments. In principle we might have a precise location of
ASGWRB in the observed space frame. Indeed, the ASGWB
signal is resembling other astrophysical backgrounds, such
as e.g., the cosmic infrared background (CIB), that have
been studied in the past (see e.g., [28-30]).

Without any coarse graining but just mapping our
perturbed quantities in the observer’s frame, we obtain
the corrections due to the inhomogeneous spacetime
geometry. In a very general way, following [15], we
consider two types of sources: (1) events with short
emission, e.g., merging binary sources (BH-BH, NS-NS,
NS-BH) and SNe explosions; (2) inspiralling binary
sources which have not merged during a Hubble time.
We first work within a general framework without fixing
any gauge and we subsequently consider a ACDM con-
cordance model on cosmological scales. Using the per-
turbed GW energy density we then compute the observed
angular power spectrum of the ASGWB highlighting the
main local and integrated projection effects which give
relevant contributions on large scales, considering a toy-
model case: the ASGWB generated by black hole mergers
in the frequency range of LIGO-Virgo.

The paper is structured as follows. In Sec. II, we define
the GW energy density in a gauge-independent way using
the observer’s frame and we then give a general para-
metrization for the description of the GW sources we will
consider. In Sec. III, we study the past GW cone in the
observer’s frame setting up the map between the observer’s
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and real-space/physical frame and we then present a
general perturbation framework of the quantities that enter
in the GW energy density. In Sec. IV, we perform the
computation of the perturbed quantities at linear level
without fixing the gauge using the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric. In Sec. V, we focus on
ACDM and compute the angular spectrum of the energy
density using the synchronous-comoving gauge. In Sec. VI,
we compute the angular correlation between the energy
density from different directions. Finally, in Sec. VII, we
numerically evaluate the corrections for different contri-
butions. We summarize our conclusions in Sec. VIIL
Through the text we will use ¢ =1 and (—,+,+,+)
conventions.

II. COVARIANT FORMULATION OF THE
GW ENERGY DENSITY

The quantity that characterizes the SGWB is the
GW energy density per logarithmic frequency f,, defined
as [15,31]

fo dpaw
Q Q) == 1

aw(for Q0) =20 g0 (M)
which represents the fractional contribution of gravitational
waves to the critical energy density of the Universe,
p. = 3H3/(87G), and dpgw the energy density of GWs
in the frequency interval {f, f + df}. Such a quantity will
have both a background (monopole) contribution in the
observed frame, which is, by definition, homogeneous
and isotropic (Qgw/ 47)," and a direction-dependent con-
tribution Qgw (fo, Q). In this work we focus on the
angular power spectrum of this second contribution (for

other recent analyses, see [15,18]).
The total gravitational energy density in a direction n is
the sum of the all unresolved astrophysical contributions
along the line of sight contained in a given volume dV(n)

dpcw _ dglc(;){v
df,dQ, df,d7,dA,dQ,
[l ou 3
= [i] a§d50w<xe—>xﬁv9) dv, dvdd
Z/ (0= T A, |dodg| ¥4
(2)

where [i] is the index of summation over all unresolved
astrophysical sources that produce the background of GWs,
6= {Mh,M*,n?,é*}, where M, is the halo mass, M* is
the mass of stars that give origin to the sources, m are the
masses of the compact objects, and 6* includes the
astrophysical parameters related to the model (i.e., spin,

orbital parameters, star formation rate). Here, nLi] is the

'Since it is related to an angular average in the observed frame.

(physical) number of halos at given mass M;, in the

physical volume dV,, weighted with the parameters 6 of
the sources at x4. The letter “e” stands for “evaluated at the
emission (source) position” while “0”” denotes “evaluated at
the observed position.”

The physical volume dV, at emission is defined as

- 0 O OxP Ox°
dVe =/ —g(x )8”1,/,{,1/{”()( )ﬁﬁﬁd%

= 2)3\(Z)(_Mﬂp}(l}w)dgzod/1

da
— D) )| 00 )
where €, is the Levi-Civita tensor, u, is the four velocity

vector as a function of comoving location, and we have
introduced the angular diameter distance D, and the GW
four-momentum p’éw. Let us point out that, as in [27], here
we consider the local wave zone approximation to define
the tetrads at source position (i.e., the observer “at the
emitted position” is a region with a comoving distance to
the source sufficiently large so that the gravitational field is
“weak enough” but still “local,” i.e., its wavelength is small
with respect to the comoving distance from the observer y
(see for example [32]).

The four-velocity of the observer can be written using the
comoving tetrad

dx#  dx® .
ut :d—T:d—TA’;: uAy :Ag, (4)

where 7 is the proper time of the observer and Af is an
orthonormal tetrad. Choosing u* as the timelike basis
vector,

u, = N, = aky, and w' = A5 =a'Ef, (5)

where Efj are the components of the comoving tetrad which
are defined through the following relations:

n&/}EgEl/f = .@uw

NapEr = Ep. (6)

el = .
P& Eff — Fbr,

and 77, is the Minkowski metric. The graviton four-vector
is defined as

g e 2nf,
GW " da dy a?

K-, (7)

where k* is the comoving null four-vector of the GW,
u* is the four-velocity of the observed at x&, and 4 is the
affine parameter that can be written (normalized) in the
following Wayz:

*This suitable normalization in Eq. (8) can be completely
understood in Sec. III.
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aZ

2nf,

from the source to the detector. Here y is the comoving
distance, in real space, from the observer to the source of
the GW. Clearly, (—u,py) = 2fe.

The energy of gravitational waves emitted from the halo
at the observer is

di=—

dy. (8)

-

dEGw (vt = 6.6) _ KU(z. fo k. 6)
dfedTodA, — (1+2Di(@)

©)

where Kll(z, f., x4) encodes all physical effects of the GW
signal emitted where the superscript [i] is related to a
typical unresolved astrophysical source considered.

The quantity 5[04W (x& — xb) (to simplify the notation, we
will write it as S[é]WO), for a given type of source labeled by
[], can be related to the energy spectrum per unit solid
angle in the rest frame of the observer (in the halo) that
includes all emitting sources at a given redshift z and
direction n, as

dgg]WO
dfO dTO dA o

A&y, dfedT AR, dEy, (10
del, dfodT, dA, dfdT 40,

where dS[Gi]We /df.dQ, is the energy spectrum per unit solid
angle of the observer with z = z..
Using the energy conservation

el 1

2RO — , (11)
dell,. (1+2)
and the relations df,d7 , = df.d7 ., and
dQ 1
L 12
A, ~ T+ D30 "
we can rewrite Eq. (10) as
[i] U
dgGWO _ 1 dgGWe ( 1 3)
df AT odA, — (1+ 2D} (2) dfedT dQ,

In general, for a particular type of source, dé'g]we/ df./
d7 ./dQ, has a specific distribution function characterized
by local parameters of the source which depends on the
mass, environment, distribution of matter, velocity
dispersion of the matter and source, and the type of galaxies
within the host halo. We can thus distinguish two cases:
(I) events with short emission (burst sources), e.g., merging
binary sources (BH-BH, NS-NS, and/or NS-BH) and SNe
explosions; (II) inspiralling binary sources which have not
merged during a Hubble time, and hence GW emission is

averaged over several periods of the slow evolution of the
orbitals parameters (continuous sources). The resulting
energy in the two cases reads

ANy, dED

sl _[SPedE oo
df.d7 .dQ, a i da, dEl..
N Gye S oteve for (10),

where for case (1), dN E]We /d7T . is the merging rate of the

events for each halo and dé’[é]We /df./dQ. is the energy
spectrum per unit solid angle, while for case (II)

o G< Z feA > (15)

Here A, is the amplitude at emission’ and we have
decomposed the above quantity in the two independent
modes of linear polarization of the GWs. The overline in
Eq. (15), denotes the “time average” of the observer.
Following [33], we have defined (...) as the average over
a region whose characteristic dimension is small compared
to the scale over which the background changes. The
average is over the emitted region whose characteristic
dimension is about the scale of the halo dimension (around
1-2 Mpc). We can thus identify the quantity Cl(z, £, x%)
as the energy at emission

dgGlWe

= (7 00 H
df.d7.dA,

GWe

dg[Cli]W e

———GWe _ _ gcli u 3
draT.dg, N fexe.0)

(16)
and obtain the following expression for the energy density:

[i] (lé o

oy2 1 (¢, 0)

= E dydo, 17
] /a(x) (27 7 {17

dpcw
df,dQ,

where we define the toral GW density as

‘ ; el
il (x2,8) = nf] (o) SoGwe

df.d7.dQ, (z.fer X.0). (18)

III. GENERAL PRESCRIPTION

Let us define x#(y) the comoving coordinates in the real
frame (or real space, the “physical frame”), where y is the
comoving distance, in real space, from the source to the
detector (the observer) and call observer’s the frame where
we perform observations; we will adopt the approach of
[27]. Assuming the usual concordance background model,
let us use coordinates which effectively flatten our past

*We are using the local wave zone approximation, hence the
coordinates are strictly related on the considered halo.

103513-4



PROJECTION EFFECTS ON THE OBSERVED ANGULAR ...

PHYS. REV. D 101, 103513 (2020)

gravitational wave cone so that the GW geodesic from the
source has conformal space-time coordinates:
% = (7.%) = (59 - 7.7m). (19)

Here 7, is the conformal time at observation, y(z) is
the comoving distance to the observed redshift, and n is
the observed direction of the GW, ie., n' =x/y=
5Y(0y/0x/). Using 7 as an affine parameter in the
observer’s frame, the total derivative along the past GW
coneis d/dy = —0/0 + n'd/0x'. We use again subscripts
“e” and “0” to denote respectively the position where the
GW is emitted and received. The frame defined in Eq. (19)
is the real observed frame in which we make observations
(also called “cosmic GW laboratory” in [27]). Therefore,
this is the correct frame where, for instance, we can
reconstruct 3D maps/catalogs of galaxies by using both
EM and GW signals. This frame is commonly used in
galaxy catalogs. If we use unperturbed coordinates we are
not able to interpret correctly the correlation between the
ASGWB and EM sources from observed galaxies since it
can induce a bias in our results.

Defining the photon 4-momentum piy = —27fk*/ a’,
where a is the scale factor, the comoving null geodesic
vector k* reads

v = G ) = 35 (7 + 3e)(2)
= (=14 6f.n' 4 6n')(¥), (20)
with
_ dx*
kﬂ:@_( 1,n). (21)

The comoving coordinate in the physical frame can be
written as

V(1) =) + 054 =R (D) + o+ (D) (22)
with

X=X+, (23)

Sxt = x4 A " skidg, (24)

and where 6k* is computed using the geodesic equation for

the comoving null geodesic vector k*(y) = (dx*/dy)(x).
More precisely,

dk* ()() i

4 Ly (K ()K () = 0, (25)

where f’;ﬂ are the Christoffel symbol defined using the
comoving metric §,, = g,,/a*. Expanding k*(y) and

f’éﬁ(xy) up to linear order,

K () = K(p) + 5;%(;),

. o o .
Fl:t/}(xy) = Fﬁl/}(xy) + Ax* ox yF/:t//’( ) (26)
we get
dkﬂ(/?) (= \N1.B( =
i T la@k DK (x) =0, (27)

where k*(j) = k*(7) + 5k*(7). We then need to evaluate
the scale factor and affine parameter at emission. For the
former,

=1+ Alna=1+HAX, (28)

QI

where @ = a(x°) and H = @'/a is the conformal Hubble
factor. Here the prime is 0/0x° = 9/07. As show in
Sec. IV, a = 1/(1 4 z). Now, we have

doy
dy = (1+-2)dy 2
Y ( +d)_(> 7. (29)
with*
déy H 1 dAlna
T S — AL . 30
g = e T (30)

It then remains to study the total density, which depends
on halo mass, the environment around the halo, e.g., tidal
effects, velocity dispersion, and type of galaxies. Most of
these effects could change not only the background number
density of the halos but also the relation between the
density contrast of the halos and dark matter. It is therefore
essential to have a priori the knowledge of an astrophysical
model that connects all these quantities, e.g., see [34-38]
(see also [7] and refs. therein). Perturbing the total density,
we get

Here we used that 5y = 6x° — Ax? = 6x° — Alna/H.
Note that

n[’] (xa) = n[l](o)(xo) —+ n[i](l)(xa), and

710 (x0) = nlO)(x0 4 Ax0) = 7l (=) +

where nl1(©)(30) = 7ll(x0).
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. ) dIn il
() = 7l 1 Al Sl 31
nlil (x*) n(—l—dna na-+ (31)
where
_ 1) (z)
="
I} r‘z[i]()‘co) (32)
We thus obtain
d Q
o =1 PO DOV gy, (3
where
Qow _ fo dbgw

Nl (z, fe,
=20 dzdd, (34
4 pedfedQy  pe Z/ (34)

with Nl (z, £..6) = iill(z, f..6)/(1 + z)? the total comov-
ing number density at a given redshift, and

AQGW—fOZ/N Zfev

- dInN H
(1] _ i
x{é + inz Alna <1+H2>Alna
f__

1 dAlna
dydé. 35
o fonad (35)

A. Connection with halo and stellar mass functions
and with star formation rate

It is important to relate the above quantities to the halo
and stellar mass function, and to the star formation rate
(SFR). At background level, for each type of source, in
literature the comoving rate density is defined as [39]

1 dNY(2.6) ,dy

Rlil(; 0) = it
(Z59) (1+Z) dTe X dZ

Q.. (36)

where N[é;]w is the comoving number density of ASGW.

Precisely, N, [é]w(z, 6) depends on the mass of stars® M* that
give origin to the sources that we are considering, i.e.,

dnl,
aM-

Following [42,43], the stellar mass M™*(M},) is a function of
host halo mass M), [in general, it could also depend on

dNl, =

dm*. (37)

®In principle, Ng]w should be a function on the stellar mass at
given z and M*, e.g., see [40,41]. Finally, more in general, we
could split this quantity in three parts: (i) contribution of central
galaxy, (ii) satellite galaxies, and (iii) all sources that are still

within the halo, but outside the host galaxies.

many other parameters as the metallicity (e.g., see [40]),
etc.]. Then we have [42]
dNDy NG, (dlogioMT\ ! 38)
dinM*  9ln M, \dlog,, M,

For a given halo mass M, we can split Ng]w(é*,Mh,

M m,T..z)= Nh(Mh,z)<N[é]w(§*,M*, m,z,7T.)), where
Ny, is the comoving number density of halos in a mass
interval dM,; around M,. Comparing these relations
with the background quantities (in the observed frame),
described in the previous sections, we find

= dNy (M, 2)
i — 4li(, 7y 9VnM, 2)
NUl(z,0) = Alil(z, 9) M, and
NG = W6 M .2, TL)), (39)

where Az, 5) is a generic function which depends on the
initial mass function M* and, in general, other parameters
of the sources. Because of the many simplifications we
have taken up here, we define

N, = M, (dlogoM*\ ! _. -
il(, ) — 2th (9208102 [1] 0). (40
/1 (Z’ ) (d10g10 Mh) ’C (Z’ fe’ ) ( )

Then we have

_ ANy (M}, 2) AV e )
M, 4T,

aN[Cii]W(Z’ 5)
d7 .0M,,

Now Ny(My,z) can be related to the fraction of mass

F(M,, z) that is bound at the epoch z in halos of mass

smaller than M,, i.e.,

dNw(My, z) _ p(z) dF (M) (42)
dM,, M, dM,

where p(z) is the comoving background density. Here, for
example, we can use the Press and Schechter [44], the
Sheth and Tormen [45], or the Tinker [46] mass fraction.

Following [47,48], it is useful to define g(M) of halos
dF(Mh7 )
M —_— 4
9M) ==, M, (43)

Finally let us introduce the (mean) star formation rate that it
is connected with N [(’;]We in the following way:

Ny ;
% = N, x SFR. (44)

Note that s(My, z) defined in [47,48] can be related with
SFR in the following way: s(My,z) = (M*/M,) x SFR.
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We conclude that this analysis can be easily used for case
(). Nonetheless we can use the above approach also for
case (II). Indeed, if we define the following new quantity

din (&l /dfdA,)

F 7,

(45)

then, substituting SFR with F, we can use again the above
prescription.

IV. FIRST ORDER METRIC TERMS

Let us now consider a spatially flat FLRW background,

perturbed in a general gauge at the linear order:
ds? =a(n)*[—(1+2A)dy* = 2B;dndx’ + (5;; + h;;)dx'dx’],
(46)
where B! = 0;B + B;, with B; a solenoidal vector, i.e.,
aiEl‘ = O, and hl} = 2D61} + Fijs Wlth F” = (8,51 —
5;;V?/3)F + a,»[?j + aji«“i -+ flij. Here D and F are scalars

and F, is a solenoidal vector field, afiz,j = ftf =0.
Considering a four-velocity vector u# at linear order,
uy = —a(l+ A), u; = a(v; — B;), (47)

and using Egs. (5), (6) and (47), we can deduce all

components of Af;;) and Eg;), as follows:

0) _ u(0) _
EY = (-1,0), and B =(10)  (48)

at background level and

AW = B2 )g = —A/a, Aé(l) = Eém/a =v'/a,

1 1
= —daA, AE) = aEéi) = a(v,» - Bi),

0i

1
Aéll) = ClE(alt) = Eahai (49)

at first order. The geodesic equation (27) yields’

d 1

d . . o ) . |
G O+ B h)) = ~0'A+ 0B~ B
1 i 1 ij k

From Eq. (7), for y = 0 we have

"This is in agreement with photon perturbation analysis made
(see for example [25,26]).

p(”)G:v = <A(3;4p/éw)|o = —27‘[f0,
pg:v = (A&ﬂpéw)lo = _2ﬂf0n&a (52)
and we find
2xf
(AéﬂpléWNO = a : (Eﬁﬂkﬂ)‘o = 2xf,,
2nf,

(A&ﬂpléWNo = (E?z/zkﬂ)lo = _Zﬂfon?z' (53)

Using Egs. (20), (48), (49) and
ady = a(ﬂO) = a(7_70) + 5610 =1+ 5610 (54)

where we set a(7j,) = 1, at the observer we have

6fo = —ba, +A, + Vo — BHO’ (55)
N N JU B
ond = dayn — v — Enlh?ff (56)

From Eqgs. (50), (51) and the constraint from Eq. (55), we
obtain at first order with

8f = —bda, — (Ao — vjo) + 24— B =21  (57)

on' = ni6n|<|l) +on', (58)

where

1
571” =da, +A, — Vjjo —A- EhH + 21, (59)

T N T Do« e
o', = Bl =iy +onthiy = (Bl +nt kP 28V,

(60)

— 1 Z f ! / 1 !

I is the
0, =0/0x.

We can use the projector parallel and perpendicular to the
line of sight, defined in the Appendix A, to split S’ in its
parallel and perpendicular components

integrated Sachs-Wolfe contribution and
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o | 1
S =~ 2/ dx[8¢<A B—§h> (B£>+n"hkj7’”)]

(63)
1 1 1 1
Si=3 <Ao — By - ho) <A B) —h>
1 1
+I—§ A d)( (BH +h||) (64)
Note the relation
1
5”\\+5f:A_BH_§hH' (65)

Using Egs. (24), (57) and (59), we find at first order

6x0 = 6x) —7(6a, + Ay —v)0)
Z ~ - ~
+A d;([ZA—BJr(;(—;()(A _B- th (66)

ox|| = x|, +y(6a,+ A, — UHO)

_K‘dg[<A+%h>+(;?—ﬂ?)<A’ i ;”ﬂ

(67)
i(1) i = pi 1 k) Di
ox; ' =ox, +¥(B,— UJ_O+ nhko j
L i ky,J Di
_A d;({(BL—i—n HPY)
N ¥ 1
+()(—)() 8L A_BH_Eh”
1 .
w2 @) o
200 4 ol = 60 + xfl) — T (69)

where

T:-fd;;(A-B-%h) (70)

is the Shapiro time delay [49].

The quantities 5x9 and Sx!, derived in the Appendix B
following [50,51], have their origin from the fact that the
physical coordinate time ¢y = t(n = 1y) = t;, + f "o q(77)di
does not coincide with the proper time of the observer T, in
an inhomogeneous universe. We have

50 = Sy = / aEQd7 = - / a(AG.0)d; (1)

Min Min

and
. Ty .~ o .
Sxiy = / ou'dT = v'(77,0)d. (72)
7Vin Flin

Taking into account that a(7jy + dn,) =1+ Hodn, =
1 + 6a,, we are able to obtain the expression for
5610 = 1 + 6610,

P / " (@A, 0)d7 (73)

The next quantity that we need to compute explicitly is
Aln a. The observed redshift is given by

B _a, (EgK)l
(I+2) =7 alxe) (Eg,k)lo” (74)

where we used f « 1/a. Quantities evaluated at the
observer have a subscript o, while other quantities are
assumed to be evaluated at the emitter (up to first order). As
we discussed above in Egs. (53), (54) and (55), we know
that

(Eéyk”)|0:1_5f0+Aa+v||o_B||a:1+6aa:ao; (75)

then we have

(76)

From Eq. (28), @ = 1/(1 + z) is the scale factor of the
observed frame. From Egs. (28), (48), and (49), Eq. (76)
turns out to be

1+ (Eg, k"
_ ( Ou )’ (77)
1+ Alna
where
(Eg, k) = 1. (78)
Then from Eq. (77) we can find Alna, such that
Alna = (Eoﬂkﬂ)(l) - Eé:t)kﬂ(()) + Eé[;l)kﬂ(l)
(1) ip(1) _
_EOO +I’lE(~)i —5f—A+1JH _BH —5f
= 5a0 + (Ao - UHO) —A+ | + 21. (79)

Note that this result was already obtained for the photon
in [25,26]. In this case we are able to write explicitly
Egs. (23) and (30), and obtain the final equation for the
affine parameter Eq. (29)
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1 1
Sy = 6x9 — ()(_Fﬁ) (6ay + Ay = vjo) + 5 (A =)

H
+/Old;?{2A—B+(;‘(—;?)<A - B - h’)]
—%1 (80)

and

AQgy =12 “ f°

l

+<b£’]—1

Z/N

déy H' H
’ - —<1 —|—H2> (6a, + Ay — ) + < H2>A B
H' 1[d

—2<1 +z—;>1. (81)

Hence it reads

H/
)]{M ( H+3+H2>A—B”

M 17d o1, H
H2>U||+H|:d_( —U)+(A—B— h>:|+2<b“ 2_W>I

+<b” 2—;:[—/>(6a0+A v||0)}d;?, (82)

where we have defined the evolution bias by

dIn NI
din(1+2z)°

d1n Nl

pll — —
¢ dlna

(83)
Note that, in general, 50 is not a gauge-invariant quantity.

V. GRAVITATIONAL WAVE BACKGROUND
ANISOTROPY IN THE SYNCHRONOUS-
COMOVING GAUGE

Using the synchronous-comoving (SC) gauge within
ACDM allows us to synchronize observers on the same
spacelike hypersurface, as they are comoving with the
cosmic expansion. The metric can be then written as

ds? =a?*(n){—dn* + [(1-2R)5;;+20,0,E)dx'dx’}, (84)

where as previously # denotes conformal time and we set
goo = —1, go; =0, and v’ =0. Hence, A =0, B; =0,
F=2E, and R=-D+V?E/3 (or h;;=-2R6;;+20,0,E).

In the SC gauge the bias 6/1(5C) is a gauge-invariant
quantity. Moreover, in SC gauge, the spherical collapse
model has an exact GR interpretation and only in this frame
halos collapse when the linearly growing local density
contrast (smoothed on the corresponding physical mass
scale) reaches a critical value. Quantitatively, on large
scales, it can be defined as

Sl (S = plil (3765 (85)
To simplify notation, in what follows we drop the super-

script “SC,” but still use the SC gauge unless explicitly
specified otherwise.

|
We thus obtain

N[z, fo(1+ 2)]

AQ
aw (n (1+72)

Pec [z
x {b[i](n)(sm - ﬁaﬁE'

. / -
+ <b£ﬂ _a- %) (O + Ef

+ (bB] - %) A g E”’d;?}d;‘(. (86)

The physics behind the different contributions is clear:
there are local terms taking into account the evolution from
source to the observer, including the galaxy density
perturbation (the first term within the curly brackets), the
Kaiser term [i.e., —(1 /H)82E’], the Doppler effect (i.e.,
proportional 9 E' term), the local gravitational potential
term (proportional to E”), and finally the integrated Sachs-
Wolfe contribution (proportional to [ E"”d}).

While the structure is similar to the one found in [15-19],
our result is expressed in the observer’s frame, which, by
definition makes all quantities gauge invariant. We can then
evaluate the evolution bias related to the distribution of
objects along the line of sight. Note that since we are
working in the observer’s frame, we do not need to perturb
the effective luminosity. Nevertheless, for completeness we
also present our result in the Poisson gauge in Appendix B.

VI. ANGULAR POWER SPECTRUM

To characterize the ASGWB we compute the correlation
between the energy density coming from different
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directions. It is known that this is the appropriate quantity
to correlate [8,31], rather than the GW signal itself, which
would have a vanishing two point correlation, unless
signals with coherent phases are considered. Since we
measure it on a two-dimensional sky, the spherical sym-
metry allows us to work in spherical harmonics space.
Therefore, we expand the observed GW energy density as

Zafm Yfm (87)

AQGw(n

where the coefficients ay,, are given by

a= [ @0y, Q0. (89

The angular power spectrum then reads

‘=m

SV = Z afmafm ZCU (89)
{=—m 2f+1 i.j;a.p
where
‘=m ilax _[jlp
clijlas _ Z (@ al)
‘ — 20 +1

(K)SY (k)P (K)dk, (90
e (K)Pw(k)dk,  (90)

with P,, the matter power spectrum today

(8(k.10)5* (K. 1)) = (228 (k = K)P,, (k). (91)

Therefore in spherical space

3
a[i]at’m :/((217[1;3 If’m(f()s[ (k)om(k.m),  (92)

where we defined the spherical transforms as
Sg]a(k) E4m'f/d)_(W[i] 7)

7 0 0
dN Wa _aNa 7~7 A~ T(X ] kN ’
X/o x[ ( 2T aﬂ) (K. 7)j( x)]

with

o N[z, fo(1 +2)]

WHl(7(2)) = P ) (94)

For each contribution in Eq. (86) we define the operator
W, which encloses the different physical effects, and
Y*(k,7) is a transfer function that maps the different

perturbed contributions at a given redshift to the density
contrast today. Precisely, in ACDM, taking into account
that E” 4+ aHE' — 4xGa’p,,E = 0 (note that R/ = 0), we

have
E=-g Ij 3 fV26, (95)
B — _% @ Q, - f) V26, (96)
P — _3 %gm( f=1)V26,, ©7)
_ % G Q, + f) V26, (98)

Here Q,,(z) is the matter density and f(z) is the growth rate
defined as

dinD
dlna’

D(n) (99)

(SC)
- 5m X? k)
( 7]0) D(’?o)

f= 5m<x777)

where D is the growing mode of 5EEC>. In conclusion the

S%(k) functions describe the different physical effects and
can be written as

(SC)

S[’] m (k) = D(n)

D()

Je(k),

(100)

(4m)i¢ / apWi(7) bl ()

[otE'

SPE (k) = (dm)ic / Wil (7)

< [SLP DI Jwn]. a0

SYE (k) = (4m)if / dWil(z) {bg] () ‘2_77:2((71))}
H 0
SPF (k) = (4n)i’ / dpWil(7) [”M ) =2 ‘77:2271))}

y [H(n)(%ﬂm(n) —f(n)) D(n)

DL D0 ). 103)
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SO ) _ _Wag / dpli(7)
i, M)
=23 o
- THZi¢
SIE () = —2‘/—% (%Qmo —fo>
N H'(n)
x 5K / dWlil(y) |:be (’7)_2_7#(;7)}
(105)
ST ) = (amyi / dpWli (7) |:b[ei](77) -2- 77;;((77))]
¥ [ona o o DT,
X/o d}([:’)H Qun(f -1k m}”(k){)'
(106)

In Appendix D we will give a alternative definition of the
gravitational wave background anisotropy. As mentioned
above, this is reminiscent of the CIB case, where projection
effects provide also a large contribution to the signal (see
[29], where they are called GR corrections).

VII. RESULTS

Here we compute the effect of projection effects on the
inferred energy density through the correlation function
obtained analytically in the previous section. To study the

fo =150 Hz
0.3f -== X = Den + Kaiser
q \\\ —+= X = Den + Doppler
o) N — ;
S~ 09} \ X = Den + Gravity |
)
~
—
=1
3
A~
|
&
~— _01 .
—0.2 o0
14

FIG. 1.

importance of these projection effects, we consider a toy-
model case: the ASGWB generated by black hole mergers
in the frequency range of LIGO-Virgo and the Einstein
Telescope. Given the similarities between this formalism
and the one used to compute the angular power spectrum of
the galaxy number counts, we have modified the public
code CLASS to compute the ASGWB anisotropies angular
power spectrum. The details of the code will be presented in
a companion paper in preparation [52].

Given that only unresolved sources contribute to the
SGWB, the merger rate of black hole binaries has to be
corrected with the detector efficiency. In particular, we
assume a network of detectors composed by LIGO
(Hanford and Livingston) and Virgo. The merger rate
and detectability of merging events has been computed
following the prescriptions of Ref. [53], while the GW
waveform is computed as in Ref. [54], considering
also the source orientations. In the following we consider
the GWs emission in the f, =50 Hz and f, = 200 Hz
channels, assuming that all black hole binaries have
members with masses (Mpy 1, Mppo) = (15.0,15.0) and
zero spin (yy,x») = (0,0).

On the cosmological side, we compute the halo bias
using the fitting formula calibrated on numerical simula-
tions provided in Ref. [55]. The evolution bias is computed
using the halo number density distribution of Ref. [56], also
calibrated on numerical simulations. For simplicity, in the
following we assume that all the events come from halos
with mass My, = 10> M.

In Fig. 1 we report the relative difference of the
angular power spectra including different contributions
with respect to the angular power spectrum obtained using
only density contributions [here for simplicity we are
neglecting Eqgs. (104) and (105), evaluated at the observer

f, = 200 Hz
\\ ——== X = Den + Kaiser
} \\ —+= X = Den + Doppler
g 0.4F Se e X = Den + Gravity |
5Nl
@) — X =Al
~
E‘\
&»\g 0.2
| —
TR X e
= | e
—0.2¢ .
10!
14

Relative contribution of different projection effects on the angular power spectra, for the 50 Hz (left panel) and 200 Hz (right

panel) channels. In both cases we assume that all the events come from the merger of two 15 M, BHs with no spin, in My, = 10'> Mg
dark matter halos, and we consider a second generation network of detectors. The solid thin line at zero indicates intrinsic clustering; the
blue dashed line shows the contribution of the Kaiser term, the dot-dashed orange line is the Doppler effect, the dotted green line shows
the contribution of gravitational potential terms, and the red solid line shows the effect of all projection effects combined.
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position]. The two panels show results for two different
frequency channels, 50 and 200 Hz. The solid thin line at
zero indicates the intrinsic clustering, the blue dashed line
shows the contribution of the Kaiser term, the dot-dashed
orange line is the Doppler effect, the dotted green line
shows the contribution of gravitational potential terms, and
the red solid line shows the effect of all projection effects
combined. We showed relative contributions to both
emphasize the effect of different terms and to isolate this
from astrophysical and instrumental uncertainties. The
results presented show that the contribution of different
effects (i) is larger at the lowest angular multipoles, and
(i1) depends on the frequency of the signal measured. By
looking at the relative amplitude of the different effects, we
can clearly see that they are all of the same order of
magnitude, with the Kaiser term being, in our toy model,
the most important at all scales. At the largest scales, Kaiser
and Doppler, gravitational potential terms contribute up to a
few tens of percent of the total power spectrum amplitude.

In fact, the relative importance of different contributions
depends on the choice of sources and detectors, i.e., on the
W function which has the role of a weight in Eqs. (100)—
(106). This means that the relative importance of different
effects depends on the assumed case, detector specifica-
tions, and astrophysical models. A detailed investigation of
these dependencies and their effect on cosmological and
astrophysical model measurements will be presented in the
follow-up paper [52].

VIII. CONCLUSIONS

The detection and characterization of the astrophysical
gravitational wave background will be another milestone in
the GW community. It will represent a further step toward
studying astrophysical properties of black holes and cos-
mological model tests and be a crucial part in the search for
a gravitational wave background of cosmological origin,
which would shed light on the physics of the early universe.
Many efforts have been already made to study the ASGWB
from analytical, numerical, and map-making points of
view, and the importance of a precise understanding of
both the astrophysical dependencies and propagation
effects have been studied. Such a process requires the
development of consistent tools which can be directly
compared to observations.

In this paper we compute the observed gravitational
wave power spectrum, i.e., we use gauge-invariant quan-
tities accounting for all the effects intervening between the
source and the observer. We use the “cosmic rulers”
formalism and we have taken into account all the correc-
tions (at linear order) to the GW energy density. The signal
we are after is the stochastic superposition of unresolved
astrophysical sources; it is generated by events that will be
in principle resolved by higher precision instruments. Thus,
this signal depends upon the instrument response and the
survey strategy and is affected by projection effects. It is

analogous to other astrophysical backgrounds, and by its
nature different from the primordial, inflationary generated,
GW background. It is therefore crucial to analyze (and
before that, theoretically model) the signal, including all
intervening effects and in the appropriate frame. Mapping
our perturbed quantity in the observed frame we are able to
pick up information on the astrophysical properties of the
GW sources and to obtain corrections due to GW propa-
gation in an inhomogeneous universe. We considered
two categories of sources: (I) events with short emission,
e.g., merging binary sources and SNe explosions, and
(ID) inspiralling binary sources which have not merged. We
derive expressions for all the (linear) contributions and
investigate their relative contributions to the observed
ASGWB. Our results show that the contribution of different
effects is larger at the lowest angular multipoles, and at the
largest scales, Kaiser and Doppler, gravitational potential
terms contribute up to a few tens of percent of the total
power spectrum amplitude, and their importance is also
frequency dependent. Among these, the Kaiser term plays a
relevant role, as in the case of other astrophysical back-
grounds like the CIB [29] and radio-continuum and
intensity mapping, as shown in [57,58]. From our plots
we see that the Kaiser term is dominant on large angular
scales, while becoming negligible on small scales. Finally,
let us mention that when the integration along the line of
sight is performed, one should also consider the normalized
selection window function, whose form depends, besides
redshift, on the sensitivity/characteristics of the detector
(e.g., interferometers in the case of GW).

Therefore, with the caveat of astrophysical and instru-
mental dependencies, which will need to be investigated in
more detail, we see an indication that projection effects will
need to be included in all theoretical modeling of
the ASGWB.

A follow-up paper in preparation [52] will describe the
numerical implementation of this formalism, a more
advanced astrophysical modeling and realistic black hole
mass functions, and will present a detailed analysis in order
to estimate the astrophysical parameters derived for astro-
physical background sources.
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APPENDIX A: DEFINITION OF SOME
PARALLEL AND ORTHOGONAL
PROJECTOR OPERATORS

In our analysis we often prefer to work with projected
quantities, in order to identify the various contributions
along and perpendicular to the line of sight. Imagine
considering a three-dimensional Cartesian reference frame
in which the z axis connects us (the observers) to the
starting point of the GW we detect, thus defining the so-
called line of sight which is basically identified with the
direction fi and the x-y plane is perpendicular to the line of
sight and passes through the source position. With this in
mind we can define and projected along or perpendicular to
the line of sight. In this way the quantities we work with as
derivative operators, vectors, and tensors can be defined as

A =niniA, B =PUB; =B —n'B, (Al)

where ’P} = 6} —nin e The same can be done with deriv-
atives which become

_ 0 I _ 9
8“ = n’ﬁ, 8ﬁ = 8“8“, 8L,~ = P{@l 8_ —n; GH,
o/ 1 _; d 1.,
—— = _ . - i —=0' A2
85(’ )—(Pz’ 8 Ld— )—( 1> ( )

and we have
i in.0 i ) z i S
ek n'n;0| B +n'd ;B + 0B +n;0| B, _|_)j(']);BH7

a 0 5 2
Vi= =6 — T =29 A

APPENDIX B: PROOF OF 6x AND 6xi,

We compute here explicitly 6x0 and 6x}, which arise from
the fact that the physical coordinate time tq = t(n = 1y) =
tin + [0 a(i
observer 7. o in an inhomogeneous universe. We have

77)d7 does not coincide with the proper time of the

d# EX
a " (B1)

then for x4 = 0 and considering the physical coordinate df =
a(n)dn at the observer we have

T
to—tn="T0— T +/T OEng'

/N[ [z. fo(1
(1+z)

AQgw(n

Now fq = 1y + 0t,, where f; is the time coordinate of the
observer and, therefore, it has to coincide with the proper
time, i.e.,

EO - tin - TO - T
and 6t, = a,on, = on,, and we have

50 — o, = / aEQd7 = - / " a@AG. 0. (B2)

Min Min
Finally, for y =i
flo

. T, . ~ .
oxl = / suldT = v' (7,
Tin ’_7in

as reported in the main text.

0)d. (B3)

APPENDIX C: POISSON GAUGE

In this section we write all GR effects in Poisson Gauge
(P). Starting from Eq. (46) in P gauge we have A®) = ¥,

B = 0,4 = 205, F = 0, where ¥ and ® are the
Bardeen potentials. By assuming the concordance back-
ground model and, at first order, neglecting the anisotropic
stress, we have ¥ = ® and

ds? = a(n)*[—(1 + 2®)dn* 4 5;;(1 — 2®@)dx'dx’].  (Cl)

In this gauge v = n'v; =i - v (where v' = 9'v), ba, =

—H, f,—fg a(i)®@(i, 0)dp, the (Shapiro) time-delay term is

T() = 2 / " dpo; (C2)
0

and

4
I®) = — / dy®r (C3)
0
is the integrated Sachs-Wolfe effect. For dark matter
particles in general relativity we have v +Hv+V®=0
and the GWs overdensity in Poisson gauge is written as

i H) 1, ( i H’) /ff -
t(3-pl o+ +2(2-p + 5 dy®
( H H ) Jy ¥

+ (b[’] 2—%)[ HO(/,—ZO dﬁ%) +<I>o—(ﬁ-V)oHd)?-

SUP) = SO — p Hy + 3Hw
= bl ()8l — b, Hv + 3Hw, (C4)
where we used Eq. (85),
i H'N . L, . i
+2) { plilsl + <bL] —2—ﬁ>n ASEUILIOR (B = 3yHw
(C5)
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APPENDIX D: ALTERNATIVE DEFINITION
OF THE GRAVITATIONAL WAVE
BACKGROUND ANISOTROPY

Rewriting the background energy density in the follow-
ing way,

Qaw O
— D1
Ar % 4 (D1)

where

[i]
52 “’ fbn/mA’ <, fe ODZ)

we are able to define a new quantity, i.e., the GW energy-
density overdensity,

AQqgw il Al
Agw = = — AL D3
GW £2GW/4” j%:fGWf GW ( )
where
0 _ Qw
fow = —Q (D4)
GW

is the weight of the relatlve contribution of the sources
which is bounded to be wa € [0, 1. Here A’ ]W is the GW
energy-density contrast for each contribution. Note that,
using this new definition, it is possible to describe quickly
both the ASGW and CSWG, and compute the angular
power spectrum of the GW energy-density contrast

B (k) = (4m)if / W (7)bi (n) D<(”>) je(k7).
S[f]dzE’(k) = (4n)i’ / dpWll (z) |- ! ,EZ) D(("))] [; 22 ]f(k)()}
S 1) = amic [ apvice) oo -2 T (MO BN [ 2 ).
SUE (k) = (4m)i / dpWll(7) :bé”(n) —2—;{2% {H(n)(%g"}c(z) f) D(:L))]ff("??)’
Y101y = - BRI [ [ ) -2~ 750,
BE (1) _"’@# (5m0=f0) % [ apvica) o) -2~ 7557,
S0 0 = i [ apvicn) o -2 7] [ ap s - v D jkp.

where

‘=m
59— st 3
f=—m

[ i S WS W),

= fowléu

with

and

ﬂma

(2

_ j{:z)gmw

i.j:a.p

(il gty

20+ 1

S (k) =4zi? / dpWil(7) / ‘4z

[ (ans

Here we have defined a new weight function

Wi (z) =

Pe QGw

0
N, 5=

Oy O

0

(K)S (k)6 (K,

)i p)

fo 4n Nz fo(142)]

(1+2)

Finally, S¢(k) functions read as
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