

Realization Status of the VLBI Global Observing System

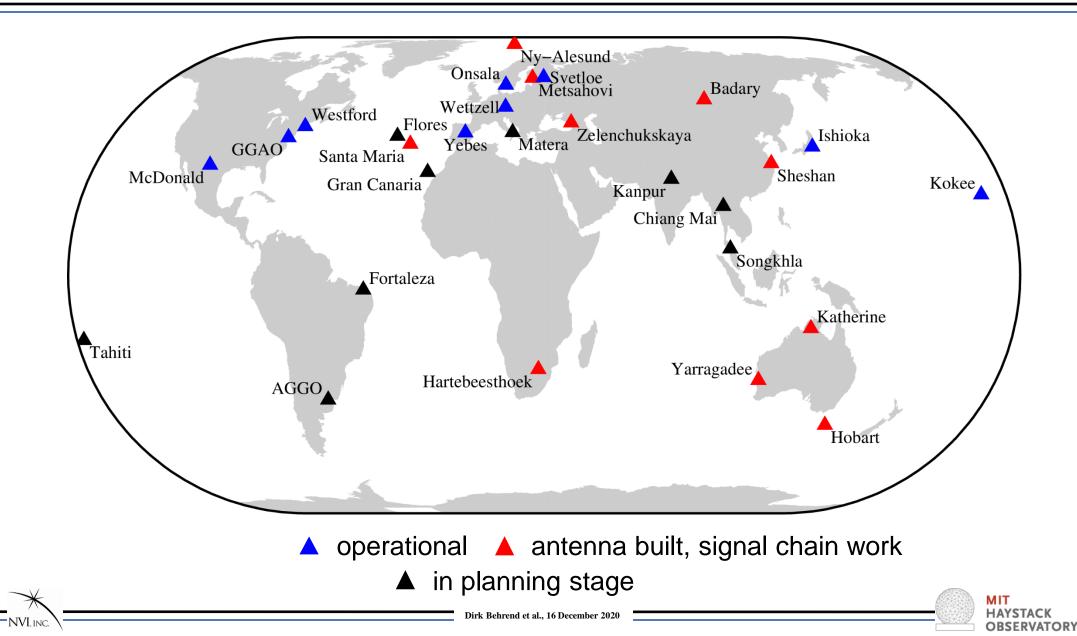
Dirk Behrend¹, Dan MacMillan¹, John Gipson¹, Chet Ruszczyk², Pedro Elosegui²

¹NVI, Inc./NASA GSFC, Greenbelt, MD, USA ²MIT Haystack Observatory, Westford, MA, USA

AGU 2020 Fall Meeting

Courtesy R. Haas

NVLin



	Legacy S/X System	VGOS System	Benefit
Antenna size	5–100 m dish	12–13 m dish	reduced cost
Slew speed	~20–200 deg/min	≥ 360 deg/min	more observations for troposphere
Sensitivity	200–15,000 SEFD	≤ 2,500 SEFD	more homogeneous
Frequency range	S/X band [2 bands]	~2–14 GHz [1 broadband w/ 4 bands]	increased sensitivity, data precision
Recording rate	128, 256, 512 Mbps	8, 16, 32 Gbps	increased sensitivity
Data transfer	usually e-transfer, some ship disks	e-transfer, ship disks when required	
Signal processing	analog/digital	digital	stable instrumentation

Evolution of the VGOS Network

VGOS observing in 2019:

- VGOS Test (VGOS-T) sessions
 - One 24-hour session every 2 weeks, correlation at MIT Haystack Observatory
 - Databases made available at IVS data centers (e.g., CDDIS)

VGOS observing in 2020:

- VGOS Operational (VGOS-O) sessions
 - One 24-hour session every 2 weeks, correlation at MIT Haystack Observatory
 - Officially operational sessions, databases at IVS data centers
- > VGOS Intensive (V2) sessions
 - (Starting in late February) one 1-hour session every 2 weeks, alternating with VGOS-O sessions
 - Correlation at MIT Haystack Observatory, databases at IVS data centers

Developer:

- MIT Haystack Observatory
- Correlation and fringe fitting process based on DiFX software correlator

Knowledge transfer:

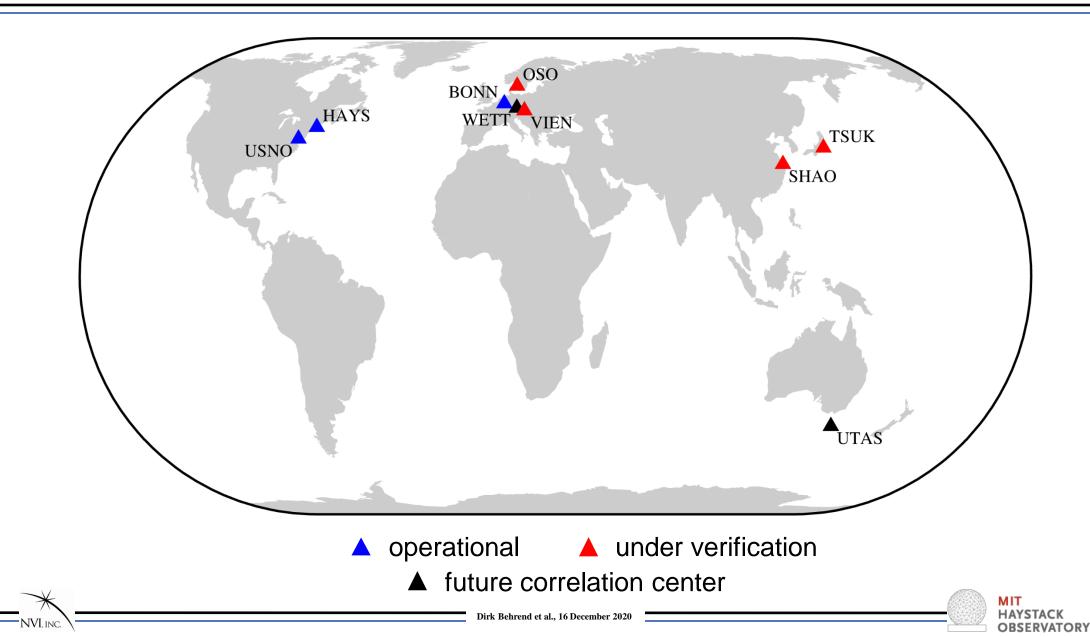
- Correlation workshop in May 2019
 - Transfer procedures, software versions, lessons learned to other centers to increase VGOS observing frequency
- Follow-up workshop in 2020 (postponed due to COVID-19)
- Correlation comparisons using benchmark data sets (1-hour, 24-hour)

Verification of correlators:

- Bonn, Shanghai, USNO, and Vienna (plus Tsukuba and Onsala)
 - Each correlator has unique data transport challenges
 - Accepts disk modules, e-transfer only, limited network capacity
- Hands-on "blind-test" correlation with 1-hour VGOS Intensive session
 - Starting at raw data level
 - Verified that results agree within margin of errors
 - Needed iteration

Final verification w/ operational 24-hour VGOS session (VGOS-O: VO0009)

- Bonn end-to-end from raw level
- All other correlators start at postcorrelation level (due to challenges w/ data transport of huge raw data)
- Verified and validated VGOS correlation end-to-end process
- Bonn, USNO started w/ operational sessions in 2020; other centers will follow in 2021
- All verification results are published in <u>Haystack memo series</u>


"Mixed-mode" correlation:

- Simultaneous observing with VGOS and S/X stations in same network
- Important for tying the VGOS frame to the S/X frame
- Three R&D sessions observed in summer of 2020; currently being correlated at Haystack
- Correlation VGOS-VGOS, S/X-S/X, and VGOS-S/X
- Mixed-mode workshop planned for May 2021 (format dependent on COVID-19 evolution)

Rollout of VGOS Correlation Capabilities

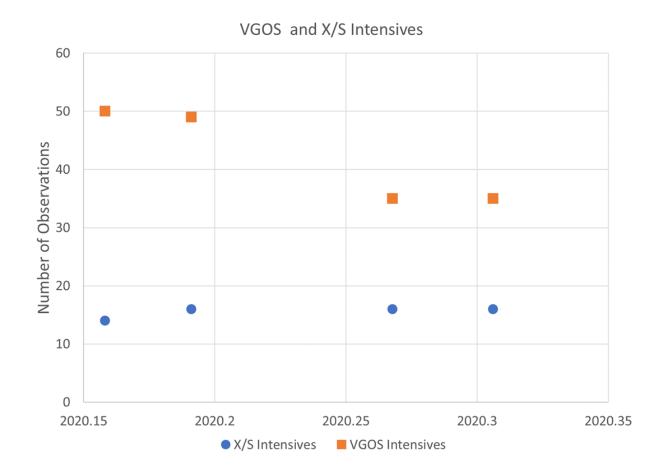
Data storage requirements:

- Legacy S/X VLBI: ~2000 TB/year
- > Typical 24-hour VGOS session (2020):
 - 8 stations
 - 50 TB/day/station of raw data
 - ~400 TB/day
- ➢ Network size to grow to 16−20 stations
 - for 20 stations: ~1000 TB/day
 - full year (24/7/365): ~360 PB/year
- > Data storage types (fixed vs portable):
 - RAID: needed at station & correlator
 - Recording module: physical shipment

Data transport (electronic transfer):

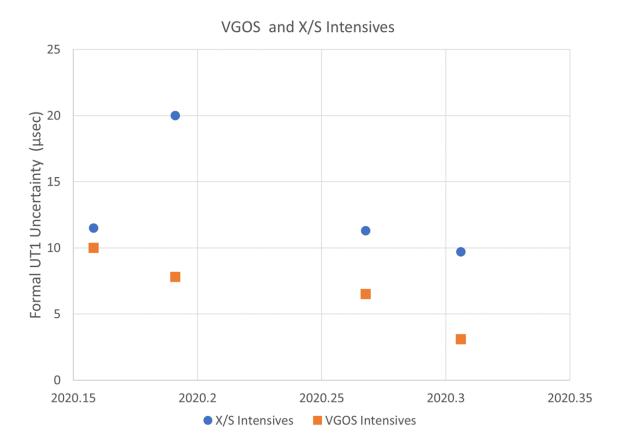
- Required network data rates:
 - each site: 5.6 Gbps
 - correlator: 134 Gbps

Station	Bandwidth now (sustained)	Transfer time for 50 TB of data			
GGAO	1 Gbps	4 .75 days			
Westford	1 Gbps	4 .75 days			
Wettzell	4 Gbps	1.2 days			
Yebes	5 Gbps	0.95 days			
Ishioka	1 Gbps	4 .75 days			
Kokee Park	0.1 Gbps	47.50 days			
Onsala	6 Gbps	0.8 days			
McDonald	0.3 Gbps	15.8 days			
16 December 2020		HAYSTACK			


OBSERVATORY

Analysis: UT1 Comparison VGOS vs. S/X

IVS * *


UT1-UTC comparison:

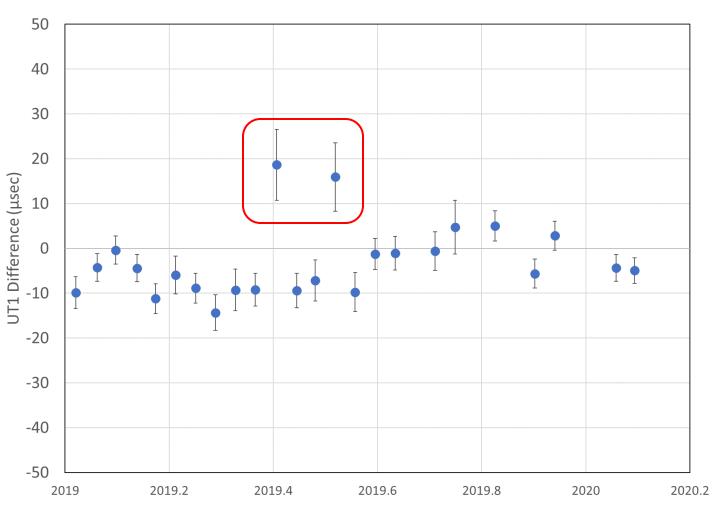
- Four 1-hour Intensive sessions
- Simultaneous VGOS and S/X baselines between Kokee and Wettzell (K2-Ws, Kk-Wz)
- Standard Intensive Solve solution

MIT HAYSTACK OBSERVATORY

Results:

- VGOS has 2–3 times more observations
- VGOS has lower formal errors:
 - VGOS UT1 formal error factor ~2 smaller than S/X
- General agreement between VGOS and S/X results:
 - UT1 differences between VGOS and S/X within 1–2 sigma (not shown)

Simultaneous VGOS and S/X 24-hour Sessions


HAYSTACK

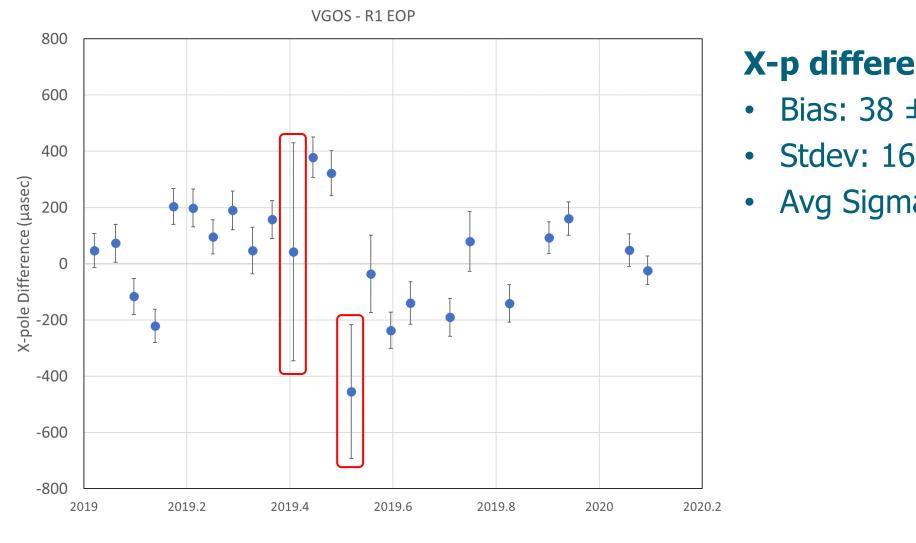
OBSERVATORY

		Stations	Num Obs	Soln Fit (ps)			Stations	Num Obs	Soln Fit (ps)
2019.02	\$19JAN07VG	GsK2OeOwWfWsYj	7043	18.75	2019.02	\$19JAN07XA	HtKeKkKvMaWnYg	3151	41.90
2019.06	\$19JAN22VG	K2OeOwWfWsYj	5372	15.59	2019.06	\$19JAN22XA	FtHtlsKkKvNyWnWwWzYg	5633	33.12
2019.10	\$19FEB04VG	GsK2OeWfWsYj	4397	16.475	2019.10	\$19FEB04XA	FtHtIsKeKkNyOnWnWzYg	6524	30.80
2019.14	\$19FEB19VG	GsK2OeWfWsYj	7291	14.817	2019.14	\$19FEB19XA	FtHtKeKkKvNyOnShWnWzYg	7378	28.28
2019.17	\$19MAR04VG	GsK2OeWfWsYj	7275	17.842	2019.17	\$19MAR04XA	lsKeKkKvNyWzYg	4081	35.61
2019.21	\$19MAR18VG	GsK2OeWfWsYj	5336	17.777	2019.21	\$19MAR18XA	HtlsKeKkKvNyShYg	4790	33.27
2019.25	\$19APR01VG	GsK2OeWfWsYj	7190	16.944	2019.25	\$19APR01XA	FtHtlsKeKkKvNyOnWnWzYg	6483	32.00
2019.29	\$19APR15VG	GsK2OeWfWs	4849	17.193	2019.29	\$19APR15XA	AgFtHtIsKeKkKvNyWnWzYg	4606	34.57
2019.33	\$19APR29VG	GsK2OeWfWs	4764	22.635	2019.33	\$19APR29XA	AgFtHtIsKeKkKvWnYg	4086	44.84
2019.37	\$19MAY13VG	GsK2OeWfWs	3951	19.564	2019.37	\$19MAY13XA	AgFtHtIsKeKkKvMaNyWzYg	5561	38.16
2019.41	\$19MAY28VG	GsOeWs	1377	22.31	2019.41	\$19MAY28XA	AgHtIsKeKkMaNyWz	3704	34.40
2019.44	\$19JUN11VG	GsK2OeWfWs	4656	28.605	2019.44	\$19JUN11XA	AgHtIsKeKkKvMaNyWzYg	5549	34.67
2019.48	\$19JUN24VG	GsK2OeWfWs	4759	28.161	2019.48	\$19JUN24XA	AgHtIsKeKkKvMaYg	4035	42.89
2019.52	\$19JUL08VG	GsOeWs	1780	19.208	2019.52	\$19JUL08XA	HtKbKeKvMaShYg	3783	31.22
2019.56	\$19JUL22VG	GsK2OeOwWfWs	5812	23.39	2019.56	\$19JUL22XA	FtHtlsKeMaNyShWzYg	5423	31.68
2019.60	\$19AUG05VG	GsK2OeOwWfWsYj	10879	29.707	2019.60	\$19AUG05XA	AgHtIsKbKeKkMaNyShWzYg	6890	36.41
2019.63	\$19AUG19VG	GsK2OeOwWfWsYj	11108	34.302	2019.63	\$19AUG19XA	lsKbKkKvOnShWzYgYs	6546	49.56
2019.71	\$19SEP16VG	GsK2OeOwWfWsYj	11767	27.126	2019.71	\$19SEP16XA	AgHtIsKkKvMaNyShWwWzYg	6181	41.49
2019.75	\$19SEP30VG	GsK2OeOwWfWs	6713	25.121	2019.75	\$19SEP30XA	AgFtHtKkKvMaYg	1807	62.9
2019.83	\$190CT28VG	GsK2OeOwWf	4930	18.012	2019.83	\$19OCT28XA	AgHtIsKkKvMaNyWnWzYg	5924	31.62
2019.90	\$19NOV25VG	GsK2OeOwWfWsYj	10204	17.868	2019.90	\$19NOV25XA	AgHtIsKkKvWnWwYg	3533	46.68
2019.94	\$19DEC09VG	GsIsOeOwWfWs	8173	18.83	2019.94	\$19DEC09XA	HtKkNyOnWnWwYg	2725	30.7
2020.06	\$20JAN21VG	GsIsK2MgOeOwWs	7766	19.868	2020.06	\$20JAN21XA	BdFtHoHtKkKvMaNySvWzYgZc	7809	31.16
2020.09	\$20FEB03VG	GsIsK2MgOeOwWfWs	13284	22.945	2020.09	\$20FEB03XA	AgBdFtHtKkKvMaNyOnSvWwWzYgZc	10372	31.36

Analysis: EOP Comparison VGOS vs. S/X

NVI.ing

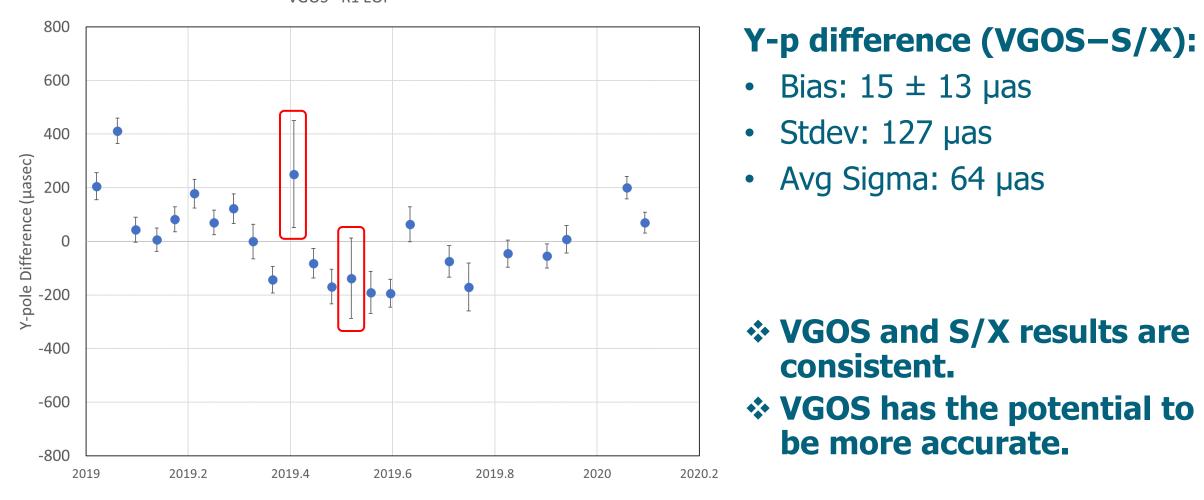
VGOS - R1 EOP


UT1 difference (VGOS–S/X):

- Bias: -4.4 ± 0.82 μs
- Stdev: 5.6 µs
- Avg Sigma: 4.1 µs

Dirk Behrend et al., 16 December 2020

NVLin


X-p difference (VGOS-S/X):

MIT HAYSTACK

OBSERVATORY

- Bias: 38 ± 19 µas
- Stdev: 164 µas
- Avg Sigma: 90 µas

VGOS - R1 EOP

JVLING

- VGOS network expansion to 24+ stations in next few years
- > Use numerous correlators to go to higher cadence VGOS sessions
- Increase data storage and data transfer capacities at stations and correlation facilities
- > Use mixed-mode sessions (VGOS–S/X) to tie VGOS TRF to legacy VLBI TRF
- > Further avenues of improvement:
 - instrumentation development (e.g., ongoing bandwidth doubling)
 - atmosphere modeling
 - radio source structure imaging
- Transition IVS production system from legacy VLBI to VGOS
- Eventual 24/7 observing

Ny Ålesund Twin Telescope

Inauguration event on 6 June 2018

NVI, inc.