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Abstract Parallel robots with a configurable platform are a class of parallel robots
in which the end-effector is a closed-loop kinematic chain. In =-RRR planar robots
the end-effector is a =-bar chain controlled by = actuated RRR chains connected to
the base. We solve the direct kinematic problem for 4, 5 and 6-RRR mechanisms
by using bilateration, a method that easily lends itself to generalization. Finally, we
present the results from experimental tests that have been performed on a 5-RRR
prototype.

1 Introduction

This paper studies a class of planar parallel mechanisms having a configurable end-
effector (EE), namely an EE whose shape can be reconfigured as the robot moves.
Parallel robots with configurable platform (PRCP) are especially useful when the
interaction with the environment requires additional Degrees-of-Freedom (DoFs)
beyond those required for positioning and orienting the EE. For example, haptic
interfaces have been developed to provide the operator with multiple points of
contact for multi-finger gripping, which results in a more natural interaction with
the virtual or remote environment [2]. The advantage of configurable platforms is in
that they allow the number of DoFs to be increased while retaining all motors on the
robot base, unlike for example adding extra actuators on the EE.

Some early works on this topic considered an EEwith a parallelogram shape [18],
or proposed a generalization for planar and spatial PRCPs, as well as a framework to
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compute the mobility of these mechanisms [8]. Pierrot et al. proposed a number of
4-DoF spatial PRCPs based on theDelta architecture [3,9,11]. A similar idea is found
in the design of PentaG [5], a 5-DoFs spatial robot with two EEs on the configurable
platform: the distance between the EEs is controlled to generate a grasping motion.
A literature review on PRCPs can be found in [4].

The Direct Kinematics Problem (DKP) of parallel robots is difficult in general
and more so when the EE has many DoFs, as in our case [8]. Here, we will focus
on analytical methods, which, while slower than numerical alternatives, have the
advantage of providing deeper insights on the problem than numerical methods. A
common approach is to write loop-closure equations, which are then reduced to a
polynomial system of equations by using the tangent half-angle substitution. The
equations are then combined through algebraic manipulation into a single univariate
characteristic polynomial. This for instance is the approach used in [10] to analyze
a 3-RRR, 3-DoF planar manipulator. For this case, the authors proved that the DKP
admits in general six real, distinct solutions. This result was later generalized in [7]
to any 3-DoF planar robot having three independent actuated kinematic chains.
Both [7, 10] consider only robots with rigid EE.

An interesting approach for the DKP of planar robots can be the bilateration
method. This methods relies on the results in [1,6], where the authors defined a way
to express Euclidean geometry in terms of distances between points. The methods
of bilateration (and trilateration for points in 3D) and their applications to robotics
were reviewed in [12,15,17]; later, the same authors applied bilateration to solve the
DKP of planar mechanisms having only revolute joints [14, 16].

This paper focuses on planar PRCPs, specifically those having = RRR chains
connecting the base to the EE, which is a closed =-R chain. Here, R denotes a revolute
joint and R an actuated one. The paper is organized as follows. After providing a brief
introduction to bilateration in Sec. 2, we apply it to solve the DKP of the PRCPs at
hand in Sec. 3. Numerical results and experimental tests on a prototype are presented
in Sec. 4. Finally, Sec. 5 presents conclusions and directions for future work.

2 Bilateration

Bilateration is a method to locate a point %: , given its distances from two other
points %8 and % 9 , whose positions p8 = %8 − $, p 9 = % 9 − $ with respect to the
global coordinate frame $GH are known. If B8, 9 = ‖p8 − p 9 ‖2 is the squared distance
between %8 and % 9 , which is independent from the choice of the coordinate frame,
the Cayley-Menger bi-determinant is defined as:

� (81, . . . , 8=; 91, . . . , 9=) = 2
(
−1

2

)= ���������
0 1 . . . 1
1 B81 , 91 . . . B81 , 9=
...

...
. . .

...
1 B8= , 91 . . . B8= , 9=

��������� (1)
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Fig. 1: Two possible solutions for bilateration.

For conciseness, we abbreviate � (81, . . . , 8=; 81, . . . , 8=) as � (81, . . . , 8=). It is now
possible to define the transformation matrix:

Z8, 9 ,: =
1

� (8, 9)

[
� (8, 9 ; 8, :) ∓

√
� (8, 9 , :)

±
√
� (8, 9 , :) � (8, 9 ; 8, :)

]
(2)

and then, as proved in [1],

%: = %8 + Z8, 9 ,: (% 9 − %8) (3)

In matrix Z8, 9 ,: , if points %8 , % 9 and %: are ordered in counterclockwise sense
(see Fig. 1a), the element in the bottom-left corner is positive, while the one in the
upper-right corner is negative (and viceversa when points are ordered in clockwise
sense, see Fig. 1b). Every bilateration thus provides two solutions. In the DKP, we
will take into account all solutions for each bilateration step, and retain only those
which lead to a feasible solution for the complete mechanism.

3 Inverse and Direct Kinematic Problems

The schematic of a general =-RRR robot is shown in Fig. 2a, where points �8’s
(8 ∈ {1, . . . , =}), having position vectors a8 , are the centers of the (actuated) R
joints on the fixed base, whose joint variables are denoted by \8; points %8’s
(8 ∈ {1, . . . , 2=}) are the centers of themobile joints, of coordinatesp8 =

[
G%8 , H%8

]) .
Link lengths are defined as 28 = ‖p8 − a8 ‖, 38 = ‖p=+8 − p8 ‖ (8 ∈ {1, . . . , =}),
;8 = ‖p=+1+8 − p=+8 ‖ (8 ∈ {1, . . . , = − 1}), and ;= = ‖p=+1 − p2=‖.

The Inverse Kinematic Problem (IKP) is usually straightforward for parallel ma-
nipulators. We define the pose of the EE by the array 0 =

[
G%=+1 , H%=+1 , q1, . . . ,

q=−2]; here, q8 is the angle formed by link %=+1+8%=+8 with axis G. Pose 0 has =
components, as the input array ) = [\1, . . . , \=] of joint coordinates. The robot has
= DoFs and is fully actuated. The IKP requires ) to be determined from 0. From the
position of %=+1, length ;1 and angle q1 one can find point %=+2 as

p=+2 = p=+1 + ;1
[
cos q1, sin q1

]) (4)
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Fig. 2: (a) =-RRR robot in a general pose; (b) =-RR structure with fixed actuators.
For simplicity, angles k8 , q8 are represented only for the second chain.

All other points %=+3, . . . , %2=−1 on the EE can be found by a similar procedure.
Point %2= can be found from %=+1, %2=−1, ;=−1 and ;=, by using bilateration (Eq. (3))1.
Then, from the closure equation

−−−−−→
$%=+8 =

−−−→
$�8 +

−−−→
�8%8 + −−−−−→%8%=+8 (5)

of the 8-th RRR chain, one finds

p=+8 = a8 + 28
[
cos \8 , sin \8

]) + 38
[
cos (\8 + k8), sin (\8 + k8)

]) (6)

By using the tangent-half-angle substitution and somemanipulations, one obtains

\8 = 2 tan−1 ©­­«
−418 ±

√
42

18 + 42
28 − 4

2
38

438 − 428

ª®®¬ (7)

where

418 = 228 (H�8
− H%=+8 ), 428 = 228 (G�8

− G%=+8 ) (8)
438 = G

2
%=+8

+ G2
�8

+ H2
%=+8

+ H2
�8

+ 22
8 − 32

8 − 2(G%=+8G�8
+ H%=+8 H�8

) (9)

From Eq. (7), one can see that there can be up to two real, distinct solutions for
each chain; therefore, the IKP for an =-RRR robot can have up to 2= solutions.

Solving the DKP on the other hand is more complex. First, we note that, once ) is
known, the mechanism can be simplified into an equivalent rigid structure (see Fig.
2b), by eliminating the first link: the position of %8 (8 ∈ {1, . . . , =}) is found as

1 This leads to two possible positions for %2=; we assume that the EE configuration is known and
thus one position can be discarded.
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Fig. 3: (a) first bilateration approach for the 5-RRR; (b) second approach. Each
bilateration step is denoted in red.

p8 = a8 +
[
cos(\8) − sin(\8)
sin(\8) cos(\8)

] [
28
0

]
(10)

Therefore, the DKP reduces to the problem of finding points %8 (8 ∈ {= +
1, . . . , 2=}), knowing distances 38 and ;8; here, we will apply the technique of bilat-
eration. As an example, we show an application to the 5-RRR robot.

First, we define an unknown variable to be found: the characteristic polynomial
obtained at the end will be univariate in this unknown. Any distance B8, 9 (except
those that are already known from link lengths) may be chosen; for convenience,
we pick B2,6. Then, we define a bilateration sequence, that is, a series of successive
bilateration steps. Here, we introduce the shorthand notation (%8 , % 9 ) ⇒ %: to
denote a step, meaning that point %: can be found from points %8 and % 9 and
from known fixed distances, by using Eq. (3). A possible bilateration sequence
is thus defined as [(%1, %2) ⇒ %6, (%2, %6) ⇒ %7, (%3, %7) ⇒ %8, (%4, %8) ⇒
%9, (%5, %9) ⇒ %10] (see Fig. 3a). In other words, from the coordinates of %1 and
%2 we write the coordinates of %6 as functions of B2,6, then the coordinates of %7
and so on. Finally, we find the closure condition, namely

B6,10 = ‖p6 − p10‖2 = ;25 (11)

The final expression for B6,10 will be an algebraic function in the unknown B2,6,
containing a number of nested radicals. These can be removed through algebraic
manipulation; since this process quickly becomes cumbersome as the number of
RRR chains increases, we resorted to automatic techniques by using MATLAB’s
Symbolic Math Toolbox. We thus developed a script to remove all square roots by
an iterative algorithm, which leads to a univariate polynomial in B2,6 [13]. Each root
of this polynomial may correspond to a different configuration of the mechanism.

Our observations from the analysis of the =-RRR robots (= ≤ 6) are the following.

• The method can be easily generalized to architectures of increasing complexity:
the main difference is the time required by the symbolic analysis package to
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�8 coordinates [mm] \8 input angles
G H

�1 0 0 \1 64.8◦

�2 330 0 \2 115.2◦

�3 432 314 \3 201.67◦

�4 165 508 \4 237.6◦

�5 -102 314 \5 320.4◦

Table 1: Coordinates of the fixed points �8 and input angles \8; the links’ lengths are
28 = 160, 38 = 120 and ;8 = 80 (for 8 = 1, . . . , 5; all lengths in millimeters).

simplify all radicals in the final closure equation, as this time rapidly increases
with the number of RRR chains.

• The computational cost can be significantly reduced by a suitable choice of the
bilateration sequence. For instance, it was found that using sequence [(%1, %2) ⇒
%6, (%2, %6) ⇒ %7, (%3, %7) ⇒ %8, (%5, %6) ⇒ %10, (%4, %10) ⇒ %9] (see
Fig. 3b) instead of the one previously reported leads to a dramatic decrease in
computational cost: with our setup (Matlab R2019a running on a processor Intel
Core i7-8700 CPU @ 3.20GHz) the time required for the algebraic manipulation
decreased from two days to tenminutes, as this approach reduces the accumulation
of nested radicals. We empirically found that, in order to minimize computational
time, the optimal sequence has approximately the same number of bilateration
steps in both clockwise and counterclockwise sense.

• We conjecture that the characteristic polynomial has degree 2=+1 − 4 for a =-RRR
mechanism; this conjecture has been verified for = from 3 to 6.We also conjecture
that this polynomial has the lowest possible degree. This was confirmed to be the
case for the 3-RRR robot, for which we found special architectures (not reported
here due to space constraints) that lead to 12 distinct solutions for the DKP2.

4 Example

We consider a 5-RRR robot with geometric parameters presented in Tab. 1, which
correspond to a physical prototype (Fig. 5). We found that the robot has three distinct
configurations, which are shown in Fig. 4.

In the multimedia attachment available at https://youtu.be/j6D5lJSZPMo it is
possible to see the following motions: the EE rigid translation and rotation, the
movement of the mechanism between two out of the 32 possible solutions of the IKP
(for a given EE pose) and the use of the platform to grip and move objects.

2 The 3-RRR is known to have at most 6 distinct solutions [10]; however, in our analysis for
generality we also consider solutions where the EE is rotated outside the plane of motion, which
doubles the number of solutions. The former case can still be analyzed through bilateration.

https://youtu.be/j6D5lJSZPMo
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Fig. 4: The three possible configurations for the 5-RRR robot at hand.
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Fig. 5: (a) 5-RRR prototype built at IRI; (b) its corresponding schematic.

5 Conclusions

In this work, a class of planar parallel robots have been proposed and studied in
terms of position analysis. In order to solve the DKP, the bilateration method has
been explored and applied, developing an iterative procedure that can be generalized
as the number of kinematic chains varies. A numerical example is then presented,
where the bilateration method has been helpful to solve the DKP in a reasonable
time (about ten minutes). Finally, some tests performed on a prototype are presented
in the final section. Directions for future work include:

• proving the conjecture about the degree of the characteristic polynomial defined
in Sec. 3, and verify that this degree is the lowest possible;

• expanding our procedure to general planar PRCPs. For instance, =-RPR or =-PRR
robots could be easily studied with the same methods considered in this paper.
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