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The glycolytic enzyme and bacterial virulence factor of Listeria monocytogenes, the
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Lmo2459), ADP-ribosylated the
small GTPase, Rab5a, and blocked phagosome maturation. This inhibitory activity
localized within the NAD binding domain of GAPDH at the N-terminal 1–22 peptides,
also conferred listeriosis protection when used in dendritic cell-based vaccines. In this
study, we explore GAPDH of Listeria, Mycobacterium, and Streptococcus spp.
taxonomic groups to search for epitopes that confer broad protection against
pathogenic strains of these bacteria. GAPDH multivalent epitopes are selected if they
induce inhibitory actions and wide-ranging immune responses. Proteomic isolation of
GAPDH from dendritic cells infected with Listeria, Mycobacterium, or Streptococcus
confirmed similar enzymatic, Rab5a inhibitory and immune stimulation abilities. We
identified by bioinformatics and functional analyses GAPDH N-terminal 1–22 peptides
from Listeria, Mycobacterium, and Streptococcus that shared 95% sequence homology,
enzymatic activity, and B and T cell immune domains. Sera obtained from patients or mice
infected with hypervirulent pathogenic Listeria, Mycobacterium, or Streptococcus
presented high levels of anti-GAPDH 1–22 antibodies and Th2 cytokines. Monocyte
derived dendritic cells from healthy donors loaded with GAPDH 1–22 peptides from
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Listeria, Mycobacterium, or Streptococcus showed activation patterns that correspond to
cross-immunity abilities. In summary, GAPDH 1–22 peptides appeared as putative
candidates to include in multivalent dendritic based vaccine platforms for Listeria,
Mycobacterium, or Streptococcus.
Keywords: adjuvants, glyceraldehyde-3-phosphate-dehydrogenase, listeriosis, pneumonia, tuberculosis, vaccines
INTRODUCTION

Re-emerging pathogens causing severe meningitis in adults belong
to the bacterial genus Listeria, Mycobacterium, and Streptococcus.
None of them are preventable bacterial pathogens at present since
available bovine Calmette–Guerin (BCG) or pneumococcal vaccines
are not effective for meningitis in adults. Moreover, they might
cause outbreaks or recurrent infections to which the elderly is the
population at the highest risk, and the involvement of the central
nervous system (CNS) is a factor usually associated with a higher
mortality (Pagliano et al., 2017; Marais et al., 2017). Regardless of
outbreaks, as the one reported in Spain last summer, caused by
Listeria monocytogenes (Herrador et al., 2019), listeriosis,
tuberculosis, and pneumonia caused by Streptococcus are also
opportunistic infections in adults with immunocompromised
conditions as cancer patients. While research in new vaccines
against bacterial pneumonia is a hot topic in European or WHO
institutions and tuberculosis vaccines also receive significant efforts
worldwide, this is not the case for listeriosis vaccines. In fact,
listeriosis arose recently as a re-emerging infectious disease, and
only experimental dendritic-based vaccines have been reported,
with no development at the clinical practice (Kono et al., 2012;
Calderon-Gonzalez et al., 2014; Calderon-Gonzalez et al., 2015;
Torres et al., 2016). For this reason, developing vaccines that
protect the adults against re-emerging bacterial infections would
avoid the high mortality and morbidity they cause, as well as
diminish the cost of antibiotics use in our health care systems. In
this regard, vaccines for adults should consider several features
related with immunosenescence that affect the vaccine responses,
like the dysregulation of the innate immune system, T and B cells.
The imbalance of the innate immunity implies a decrease in the
functionality of antigen presenting cells, phagocytic function, and
cell migration capacity of macrophages and dendritic cells (DCs)
(Solana et al., 2006). T follicular helper cells required for optimal
titers in T dependent vaccines appeared reduced in function and
number with aging, and B cells accumulated many defects in the
elderly that reduce B cell diversity, while reducing specific antibody
levels and increasing the amounts of non-specific antibodies
produced with aging (Weinberger, 2018).

In recent years, a new concept in vaccinology arose that can be
applied in the development of vaccines for adults, cross-immunity
that might support the hypothesis that multivalent vaccines
protect against a broad-spectrum of bacterial pathogens. Cross-
immunity implies that vaccines designed against a pathogen can
confer protective immunity against different microorganisms
involving innate as well as specific immunity. A putative
explanation for cross-immunity regards the innate immune cells
such as dendritic cells (DCs) or macrophages that act in a non-
gy | www.frontiersin.org 2
specific pattern, drive also specific immunity and serve as
multivalent vaccines (Miyasaka, 2020). The search for bacterial
epitopes to be included in these multivalent vaccines is currently
very active. In this regard, looking for common virulence factors
and shared by structural immune domains of several bacterial
pathogens might help to discover vaccine candidates.

Mycobacterium, Listeria, or Streptococcus spp. belongs to
unrelated taxonomic groups but shares virulence factors as well
as groups of populations at high risk of infection as mentioned
before. Therefore, it will be worthy to prepare multivalent
vaccine designs that might confer broad protection against
these three bacterial genera. In this regard, the toxins involved
in host membrane disruption such as listeriolysin O (LLO) of
Listeria monocytogenes (LM) (Nguyen et al., 2019), pneumolysin
(PLY) of Streptococcus pneumoniae (SP) (Los et al., 2013) or
mycobacteria factors of the ESX-1 secretion system such as
ESAT-6, and CFP-10 of Mycobacterium tuberculosis (MTB)
(Smith et al., 2008) have similar virulence factors. However,
these pore-forming toxins do not share any sequence homology
between them, and therefore, they hardly share immunogenic
epitopes. However, the glycolytic enzyme, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) of the above-mentioned
bacterial pathogens can attach to cell surface immune-related
proteins (i.e., lactoferrin, fibrinogen, plasmin, or C1q) or
intracellular GTPases involved in trafficking (Alvarez-
Dominguez et al., 2008; Terrasse et al., 2012; Boradia et al.,
2014; Ireton et al., 2014; Malhotra et al., 2017; Moreau et al.,
2017; Myllymäki et al., 2017), contributing not only to their
virulence but also to the identification of pathogen broad
immunogenic epitopes to design multivalent vaccines.
RESULTS AND DISCUSSION

The abilities of bacterial GAPDH from LM, MTB, or SP to bind
to cell surface or intracellular proteins predicted they might share
binding domains that contribute to virulence and immune
responses. We initiated this study with the hypothesis that
GAPDH domains that contained inhibitory actions and
induced the activation of innate immune cells might contain
the epitopes for multivalent vaccines.

GAPDH of Listeria, Mycobacterium and
Streptococcus Are Detected in DCs and
Share Binding and Immunogenic Domains
Since bioinformatic and biochemical approaches revealed that
GAPDH from LM and SP contained a nicotinamide adenine
dinucleotide (NAD)-binding domain with a predicted ADP
October 2020 | Volume 10 | Article 573348
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ribosylation ability onto Rab5a (Alvarez-Dominguez et al., 2008),
here we have extended these analyses to Mycobacterium ssp.

We loaded relevant immune cells to induce cross-immunity
as DC with LM, MTB, or SP extracts (300 µg) and explored
whether we could isolate bacterial GAPDH from the cells using
different procedures to detect proteins sharing the same domains
(Table 1 and Figure 1A). In the first approach, we detected
NAD-binding proteins by using Blue-sepharose NAD-affinity
columns (Table 1, column b) (Alvarez-Dominguez et al., 2008).
In the second approach, we isolated Rab5a-binding proteins
using GST-Rab5a affinity columns (Table 1, column c). After
elution from the two types of affinity columns, elutes were run on
10% SDS-PAGE gels, bands stained with Coomasie dye and cut
out with sterile razors. Bands were digested with trypsin, and
mass spectrometry was applied to identify the eluted proteins. As
it is shown in Figure 1A, LM, MTB, or SP proteins eluted from
Rab5a columns matched the molecular weight expected for
GAPDH and were shown to correspond exclusively to
GAPDH by mass spectrometry (Table 1, column b). However,
proteins eluted from Blue-sepharose columns matched with
GAPDH and enolase for LM, MTB, and SP, and two
additional proteins were also eluted in the case of MTB, the
heat-shock protein 70 (Hsp70), and the elongator factor 60 (EF-
60) (Table 1, column c).

We next verified that LM, MTB, and SP extracts could ADP-
ribosylate Rab5a with a procedure that uses NAD-biotin
(Barbieri et al., 2001; Alvarez-Dominguez et al., 2008). As it is
shown if Figure 1B, LM, MTB, and SP extracts ADP-ribosylated
Rab5a, while an E. coli extract did not. Therefore, GAPDH from
MTB and SP shared NAD and Rab5a-binding domains and
presented analogous ADP-ribosylating activities, emerging as
virulence factors comparable to Lmo2459 from LM.

To validate analogous virulence and immunogenicity of
GAPDH, our approach involved infection of DC with
pathogenic strains of Listeria, Mycobacterium, and Streptococcus
taxonomic groups (100:1 MOI) for 16 h, to apply DC lysates to
Rab5a or Blue-sepharose affinity columns. Since Mycobacterium
marinum (MM) is a human pathogen used in experimental
TABLE 1 | Identification of eluted proteins from affinity columns of Rab5 or Blue-
sepharose loaded with bacterial extracts of Listeria, Mycobacterium, and
Streptococcus.

aBacteria strain bProteins eluted
from Rab5a

column

cProteins eluted from
Blue-sepharose column

Listeria monocytogenes GAPDH GAPDHenolase
Mycobacterium
tuberculosis

GAPDH GAPDHHsp70EF-
60enolase

Streptococcus
pneumoniae

GAPDH GAPDHenolase
Frontiers in Cellular and Infectio
n Microbiology | www
a300 µg of DC loaded with bacterial extracts of Listeria, Mycobacterium, or Streptococcus
was used to elute and identify GAPDH by different affinity columns. bProteins eluted from a
Rab5a-affinity column using GST-Rab5a incubated with lysates of DC loaded with each
bacterial extract. cProteins eluted from Blue-sepharose affinity columns incubated with
another set of lysates of DC loaded with each bacterial extract. Elutes of a and b affinity
columns were run in 10% SDS-PAGE gels and bands cut off with sterile razors, trypsin
digested, and applied to mass spectrometry to identify the proteins.
.frontiersin.org 3
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FIGURE 1 | GAPDH of Listeria, Mycobacterium, and Streptococcus are
detected in murine bone-marrow DC and shared binding and immunogenic
domains. Listeria monocytogenes (LM), Mycobacterium tuberculosis (MTB),
Mycobacterium marinum (Mm), Streptococcus pneumoniae (SP) (A) GAPDH
isolation and proteomic characterization after DC loading with bacterial extracts of
LM, MTB, or SP and immunoprecipitation of DC lysates with GST-Rab5a
columns. (B) Recombinant Rab5a purified protein was ADP-ribosylated using
NAD-biotin in the presence of different bacterial extracts, LM, MTB, SP, or
Escherichia coli (Ec). ADP-ribosylation was performed using an ADPRT buffer in
the presence of cytosolic proteins (30 µg) of bone-marrow DC. ECL was
performed with streptoavidin-HRPO conjugated (1:10,000 dil). (C) DCs were
infected with different bacterial pathogens: LM, M. marinum (Mm) or SP for 16 h.
A set of lysates of infected DC was immunoprecipitated with Blue-sepharose to
isolate NAD-binding proteins and another set immunoprecipitated with GST-
Rab5a. Both immunoprecipitations were run on SDS-PAGE gels and western-blot
developed with a rabbit anti-GAPDH-L1 antibody that recognized the L1 peptide.
(D) The same DC infected as in (C) were fixed with p-formaldehyde, stained with
rabbit anti-GAPDH-L1 and a goat anti-rabbit-FITC labeled and examined by
Confocal microscopy. Scale bars correspond to 1 µm, except second Listeria
image that correspond to 3 µm.
October 2020 | Volume 10 | Article 573348
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models to screen pre-clinical MTB vaccines (Myllymäki et al.,
2017), we selected this pathogenic Mycobacterium as it requires a
more convenient level 2 of biosecurity to handle in the laboratory
and animal facilities than the level 3 required by MTB. Clinical
isolates of Streptococcus pneumoniae (SP) were used in all the
experiments of this study. As it is shown in Figure 1C, proteins
eluted from Rab5a-affinity or Blue-sepharose affinity columns of
DC infected with LM, MM or, SP contained a single band of ~43
kDa molecular weight by western-blot recognized using a
polyclonal anti-GAPDH-L1 antibody developed against LM.
Finally, using this antibody in confocal microscopy at short
times of infection, as is 1 h (Figure 1D, we detected LM, MM,
or SP bacterial shapes in DC, indicating bacterial GAPDH was a
structural protein.

In summary, GAPDH from bacterial extracts of LM (Lmo
2459), MTB, or SP or isolated from DC infected with pathogenic
strains of Listeria, Mycobacterium or Streptococcus, shared NAD
and Rab5a-binding domains and presented similar ADP-
ribosylation enzymatic activities as well as immunogenic
domains, revealing as a putative virulence factor to explore for
multivalent domains.

Sequence Homology and ADP-
Ribosylating Abilities of Peptides 1–22 of
GAPDH in the Genus Listeria,
Mycobacterium, and Streptococcus
Next, we searched for GAPDH epitopes that served as multivalent
domains in LM, MTB, and SP. As a first approach, we performed a
bioinformatics analysis to search for homologies higher than 95% in
the three bacterial genus, Listeria, Streptococcus, andMycobacterium
(Figure 2A. Other bacteria genera as Pseudomonas or
Staphylococcus spp. with reported ADP-ribosylating enzymes
(Barbieri et al., 2001; Myllymäki et al., 2017) presented lower
GAPDH sequence homologies, varying from 60 to 85%,
respectively (Figure 2A. In fact, sequence homology in the genera
of Listeria, Mycobacterium, and Streptococcus increased to 99% in
the first 15 amino acids of N-terminus. The difference between
GAPDH of Listeria and Streptococcus consisted in a T residue
(threonine) in position 2 of Listeria, aligned with a V residue
(valine) in Streptococcus. Meanwhile, the difference between
Listeria and Mycobacterium pathogenic strains was a K (lysine)
residue in position 4 of Listeria, aligned with an R (arginine) residue
in Mycobacterium, being K and R residues with similar cationic
residues. These sequence homologies anticipated the common
enzymatic activities as well as structural domains described with
their bacterial extracts (Figures 1B–D). SWISS-MODEL server and
the available crystal structures allowed comparison of the three
dimensional predictions of GAPDH-LM (A0A121XBE7_LISMN,
https://swissmodel.expasy.org/repository/uniprot/A0A121XBE7),
GAPDH-MTB (A0A045ITJ4_MYCTX, https://swissmodel.expasy.
org/repository/uniprot/A0A045ITJ4) and GAPDH-Streptococcus
pyogenes (GAPDH-SPY) (P0C0G6, G3P_STRPY, https://
swissmodel.expasy.org/repository/uniprot/P0C0G6) (Figure 2B
images), predicted that the NAD-interacting residues of the
Rossman-fold domains, localized in the first 22 amino acids
(underlined amino acids in Figure 2B, containing a b-strand
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
(residues 3–9) and a a-helix with amphipathic structures
(residues 11–22) (blue structures in images of Figure 2B. InterPro
alignments of GAPDH-LM, GAPDH-MTB, and GAPDH-SPY
confirmed they all presented NAD-binding domains at the N-
terminus, necessary for ADP-ribosylation, and G3P-dehidrogenase
catalytic domains at the C-terminus (Supplemental Figure S1A). In
fact, we verified with highly purified 1–22 peptides of GAPDH-LM
(L1), GAPDH-MTB (M1), or GAPDH-SP (S1), the ADP
ribosylated Rab5a, as previously reported for L1 peptide (Alvarez-
Dominguez et al., 2008) and comparable to ADP-ribosylating levels
of recombinant Lmo2459 (Figure 2C). We limited the minimal
enzymatic activity of peptide 1–22 of GAPDH-LM, GAPDH-MTB,
and GAPDH-SP to a shorter peptide 1–15 with higher 99%
sequence homology (Figure 2A), that ADP-ribosylated Rab5a
similarly to longer 1–22 peptides L1, M1, and S1 peptides (L1–15,
M1–15 and S1–15 bands in Figure 2C). However, peptide 23–42 of
GAPDH-LM (L2) containing the G3P-dehydrogenase catalytic
domain, showed no ADP-ribosylating abilities as expected
(Figure 2C). We concluded that GAPDH-LM, GAPDH-MTB,
and GAPDH-SP contained analogous 1–15 and 1–22 epitopes,
including both the enzymatic and protein binding activities.

Immune Responses Elicited by Peptides of
GAPDH-LM, GAPDH-MTB, and GAPDH-SP
To predict the minimal epitope requirements to prepare a DC
vaccine that elicited T cell responses, we restricted our analysis to
the 1–15 peptide of GAPDH sequences from LM, MTB, and SP as
they shared 99% sequence homology (Figure 3A). Next, we used
the IEDB Consensus tool bioinformatics approach to predict
GAPDH binding to MHC molecules. IEDB analysis envisaged
that percentile ranks <10 corresponded to good MHC class I
binders, while percentile ranks <100 are weak binders. In this
regard, percentile thresholds <50 correspond to good MHC class
II binders, while thresholds <500 are intermediate binders (Nielsen
et al., 2003; Peters and Sette, 2005; Sidney et al., 2008; Lundegaard
et al., 2008; Kim et al., 2012; Calderon-Gonzalez et al., 2015;
Rack et al., 2015; Stephenson et al., 2015; Andreatta and Nielsen,
2016). In this regard, GAPDH 1–15 sequences contained two
epitopes predicted as good binders for Kb and Db MHC class I
molecules, 5–13 and 4–13 amino acids, respectively, and one
epitope predicted as intermediate binder for IAb MHC class II
molecules, 4–15 amino acids (table with peptide MHC binding
sequences in Figure 3A). Moreover, these GAPDH 4–15 epitopes
and predicted binders for MHC molecules are similar in LM, MTB,
and SP sequences. The theoretical 3D model revealed that GAPDH
4–15 epitopes included one tight loop and one a-helix, 3D
structures characteristic of MHC class I and II epitopes,
respectively (image on the right showing 4–15 amino acids in
blue, Figure 3A). We verified these binding predictions in DC
infected with either LM, MM, or SP after immunoprecipitation of
MHC class II molecules with a monoclonal anti-MHC class II
antibody (clone Y3P that recognized IAb in C57BL/6 mice) and
western-blot analysis with anti-GAPDH-L1 antibody (Figure 3B).
GAPDH 1–22 peptides from LM, MM, and SP were detected on
stable and unstable forms of immunoprecipitated MHC class II
molecules, indicating that in vivo generated GAPDH immunogenic
October 2020 | Volume 10 | Article 573348
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epitopes are capable to bind to MHC molecules and predict
GAPDH antigen presentation and induction of immune responses.

In fact, we confirmed that GAPDH 1–15 and 1–22 peptides
from LM, MM, and SP elicited efficient T cell responses after
immunizing mice with LM, MM, or SP (model in Supplemental
Figure S1B, approach 1). Next, we loaded DC with the following
peptides from LM, MM or SP sequences of GAPDH: L1, L1–15, M1,
M1–15, S1 or S1–15. Peptide loaded DCs were inoculated into the
hind foot pads of C57BL/6 mice (106 cells/foot pad) together with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
adjuvant DIO-1 (2 µg/ml) to collect popliteal lymph nodes. DIO-1 is
an adjuvant that binds to TLR2/4 molecules (Guisasola and
Escudero, 2016). We re-stimulated homogenates of popliteal
lymph nodes in vitro with different concentrations of peptides,
from 0.05 to 50 µM (L1, L1–15, M1,M1–15, S1 or S1–15) and examined
immune responses by classical proliferation assays of lymphocytes
using [3H]-thymidine. We also included in the assay recombinant
listeriolysin O (LLO) (3 µg/hind foot pad) as a positive control. As it
is shown in Figure 3C, peptides L1–15, M1–15, and S1–15 elicited T cell
A

B

C

FIGURE 2 | Sequence homology and ADP-ribosylating abilities of peptides 1–22 of GAPDH in the genus Listeria, Mycobacterium, and Streptococcus.
(A) Alignments of bacterial GAPDH protein sequences of NAD-binding domains with sequence homologies higher that 90% and compared to GAPDH-Listeria.
Alignments are performed using MPsrch, a comparison tool implementing the true Smith and Waterman algorithm. The protein sequences of pathogenic strains of
Mycobacterium genus are shown in red, in pink of Streptococcus genus and in blue of Staphylococcus genus. The NAD-interacting residues are underlined in all
bacteria sequences. (B) 3D predictions of GAPDH-Listeria, GAPDH-Mycobacterium, and GAPDH-Streptococcus using the SWISS-MODEL server and the available
crystal structures of GAPDH-LM (A0A121XBE7_LISMN), GAPDH-MTB (A0A045ITJ4_MYCTX), and GAPDH-SP (P0C0G6, G3P_STRPY); region in blue of lower
images corresponds to the first 22 amino acids of the protein and contained a b-strand and an a-helix structure. (C) ADP-ribosylation of recombinant Rab5a using
peptides with different lengths such as peptides L1–15, M1–15, S1–15, L1, M1, S1 or L2, a negative control of GAPDH-LM 23–42 peptides. L1–15 and L1 showed the
highest levels of ADP-ribosylation, while M1–15 and S1–15 show significant ADP-ribosylation abilities but slightly lower.
October 2020 | Volume 10 | Article 573348
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responses similar to LLO, but lower than T cell responses of 1–22
peptides (L1, M1 or S1). We concluded that both 1–22 and 1–15
peptides elicited T cell immune responses in the same range or
higher than the highly immunogenic bacterial protein, LLO.

Significance of Two Biomarkers as Tools
to Design Clinical Multivalent Vaccines
Against Listeriosis, Tuberculosis, and
Pneumonia Caused by Streptococcus
pneumoniae
To verify the significance of our hypothesis that GAPDH was a
virulence factor common to LM, MTB, and SP infections that
presented multivalent epitopes, we collected sera and clinical
isolates of patients with listeriosis, tuberculosis, or pneumonia
caused by SP, selected from a 2014–2018 study in our institution
(Department of Microbiology, HUMV) (patients with asterisks
in Supplemental Table S1). Sera of patients infected with
hypervirulent strains of listeriosis, tuberculosis or Streptococcus
pneumonia presented high levels of anti-GAPDH-L1 antibodies,
OD ≥ 2.0 (Table 2, column c). We also checked for cytokines in
sera of patients and detected threefold higher levels of IL-6 and
IL-10, classical Th2 cytokines compared to controls (Table 2,
column d).

Next, we confirmed the hypervirulence of selected clinical
isolates of LM, MM, or SP after inoculation of C57BL/6 mice
intravenously (i.v) with 104 CFU (Table 3). Fourteen days later,
we recovered sera and spleens and examined the levels of anti-
GAPDH-L1 antibodies using the ELISA-peptide previously
described (Calderon-Gonzalez et al., 2016a; Calderon-Gonzalez
et al., 2016b) (model shown in Supplemental Figure S1B,
approach 1). Several non-pathogenic strains of each pathogen
were also included as controls, a listeriolysin deficient mutant
of LM (LM-DLLO), a non-pathogenic strain of mycobacteria
(M. smegmatis), and a vaccine strain of SP (ATCC 49619-19F).
All non-pathogenic strains presented low levels of anti-GAPDH-
L1 antibodies (OD ≤ 0.5) (Table 3, column d). Also, non-
pathogenic bacteria did not induce higher levels of Th1 or Th2
cytokines (Table 3, column e), while sera of mice infected with
hypervirulent strains presented high levels of Th2 cytokines, IL-6
and IL-10. Hypervirulent clinical isolates of LM, MTB, or SP
A

B

D

C

FIGURE 3 | Immune responses elicited by L1, M1 and S1 peptides of
GAPDH and clinical significance of their use as biomarker tools.
(A) Alignments of bacterial GAPDH protein sequences of NAD-binding
domains with sequence homologies higher than 99% and compared to
GAPDH-LM (upper sequence in black). Underlined are the residues that differ
from the GAPDH-LM sequence. On the right image is the predicted 3D
structure of GAPDH-LM showing the 4–15 residues in blue that contained the
MHC binding epitopes. The lower image corresponds to a table compiling
MHC predictions performed with IEDB Consensus tool, indicating the binding
epitopes to MHC class I and II molecules. (B) Lysates of DC infected with
LM, MM or SP as in Figure 2C were immunoprecipitated with monoclonal
anti-MHC-IAb (clone Y3P); immunoprecipitates were run on SDS-PAGE gels
and western blots developed with anti-GAPDH-L1 antibody. The MHC-II
stable and unstable forms in SDS-PAGE are shown as markers. (C) DC
loaded with the different peptides, L1, L1–15, M1, M1–15, S1, M1–15 were
inoculated into the right hind footpads of mice. Popliteal nodes were
collected, homogenated, and cultured in vitro in the presence of each
corresponding peptide. Plot shows the T cell proliferation after [3H]-thymidine
incorporation. (D) MoDCs from healthy donors were incubated with L1, M1,
or S1 peptides for 16 h, and filtered supernatants were examined for cytokine
levels (pg/ml).
TABLE 2 | Clinical data of patients infected with hypervirulent LM, MTB, and SP.

aStrain code(PATIENTS) cAnti-GAPDH-L1
antibodies

dCYTOKINES

IFN IL-6 IL-10

aHUMV-LM01 2.4 ± 0.1 5 ± 0.2 10 ± 0.1 6 ± 0.1
HUMV-MTB01 2.2 ± 0.2 4 ± 0.1 7 ± 0.1 5 ± 0.1
HUMV-SP01 1.9 ± 0.1 4 ± 0.2 9 ± 0.1 5 ± 0.1
bNI-control 0.13 ± 0.1 2 ± 0.1 3 ± 0.1 2 ± 0.1
October 2020
 | Volume 1
0 | Article
aClinical isolates from patients at HUMV (Microbiology Dpt.) selected from a 2014 to 2019
study as hypervirulent strains (complete study in Supplemental file). bControl data
correspond to adult healthy donors at HUMV and non-infected. cSera from patients
selected (HUMV-LM01, HUMV-MTB01, and HUMV-SP01) were examined for anti-
GAPDH-L1 antibodies by a peptide ELISA. Results are presented as the mean ± SD of
OD units in triplicate measurements (P < 0.05). dCytokine concentrations were analyzed in
sera of patients by flow cytometry (pg/ml). Results are expressed as the mean ± SD
concentrations (pg/ml) of three different experiments. ANOVA was applied to flow
cytometry results and a Student’s t test to ELISA analysis.
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showed at least 100-fold higher CFU numbers than non-
pathogenic bacterial strains (Table 3, column f) and high levels
of anti-GAPDH-L1 antibodies (OD ≥ 0.65) (Table 3, column d).
These results validated the correlation between the levels of anti-
GAPDH-L1 antibodies and bacterial virulence. We repeated all
these ELISA-peptide experiments for detection of antibodies to
peptides M1 and S1 and confirmed all hypervirulent strains
produced high levels of anti-GAPDH antibodies (data not
shown). We also confirmed specific T cell responses to L1
peptide in spleen homogenates of mice, evaluating the
percentages of CD4+ and CD8+ cells stimulated with L1
peptide. As it is shown in Table 3 (column g), spleen
homogenates of mice inoculated with pathogenic bacteria and
next stimulated in vitro with L1 peptide showed percentages of T
cells in ranges of 14% for CD4+ and 17% for CD8+ positive cells
that were much larger than percentages detected in controls with
less virulent or non-pathogenic strains, 8% for CD4+ T cells or
3% for CD8+ T cells. These results revealed that titers of anti-L1
(anti-M1 and anti-S1) antibodies were valid biomarkers to detect
high immune responders among patients with listeriosis
(Calderon-Gonzalez et al., 2017), tuberculosis, or pneumonia
caused by SP and therefore, valid epitopes to incorporate into
multivalent vaccines.

The other parameters of interest to design multivalent
vaccines correspond with the ability of epitopes to induced
cross-immunity (Miyasaka, 2020). To search for cross-immune
epitopes in GAPDH from LM, MTB and SP, we selected
monocyte derived DC (MoDC) of healthy donors as DCs are
relevant antigen presenting cells to drive cross-immunity. Next,
we performed a classical DC activation analysis that checked the
activation markers and cytokine production of MoDC as
described (Calderon-Gonzalez et al., 2016a; Calderon-Gonzalez
et al., 2017) (model described in Supplemental Figure S1B,
approach 2). Cross immune epitopes might activate DC to
produce Th1 cytokine patterns (Miyasaka, 2020). We used LPS
(10 ng/ml) as a positive control of general activation of DC,
inducing Th1 and Th2 cytokines. After 16 h of MoDC incubation
with peptides, L1, M1, or S1, we explored the cell surface markers
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
and cytokine production in supernatants. Cell surface markers
confirmed that MoDC treated with L1, M1, or S1 peptides
presented the following phenotype: 90% of CD45+HLA-
DR+CD80+CD86+CD14− positive cells, while LPS treated
MoDC presented 90% of CD45+HLA-DR+CD80+/−CD
86+/−CD14− positive cells. These results indicated that these
GAPDH peptides induced a MoDC activated phenotype.
Cytokine analysis in MoDC supernatants detected high levels
of MCP-1, TNF-a, IFN-a, and IL-12 after incubation with L1,
M1, or S1 peptides, a classical Th1 cytokine pattern (Figure 3D).
Incubation with LPS also induced Th2 cytokines, IL-6, and IL-10.
These results revealed that induction of Th1 cytokines by MoDC
was a valid biomarker to detect bacterial epitopes that
induced TI.
CONCLUSIONS

GAPDH from LM, MTB, and SP emerged as a common
virulence factor that contained 1–15 and 1–22 amino acid
epitopes able to act with analogous enzymatic activities, MHC
binding properties and induced B and T cell immune responses,
with broad and specific capacities. These GAPDH 1–22 epitopes
(L1, M1, or S1 peptides) induced Th1 activation of DC, a relevant
biomarker of bacterial TI-epitopes. Moreover, antibody titers
against GAPDH 1–22 epitopes in patients with listeriosis,
tuberculosis, or pneumonia are good biomarkers to select
patients infected with hypervirulent strains but high T cell
responders, putative candidates to explore the efficiency of DC
or multivalent vaccines.

Vaccination is the best tool to prevent infections with re-
emerging pathogens as Listeria monocytogenes, Mycobacterium
tuberculosis, or Streptococcus pneumoniae, that together with
respiratory virus as Influenza or SARS or SARS-COV-2
coronavirus, cause severe infections in the elderly and adults
with immunosuppressive conditions. Therefore, deciphering
epitopes with broad but specific action as well as broad
TABLE 3 | Immune parameters of mice infected with hypervirulent LM, MTB and SP.

aStrain code(MICE) dAnti-GAPDH-L1 antibodies eCYTOKINES Fvirulence (CFU/ml) gCD4+% gCD8+%

IFN IL-6 IL-10

aHUMV-LM01 2.85 ± 0.1 4 ± 0-1 9 ± 0.1 5 ± 0.1 2.9 × 105 ± 10 12 ± 0.2 17 ± 0.3
HUMV-MTB01 2.20 ± 0.2 4 ± 0.2 8 ± 0.1 4 ± 0.1 3.9 × 104 ± 10 9.5 ± 0.8 14 ± 0.3
HUMV-SP01 1.81 ± 0.1 3 ± 0.1 9 ± 0.1 5 ± 0.1 3.8 × 105 ± 13 10 ± 0.7 13 ± 0.3
bLMDLLO mutants
M. smegmatis
S. pneumoniae49619-19F

0.42 ± 0.1
0.75 ± 0.1
0.67 ± 0.2

2 ± 0.1
1.2 ± 0.1
1± 0.1

3± 0.1
2.5± 0.1
2.8 ± 0.1

2 ± 0.1
2.1 ± 0.1
2.0 ± 0.1

4.2 × 100 ± 10
1.5 × 102 ± 8
1.2 × 103 ± 10

8 ± 0.1
9 ± 0.1
9 ± 0.2

1 ± 0.1
1 ± 0.1
1 ± 0.1

cNI-control 0.12 ± 0.1 2 ± 0.1 3 ± 0.1 2 ± 0.1 0.1 × 100 ± 0.1 2 ± 0.2 1.5 ± 0.1
October 2020 | Vo
lume 10 | Artic
aHypervirulent strains of LM, MM or SP as in Table 1 and bnon-virulent strains as LLO deficient LM mutant, LMDLLO, M. smegmatis or the SP vaccine strain S. pneumoniae49619-19F were
used to i.v. inoculate female C57BL/6 mice (n = 5) with 5 × 103 CFU bacteria. 14 days later, mice were bled, sacrificed, and spleens collected. cControl corresponds to non-infected (NI)
mice. dMice sera were examined for anti-GAPDH-L1 antibodies by a peptide ELISA. Results are presented as the mean ± SD of OD units in triplicate measurements (P < 0.05). eCytokine
concentrations were also analyzed in mice sera by flow cytometry (pg/ml). Results are expressed as the mean ± SD concentrations (pg/ml) of three different experiments. fVirulence of
different bacteria was measured in homogenized spleens (1 ml) after plating in blood agar plates. CFUs were counted and results expressed as CFU/ml (P ≤ 0.5). gAliquots (100 µl) of the
spleen homogenates were analyzed for CD4+ and CD8+ cell populations by FACS. Results are expressed as percentages of positive cells. ANOVA was applied to all flow cytometry results.
Student’s t test was applied to ELISA and virulence assays.
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virulence activity appears as the first approach for DC and
multivalent vaccine designs.
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