
CosmoHub: Interactive exploration and distribution of astronomical data on Hadoop

P. Talladaa,1,∗, J. Carreterob,1,∗∗, J. Casalsa,1, C. Acosta-Silvab,1, S. Serranoc,d, M. Caubeta,1, F. J. Castanderc,d, E. Césarf, M.
Croccec,d, M. Delfinob,1, M. Eriksenb,1, P. Fosalbac,d, E. Gaztañagac,d, G. Merinob,1, C. Neissnerb,1, N. Tonelloe

aCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain
bInstitut de Fı́sica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain

cInstitute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Bellaterra (Barcelona), Spain
dInstitut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain

eBarcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034 Barcelona, Spain
fUniversitat Autònoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain

Abstract

We present CosmoHub (https://cosmohub.pic.es), a web application based on Hadoop to perform interactive exploration
and distribution of massive cosmological datasets. Recent Cosmology seeks to unveil the nature of both dark matter and dark energy
mapping the large-scale structure of the Universe, through the analysis of massive amounts of astronomical data, progressively
increasing during the last (and future) decades with the digitization and automation of the experimental techniques.

CosmoHub, hosted and developed at the Port d’Informació Cientı́fica (PIC), provides support to a worldwide community of
scientists, without requiring the end user to know any Structured Query Language (SQL). It is serving data of several large inter-
national collaborations such as the Euclid space mission, the Dark Energy Survey (DES), the Physics of the Accelerating Universe
Survey (PAUS) and the Marenostrum Institut de Ciències de l’Espai (MICE) numerical simulations. While originally developed as
a PostgreSQL relational database web frontend, this work describes the current version of CosmoHub, built on top of Apache Hive,
which facilitates scalable reading, writing and managing huge datasets. As CosmoHub’s datasets are seldomly modified, Hive it is
a better fit.

Over 60 TiB of catalogued information and 50 × 109 astronomical objects can be interactively explored using an integrated
visualization tool which includes 1D histogram and 2D heatmap plots. In our current implementation, online exploration of datasets
of 109 objects can be done in a timescale of tens of seconds. Users can also download customized subsets of data in standard formats
generated in few minutes.

Keywords: Apache Hadoop, Apache Hive, Data exploration, Data distribution, FITS, ASDF

1. Introduction

Experimental astronomy has entered in recent years into a
new data regime, mainly due to the construction and develop-
ment of ground —and space— based sky surveys2 in the whole
electromagnetic spectrum, from gamma rays and X-rays, ul-
traviolet, optical, and infrared to radio bands. This trend will
increase with the next generation of projects, for example: (i)
the future 3.2 GigaPixel LSST camera (LSST Dark Energy Sci-
ence Collaboration, 2012) will take images every 30 seconds
and the data rate will be about 15 terabytes per night3, (ii) the
complete Euclid survey (Laureijs et al., 2012) represents hun-
dreds of thousands images and several tens of petabytes of data;
the final Euclid source catalog will contain about 1010 entries4.

∗Main technical author
∗∗Main scientific author

Email address: tallada@pic.es (P. Tallada)
1also at Port d’Informació Cientı́fica (PIC), Campus UAB, C. Albareda s/n,

08193 Bellaterra (Barcelona), Spain
2See http://www.astro.ljmu.ac.uk/~ikb/research/galaxy-

redshift-surveys.html for a non-complete list of galaxy surveys
3https://www.lsst.org/about/dm
4https://www.euclid-ec.org/

A substantial part of the success of a scientific project can be
measured by the impact its results have on the scientific com-
munity. Also, having powerful tools to facilitate exploration
and distribution of data is key to boost their usage. With open
science principles in mind, cosmology surveys are developing
different solutions to share and distribute their data, including
analysis tools.

One of the most successful and innovative galaxy surveys is
the Sloan Digital Sky Survey (SDSS) (York et al., 2000). The
enormous success of this project is due to —besides the quality
of the data— the fact that its results are fully public and easily
accessible5. They have put great effort into facilitating scientific
exploitation by any user, regardless of their technical expertise
(see Szalay et al. (2002) and Raddick et al. (2017)).

Most recent surveys have also created dedicated portals to
manage access to their data releases. For example, the Dark En-
ergy Survey (The Dark Energy Survey Collaboration, 2005) has
produced the DES Science Portal (Gschwend et al., 2018). Fu-
ture surveys like LSST are putting a tremendous effort into de-
signing adequate tools to access and analyze the massive amounts

5https://www.sdss.org/dr15/

Preprint submitted to Astronomy and Computing March 11, 2020

ar
X

iv
:2

00
3.

03
21

7v
2 

 [
as

tr
o-

ph
.I

M
] 

 1
0 

M
ar

 2
02

0



of data they will generate (Jurić et al., 2017).
We started developing CosmoHub in 2013, a web appli-

cation for the interactive exploration and distribution of mas-
sive cosmological datasets. With its intuitive user interface,
users with no Structured Query Language (SQL, Chamberlin
and Boyce (1974)) knowledge could visualize and download
customized subsets of the data. This first version used Post-
greSQL to handle the data, following a similar approach as
the one adopted by other projects (SDSS uses Microsoft SQL
Server, while DES uses an Oracle Database). A few years later,
we started struggling with performance issues due to the in-
creasing amounts of data we were managing, and we decided
to revisit our design choices.

This article describes CosmoHub as released in late 2016,
powered by Apache Hive, a data warehouse solution based on
Apache Hadoop which facilitates reading, writing and manag-
ing large datasets. First described in Carretero et al. (2017),
CosmoHub is one of the earliest implementations of a stor-
age and computing platform for cosmological datasets based
on Apache Hive.

In the version described in this paper, over 30 TiB of cat-
alogued information and 50 × 109 astronomical objects from a
dozen different projects can be interactively explored using an
integrated visualization tool which includes 1D histogram and
2D heatmap plots. Interactive visualization of datasets of thou-
sands of millions of objects can be done in less than a minute,
and customized subsets can be generated in a timescale of min-
utes.

This paper is structured as follows: section 2 describes the
main objectives of CosmoHub, our solution design and the evo-
lution from the early prototypes, section 3 shows in detail the
current implementation: the Hadoop platform, the backend and
the frontend. Section 4 presents some results and use cases and
finally section 5 summarizes and concludes.

2. CosmoHub

This section presents an overview of CosmoHub objectives,
the technical implementation, and the historical development
which led to the current form.

2.1. Objectives

Most of the CosmoHub’s objectives originated from our
experience in designing and developing the PAU Survey data
management (PAUdm) (Tonello et al., 2019), and from the in-
teractions of the PAU Survey project with other peer projects
such as MICE (Fosalba et al. (2015), Crocce et al. (2015), Fos-
alba et al. (2014), Carretero et al. (2014) and Hoffmann et al.
(2014)) and DES. The following list defines the set of key re-
quirements for CosmoHub.

• Centralized data distribution

Having a unique point of data distribution enables hav-
ing a single, authoritative version of the data, reducing
the risk of duplicated, corrupted or deprecated replicas.

A unique entry point also facilitates the enforcement of
access controls and policies.

Note that, relying on a common platform does not im-
ply having a single point of failure. This platform can be
configured in a high-availability setup where service is
not disrupted by eventual failures of its individual com-
ponents (see Section 3).

• Easy to use

Usability is also a key for the success of this kind of plat-
form. The easier it is to use, the more users it will engage
and, therefore, the data published on it will reach a wider
audience, increasing their impact on the scientific com-
munity.

Interfaces should be clean and simple enough such that
any user may use the service without prior training. In
detail, the following two issues should be addressed:

– No Structured Query Language (SQL) knowledge
must be required
In a data distribution service, SQL is the most com-
mon interface for interacting with the data. SQL is
a declarative language that provides a set of con-
structs to select, project, filter and retrieve subsets
of information from a database. As an industry stan-
dard, most (if not all) vendors of data warehouses
offer a SQL interface to interact with their own ser-
vices.
Exposing an SQL interface is problematic for at
least two reasons: First, while SQL knowledge is
common in technical circles, many scientific users
are unfamiliar with SQL. And second, SQL is an
industry standard, but has different vendor imple-
mentations that deviate from official specifications.
These differences originate from adding complemen-
tary features or because their implementation pre-
dates the official specification. This means that even
users with training on data warehouses might en-
counter problems because the SQL they know does
not match the exact flavour used in a given solution.

– ”Common” file formats
The astronomical community has grown used to a
standard set of formats for data interchange. In par-
ticular, the approach of the Virtual Observatory (VO)
led by the International Virtual Observatory Alliance
(IVOA6) is of most importance. Consequentially,
specific tools for managing, processing and visual-
izing data stored in these formats have been devel-
oped and are widely used. Therefore, we must sup-
port those formats to enable our users to keep using
the tools they already master and make the interop-
erability with them as straightforward as possible.

6http://ivoa.net

2



This usability objective should not only be considered
for end users, but also for system administrators. They
should be able to deploy and keep the service operational,
avoiding that eventual hiccups pose a threat to service
availability.

• Custom datasets

One of the main challenges of managing large datasets is
to be able to efficiently generate small customized subsets
fitting the scientists’ needs.

Allowing the generation and download of custom subsets
enables users to minimize data storage and transfer costs.
At the same time, processing costs are also reduced as the
selection and filtering part is offloaded onto the service,
which has plenty of resources optimized for this task.

As a downside, the service must cope with the additional
storage required for all (potentially overlapping) subsets
that the users have requested, including some means to
eventually expire or purge them.

• Quick exploration

The ability to create custom datasets is not useful if the
user does not know the exact criteria to specify them or
is not confident enough on the properties of the resulting
subset. Having some functionality for the user to inter-
actively explore and preview the results of subset gener-
ation is very helpful.

This quick exploration tool can be offered in different
ways, for example row sampling or simple visualizations
such as scatter plots and histograms. Once the users are
certain that the subset matches their expectations, they
can proceed with the download, as needed.

2.2. Solution design

In this section we describe the main aspects of the design of
CosmoHub.

• Target audience

Prospective users of CosmoHub are the thousands of sci-
entists around the globe collaborating in astronomical projects
that manage and/or produce large amounts of catalogued
data. Most of these data end up released to the public
and, if a replica is available in CosmoHub, any registered
user may access, explore and download it.

Furthermore, these projects usually have private datasets
for internal processes, such as release validation or cali-
bration, which are only available to project members.

• Metadata database

CosmoHub provides access to a collection of catalogs or
astronomical datasets hosted in our data warehouse. Each
catalog is defined by a name, a short description and a
summary of its characteristics. Each catalog is mapped
to a single table in our data warehouse containing a set of

group user

query

acl

catalog

group_catalog

Figure 1: CosmoHub’s data model, which stores information about its catalogs,
groups, users and access control lists (acl), among other metadata.

columns, which are described by its data type and a short
description.

Each catalog belongs to one or several projects or re-
search groups. Users can access all data in CosmoHub
associated to the groups they are member of. Users re-
quest access to the groups when registering in the service.
Each group has a set of users with special privileges who
are in charge of validating and granting the correspond-
ing membership requests. Access to specific groups or
projects can be updated at any time through a web inter-
face. Users receive an email notification whenever their
privileges change. A catalog may also be public and, as
such, not require any specific membership to access it.

Figure 1 shows the relational data model of all this meta-
data. In particular, in addition to storing the information
about catalogs, groups and users, it also includes the re-
lationships between them such as project membership or
group administration privileges.

• Web interface

CosmoHub is designed as a web application. This solu-
tion only needs a web browser, a requirement that usually
comes preinstalled on any computer. Moreover, this also
allows to reuse all the user experience of the web seman-
tics and graphical metaphors that most users are already
used to.

• Guided process

In order to facilitate the usage of the platform to those
users without SQL knowledge, the custom subset build-
ing interface has been designed as a guided series of steps
that can be followed very easily even by the most inexpe-
rienced user.

The web interface guides users through a sequence of
steps, allowing them to select catalogs they are interested
in, then the columns they need, adding filtering criteria
(if needed) and choosing the download format.

They can also plot and preview the dataset they are build-
ing with the integrated plotting tool, also implemented
with intuitive and easy to use web forms to configure each
type of plot (see section 3.4 for details).

3



• SQL expert mode

CosmoHub also offers the possibility to unleash the full
power and capabilities of SQL. The ”expert” mode al-
lows to write an SQL query directly and passes it to the
underlying database for its execution. This feature al-
lows more experienced users to define additional com-
puted columns using standard functions and operators,
specify arbitrary groupings or even perform joins. The
latter is very interesting because it allows matching and
combining data from several different catalogs.

Furthermore, these capabilities can be extended by im-
plementing additional user defined functions. For instance,
CosmoHub includes functions for dealing with the HEALPix7

(Górski et al., 2005) pixelization scheme.

• (Simple) visualization

Users may get a quick insight on the data they are select-
ing by using the four integrated visualizations that Cos-
moHub offers:

– Table overview shows 20 rows of the subset.

– Scatter plot, to visualize trends and relations be-
tween different columns. It also supports plotting
different series of data, but is limited to plot only
10k points, so users only see partial results/behaviour
of the full subset. Therefore, the plot may not be
representative of the subset as a whole.

– 1D histograms and

– 2D heatmaps, both with automatic hints on column
names, and bin ranges.

1D histograms and 2D heatmaps are aggregated plots im-
plemented on the backend. They get the full picture of the
custom subset. For performance reasons they are limited
to less than 10k uniform bins, which is by far enough for
most applications.

• Batch custom subsets

When users finish exploring a subset, they can select a
download format and request its generation and delivery.
Among the formats, special attention must be put in sup-
porting Flexible Image Transport System (FITS) (Wells
and Greisen, 1979), which is one of the most popular data
formats in astronomy.

The custom subset is built in the background by the un-
derlying database engine. When the custom subset is
ready and stored, an email will be sent to the user with
a link that they must follow in order to start the down-
load.

7http://healpix.sourceforge.net/

2.3. Early prototypes
CosmoHub history can be traced back to the beginnings of

the Physics of the Accelerating Universe Survey (PAUS) project
in 2013. At that time, PAUS had started to produce its first
simulated data that needed to be distributed to its collaborators.
In order to facilitate the distribution, a pilot web interface called
”PAUdm Simulations Portal” was commissioned and integrated
into the official PAUdm operations web. This prototype offered
access to the PAUdm database hosted in a PostgreSQL server.

The amount of data stored in the prototype grew substan-
tially. Most of it came from external data used in PAUS pipelines,
such as SDSS star catalogs and MICE mock galaxy catalogs. In
time, MICE started ingesting more of its own data in the same
database, in order to be able to use the web interface. Through
several iterations we ended up implementing some dataset ex-
ploration features.

From the beginning, CosmoHub was designed in a way that
no specific technical knowledge was required in order to exploit
its functionalities. In particular, users were already able to for-
mulate queries without any SQL knowledge through a guided
process. Also, users were able to directly download Value-
Added-Data (prebuilt catalogs or other information needed to
analyze the data, such as filter curves or dust maps), they could
visualize general data trends using simple plots and, of course,
download custom subsets which were created asynchronously
in the computing facilities at PIC.

After a year or so, the performance of the database server
—designed specifically to host only PAUS data— started to suf-
fer. The amount of data hosted kept growing, mainly due to cat-
alogs ingested from external projects, the storage space became
tight and response times degraded.

In this situation, the first affected feature were the inter-
active plots, which at that time were limited to 10k rows and
queries taking less than 2 minutes to complete. With the in-
creasing size of the catalogs, most queries did not fulfill the
response time requirements even using custom indexes.

We ended up migrating to another instance of PostgreSQL
database in a separate server, with much more storage space and
similar processing power. In that way, we mitigated two prob-
lems: the limited storage available and the competition of com-
puting resources with the main PAUdm processing pipelines.

Nevertheless, the problem of solving the long response times
was hard to tackle. In our experience, traditional relational
databases such as PostgreSQL can deal with huge datasets, as
long as you deal with them in small chunks. But when the re-
quested data is above a certain threshold, the PostgreSQL query
optimizer does not use indexes as it is not efficient anymore.
That is the main reason why most of the queries ended up per-
forming a sequential scan of the entire table, resulting in re-
sponse times that can go from hours to even days. Last but
not least, modifying the schema and removing large amounts of
rows were extremely inefficient operations.

For these reasons we realized that PostgreSQL was not the
right tool for CosmoHub’s data workflow and we explored dif-
ferent possibilities (see section 3.1) to solve the problem. In the
end we decided to use Apache Hive, a data warehouse based on
Hadoop.

4



3. CosmoHub implementation

This section introduces the implementation details of Cos-
moHub’s main components. First, we discuss the configura-
tion of the Hadoop platform that hosts the data and supports
the processes that implement the available services, e.g. inter-
active plots and custom catalogs. Then, we describe how input
catalogs are ingested and stored, how SQL queries are treated,
which are the output formats available to users, and how con-
tents are generated. Next, we introduce the design and imple-
mentation using Python of the Representational State Transfer
(REST) API, which implements the available operations to the
users, hiding the particular details of the underlying Hadoop
platform. Finally, we describe the implementation of the web
interface and workflows that allow users to interact with Cos-
moHub.

3.1. Hadoop Platform
Assessing alternatives

From the experience gained from prototypes, we knew that
choosing the right data storage and processing platform was
fundamental to achieve our objectives. Therefore, we researched
and tested several alternatives that we thought could be use-
ful. There are multiple solutions in the market to handle large
structured datasets in a manner that is scalable and has good
performance, such as NoSQL (or non-relational) databases and
distributed relational databases. We only took into considera-
tion the open source alternatives due to technical and economic
reasons.

We knew from the beginning that one of the key require-
ments of CosmoHub would be the ability to hold multiple large
datasets, and to be able to analyze, compare and crossmatch
them. The particular architecture of NoSQL solutions such as
HBase8, Cassandra9, MongoDB10 or Redis11) normally does
not allow for efficient joins between datasets. Furthermore,
each of them implement a different language for interacting
with the data, with partial SQL support, at best. For these rea-
sons, we decided to discard the NoSQL solutions.

For the distributed relational databases, we studied two ap-
proaches. First, we tested clustered implementations of tradi-
tional databases, such as Postgres-XL and Greenplum. These
solutions rely on sharding and replicating the datasets onto mul-
tiple nodes in a computer cluster. Queries are then split and
routed to the proper nodes, which execute them assisted by a
central coordinator. Due to the reliance on partitions and in-
dexes, this kind of solutions are optimal for scaling out large
datasets.

These kind of solutions are mostly engineered to the CRUD
(Create, Retrieve, Update and Delete) paradigm they have in-
herited, where each operation usually involves a small subset
of the total number of rows. In contrast, in the typical Cos-
moHub workflow, datasets are ingested and deleted always as

8https://hbase.apache.org
9https://cassandra.apache.org/

10https://www.mongodb.com/
11https://redis.io

a whole, never updated, and usually retrieved in large subsets,
or as aggregations of large subsets. In addition to the critical
differences in data workflow design, we found that it was not
straightforward to implement or integrate new data formats on
these solutions.

Next, we tested solutions based on the Hadoop platform,
such as Apache Hive (Thusoo et al., 2009) and Apache Im-
pala (Bittorf et al., 2015). Hive is an open-source data ware-
house which has gained a lot of momentum since 2013, mostly
thanks to the Hortonworks12 Stinger13 and Stinger.next14 ini-
tiatives. Impala is a massively parallel processing (MPP) SQL
query engine for data stored in Hadoop, and its most important
contributor is Cloudera15.

When evaluating these alternatives, we found that Impala
timings were inconsistent, and in some cases, the results were
incorrect. More up to date correctness studies have replicated
the same findings16 17 18. Furthermore, the administration tools
from the Cloudera Hadoop distribution were not free, compared
to the Hortonworks open source ones. Consequently, we de-
cided on a solution based on Apache Hive on top of Horton-
works due to its stability, extensibility, comprehensive docu-
mentation and availability of free administration tools.

Software stack
Apache Hive is one of the multiple components in the Hadoop

ecosystem. Figure 2 displays a typical Hadoop architecture
showing several of those components layered in a stack. Cos-
moHub heavily relies on several of these components, specially
on Apache Hive, which is a data warehouse software that facil-
itates reading, writing, and managing large structured datasets
located in distributed storage. From the administrator’s point of
view, migrating from the previous setup based on PostgreSQL
to Apache Hive is easy as both have the same interface (SQL)
with the data.

Apache Hive sits on top of Apache Tez (Saha et al., 2015),
an application framework which allows the execution of com-
plex directed-acyclic-graphs (DAG) of tasks for processing data.
The scaffolding provided by Tez allows the orchestration and
optimization of Hive tasks, even at runtime, boosting its perfor-
mance.

The computing needs of every Hadoop platform are deliv-
ered by Yet Another Resource Negotiator (YARN) (Vavilapalli
et al., 2013). YARN enables the execution of arbitrary tasks on
top of containers executed in cluster nodes. Their resources are
delimited and isolated, as to not interfere or starve each other.
Resources are managed using scheduling queues, where each

12https://hortonworks.com/
13https://es.hortonworks.com/blog/100x-faster-hive/
14https://es.hortonworks.com/blog/stinger-next-

enterprise-sql-hadoop-scale-apache-hive/
15https://www.cloudera.com/
16https://mr3.postech.ac.kr/blog/2018/10/30/performance-

evaluation-0.4/
17https://mr3.postech.ac.kr/blog/2019/03/22/performance-

evaluation-0.6/
18https://mr3.postech.ac.kr/blog/2019/06/26/correctness-

hivemr3-presto-impala/

5



Distributed storage
(HDFS)

Resource negotiator
(YARN)

Orchestration Engine
(Tez)

Data warehouse
(Hive)

N
oS

Q
L 

D
at

ab
as

e
(H

Ba
se

)

C
oo

rd
in

at
io

n
(Z

oo
Ke

ep
er

)

W
or

kfl
ow

 &
 S

ch
ed

ul
in

g
(O

oz
ie

)

D
at

a 
In

te
gr

at
io

n
(S

qo
op

 / 
R

ES
T 

/ O
D

BC
)In-memory distributed

processing framework
(Spark)

Administration & Management
(Ambari)

Scripting
(Pig)

Batch
(MapReduce)

Figure 2: Hadoop layered ecosystem, showing how multiple components stack on top of others to provide a broad set of features and services. In grey, the
components used for CosmoHub,

user and group can get a fair share of resources as per configu-
ration.

The keystone of the Hadoop platform, the Hadoop Distributed
File System (HDFS) (Shvachko et al., 2010) lays at the base of
the stack. HDFS is a high performance distributed filesystem
that makes use of the storage of the nodes in a Hadoop cluster,
merging it into a single name-space for increased capacity and
performance. Concisely, it works by splitting the files in fixed-
size blocks and then replicating those blocks between the avail-
able nodes in the cluster. This architecture allows very good
resilience and scalability.

Additional components take care of security, user authenti-
cation and authorization, as well as the administration and con-
figuration of the different components. The market offers sev-
eral distributions that include most of those components in the
form of self-contained packages that facilitate an easy instal-
lation and configuration and, in addition, commercial support.
In our case, all these layers are provided by the Hortonworks
Data Platform (HDP) software solution. The currently installed
version is HDP 2.6.5.

Hardware structure
Figure 3 shows the hardware architecture of the Hadoop

platform used for CosmoHub. The current cluster is composed
of 16 compute nodes and 3 head nodes. The 16 compute nodes
are grouped in 4 dual-twin servers. Each node is equipped with
two 14-core CPUs, 128 GiB of RAM, two 6 TB SATA disks
and a single 960 GB SSD disk. The SATA drives are config-
ured with a small RAID-1 partition to host the OS, and the rest
of space is used for HDFS storage (without RAID). The SSD
drive is devoted to cache intermediate files in order to boost
the efficiency of shuffle operations (Kambatla and Chen, 2014),
such as CosmoHub joins. The compute nodes are located at our
innovative oil-submersion cooling facility, which is very power
efficient (Acı́n et al., 2015).

Because of the dense form factor used for the compute nodes,
there is not much space for expansion. Thus, in order to expand
the storage capacity, we provisioned two external disk enclo-
sures, with 36 SATA disks of 2 TB. Each compute node mounts
4 of those disks using iSCSI, two from each enclosure, account-
ing for 32 of the 36 drives in each enclosure. The remaining 4
drives are left as spare. The iSCSI disks appear as if they were
local disks and are used for HDFS storage.

All in all, the compute nodes sum 448 cores, 2 TiB of RAM,
192 TiB of local SATA storage space and 128 TiB of external
iSCSI storage space. After taking into account the CPU and
RAM reserved for Hadoop services in the compute nodes, and
the overhead that replicas introduce in HDFS storage, the ac-
tual resources available for processing are approximately ∼400
cores, 1.8 TiB RAM, ∼60 TiB of local SATA storage and ∼40
TiB of external iSCSI storage space.

Each compute node and disk enclosure has a 10 GbE link
to the same network switch. This switch is kept separated from
the rest of the network infrastructure so that traffic peaks or sat-
uration do not affect other critical services at PIC. An additional
10 GbE link connects this switch to the rest of the PIC network,
where the head nodes and the CosmoHub application server are
located.

The head nodes are equipped with two 8-core CPUs, 32 GiB
of RAM and 2 TB of local storage. They are configured in a
high-availability setup. In case of a failure, the service running
in another head node is able to promote itself to master and keep
the service functioning.

3.2. Data workflow
CosmoHub hosts multiple datasets of different projects, ori-

gins, cardinalities and complexities, and all of them are stored
on HDFS. Most of the time, incoming raw data is published
in some kind of ASCII19 format, like CSV. The main problem

19https://tools.ietf.org/html/rfc20

6



x32

External disk enclosure

Hadoop node

x16

10 GbE

10 GbE

10 GbE

External disk enclosure

Hadoop node

10 GbE

10 GbE

Headnodes

1 GbE 1 GbE 1 GbE

CosmoHub

1 GbE

Network switch

x32

Network switch

Figure 3: Hadoop cluster architecture, showing the configuration of the external disks and their logical links, the physically separated network for the nodes and
external disk enclosures and the connection with the core network along with the headnodes and CosmoHub server.

with this kind of formats is that they are not able to describe the
corresponding data types in a native way. In some cases, the
data files are augmented with additional headers or they come
with attached documentation of the types and meaning of the
different columns in the dataset. However, alternative binary
formats —such as FITS— are also common, and lately others
such as Hierarchical Data Format 5 (HDF5) (Folk et al., 2011)
have been gaining traction. A decisive advantage of these bi-
nary formats is that they can store the machine representation
of the values and they carry along detailed metadata, including
the description of data types and columns. Therefore, they are
preferred in order to preserve as much information as possible
when ingesting a dataset into CosmoHub.

Raw data
The original upstream data, in whatever raw format is pro-

vided, is copied into HDFS and then converted into a native
Hive format that is suitable for efficient query processing. Op-
timized Row Columnar (ORC20) and Parquet21 are two con-
tending formats in this area.

Features like columnar-based structure, push-down predi-
cate (PPD) capabilities, column statistics or bloom filters are
very useful for query efficiency, as they enable to skip entire
sections of rows that do not contain data of interest. While both
are very similar and support nearly the same set of features, we
decided to use ORC because it is the one that is recommended
by Hortonworks, the chosen Hadoop platform distribution for
CosmoHub.

Interactive exploration
Queries intended for visualization purposes should finish

in a few seconds to satisfy the interactivity requirement. As

20https://orc.apache.org/specification/ORCv1/
21https://parquet.apache.org/

transferring large amounts of data to the browser for plotting is
unfeasible, we use histograms and heatmaps to visualize large
datasets. CosmoHub rewrites the queries that feed the histogram
and heatmap plots in order to pre-aggregate the results and de-
liver to the browser only the data points to be plotted. This
minimizes network traffic and lessens the load on the client.

Furthermore, in order to speed up even more the execution
of interactive queries, two resources queues have been set up in
YARN. One queue is for batch tasks such as generating custom
catalogs or other non-CosmoHub related jobs, while the other
is devoted solely to the execution of interactive queries. This
last queue has absolute priority over the resources and can even
preempt resources from the other queue if needed in order to
ensure the fastest execution time possible.

We cannot make any guarantees regarding the response times,
as the nature of the interaction between the users and Cosmo-
Hub is very diverse and our resources are limited. Nevertheless,
the results (see section 4.1) show that, in nearly all cases, the in-
teractivity requirement is achieved.

Custom catalogs
Custom catalogs are generated from an SQL statement where

the output is written concurrently as a set of files, each one of
them created by a different cluster node. WebHCat22 is used to
orchestrate the execution of this SQL statement. In the previous
version of CosmoHub, the catalogs were offered as a single file
download. In order to have a smooth transition, we wanted to
keep providing the same download interface.

Therefore, the download formats that we could support would
need to have a fast and simple way to merge the set of indi-
vidual files into a single stream. Taking into account this re-

22https://cwiki.apache.org/confluence/display/Hive/

WebHCat

7



strictions, CosmoHub implements three different download for-
mats: BZip2-compressed Comma-Separated Values (CSV23),
FITS and Advanced Scientific Data Format (ASDF) (Greenfield
et al., 2015).

Data formats
CSV is a very well known ASCII format, broadly supported

among all kinds of programming languages, toolkits and spe-
cialized software. However, it is also very bulky. Compres-
sion can greatly reduce its footprint, but not all compression
codecs allow merging different files or streams into a single
one. Hadoop supports different compression codecs, includ-
ing GZip24 25, BZip2 and XZ26. GZip is fast, provides a de-
cent compression factor, but does not support the concatena-
tion of gzip-compressed streams. BZip2 and XZ both provide
great compression factors at an increased computational cost,
and both support the concatenation of its compressed streams.

We decided to use BZip2 for its stability and broad support
compared to XZ. It is worth noticing that during our initial tests,
we also found some issues27 in the Hadoop XZ library.

FITS is an stable and mature format that has become the de-
facto standard for astronomy data interchange. First defined in
1981, it has undergone several revisions (latest is v4.0 released
in August 2018). However, it still carries on several limitations
(see Thomas et al. (2015)) originating from the ancient hard-
ware it was designed for.

In order to implement FITS as a download format in Cos-
moHub, the main limitation for us is its lack of streaming sup-
port. Without entering into much detail, FITS files are divided
in headers and data sections. In our particular case, the FITS
files used for storing tabular data define the schema of each
row in the header, along with the number of rows. The row
length depends on the schema and is equal for all rows. Both
the header and data sections are null-padded to a multiple of
2880 bytes and saved to disk. The problem is that the number
of rows that must be stored in the header is not determined until
the query has finished. By then, the output has already been
generated and HDFS does not allow random-access writes to a
file, only appends.

To circumvent this problem, we developed a custom Hive
output format28 that stores just the data section (without padding).
We can compute the number of generated rows as the result of
dividing the total size of the output by the row length once all
outputs have been written, given that the row length is fixed.
Once we know the number of rows, streaming the results back
to the user is easy. We generate the header on-the-fly from the
query metadata stored in the database, we pad it as a multiple
of 2880 bytes and we serve it to the browser, appending after it
all the output files the query has produced. At the end, we pad
also the last output. The resulting downloaded file is a perfectly
compliant FITS file.

23https://tools.ietf.org/html/rfc4180
24https://tools.ietf.org/html/rfc1951
25https://tools.ietf.org/html/rfc1952
26https://tukaani.org/xz/
27https://github.com/yongtang/hadoop-xz/issues/9
28https://github.com/ptallada/recarrayserde

ASDF is also supported as download format in CosmoHub.
It has been designed as the successor of FITS, claiming to re-
move most of its problems. ASDF files are divided in several
sections but, for our purposes, we are only interested in the tree
and the data sections. The schema is defined in the tree section
and is serialized as a YAML Ain’t Markup Language (YAML)
(Ben-Kiki et al., 2009) document. The rows are stored as binary
blocks in the data section.

In order to facilitate interoperability between FITS and ASDF,
the block binary format is compatible with FITS. This fact made
it very easy to add ASDF support in CosmoHub. As the rows
are already written in FITS format, we just need to generate the
ASDF header and append all the outputs without any padding.

3.3. Python backend

CosmoHub allows users to process large datasets to obtain
additional information. In order to decouple the results of those
interactions from the way they are presented, all operations are
carried out through a set of API calls. In particular, all actions
available to the user are implemented in an API that follows the
REST (Fielding, 2000) paradigm. Operations are grouped in
several endpoints depending on the data model entity they act
on (see Figure 1). Database access is proxied through an Object
Relational Mapper (ORM) layer in order not to tie the imple-
mentation of each action to the data model specifics, enabling
data model evolution. All actions return JSON29 responses,
which are consumed by the web frontend. A complete list of
endpoints and their description is available in Table 1.

Most catalogs in CosmoHub belong to a single project al-
though, in some special cases, they can be associated with sev-
eral projects. Only users which are members of those projects
are able to access their corresponding data. In order to prevent
unauthorized uses of CosmoHub, all requests are authenticated
and the user privileges are checked against the database. The
API accepts two authentication methods, basic and token.

With HTTP Basic authentication30, each request must in-
clude a username and password combination. This information
is looked up in the user database and, if no match is found, the
request is denied. The main inconvenience with this mecha-
nism is that each request requires a round-trip to the database.
In order to soften the load on the database, a JSON Web Token31

(JWT) is attached to every response. This token contains signed
information about the authenticated user and, when supplied on
future requests, it allows the backend to verify the identity of
the user without any database involvement.

Regarding the interactive exploration feature of CosmoHub,
as Hive queries are potentially executed on all nodes in the
Hadoop platform, a full table scan usually takes about a minute.
Combined with sampling, results can be obtained even faster.
This performance allowed us to implement interactive explo-
ration of large datasets using histograms and heatmaps. As also
mentioned in 3.2, data for these plots is pre-aggregated on the

29https://tools.ietf.org/html/rfc7159
30https://tools.ietf.org/html/rfc7617
31https://tools.ietf.org/html/rfc7519

8



URL Method Description

/user

GET Retrieve current user profile

PATCH Update profile data (i.e. email, password)

POST Register a new user

DELETE Remove a user account

/groups GET Retrieve the list of groups

/acls
GET Retrieve the list of users and their memberships

PATCH Modify a user’s membership

/catalogs GET Retrieve the list of catalogs accessible to the current user

/catalogs/{id} GET Retrieve detailed information of a catalog

/catalogs/syntax GET Perform an SQL syntax check

/downloads/datasets/{id}/readme GET Download the README file for a dataset

/downloads/files/{id}/readme GET Download the README file for a value-added file

/downloads/files/{id}/contents GET Download the contents of a value-added file

/downloads/queries/{id}/results GET Download the output of a custom catalog

/queries
GET Retrieve the list of custom catalogs for the current user

POST Request the generation of a custom catalog

/queries/{id}/cancel POST Abort the generation of a custom catalog

/queries/{id}/done GET Callback to notify the completion of a custom catalog

/contact POST Send a message to the CosmoHub Team

Table 1: List of REST API endpoints, grouped by entity. For each one, its URL pattern, the HTTP method and a brief description is shown.

Hive side using a specially constructed query and only the data
points to be plotted are sent to the browser.

Additionally, in order to provide some feedback to the user
during the execution of interactive queries, an extension32 was
developed for the Python DB-API interface for Hive (PyHive)
in order to extract the progress of an ongoing query. This in-
formation is relayed using a websocket33 connection, which en-
ables bidirectional communication between the browser and the
backend. Through this channel, users receive periodic progress
updates about a query and can also request its cancellation.

CosmoHub is deployed in three different instances corre-
sponding to the production, pre-production and test environ-
ments. Each one of them runs on separate identical virtual ma-
chines, with 4 cores, 4 GiB of RAM and 10 GiB of storage
each. Only the production instance is accessible to the outside
through https://cosmohub.pic.es.

The main software components used for building the back-
end stack are Flask34 as the Python Web Server Gateway In-
terface (WSGI35) framework, Flask-RESTful36 as the REST
framework and gevent37 as the coroutine networking library.

32https://github.com/dropbox/PyHive/pull/136
33https://tools.ietf.org/html/rfc6455
34http://flask.pocoo.org/
35https://www.python.org/dev/peps/pep-3333/
36https://flask-restful.readthedocs.io
37http://www.gevent.org/

This stack runs on top of uWSGI38 behind an NGINX39 proxy.
For the data access layer, SQLAlchemy40 is used as the

ORM component and the combination of psycopg41 and psycogreen42

are used as the PostgreSQL driver and coroutine adapter library,
respectively. Finally, astropy43 is used to implement FITS as a
download format and the ASDF44 python library to implement
ASDF format.

3.4. Web frontend

The web interface’s main objective is to enable the user to
access all of CosmoHub’s features which, as described in the
previous section, are available through a set of REST endpoints.

Usability is a strong requirement, as the interface should be
intuitive enough so that any user can interact with it with no
prior training. Special care should be taken to follow and ex-
ploit characteristic web semantics —such as forms, hyperlinks
or scrolling, among others— to aid the user at every step. In
the end, designing a clean and simple interface, preferably self-
explanatory, is key to permitting open science.

38https://uwsgi-docs.readthedocs.io
39https://www.nginx.com/
40https://www.sqlalchemy.org/
41http://initd.org/psycopg/
42https://bitbucket.org/dvarrazzo/psycogreen
43https://www.astropy.org/
44https://asdf-standard.readthedocs.io

9



CosmoHub’s frontend has been developed using modern,
widely-supported, community technologies, such as AngularJS45,
Bootstrap46, WebSockets47, Plot.ly48 and Wordpress49.

AngularJS is a Javascript framework, developed and main-
tained by Google50, that extends HTML to implement Model-
View-Controller capabilities into web browsers, making user
interactions dynamic, faster and more fluid. It has a large col-
lection of official and third-party plugins and is specially de-
signed to interact with API based applications, such as Cos-
moHub. Being open-source, well maintained and with a broad
community of users and developers are key aspects for choos-
ing it as the base of the frontend.

Bootstrap is an open-source HTML, JavaScript and Cas-
cading Style Sheets (CSS) library created and maintained by
Twitter51 for responsive web design. It is one of the most used
styling frameworks in the entire web development community,
providing users with clear and coherent interfaces. It comes
with a handy and easy to configure column-based layout, plus
some predefined style elements. These features are extensively
used in CosmoHub.

WebSockets is a technology for bi-directional communica-
tion between web browsers and web servers. This technique
involves upgrading a stateless HTTP request into a persistent
TCP connection that can be subsequently used to transfer in-
formation from both parties. Some features such as real-time
progress monitoring require websockets to work properly.

Plot.ly is an open-source plotting library based on the widely
used D3.js52 web visualization framework. It greatly simplifies
the programming needed to implement all sorts of charts and
dashboards, such as those used for interactive exploration.

Finally, WordPress is one of the most used content man-
agement systems (CMS). Although it is mostly associated with
blogs, CosmoHub uses it as a backend for editing the content
of dynamic sections, such as the news feed.

When a user visits CosmoHub (https://cosmohub.pic.
es), it is presented with the initial page shown in Figure 4. This
front page describes its goals, showcases its main features and
holds references to the rest of public contents: about page, news
feed, terms of use and a link to the Twitter profile. All these
sections can be accessed without authentication.

User management
Authentication is required in order to access CosmoHub’s

main features. For this, users have to enter their credentials in
the login form. If they forgot their credentials, they can enter
their email address in the reset password form. A link will be
sent to that address that allows them to set up a new password.

45https://angularjs.org/
46https://getbootstrap.com/
47https://tools.ietf.org/html/rfc6455
48https://plot.ly/
49https://wordpress.com/
50https://google.com
51https://twitter.com
52https://d3js.org/

Figure 4: Initial page, showcasing the main projects and features. Note that
some content has been edited for presentation purposes.

10



Figure 5: Catalog selection page, showing a subset of current public catalogs.

If they do not have an account, they can fill in a registra-
tion form. A captcha53 protects this form from automated/spam
registration attempts. Upon completion, users receive an email
with a link they must open to confirm ownership of the email
address provided and, immediately afterwards, they are granted
access to the public catalogs. Access to private data from addi-
tional projects has to be manually validated by project adminis-
trators. Requests are usually processed within the day, using a
specific interface (not shown here).

Finally, users can access their profile page which displays
their personal details such as name, email address and their
project membership. They can update this information, includ-
ing their password, or request the removal of their account. All
personal data from registered users is stored and processed fol-
lowing GDPR regulations.

Interactive exploration
Just after logging in, users are presented with the catalog

selection page. As shown in Figure 5, each catalog appears
listed with a name, a short description, the origin (observed or
simulated data) and the date it was uploaded to CosmoHub. The
headers on the top of each column allow to sort the list for each
field, while the top search box allows user to restrict the listing
to only those catalogs

Selecting any entry brings them to the catalog page (Figures
6 and 7), where they can build their own custom catalogs or
subsets for interactive exploration and/or download. In order to
guide them, the subset construction process is divided in a series
of steps, which can be traversed through scrolling or using the
navigation bar fixed at the top.

The first piece of information a user encounters is a com-
plete description of the catalog, usually provided by the catalog

53https://www.google.com/recaptcha

owner. Just below, an optional section called ”Value Added
Data” contains links and documentation to additional data that
complements this catalog and that may be useful to analyze it,
such as filter curves or extinction maps.

Users can use a predefined dataset (Step 0) or create a new
one from scratch (Step 1). Predefined datasets are curated op-
tions with specific purposes, although users can modify them to
suit their needs. For each dataset listed in Step 0, its name, ver-
sion, description, type and number of rows is shown. There are
two types of predefined datasets: basic datasets use the guided
interface to configure the subset, while expert datasets resort to
setting up directly the SQL statement in expert mode. In order
to build a custom catalog from scratch, users start choosing the
set of columns they need from Step 1. The search box on the
top right allows users to filter the columns display looking for
partial matches on names and comments.

Steps 2 and 3 represent two methods available to users for
restricting the number of rows contained in their custom cata-
log. On the one hand, with row sampling (Step 2), Hive can
be configured to only read a fraction of the files that store the
catalog’s data. In an attempt to deliver statistically unbiased
subsets, rows are divided in those files not following any ac-
tual property —such as position, mass, luminosity, etc.— but
a pseudo-random value, usually a surrogate key. In addition,
users may specify in Step 3 any arbitrary criteria to further re-
strict the resulting rows. A filtering criteria consists of a col-
umn, an operator and a constant value. If multiple criteria are
specified its effects are combined, thus only rows fulfilling all
criteria are returned.

Step 4 displays the corresponding SQL statement constructed
from the options selected in the previous steps. If the guided
interface capabilities are not enough, or users are proficient us-
ing SQL, the Expert mode can be enabled by clicking a button.
From that point on, the guided interface will be disabled and
the SQL sentence can only be modified by manually editing it

11



Figure 6: Catalog page upper half, showing catalog’s description, valued added data and steps 0 to 3.
12



Figure 7: Catalog page bottom half, showing steps 4 to 7.
13



Figure 8: 1D histogram, displaying the number of galaxies in MICECAT2 with
true redshift between 0.4 and 0.6, grouped by absolute magnitude in a hundred
uniformly sized bins.

Figure 9: 2D heatmap, displaying a color-magnitude diagram of MICECAT2.

in the text area.
Once the custom catalog has been defined, users can inter-

actively explore its properties using any of the 4 visualization
tools in Step 5. (i) The table preview shows the first 20 rows in
the subset and it is mainly used to have a glance at the results.
(ii) The scatter plot allows to display the relationship between
several properties. However, as it cannot aggregate data, it is
limited to ten thousand points. (iii) 1D histograms can be gen-
erated from any column using a configurable number of uni-
formly sized bins. The upper and lower bound of the bins are
automatically hinted based on the column statistics stored by
Hive. An example is shown in Figure 8. (iv) 2D heatmaps, as
scatter plots, display the relation between two properties using
rectangular bins. As with 1D histograms, bin ranges are filled
in from column statistics. Also, the metric can be selected be-
tween COUNT, AVG, MAX or MIN, in order to display the num-
ber of rows, average, maximum or minimum value for each bin,
respectively. Figure 9 shows an example.

After filling in the required fields, pressing the Play button
will start the process to generate the visualization. The status

is presented using a progress bar with two different stages. In
static color, the amount of work that has been completed, and in
a moving pattern the amount that is being executed right now.
When the progress bar becomes all filled and static, the results
are downloaded and displayed on screen. All plots can have
customized display options such as axis scaling (linear or loga-
rithmic), axis direction (increasing or decreasing) or switching
to a cumulative plot. Also, visualizations can be zoomed in and
out, exported as a Portable Network Graphics (PNG) image or
downloaded as a CSV file for additional processing.

Custom catalogs
Whenever users are satisfied with the properties of their cus-

tom catalog, they can request it to be generated and stored in
a specific format to be later downloaded. Step 6 shows the
supported formats: CSV with BZip2 compression, FITS and
ASDF. Finally, after selecting the desired download format,
users have to read and accept the corresponding data usage and
citation guidelines in Step 7. Once requested, the custom cat-
alog is assigned a unique identifier, so that users may track its
progress

When a custom catalog is completed, users receive an email
directing them to the Activity page (see Figure 10) in order to
download it. Users may also use this page to follow the progress
of their custom catalog requests. Finished catalogs are kept
a minimum of 30 days and are eventually deleted to maintain
enough free storage space.

4. Results

In this section we present some of the most relevant re-
sults and successful use cases of the version of CosmoHub as
described in this article, which was commissioned in October
2016. The results are separated into two sections, the first one
contains a quantitative analysis of the volume, timing and per-
formance of the service as a whole, while the second section
contains specific scientific applications where CosmoHub is be-
ing used.

4.1. Quantitative analysis
Since this version opened for public use, CosmoHub has

been constantly growing in all relevant metrics, such as num-
ber of users, number of catalogs and volume of published data
(see Figure 11). Note that the information in this figure only
accounts for data published through CosmoHub, excluding cus-
tom catalogs.

Since late 2016, more than 600 new users have opened an
account, and more than 4,000 custom catalogs and nearly 10,000
interactive queries have been delivered. Data growth has been
limited by the available storage space. By the end of 2019, our
current expectations are to double the amount of published data.

At the same time, performance in terms of response time
has been stable. Figure 12 shows that the average response time
for the execution of interactive queries and the generation of
custom catalogs has barely increased over time. Statistical fluc-
tuations are due to resource contention with concurrent queries
and scheduling overheads, among others.

14



Figure 10: Activity page, used to follow custom catalog creation progress and to download them when they are ready.

2017 2018 2019
0T

10T

20T

30T

40T

Data volume

0

10

20

30

40

50

60

70

Catalogs

Figure 11: Evolution over time of the number of available catalogs and size of
published data.

2017 2018 2019

0m

5m

10m

15m

pr
oc

es
si

ng
 ti

m
e

Custom catalogs
Interactive queries

Figure 12: Processing time in minutes (monthly average) for batch catalogs and
interactive queries. Shaded area shows one sigma deviation.

10s 1m 5m 1h 1d

0.0

0.2

0.4

0.6

0.8

1.0

co
m

pl
et

io
n 

ra
tio

Custom catalogs
Interactive queries

Figure 13: Completion ratio as a factor of processing time for batch catalogs
and interactive queries.

It is worth noticing that, since its commissioning, the archi-
tecture and configuration of the Hadoop platform has seen sev-
eral reorganizations, although the only resource that has been
increased is the storage capacity. Therefore, by improving and
tuning the platform, we have been able to cope with the growth
in users and data volume and to keep the response time stable.
Nevertheless, we do not expect to be able to squeeze much more
performance of the actual setup so, in the future, additional re-
sources will be required in order to reduce or keep the response
times stable.

Figure 13 provides information about the distribution of re-
sponse times by plotting the completion ration for both interac-
tive queries and custom catalogs. The completion ration is de-
fined as the fraction of queries completed after a given elapsed
time. Note that the orchestration of the different tasks on the

15



2017 2018 2019

0

50

100

150

200

250

300

350

ac
tiv

e 
us

er
s

Euclid Consortium meeting
Gaia DR2

Figure 14: Active users over time, with relevant milestones highlighted. Upper
and lower bounds correspond to active users within a window of 28 days and 7
days respectively, while middle line is for a 14 days window.

cluster nodes has a minimum overhead of about 10-12 seconds.
Only queries that can be answered directly from statistics, such
as selecting the number of rows or the maximum value of a
column without filters, return in a shorter time.

About 66.9% of all interactive queries finish in less than
30 seconds, while 96.8% of them finish in less than 2 minutes.
These response times enable users to interactive explore any
dataset, without worrying about its volume or the complexity
of the query. On the other hand, for custom catalogs, 71.0% are
produced in less than 3 minutes, while 97.4% of them finish in
30 minutes. Although not as relevant as for interactive queries,
keeping a low response time for the generation of custom cata-
logs is also important to keep a good user experience.

Figure 14 shows the evolution of active users over time.
Dates of particular scientific events are overlayed. A clear cor-
relation can be seen, particularly with the Euclid Consortium
meeting held yearly every June, where interest on newly re-
leased data boosts user activity. A peak in activity can also be
seen coinciding with Gaia Data Release 2 (DR254). The catalog
was mirrored in CosmoHub in less than 12h and we were able
to release it almost simultaneously to the official announcement
at the Europen Space Astronomy Centre (ESAC55).

4.2. Scientific applications
CosmoHub supports multiple international cosmology projects,

the most relevant in terms of users and data volume being Eu-
clid 56. Euclid simulations require the production of extremely
large datasets. In their Flagship simulation57 (paper in prepara-
tion), with an estimated final size of 20 TiB and nearly 30× 109

objects, they are using as input the largest dark-matter halo cat-
alog up to date, with 5.5 TiB and 40 × 109 objects. CosmoHub
is currently providing access to the entire halo catalog and to
several productions of mock galaxy catalogs (these account for
about half of the data stored in CosmoHub). The Euclid cos-
mological simulations validation team makes heavy use of the

54https://www.cosmos.esa.int/web/gaia/dr2
55http://www.esa.int/About_Us/ESAC
56http://sci.esa.int/euclid/
57https://www.euclid-ec.org/?page_id=4133

Catalog Rows Fields Size
ALHAMBRA
— S/G classified 422 K 7 10.4 MiB
— photometric redshifts 441 K 113 149.5 MiB
CFHTLens 29 M 129 7.5 GiB
COSMOS 2015 1.2 M 537 1.6 GiB
Gaia DR1 1,143 M 62 174.9 GiB
Gaia DR2 1,693 M 98 486.5 GiB
KiDS DR4 100 M 306 89.6 GiB
MICECAT 1 205 M 91 59.9 GiB
MICECAT 2 500 M 122 211.1 GiB
PAUS-COSMOS EDR 6.5 K 126 2.8 MiB
PAU-MillGas Lightcone 7.4 M 34 9.0 GiB
Zest 132 K 71 20.9 MiB

Table 2: List of public catalogs in CosmoHub.

exploration capabilities of CosmoHub in order to validate data
prior to its release to the full collaboration. Then, Euclid sci-
entists use CosmoHub to download customized subsets of the
data for further analysis and processing.

At the time of this writing, up to 24 publications have ac-
knowledged CosmoHub contribution to their results. Projects
such as PAU Survey58 and MICE59 use CosmoHub as the offi-
cial and primary channel for the distribution of their data (Erik-
sen et al. (2019) and Cabayol et al. (2018)). Other projects
such as DES60 and Gaia61 have a replica of their most important
releases, and several publications have made use of them (see
Serenelli, Aldo et al. (2019) and Sevilla-Noarbe et al. (2018)).
The subset of public catalogs in CosmoHub (as of October 2019)
is shown in Table 2.

Finally, other applications not based solely on the distribu-
tion of data are also present, such as the one from the DES clus-
tering science working group. They made intensive use of the
exploration capabilities to define and test many different arbi-
trary galaxy subsamples to estimate the Baryon Acoustic Oscil-
lations (BAO) feature in the galaxy distribution (Crocce et al.,
2019). Some particularly useful applications are shown in Ap-
pendix A. Lastly, some projects have also cited CosmoHub as
a state-of-the-art reference to their own data publication proce-
dures, such as Heitmann et al. (2019) and Nelson et al. (2019).

5. Conclusions and future work

This paper presents CosmoHub, our vision to enable the
interactive exploration and distribution of large cosmological
datasets on top of Hadoop. The paper describes the main fea-
tures and capabilities of CosmoHub from the user’s point of
view but, more importantly, it also details all the research and
decisions made regarding its design and implementation.

58https://www.pausurvey.org/
59http://maia.ice.cat/mice/
60https://www.darkenergysurvey.org/
61http://sci.esa.int/gaia/

16



Regarding the design (explained in section 2.2), it is fo-
cused on satisfying a set of needs (enumerated in section 2.1)
gathered from the scientific community, while the experience
gained through the early prototypes (described in section 2.3)
helped pave the way to achieve its current success. In partic-
ular, the easy to use requirement has been met by implement-
ing CosmoHub as a web application, with a guided process to
remove any SQL knowledge dependency, and the support for
common data formats such as CSV and FITS. Also, the abil-
ity to produce visualizations to get insight over thousands of
millions of rows in just a few seconds fulfills the interactive ex-
ploration requirement. Several projects such as PAUS, MICE
and the Euclid simulation group have selected CosmoHub as
their primary data distribution service, which was also one of
our objectives.

The decision to delegate CosmoHub’s data processing to
Hadoop and Hive (see section 3.1) has proven to be a good
choice. The reliability and high performance exhibited by this
data warehouse solution, combined with the usability and pow-
erful features implemented in CosmoHub’s interface, have en-
abled to steadily support a growing number of users and projects.
Also, the great scalability of the platform has allowed to keep
response times low at all times (see section 4.1), in spite of the
constant increase in data volume. In the end, the results pre-
sented support the fact that CosmoHub is providing a useful
service to the scientific community with a high quality of ser-
vice, as proven by the use of CosmoHub by some of the most
relevant projects in cosmology (see section 4.2).

When CosmoHub entered into service in late 2016, it was
the first project to apply Hadoop to the analysis and distribu-
tion of large cosmological datasets. Over these years we have
learnt a lot from both our own experience and user’s feedback.
In fact, we are already working on the next iteration of Cos-
moHub which will include a lot of improvements based on this
experience:

(i) Regarding the Hadoop platform, upgrade it to the lat-
est HDP release. The most exciting new features include the
possibility to reduce replica overhead using erasure coding, the
ability to access a read-only view of externally provided storage
and the implementation of materialized views in Hive to speed
up join queries.

(ii) From CosmoHub application’s perspective, add the abil-
ity for users to upload their own catalogs and to publish and
share them with other users, extend and optimize the visualiza-
tion tools performance using a binary protocol, and improve the
general responsiveness of the user interface, among many other
new features.

With all this future work under way, we are prepared to keep
pushing forward and to help put in place the next generation
of services for managing large volumes of structured scientific
data.

Acknowledgements

CosmoHub has been partially funded through projects of
the Spanish national program “Programa Estatal de I+D+i” of

the Spanish government. The support of the ERDF fund is
gratefully acknowledged.

We are also deeply grateful to all PIC’s staff, both for the
encouragement from the management and for the tremendous
help and support we get from our IT colleagues.

Finally, our most sincere thanks to CosmoHub’s community
of users, for their invaluable feedback and advice.

References

References

Acı́n, V., Delfino, M., Herbera, A., Hernández, J., 2015. Free cooling on the
Mediterranean shore: Energy efficiency upgrades at PIC. J. Phys. Conf. Ser.
664, 052009. doi:10.1088/1742-6596/664/5/052009.

Ben-Kiki, O., Evans, C., Ingerson, B., 2009. YAML aint markup language
(YAML) version 1.2. YAML.org .

Bittorf, M., Bobrovytsky, T., Erickson, C., Hecht, M.G.D., Kuff, M., Leblang,
D.K.A., Robinson, N., Rus, D.R.S., Wanderman, J., Yoder, M.M., 2015.
Impala: A modern, open-source sql engine for hadoop, in: Proceedings of
the 7th Biennial Conference on Innovative Data Systems Research.

Cabayol, L., Sevilla-Noarbe, I., Fernández, E., Carretero, J., Eriksen, M.,
Serrano, S., Alarcón, A., Amara, A., Casas, R., Castander, F.J., deVi-
cente, J., Folger, M., Garcı́a-Bellido, J., Gaztanaga, E., Hoekstra, H.,
Miquel, R., Padilla, C., Sánchez, E., Stothert, L., Tallada, P., Tortorelli, L.,
2018. The PAU survey: stargalaxy classification with multi narrow-band
data. Monthly Notices of the Royal Astronomical Society 483, 529–539.
doi:10.1093/mnras/sty3129, arXiv:1806.08545.

Carretero, J., Castander, F.J., Gaztaaga, E., Crocce, M., Fosalba, P.,
2014. An algorithm to build mock galaxy catalogues using MICE
simulations. Monthly Notices of the Royal Astronomical Society 447,
646–670. URL: https://doi.org/10.1093/mnras/stu2402, doi:10.
1093/mnras/stu2402, arXiv:http://oup.prod.sis.lan/mnras/article-
pdf/447/1/646/4911622/stu2402.pdf.

Carretero, J., Tallada, P., Casals, J., Caubet, M., Castander, F., Blot, L., Alarcn,
A., Serrano, S., Fosalba, P., Acosta-Silva, C., Tonello, N., Torradeflot, F.,
Eriksen, M., Neissner, C., Delfino, M., 2017. Cosmohub and scipic: Mas-
sive cosmological data analysis, distribution and generation using a big data
platform, p. 488. doi:10.22323/1.314.0488.

Chamberlin, D.D., Boyce, R.F., 1974. SEQUEL: A structured english query
language, in: ACM SIGMOD, p. 249264. URL: http://www.almaden.
ibm.com/cs/people/chamberlin/sequel-1974.pdf.

Crocce, M., Castander, F.J., Gaztaaga, E., Fosalba, P., Carretero, J., 2015.
The MICE Grand Challenge lightcone simulation II. Halo and galaxy
catalogues. Monthly Notices of the Royal Astronomical Society 453, 1513–
1530. URL: https://doi.org/10.1093/mnras/stv1708, doi:10.
1093/mnras/stv1708, arXiv:http://oup.prod.sis.lan/mnras/article-
pdf/453/2/1513/3940111/stv1708.pdf.

Crocce, M., Ross, A.J., Sevilla-Noarbe, I., Gaztanaga, E., Elvin-Poole, J.,
Avila, S., Alarcon, A., Chan, K.C., Banik, N., Carretero, J., 2019. Dark
Energy Survey year 1 results: galaxy sample for BAO measurement. MN-
RAS 482, 2807–2822. doi:10.1093/mnras/sty2522, arXiv:1712.06211.

Eriksen, M., Alarcon, A., Gaztanaga, E., Amara, A., Cabayol, L., Carretero,
J., Castander, F.J., Crocce, M., Delfino, M., DeVicente, J., Fernandez, E.,
Fosalba, P., Garcia-Bellido, J., Hildebrandt, H., Hoekstra, H., Joachimi,
B., Norberg, P., Miquel, R., Padilla, C., Refregier, A., Sanchez, E., Ser-
rano, S., Sevilla-Noarbe, I., Tallada, P., Tonello, N., Tortorelli, L., 2019.
The PAU Survey: early demonstration of photometric redshift performance
in the COSMOS field. Monthly Notices of the Royal Astronomical Soci-
ety 484, 4200–4215. URL: https://doi.org/10.1093/mnras/stz204,
doi:10.1093/mnras/stz204, arXiv:http://oup.prod.sis.lan/mnras/article-
pdf/484/3/4200/27747421/stz204.pdf.

Fielding, R.T., 2000. Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. thesis. AAI9980887.

Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D., 2011. An overview
of the hdf5 technology suite and its applications, in: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, ACM. pp. 36–47.

17



Fosalba, P., Crocce, M., Gaztaaga, E., Castander, F.J., 2015. The
MICE grand challenge lightcone simulation I. Dark matter clus-
tering. Monthly Notices of the Royal Astronomical Society 448,
2987–3000. URL: https://doi.org/10.1093/mnras/stv138,
doi:10.1093/mnras/stv138, arXiv:http://oup.prod.sis.lan/mnras/article-
pdf/448/4/2987/2814755/stv138.pdf.

Fosalba, P., Gaztaaga, E., Castander, F.J., Crocce, M., 2014.
The MICE Grand Challenge light-cone simulation III. Galaxy
lensing mocks from all-sky lensing maps. Monthly Notices
of the Royal Astronomical Society 447, 1319–1332. URL:
https://doi.org/10.1093/mnras/stu2464, doi:10.1093/
mnras/stu2464, arXiv:http://oup.prod.sis.lan/mnras/article-
pdf/447/2/1319/8093572/stu2464.pdf.

Górski, K.M., Hivon, E., Banday, A.J., Wand elt, B.D., Hansen, F.K., Reinecke,
M., Bartelmann, M., 2005. HEALPix: A Framework for High-Resolution
Discretization and Fast Analysis of Data Distributed on the Sphere. The
Astrophysical Journal 622, 759–771. doi:10.1086/427976, arXiv:astro-
ph/0409513.

Greenfield, P., Droettboom, M., Bray, E., 2015. Asdf: A new data format for
astronomy. Astronomy and Computing 12, 240–251.

Gschwend, J., Rossel, A.C., Ogando, R.L.C., Neto, A.F., Maia, M.A.G., da
Costa, L.N., Lima, M., Pellegrini, P., Campisano, R., Singulani, C., Adean,
C., Benoist, C., Aguena, M., Carrasco Kind, M., Davis, T.M., de Vicente,
J., Hartley, W.G., Hoyle, B., Palmese, A., Sadeh, I., Abbott, T.M.C., Ab-
dalla, F.B., Allam, S., Annis, J., Asorey, J., Brooks, D., Calcino, J., Car-
ollo, D., Castander, F.J., D’Andrea, C.B., Desai, S., Evrard, A.E., Fosalba,
P., Frieman, J., Garcı́a-Bellido, J., Glazebrook, K., Gerdes, D.W., Gruendl,
R.A., Gutierrez, G., Hinton, S., Hollowood, D.L., Honscheid, K., Hoor-
mann, J.K., James, D.J., Kuehn, K., Kuropatkin, N., Lahav, O., Lewis, G.,
Lidman, C., Lin, H., Macaulay, E., Marshall, J., Melchior, P., Miquel, R.,
Möller, A., Plazas, A.A., Sánchez, E., Santiago, B., Scarpine, V., Schindler,
R.H., Sevilla-Noarbe, I., Smith, M., Sobreira, F., Sommer, N.E., Suchyta, E.,
Swanson, M.E.C., Tarle, G., Tucker, B.E., Tucker, D.L., Uddin, S., Walker,
A.R., 2018. DES science portal: Computing photometric redshifts. Astron-
omy and Computing 25, 58–80. doi:10.1016/j.ascom.2018.08.008,
arXiv:1708.05643.

Heitmann, K., Uram, T.D., Finkel, H., Frontiere, N., Habib, S., Pope,
A., Rangel, E., Hollowed, J., Korytov, D., Larsen, P., 2019. HACC
Cosmological Simulations: First Data Release. arXiv e-prints ,
arXiv:1904.11966arXiv:1904.11966.

Hoffmann, K., Bel, J., Gaztanaga, E., Crocce, M., Fosalba, P., Castander, F.,
2014. Measuring the growth of matter fluctuations with third-order galaxy
correlations doi:10.1093/mnras/stu2492.

Jurić, M., Ciardi, D., Dubois-Felsmann, G., 2017. LSST Science Platform
Vision Document. LSST Document LSE-319 https://lse-319.lsst.io .

Kambatla, K., Chen, Y., 2014. The truth about mapreduce performance on
ssds, in: Proceedings of the 28th USENIX Conference on Large Instal-
lation System Administration, USENIX Association, Berkeley, CA, USA.
pp. 109–117. URL: http://dl.acm.org/citation.cfm?id=2717491.
2717499.

Laureijs, R., Gondoin, P., Duvet, L., Saavedra Criado, G., Hoar, J., Amiaux,
J., Auguères, J.L., Cole, R., Cropper, M., Ealet, A., Ferruit, P., Escudero
Sanz, I., Jahnke, K., Kohley, R., Maciaszek, T., Mellier, Y., Oosterbroek,
T., Pasian, F., Sauvage, M., Scaramella, R., Sirianni, M., Valenziano, L.,
2012. Euclid: ESA’s mission to map the geometry of the dark universe, in:
Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millime-
ter Wave, p. 84420T. doi:10.1117/12.926496.

LSST Dark Energy Science Collaboration, 2012. Large Synoptic Survey Tele-
scope: Dark Energy Science Collaboration. arXiv e-prints arXiv:1211.0310.

Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez, V., Torrey, P.,
Genel, S., Vogelsberger, M., Pakmor, R., Marinacci, F., Weinberger, R.,
2019. The IllustrisTNG simulations: public data release. Computational
Astrophysics and Cosmology 6, 2. doi:10.1186/s40668-019-0028-x,
arXiv:1812.05609.

Raddick, J., Souter, B., Lemson, G., Taghizadeh-Popp, M., 2017. SciServer:
An Online Collaborative Environment for Big Data in Research and Educa-
tion, in: American Astronomical Society Meeting Abstracts #229, p. 236.15.

Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A., Curino, C., 2015.
Apache tez: A unifying framework for modeling and building data pro-
cessing applications, in: Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, ACM, New York, NY, USA. pp.

1357–1369. URL: http://doi.acm.org/10.1145/2723372.2742790,
doi:10.1145/2723372.2742790.

Serenelli, Aldo, Rohrmann, René D., Fukugita, Masataka, 2019. Nature of
blackbody stars. A&A 623, A177. URL: https://doi.org/10.1051/
0004-6361/201834032, doi:10.1051/0004-6361/201834032.

Sevilla-Noarbe, I., Hoyle, B., Marchã, M.J., Soumagnac, M.T., Bechtol, K.,
Drlica-Wagner, A., Abdalla, F., Aleksić, J., Avestruz, C., Balbinot, E., 2018.
Star-galaxy classification in the Dark Energy Survey Y1 data set. MNRAS
481, 5451–5469. doi:10.1093/mnras/sty2579, arXiv:1805.02427.

Shvachko, K., Kuang, H., Radia, S., Chansler, R., 2010. The hadoop distributed
file system, in: 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pp. 1–10. doi:10.1109/MSST.2010.5496972.

Szalay, A.S., Gray, J., Thakar, A.R., Kunszt, P.Z., Malik, T., Raddick,
J., Stoughton, C., vandenBerg, J., 2002. The SDSS SkyServer: Pub-
lic Access to the Sloan Digital Sky Server Data. arXiv e-prints ,
cs/0202013arXiv:cs/0202013.

The Dark Energy Survey Collaboration, 2005. The Dark Energy Survey. arXiv
e-prints , astro–ph/0510346arXiv:astro-ph/0510346.

Thomas, B., Jenness, T., Economou, F., Greenfield, P., Hirst, P., Berry, D.,
Bray, E., Gray, N., Muna, D., Turner, J., de Val-Borro, M., Santander-
Vela, J., Shupe, D., Good, J., Berriman, G., Kitaeff, S., Fay, J., Laurino,
O., Alexov, A., Landry, W., Masters, J., Brazier, A., Schaaf, R., Edwards,
K., Redman, R., Marsh, T., Streicher, O., Norris, P., Pascual, S., Davie,
M., Droettboom, M., Robitaille, T., Campana, R., Hagen, A., Hartogh, P.,
Klaes, D., Craig, M., Homeier, D., 2015. Learning from fits: Limitations in
use in modern astronomical research. Astronomy and Computing 12, 133
– 145. URL: http://www.sciencedirect.com/science/article/
pii/S2213133715000104, doi:https://doi.org/10.1016/j.ascom.
2015.01.009.

Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S.,
Liu, H., Wyckoff, P., Murthy, R., 2009. Hive: A warehousing so-
lution over a map-reduce framework. Proc. VLDB Endow. 2, 1626–
1629. URL: https://doi.org/10.14778/1687553.1687609, doi:10.
14778/1687553.1687609.

Tonello, N., Tallada, P., Serrano, S., Carretero, J., Eriksen, M., Folger,
M., Neissner, C., Sevilla-Noarbe, I., Castander, F., Delfino, M., Vi-
cente, J.D., Fernandez, E., Garcia-Bellido, J., Gaztanaga, E., Padilla, C.,
Sanchez, E., Tortorelli, L., 2019. The pau survey: Operation and orches-
tration of multi-band survey data. Astronomy and Computing 27, 171
– 188. URL: http://www.sciencedirect.com/science/article/
pii/S2213133718301380, doi:https://doi.org/10.1016/j.ascom.
2019.04.002.

Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans,
R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley,
O., Radia, S., Reed, B., Baldeschwieler, E., 2013. Apache hadoop
yarn: Yet another resource negotiator, in: Proceedings of the 4th An-
nual Symposium on Cloud Computing, ACM, New York, NY, USA. pp.
5:1–5:16. URL: http://doi.acm.org/10.1145/2523616.2523633,
doi:10.1145/2523616.2523633.

Wells, D.C., Greisen, E.W., 1979. Fits-a flexible image transport system, in:
Image Processing in Astronomy, p. 445.

York, D.G., Adelman, J., Anderson, Jr., J.E., Anderson, S.F., Annis, J., Bah-
call, N.A., Bakken, J.A., Barkhouser, R., Bastian, S., Berman, E., Boroski,
W.N., Bracker, S., Briegel, C., Briggs, J.W., Brinkmann, J., Brunner, R.,
Burles, S., Carey, L., Carr, M.A., Castander, F.J., Chen, B., Colestock, P.L.,
Connolly, A.J., Crocker, J.H., Csabai, I., Czarapata, P.C., Davis, J.E., Doi,
M., Dombeck, T., Eisenstein, D., Ellman, N., Elms, B.R., Evans, M.L., Fan,
X., Federwitz, G.R., Fiscelli, L., Friedman, S., Frieman, J.A., Fukugita, M.,
Gillespie, B., Gunn, J.E., Gurbani, V.K., de Haas, E., Haldeman, M., Harris,
F.H., Hayes, J., Heckman, T.M., Hennessy, G.S., Hindsley, R.B., Holm, S.,
Holmgren, D.J., Huang, C.h., Hull, C., Husby, D., Ichikawa, S.I., Ichikawa,
T., Ivezić, Ž., Kent, S., Kim, R.S.J., Kinney, E., Klaene, M., Kleinman,
A.N., Kleinman, S., Knapp, G.R., Korienek, J., Kron, R.G., Kunszt, P.Z.,
Lamb, D.Q., Lee, B., Leger, R.F., Limmongkol, S., Lindenmeyer, C., Long,
D.C., Loomis, C., Loveday, J., Lucinio, R., Lupton, R.H., MacKinnon, B.,
Mannery, E.J., Mantsch, P.M., Margon, B., McGehee, P., McKay, T.A.,
Meiksin, A., Merelli, A., Monet, D.G., Munn, J.A., Narayanan, V.K., Nash,
T., Neilsen, E., Neswold, R., Newberg, H.J., Nichol, R.C., Nicinski, T., Non-
ino, M., Okada, N., Okamura, S., Ostriker, J.P., Owen, R., Pauls, A.G., Peo-
ples, J., Peterson, R.L., Petravick, D., Pier, J.R., Pope, A., Pordes, R., Pros-
apio, A., Rechenmacher, R., Quinn, T.R., Richards, G.T., Richmond, M.W.,

18



Rivetta, C.H., Rockosi, C.M., Ruthmansdorfer, K., Sandford, D., Schlegel,
D.J., Schneider, D.P., Sekiguchi, M., Sergey, G., Shimasaku, K., Siegmund,
W.A., Smee, S., Smith, J.A., Snedden, S., Stone, R., Stoughton, C., Strauss,
M.A., Stubbs, C., SubbaRao, M., Szalay, A.S., Szapudi, I., Szokoly, G.P.,
Thakar, A.R., Tremonti, C., Tucker, D.L., Uomoto, A., Vanden Berk, D.,
Vogeley, M.S., Waddell, P., Wang, S.i., Watanabe, M., Weinberg, D.H.,
Yanny, B., Yasuda, N., SDSS Collaboration, 2000. The Sloan Digital Sky
Survey: Technical Summary. aj 120, 1579–1587. doi:10.1086/301513,
arXiv:astro-ph/0006396.

19



Appendix A. Particularly useful applications

This appendix describes in detail several representative use cases that make use of the custom catalog generation capabilities in
CosmoHub. Each application includes the full SQL statement that was used, along with the time it took to complete. The timings
measured in this section, unlike the results in section 4, were performed having exclusive use of the entire Hadoop platform.

MICECAT1 clustering sample

In this application, we want to generate a subset of MICECAT1 in order to compute the projected 2-point correlation function
on it. Thus, we selected the right ascension, the declination and the comoving distance columns, and we filtered on a redshift shell
(with z between 0.3 and 0.4) and also on a magnitude range (with absolute magnitude on the r band between -22 and -21). The
creation of this custom catalog takes only 14 seconds and generates a CSV.BZ2 file of 4.99 MiB containing 492,210 rows.

SELECT ‘ra‘, ‘dec‘, ‘d_c‘

FROM micecat_v1

WHERE ‘z‘ > 0.3 AND ‘z‘ < 0.4

AND ‘abs_mag_r‘ < -21 AND ‘abs_mag_r‘ > -22

DES Y1A1 BAO main sample

Another interesting application was the generation of the BAO sample for DES. This sample, described in section 3 of Crocce
et al. (2019), is a subset of DES Y1 data that, according to the article, represents “red galaxies with a good compromise of photo-z
accuracy and number density, optimal for the BAO measurement”. The query below implements the criteria shown in Table 1 of the
paper. The fast response times of CosmoHub were particularly useful to interactively refine the parameters of the sample, which is
now available also as a predefined dataset within one of the DES private catalogs. An interactive query to visualize the number of
objects as a function of the photometric redshift takes 31 seconds. Exporting the sample into a CSV.BZ2 file of 55.6 MiB containing
2.7 million objects takes 39 seconds.

SELECT coadd_objects_id, ra, dec, mean_z_bpz_hiz, z_mc_bpz_hiz, t_b_hiz, odds_hiz

FROM des_y1

WHERE (mag_auto_i > 17.5) AND (mag_auto_i < 22)

AND (mag_auto_i < 19.0 + 3.0*mean_z_bpz_hiz)

AND (ra < 15 or ra > 290 or dec < -35)

AND (flags_badregion <= 3 and flags_gold = 0)

AND (spread_model_i + (5.0/3.0)*spreaderr_model_i > 0.007)

AND ((mag_auto_i - mag_auto_z) + 2.0*(mag_auto_r - mag_auto_i) > 1.7)

AND ((mag_auto_g - mag_auto_r) BETWEEN -1. and 3.)

AND ((mag_auto_r - mag_auto_i) BETWEEN -1. and 2.5)

AND ((mag_auto_i - mag_auto_z) BETWEEN -1. and 2.)

GAIA DR2 pseudo Healpix map

The custom catalog feature can also be used in conjunction with the FITS format to create HEALPiX maps. For instance, in
this application the following query was used to create a partial map with explicit indexing62 estimating the average of the Standard
error of parallax (Angle[mas]) for each pixel. The pixel identifier is taken from the hpix 12 nest column. The generation of this
custom catalog produces a FITS file of 156 million rows and 1.74 GiB in size in 65 seconds.

SELECT ‘_hpix_12_nest‘, AVG(parallax_error)

FROM gaia_dr2

GROUP BY ‘_hpix_12_nest‘

62See https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf for more information about how HEALPiX data is stored as FITS.

20



Euclid True Universe FITS file
CosmoHub stores and distributes a large amount of data for the Euclid Cosmological Simulations Working Group (CSWG)

which is then used as input for different image simulator pipelines. This application uses a complex SQL statement to generate an
individual input from the catalogs stored in CosmoHub. The resulting FITS file has the correct format, the proper field names and
the correct units. This allows Euclid scientists to easily test their codes on a smaller scale, while at the same time enabling them
to iterate and provide feedback much faster. In this particular example, the FITS file generated contains 1823344 objects, occupies
406.9 MiB and was produced in 22s.

SELECT CAST(((gal.halo_id * 10000) + gal.galaxy_id) AS bigint) AS SOURCE_ID,

CAST(gal.ra_gal AS float) AS RA,

CAST(gal.dec_gal AS float) AS DEC,

CAST(gal.ra_gal_mag AS float) AS RA_MAG,

CAST(gal.dec_gal_mag AS float) AS DEC_MAG,

CAST(gal.observed_redshift_gal AS float) AS Z_OBS,

CAST(gal.abs_mag_r01_evolved AS float) AS TU_MAG_R01_SDSS_ABS,

CAST(-2.5*log10(gal.sdss_r01) - 48.6 AS float) AS TU_MAG_R01_SDSS,

CAST(gal.sed_cosmos AS float) AS SED_TEMPLATE,

CAST(ROUND(gal.ext_curve_cosmos) AS smallint) AS EXT_LAW,

CAST(gal.ebv_cosmos AS float) AS EBV,

CAST(gal.logf_halpha_model3_ext AS float) AS HALPHA_LOGFLAM_EXT,

CAST(gal.logf_hbeta_model3_ext AS float) AS HBETA_LOGFLAM_EXT,

CAST(gal.logf_o2_model3_ext AS float) AS O2_LOGFLAM_EXT,

CAST(gal.logf_o3_model3_ext AS float) AS O3_LOGFLAM_EXT,

CAST(gal.logf_n2_model3_ext AS float) AS N2_LOGFLAM_EXT,

CAST(gal.logf_s2_model3_ext AS float) AS S2_LOGFLAM_EXT,

CAST(gal.bulge_fraction AS float) AS BULGE_FRACTION,

CAST(gal.bulge_length AS float) AS BULGE_LENGTH,

CAST(gal.disk_length AS float) AS DISK_LENGTH,

CAST(gal.disk_axis_ratio AS float) AS DISK_AXIS_RATIO,

CAST(gal.disk_angle AS float) AS DISK_ANGLE,

CAST(gal.kappa AS float) AS KAPPA,

CAST(gal.gamma1 AS float) AS GAMMA1,

CAST(gal.gamma2 AS float) AS GAMMA2,

CAST(gal.mw_extinction AS float) AS AV,

CAST(gal.euclid_vis_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_VIS,

CAST(gal.euclid_nisp_y_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Y_NISP,

CAST(gal.euclid_nisp_j_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_J_NISP,

CAST(gal.euclid_nisp_h_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_H_NISP,

CAST(gal.blanco_decam_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_DECAM,

CAST(gal.blanco_decam_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_DECAM,

CAST(gal.blanco_decam_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_DECAM,

CAST(gal.blanco_decam_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_DECAM,

CAST(gal.cfht_megacam_u_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_U_MEGACAM,

CAST(gal.cfht_megacam_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_MEGACAM,

CAST(gal.jst_jpcam_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_JPCAM,

CAST(gal.pan_starrs_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_PANSTARRS,

CAST(gal.pan_starrs_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_PANSTARRS,

CAST(gal.subaru_hsc_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_HSC,

CAST(gal.gaia_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_GAIA,

CAST(gal.gaia_bp_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_BP_GAIA,

CAST(gal.gaia_rp_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_RP_GAIA,

CAST(gal.lsst_u_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_U_LSST,

CAST(gal.lsst_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_LSST,

CAST(gal.lsst_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_LSST,

CAST(gal.lsst_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_LSST,

CAST(gal.lsst_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_LSST,

CAST(gal.lsst_y_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Y_LSST,

21



CAST(gal.kids_u_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_U_KIDS,

CAST(gal.kids_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_KIDS,

CAST(gal.kids_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_KIDS,

CAST(gal.kids_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_KIDS,

CAST(gal.2mass_j_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_J_2MASS,

CAST(gal.2mass_h_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_H_2MASS,

CAST(gal.2mass_ks_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_KS_2MASS,

CAST(SHIFTRIGHT(gal.hpix_29_nest, (29-5)*2) AS bigint) AS hpix_5_nest

FROM cosmohub.flagship_mock_sc456 AS gal

WHERE SHIFTRIGHT(hpix_29_nest, (29-5)*2) = 7155

22


