

17th Spanish Society for Developmental Biology Meeting

> 18th-20th November 2020 VIRTUAL

ABSTRACT BOOK

Poster Abstracts

P001 - P115

P082

Implementation of transgenic platform based on the application of CRISPR/Cas9 technology in mouse zygotes

Sara Lucas¹, Beatriz Romero², Miguel Garcia-Gomez², Endika Haro¹ Marian A. Ros^{1,3*}

1) Instituto de Biomedicina y Biotecnología de Cantabria, CSIC–SODERCAN-Universidad de Cantabria; 2) Servicio de Experimentación y Estabulación Animal de la Universidad de Cantabria; 3) Dpto de Anatomia y Biología Celular de la Universiad de Cantabria; Santander, Spain

In recent years, the development of CRISPR technologies has provided an excellent tool for genomic editing. We have taken advantage of this technology to set up a CRISPR service at our Institute that based on the electroporation of mouse zygotes (day 0.5) generates desired mouse genomic modifications in a highly efficient, rapid and unexpensive manner.

We have applied this methodology to the generation of several mouse models of human congenital hand malformations, especially focussing on the Split Hand Foot Malformation (SHFM), a rare and highly variable malformation characterized by the loss or deformity of the central digit rays. We have previously shown the involvement of Sp6 and Sp8 transcription factors in the generation of SHFM phenotypes in mouse and the interaction of these two factors with Dlx family members. Dlx genes are the genes involved in human SHFM types 1 (Dlx5/Dlx6) and 5 (Dlx1/Dlx2). With the aim of fully investigating the implication of the Dlx-Sp interactions in the pathogenesis of SHFM, we have generated a couple of mouse models: the Dlx5/Dlx6 double deletion and the Sp6-V5 tagged knock-in. Additionally, and based on studies in Drosophila indicating that Sp factors control appendage development through the Notch pathway, we have also generated a Jag2 KO mutant.

We are currently using the generated animal models to advance our understanding of the mechanisms subjacent to the SHFM.

Lucas Toca, Sara Implementation of transgenic platform based on the application of CRISPR/Cas9 technology in mouse zygotes	132
Lup,Samuel, Daniel ENHANCER OF DEAL1 (EODL), a modifier of DESIGUAL1 (DEAL1), regulates leaf margin morphogenesis in Arabidopsis	116
Marques, Ines Repression of wilm's tumor protein 1 is required to promote myocardial fate	128
Martí, Elisa Cell Signalling in Secondary Neurulation	33
Martín-Blanco, Carlos Control of growth and regeneration in Cloeon dipterum's gills	54
Martinez Real, Francisca The mole genome reveals regulatory rearrangements associated with adaptive intersexuality	38
Mateos White, Isabel Study of postnatal neurogenesis in the subventricular zone using in utero electroporation	74
Millán Trejo, Andrea Notch independent functions of LAG-1/RBPJ in ADF serotonergic specification	85
Miramón, Paula Potential adult stem cells give rise to both germinal and somatic lineages in the sea anemone Nematostella vectensis	46
Molina, Maria Dolores Planarian CREB-binding protein-2 (cbp-2) gene regulates stem cell maintenance and response to injury	158
Morenilla-Palao, Cruz A zic2-regulated switch in the non-canonical Wnt/bcatenin pathway is essential for the formation of bilateral circuits	84
Moreno-Oñate, Marta Impact of signaling pathways in the cis-regulation during embryonic development	99
Morey, Marta The cytoplasmic LIM domain protein Espinas/PRICKLE2 contributes to wiring specificity in the visual system	80