
Physics Letters B 811 (2020) 135888

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Energy distribution and equation of state of the early Universe: 

Matching the end of inflation and the onset of radiation domination

Stefan Antusch a, Daniel G. Figueroa b, Kenneth Marschall a, Francisco Torrenti a,∗
a Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
b Instituto de Física Corpuscular (IFIC), CSIC-Universitat de Valencia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2020
Received in revised form 9 October 2020
Accepted 20 October 2020
Available online 23 October 2020
Editor: M. Trodden

We study the energy distribution and equation of state of the universe between the end of inflation and 
the onset of radiation domination (RD), considering observationally consistent single-field inflationary 
scenarios, with a potential ‘flattening’ at large field values, and a monomial shape V (φ) ∝ |φ|p around 
the origin. As a proxy for (p)reheating, we include a quadratic interaction g2φ2 X2 between the inflaton 
φ and a light scalar ‘daughter’ field X , with g2 > 0. We capture the non-perturbative and non-linear 
nature of the system dynamics with lattice simulations, obtaining that: i) the final energy transferred to 
X depends only on p, not on g2; ii) the final transfer of energy is always negligible for 2 ≤ p < 4, and 
of order ∼ 50% for p ≥ 4; iii) the system goes at late times to matter-domination for p = 2, and always 
to RD for p > 2. In the latter case we calculate the number of e-folds until RD, significantly reducing the 
uncertainty in the inflationary observables ns and r.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Cosmological observations strongly support the idea of an in-
flationary period in the early universe [1–4]. Inflation must be 
followed by a (p)reheating stage, where most of the energy in the 
universe is transferred into light particle species, with only one 
strong requisite: the universe must arrive at a radiation dominated 
(RD) thermal state before the start of Big Bang Nucleosynthesis 
(BBN), at temperatures TBBN ∼ 1 MeV. The state of the universe at 
BBN is based on the Standard Model (SM) particle content, which 
is fairly known. However, the way the universe arrives at this state 
from the previous inflation stage is largely unknown, and depends 
strongly on the underlying particle physics model.

Measurements of the cosmic microwave background (CMB) pro-
vide an upper bound on the inflationary Hubble rate, H inf � 6.6 ×
1013 GeV [5,6], corresponding to energy scales just below ∼ 1016

GeV. The energy gap between the end of inflation and the on-
set of BBN may therefore span up to ∼ 19 orders of magnitude. 
Characterizing this primordial dark age period is important, as it 
represents a natural ‘cosmological window’ to probe beyond the SM
(BSM) physics, potentially displaying a very rich phenomenology, 
see [7–11] for reviews and references therein. Moreover, the equa-
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tion of state (EoS) during this period is required for making accurate 
predictions of inflationary CMB observables, see e.g. [12–15].

In the context of slow-roll single-field inflation, a preheating
phase emerges when the inflaton φ, the field responsible for in-
flation, starts oscillating around the minimum of its potential. In 
this work we consider a broad class of observationally viable sce-
narios inspired by α-attractors [16], with ‘flattening’ of the inflaton 
potential at large field values, and monomial behavior V (φ) ∝ |φ|p

around the origin, with p ≥ 2 including fractional values. The in-
flaton is directly coupled to a ‘(p)reheating sector’ represented by 
a light scalar field X , which will be called the daughter field from 
now on. We consider a quadratic interaction g2φ2 X2, as it does 
not require the introduction of new mass scales, and serves as a 
proxy for the leading term in gauge interactions [17]. Under these 
considerations, the universe goes first through a stage of preheat-
ing, in which the initially homogeneous inflaton condensate frag-
ments via non-perturbative particle production effects, see [18–24]
for the pioneering studies and e.g. [25–28] for recent numerical 
works. Preheating can happen through two separate phenomena: 
1) broad parametric resonance of the daughter field, in which the 
inflaton transfers to the former a large amount of its energy ex-
ponentially fast, and 2) self-resonance of the inflaton, in which 
the inflaton amplifies its own fluctuations. In both cases, a depar-
ture from the (initially homogeneous) inflaton oscillation-averaged 
EoS is ensued, affecting the following expansion history of the 
universe.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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To investigate (p)reheating we use very long classical lat-
tice simulations in 2+1 dimensions, considering a large range of 
inflaton-daughter couplings. We are interested in the number of 
e-folds �NRD from the end of inflation till the onset of RD. Pre-
vious works [25,27] have obtained this number in the absence 
of inflaton-daughter interactions, �NRD|g2=0. However, the time 
scale of the daughter field excitation through broad resonance is 
faster than via inflaton self-resonance, so �NRD|g2=0 represents 
only an upper bound to this quantity. Furthermore, recent criticism 
to (gravitational) reheating in the absence of inflaton couplings to 
other species [29,30], reinforces the idea that the universe is most 
naturally reheated if inflaton-daughter interactions are present.

In this Letter we consider a large range of inflaton-daughter 
interactions, exploring both a large coupling regime (which leads 
to broad resonance of the daughter field), and a small coupling 
regime (which recovers the coupling-less results from [25,27]). We 
characterize in detail the energy distribution, EoS, and �NRD as a 
function of p and g2, and use this information to reduce drasti-
cally the uncertainty in the prediction of the inflationary scalar tilt 
ns and tensor-to-scalar ratio r. Our analysis goes beyond ad-hoc
analytical parametrizations of the post-inflationary EoS [31], and 
beyond previous numerical works [26,32,33], which only consid-
ered the initial preheating and early non-linear stage for specific 
choices of p. Here we simulate, for the first time, the very long-
term evolution of the system, for arbitrary values of p ≥ 2.

2. Parametric resonance and self-resonance

Consider a scenario with an inflaton φ and daughter field X ,

V (φ, X) = 1

p
�4tanhp

( |φ|
M

)
+ 1

2
g2φ2 X2 , (1)

where M and � are mass scales, and g is a dimensionless cou-
pling. The first term is the inflaton potential, responsible for slow-
roll inflation. The interaction term allows to transfer energy be-
tween φ and X .

The inflaton potential features a plateau at φ � M and an in-
flection point at φi = Marcsinh(

√
(p − 1)/2) ∼ M . Inflation takes 

place at field values φ � φ∗ ≡ (M/2)arcsinh(
√

2pmpl/M), with φ∗
denoting the field value at which εV (φ∗) ≡ 1. At φ < φ∗ the in-
flaton field features an oscillatory regime. For M/mpl > 1.633 it 
holds that φi > φ∗ ∀ p ≥ 2, entailing that φ always oscillates in the 
positive-curvature region of the potential, which can be approxi-
mated around the origin by the power-law V inf(φ) � μ4−p |φ|p/p, 
with μ4−p ≡ �4/M p for p �= 4, and μ4−p ≡ λ �= 1 for p = 4. After 
inflation, the inflaton oscillates initially as a homogeneous con-
densate, with decaying amplitude φ(t) ∝ a(t)−6/(p+2) , and time-
dependent oscillation frequency ω2 = ω2∗a6(p−2)/(p+2) , with ω2∗ ≡
μ4−pφ

p−2∗ . This leads to an EoS [34]

whom ≡ 〈pφ〉osc

〈ρφ〉osc
= p − 2

p + 2
, (2)

where 〈pφ〉osc and 〈ρφ〉osc denote the oscillation-averaged pressure 
and energy densities of the inflaton.

For M � mpl, two preheating effects emerge due to the ini-
tial homogeneous oscillations: parametric resonance of the daughter 
field and self-resonance of the inflaton. Choosing a∗ = 1 and re-

defining the variables as dz ≡ a−3 (p−2)
(p+2) ω∗dt , ϕ ≡ a

6
p+2 (φ/φ∗) and 

χ ≡ a
6

p+2 (X/φ∗), the linearized mode equations of the daugh-
ter and inflaton fields, during the early oscillatory phase, corre-
spond to oscillator-like equations with time-dependent mass terms 
m2

ϕ ≡ (p − 1)|ϕ|p−2 and m2
χ ≡ qresϕ

2, where

qres(a) ≡ q∗a
6(p−4)

p+2 , q∗ ≡ g2φ2∗/ω2∗ , (3)
2

is an effective resonance parameter, decreasing in time for p < 4, 
remaining constant for p = 4, and growing for p > 4. Fluctuations 
of both fields evolve as |δχk|2 ∝ e2μk z and |δϕk|2 ∝ e2νk z , where 
μk ≡ μk(κ, qres; p) and νk ≡ νk(κ; p) are the respective Floquet in-
dices. These functions are positive for some bands of momenta, 
leading to an exponential growth of the field modes. If parametric 
resonance is broad (qres � 1), the range of amplified δχk is much 
wider than the one for δφk . Thus, if both effects are present, the 
excitation of δχk is the dominant one. The daughter field is also 
excited if the resonance is narrow (qres � 1), but this effect is neg-
ligible compared to broad resonance. In any case, due to natural 
limitations of the lattice, it cannot be captured in our simulations. 
On the other hand, the momenta excited during broad resonance 
scale (modulo scale factor powers) as pbr ∼ q1/4∗ ω∗ � 1013 GeV, 
which justifies neglecting a mass term of the daughter field in (1)
for mX � pbr.

3. Results

We present now our numerical results, obtained from classi-
cal lattice simulations of the EOM f̈ − a−2 �∇2 f + 3H ḟ = −∂ f V for 
f = {φ, X} and the Friedmann equation, for different choices of 
p and q∗ . Details of our lattice formulation are provided in the 
Appendix. We have performed simulations in 2+1 and 3+1 dimen-
sions, and checked that they are almost identical, see the Appendix 
for a direct comparison. However, results presented here will be 
based on simulations in 2+1 dimensions, as they have the advan-
tage of investigating a much larger region of parameter space. We 
have used a number of lattice sites per dimension ranging from 
N = 27 to N = 210, and explored different infrared and ultraviolet 
lattice cut-off’s, ensuring a range of momenta encompassing well 
the scales excited by the different resonances. We have simulated 
the cases M = 4mpl − 10mpl, which guarantee that the inflaton os-
cillations occur in the positive-curvature region.

Energy distribution and equation of state. The different energy 
density components ρi characterize the evolution of the system. 
Different contributions include kinetic ρk, f and gradient ρg, f en-
ergy components, the inflaton potential ρpot = V (φ) [first term 
in (1)] and the interaction term ρint = 1

2 g2φ2 X2. As expected 
from previous studies, the system virializes very quickly [25–27,35], 
with the fields obeying a relation of the type 〈 ḟ 2〉 = 〈|∇ f |2〉 +
〈 f (∂V /∂ f )〉, where brackets indicate oscillation and spatial aver-
aging. Introducing energy density ratios as εi ≡ ρi/ 

∑
j ρ j (so that ∑

j ε j = 1 by construction), the virial relations imply

〈εk,ϕ〉 � 〈εg,ϕ〉 + p

2
〈εpot〉 + 〈εint〉 , (4)

〈εk,χ 〉 � 〈εg,χ 〉 + 〈εint〉 . (5)

The instantaneous EoS w ≡ p/ρ is sourced by the different energy 
contributions as

w = εk,ϕ + εk,χ − 1

3
(εg,ϕ + εg,χ ) − (εpot + εint) . (6)

This means that whenever εpot, εint become negligible (as it hap-
pens e.g. at later times for p > 2), then εk,ϕ + εk,χ � 1/2, which 
leads to a RD universe with w = 1/3. Furthermore, taking averages 
on both sides of Eq. (6) leads to the effective EoS during the first 
inflaton oscillations: initially εk,ϕ + εpot � 1 holds, so Eq. (4) im-
plies 〈εk,ϕ〉 � p/(p + 2) and 〈εpot〉 � 2/(p + 2), and from there we 
recover whom in Eq. (2).

After the initial homogeneous phase, {εa} and w evolve very 
differently depending on the choice of p and q∗ , see panels in 
Fig. 1. We discuss now their evolution, in particular their asymp-
totic late time behavior:
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Fig. 1. Evolution of the oscillation-averaged energy ratios and effective equation of state for different choices of q∗ and p for M = 10mpl , as a function of time z and number 
of e-folds N . The dashed vertical line in each panel show when qres = 1.
• p = 2: There is no self-resonance of the inflaton field, but the 
daughter field energy grows exponentially fast via broad paramet-
ric resonance, as long as qres > 1 (top-left panel Fig. 1). Thanks 
to the inflaton-daughter interaction, a growth of the inflaton gra-
dient energy is also induced. However, as qres decreases in time, 
parametric resonance eventually becomes narrow. For q∗ � 6 · 103, 
broad resonance persists long enough that backreaction effects 
from the daughter field break the homogeneous inflaton conden-
sate. In such a case, the effective EoS jumps from whom � 0 to a 
positive value wmax < 1/3 (closer to 1/3 the larger q∗). Gradient 
energies redshift as ∼ a−4, whereas the inflaton potential/kinetic 
energies redshift as ∼ a−3. Therefore, once qres < 1, the daughter 
energy fractions become gradually negligible, independently of the 
daughter-inflaton coupling strength. Similarly, the equation of state 
asymptotically tends to the homogeneous value w → whom = 0. 
We observe this (otherwise expected) result for the first time, as 
shorter simulations in previous works were only able to observe a 
transitory stabilization of the EoS around w � 0.2 [32,33].

• 2 < p < 4: The inflaton can now develop fluctuations via self-
resonance, but if qres � 1, the daughter field energies grow much 
faster via broad parametric resonance. For q∗ � 101.9(4−p) , backre-
action effects from the daughter field break the initially homoge-
neous inflaton configuration, making the EoS jump from w = whom
to w = wmax < 1/3. In fact, a transitory regime of equipartition
can be observed for very large values of q∗ , equally distributing 
the energy between the two fields (bottom-left panel of Fig. 1). In 
any case, the resonance eventually becomes narrow when qres = 1, 
and the daughter field energy fractions become gradually negli-
gible. However, the inflaton self-resonance is still present, which 
triggers a slow cascade of the inflaton spectra towards the ultra-
violet, as well as a growth of its gradient energy at the expense 
of its potential. This phenomenon, originally reported in [25,27] in 
the absence of inflaton-daughter interactions, is observed now re-
markably even after the inflaton fragments due to the parametric 
resonance of the daughter field. As a consequence, the EoS always 
goes to w � 1/3 at sufficiently late times. For 2 < p � 3 and cer-
tain values of q∗ , the self-resonance is so weak that a temporary 
decrease of w towards whom is observed after the end of broad 
resonance (see top-middle panel), before w goes towards 1/3 at 
later times.
3

• p ≥ 4: The resonance parameter qres remains constant for 
p = 4, or grows in time for p > 4. In the latter case, the system 
always ends up in broad resonance, even if q∗ < 1. As inflaton 
self-resonance effects are also present, the system never ceases to 
exchange energy between the two fields at late times. Due to this, 
it achieves an equilibrium state, in which the energy is evenly dis-
tributed: 50% of the energy is stored in the daughter field, and 50% 
in the inflaton. The equation of state also goes to w → 1/3 at late 
times.

4. Inflationary observables and discussion

To compute the inflationary scalar tilt ns and tensor-to-scalar 
ratio r, we need to determine the number of e-folds NCMB before 
the end of inflation, when the pivot scale kCMB = 0.05Mpc−1 exited 
the horizon. For this, we need to know the exact evolution of the 
universe after inflation. In particular, we need [36,37]

NCMB � 61.5 − �Nbr + ln
V 1/2

CMB

mplρ
1/4
br

+ 1 − 3w̄

12(1 + w̄)
ln

ρRD

ρbr
, (7)

with V CMB denoting the potential energy when kCMB leaves the 
horizon, ρbr and ρRD the energy densities when backreaction be-
comes noticeable and when the universe becomes RD, respectively, 
�Nbr the e-folds between the end of inflation and backreaction 
(see Fig. 2), and w̄ the mean EoS between backreaction and the 
onset of RD. For p � 3, the transition from backreaction to RD 
is actually almost instantaneous, independently of g2 (see Fig. 1), 
making the last term in Eq. (7) negligible. In Fig. 2 we show �Nbr
for different choices of p and g , extracted from simulations. The 
inflaton fragments due to self-resonance for p > 2 even if g = 0, 
which provides the value for �Nbr found in [25,27]. However, the 
presence of an interaction reduces significantly this quantity, as 
long as backreaction from the daughter field fragments the infla-
ton condensate. This requires e.g. p � 3.4, 2.6 for g = 10−5, 10−4

respectively.
For p = 2, the system never achieves a RD state in our set-up, 

so we cannot determine NCMB. However, according to our results, 
the difference in NCMB compared to a case in which the infla-
ton remains homogeneous until RD is δNCMB � 1 for q∗ < 106. 
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Fig. 2. Number of e-folds �Nbr after inflation until w deviates from whom, due to 
backreaction. The dashed gray line is the estimation �Nbr � (p + 2) log(zbr)/6 for 
zbr = 102.

Fig. 3. Values of ns and r predicted for different choices of p and M/mpl = 4 − 10, 
indicated by dots. We take values satisfying q∗ > 101.9(4−p) for p < 4, and q∗ > 1
for p ≥ 4. Contours show the observational constraints from Planck [5].

For example, we get δNCMB ≈ 0.4 for the case depicted in the 
top-left panel of Fig. 1. For p > 2 we can compute NCMB exactly, 
provided we note that V CMB depends also on NCMB, making (7)
a non-linear equation. For p = 3 − 6, we find the narrow range 
NCMB � 56.1 − 56.9 for M = 4mpl and NCMB � 56.7 − 57.6 for 
M = 10mpl. Using this, we obtain very precise values for the in-
flationary observables: ns � 0.9643 − 0.9647 and r � 0.01 − 0.009
for M = 4mpl, and ns � 0.9633 − 0.9622 and r � 0.047 − 0.05 for 
M = 10mpl, see Fig. 3. This represents a drastic reduction in the 
uncertainty of these quantities, compared to the traditional bounds 
obtained from NCMB = 50 − 60.

Discussion. We have characterized in detail the evolution of the 
energy distribution and effective EoS of the universe from the end 
of inflation till the onset of RD, considering an inflaton with mono-
mial potential during the (p)reheating stage, and a quadratic cou-
pling to a light daughter field. Remarkable facts emerge:

i) Broad parametric resonance dominates over inflaton self-
resonance, and backreaction from the daughter field is responsi-
ble for breaking the initial homogeneity of the inflaton. However, 
broad resonance eventually ends for 2 ≤ p < 4. For p = 2 the sys-
tem goes back to a higher degree of homogeneity, while the EoS 
approaches gradually the homogeneous value (w = 0). For p > 2, 
inflaton fluctuations are also created via self-resonance, remark-
ably even after the breaking of the inflaton homogeneous condensate. 
Due to this, the system always goes eventually to RD, either in the 
presence or absence of interactions with a daughter field species.

ii) The final amount of energy transferred to the daughter field 
is essentially independent of the coupling strength between the two 
fields, and depends only on the power law exponent p: it becomes 
(eventually) negligible for 2 ≤ p < 4, and of order ∼ 50% for p ≥ 4. 
Therefore, in order to achieve a complete decay of the inflaton in 
these scenarios, some new ingredient is needed.

iii) Viable models of inflation with p > 2 allow for a precise 
calculation of NCMB, with accuracy δNCMB � 1, leading to very 
precise predictions for ns and r. This highlights the relevance of 
characterizing the post-inflationary stage in detail.
4

To conclude, we mention some limitations of our analysis, 
which can provide interesting avenues for future studies. For ex-
ample, our study could be generalized to e.g. trilinear interactions 
or higher order operators [38], or to an initial excitation via tachy-
onic preheating [39–42]. Oscillons can also form whenever the 
inflaton oscillates around flatter-than-quadratic regions of the po-
tential, via self-resonance effects [43] or tachyonic oscillations [44]. 
This would push the EoS towards w � 0 [25,27,45] during their 
lifetime. While there are various effects that can change the early 
stages of preheating, we expect that the late-time energy distribu-
tion and EoS will depend mainly on the inflaton potential around 
its minimum, and on the type of inflaton-daughter coupling. Our 
analysis could also be generalized to multi-field inflation scenarios 
[46–50]. In particular, the post-inflationary dynamics of a two-field 
inflation model with quartic potentials, non-minimal couplings, 
and quadratic interaction, has been studied with lattice simulations 
in [51,52], finding that RD is achieved in less than three e-folds for 
a significant fraction of the parameter space, in qualitative agree-
ment with our results. Also, metric perturbations could be included 
[53].

Finally, if the inflaton is coupled to several light scalar fields, 
preliminary lattice simulations (for quadratic couplings) show that 
the energy transferred to the preheat sector can be enhanced up to 
N f /(N f + 1)%, with N f being the number of different light daugh-
ter fields. We plan to explore some of these topics in the future.
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Appendix A

In this appendix we provide expressions for the field equations 
and energy components, and compare the outcome from (2+1)-
dimensional and (3+1)-dimensional lattice simulations. The equa-
tions of motion of the two fields ( f = φ, X) in a FLRW background, 
and of the background itself, are

f̈ − a−2∇2
�x f + 3H ḟ + ∂ f V = 0 , (A.1)

ä

a
= 1

3m2
pl

〈
V (φ, X) − φ̇2 − Ẋ2

〉
(A.2)

where V (φ, X) is the potential given in Eq. (1), H ≡ ȧ/a is the 
Hubble rate, a the scale factor, and 〈...〉 stands for volume aver-
aging. We define a new set of dimensionless field amplitudes and 
space-time variables by

ϕ ≡ a
6

p+2 (φ/φ∗) , χ ≡ a
6

p+2 (X/φ∗) , (A.3)

t → z ≡
t∫
ω∗ a(t′)

3(2−p)
p+2 dt′ , �x → �y ≡ ω∗�x , (A.4)
t∗
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Fig. 4. Comparison of the inflaton and daughter field spectra obtained with lattice simulations in 2+1 dimensions (continuous lines) and 3+1 dimensions (dashed lines), for 
three different choices of p and q∗ . Momenta are defined as κ ≡ k/ω∗ . Each colored line corresponds to a different time, going from red (early times) to purple (late times).
so that the period and amplitude of the inflaton oscillations are ap-
proximately constant and of order unity, and where φ∗ and ω∗ are 
the initial inflaton amplitude and frequency at the end of inflation. 
In these variables, the equations of motion are

ϕ′′ − a
−(16−4p)

2+p ∇2
�yϕ + (|ϕ|p−2 + qresχ

2 + �)ϕ = 0 , (A.5)

χ ′′ − a
−(16−4p)

2+p ∇2
�yχ + (qresϕ

2 + �)χ = 0 , (A.6)

with ′ ≡ d/dz and ∇�y ≡ d/d�y, and qres the resonance parameter 
given in Eq. (3) of the main text. Here, � ≡ �(a′/a, a′′/a) is the 
following time-dependent function

� ≡ 6(p − 4)

(p + 2)2

(
a′

a

)2

+ 6

p + 2

(
a′′

a

)
. (A.7)

As the scale factor grows as a ∼ z
p+2

6 during the initial linear 
regime of inflaton oscillations, � scales as ∼ z−2, and hence it 
becomes soon negligible, so it can be discarded for the following 
analysis. We can expand the fields up to linear order as ϕ(�y, z) ≡
ϕ̄(z) + δϕ(�y, z) and χ(�y, z) ≡ δχ(�y, z), with the bar notation indi-
cating the homogeneous/zero mode (the zero mode of the daugh-
ter field at the end of inflation is χ̄ (z) � 0). From Eq. (A.5) we get 
that the eom of the inflaton zero mode is ϕ̄′′ + |ϕ̄|p−2ϕ̄ � 0, which 
gives rise to an oscillatory solution. On the other hand, the first 
order linearized equations for the modes δϕk and δχk are

δϕ′′
k + (κ2 + (p − 1)|ϕ̄|p−2)δϕk � 0 , (A.8)

δχ ′′ + (κ2 + qresϕ̄
2)δχk � 0 , (A.9)
k

5

where κ = a
2(p−4)

p+2 k/ω∗ . These modes have time-dependent effec-
tive frequencies, leading to solutions as |δχk|2 ∝ e2μk z and |δϕk|2 ∝
e2νk z , with μk ≡ μk(κ, qres; p) and νk ≡ νk(κ; p) their respective 
Floquet indices. The parametric resonance regime is characterized 
by the exponentially growing solutions obtained when the Floquet 
index becomes a positive number within a range of momenta.

The energy and pressure densities of the fields are

ρ = 1

2
φ̇2 + 1

2
Ẋ2 + 1

2
|∇φ|2 + 1

2
|∇ X |2 + V (φ, X)

= ω2∗φ2∗
a

6p
2+p

(Ek,ϕ + Ek,χ + Eg,ϕ + Eg,χ + E int + Epot) ,

p = 1

2
φ̇2 + 1

2
Ẋ2 − 1

6
|∇φ|2 − 1

6
|∇ X |2 − V (φ, X)

= ω2∗φ2∗
a

6p
2+p

(Ek,ϕ + Ek,χ − 1

3
Eg,ϕ − 1

3
Eg,χ − E int − Epot) ,

where the subindex ‘k’ refers to the kinetic energy of any of the 
two fields, ‘g’ refers to their gradient energy, ‘int’ to the interaction 
energy, and ‘pot’ to the inflaton potential energy. The form of these 
terms is the following ( f = ϕ, χ ),

Ek,f ≡ 1

2

(
f ′ − 6

p + 2

a′

a
f

)2

, Epot ≡ 1

p
ϕp ,

E int ≡ 1
a

6p−24
p+2 q∗ϕ2χ2 , Eg,f ≡ 1

a
4p−16

p+2 |∇�y f |2 .

2 2
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Fig. 5. Comparison of the equation of state obtained with lattice simulations in 2+1 dimensions (blue line) and 3+1 dimensions (red dashed line), for p = 2, 3, 4.5.
Lattice simulations have been carried out with the public pack-
age Clustereasy [54] (the MPI version of Latticeeasy [55]), 
which uses a second-order leapfrog-like algorithm. As a cross-
check, some of the simulations have been repeated with velocity-
verlet algorithms of higher order implemented in CosmoLattice, 
a recent package that was developed shortly after the completion 
of the bulk of the computations presented in this Letter [56]. We 
have carried out lattice simulations of the field system in 2- and 
3-spatial dimensions (2D and 3D from now on), obtaining that the 
dynamics are very similar at the quantitative level. Although 3D 
simulations are a better approximation to the field dynamics in 
the continuum, 2D simulations require significantly less comput-
ing time, allowing us to explore the very late-time regime of the 
system, as well as to increase the spatial resolution of the lattice 
whenever needed.

We show in Fig. 4 a direct comparison of the spectra of the 
inflaton and daughter field in 2D and 3D. For illustrative pur-
poses, we have chosen the power-law coefficients p = 2, 3, and 
4.5, which cover the three different dynamical regimes described 
in the paper. In order to do an appropriate comparison, the num-
ber of points per dimension and infrared cutoff of the lattice are 
the same in both simulations, which implies that the UV coverage 
in the 3D case is a factor 

√
3/2 larger than in 2D. It can be clearly 

appreciated that the spectral evolution is very similar in the three 
depicted cases, both during the initial linear excitation regime, as 
well as during the later non-linear regime. We also show in Fig. 5
a direct comparison of the equation of state as a function of time, 
for the same set of model parameters. Its behavior is identical in 
2D and 3D simulations, in the three cases depicted here: backre-
action time happens at approximately the same time, and the final 
value of the equation of state at asymptotically late times is sim-
ilar: it goes to w → 0 for p = 2, and to w → 1/3 for p > 2. We 
have checked this for many other model parameters beyond the 
examples shown here. Our comparison results show that the use 
of 2D lattice simulations to parametrize the dynamics of the sys-
tem is completely justified in our case of study.
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