Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Dibenzocycloheptatriene as end-group of Thiele and tetrabenzo-Chichibabin hydrocarbons

Vicente G. Jiménez,^{†a} Paula Mayorga-Burrezo,^{†b} Victor Blanco,^a Vega Lloveras,^b Carlos J. Gomez-Garcia,^c Tomáš Šolomek,^d Juan M. Cuerva,^a Jaume Veciana^{*b} and Araceli G. Campaña^{*a}

^a Departamento de Química Orgánica. Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.

^b Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB)/ CIBER-BBN. Campus Universitari de Bellaterra, E-08193, Cerdanyola, Barcelona (Spain).

° Department of Inorganic Chemistry and Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain

^d Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel (Switzerland).

*E-mail: vecianaj@icmab.es, araceligc@ugr.es

- Electronic Supporting Information -

Table of Contents

1.	(General Details	3					
2.	Ş	Synthetic procedures	4					
3.	٦	Titration and variable temperature ¹ H-NMR spectra	8					
4.	(Crystallographic data	11					
5.	Optical properties13							
6.	E	Electron Spin Resonance (ESR) measurements	14					
7.	٦	Theoretical calculations	18					
7	.1	I. Geometry optimizations	18					
7	.2	2. Isotropic hyperfine coupling constants ($ a_H $)	38					
7	.3	3. TD-DFT calculations	39					
7	.4	4. Energy barrier between geometries of DBHept-Anthracene	65					
7	.5	5. Radical stabilization energies	69					
8.	E	Electrochemical properties	70					
9.	Ş	SQUID Measurements	71					
10.	F	References	72					
	١E	EX I: ¹ H and ¹³ C NMR spectra of new compounds	73					
	١E	EX II: 2D-NMR and HRMS spectra of selected compounds	77					

1. General Details

Unless otherwise stated, all reagents and solvents, either HPLC grade or anhydrous ones, were purchased from commercial sources and used without further purification, but anhydrous THF, that was freshly distilled over Na/benzophenone. Flash column chromatography was carried out using Silica gel 60 (230-400 mesh, Scharlab, Spain) as the stationary phase.

Analytical TLC was performed on aluminium sheets coated with silica gel with fluorescent indicator UV_{254} (Sigma-Aldrich) and observed under UV light (254 nm) or stained with phosphomolybdic acid (5% ethanol solution).

¹H and ¹³C NMR spectra were recorded on a Varian Direct Drive (500 MHz or 600 MH), Bruker Avance III HD NanoBay (400 MHz), Bruker Avance Neo (400 MHz or 500 MHz) or a Bruker Biospin (600 MHz) spectrometers.

Chemical shifts are given in ppm and referenced to the signal of the residual protiated solvent (¹H: δ = 11.50 for CF₃COOD δ = 7.26 for CDCl₃, δ = 5.32 for CD₂Cl₂, δ = 6.00 for C₂D₂Cl₄ and δ = 7.19 for *o*-dichlorobenzene-*d*₄ (*o*-DCB-*d*₄) or the ¹³C signal of the solvents (¹³C: δ = 164.2 and 116.2 for CF₃COOD, δ = 77.16 for CDCl₃, δ = 73.78 for C₂D₂Cl₄ and δ = 132.39 for [D₄]-*o*-DCB) or to the signal of the residual TMS (¹H: δ = 0.00). Coupling constants (*J*) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint. = quintet, q = quartet, t = triplet, d = doublet, s = singlet, br = broad. Assignment of the ¹³C NMR multiplicities was accomplished by DEPT. Assignment of the ¹H signals was carried out with the help of 2D NMR experiments (COSY, HSQC and HMBC techniques).

The titration experiments monitored by ¹H NMR were carried out on a Bruker Avance Neo (400 MHz) spectrometer at a constant temperature of 298 K. All the solutions were prepared under Ar atmosphere.

ESI-TOF mass spectra were recorded on a Waters XEVO G2-XS QTof mass spectrometer. APCI mass spectra were recorded on a Bruker MAXIS II mass spectrometer. IR-ATR spectra were recorded on a Perkin Elmer Spectrum Two IR Spectrometer.

2. Synthetic procedures

Scheme S1. Synthesis of DBHept-Th: a) nBuLi, THF, -78 °C, 1 h; then dibenzosuberenone, THF -78 °C to rt, 16h, 25%. b) SnCl₂, DCM, rt, 24h, 62%.

Compound 1

1,4-dibromobenzene (300 mg, 1.27 mmol) was dissolved in freshly distilled THF (15 mL) and the solution was cooled to -78 °C under Ar atmosphere. Then, *n*-butyllithium (2.5 M in hexanes, 1.1 mL, 2.67 mmol) was added and the mixture was stirred for 1 h at the same temperature. After this time, a solution of dibenzosuberenone (551 mg, 2.67 mmol) in distilled THF (3 mL) was added dropwise. Finally, the reaction was heated up to room temperature and kept under stirring for 16 h. The mixture was diluted with EtOAc (100 mL) and washed with water (15 mL) and brine (15 mL). The organic phase was then separated and dried with anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude was purified by column chromatography (SiO₂, CH₂Cl₂) affording diol **1** (156 mg, 25%) as a white solid (see **Scheme S1**, reaction (a)). **M.p.:** 222 °C decomposition. ¹H **NMR**: (600 MHz, CD₂Cl₂) δ = 8.06 (d, *J* = 8.0 Hz, 4H), 7.43 (t, *J* = 7.5 Hz, 4H), 7.27 (m, 8H), 6.59 (s, 4H), 6.28 (s, 4H), 2.39 (s, 2H). ¹³C **NMR**: (151 MHz, CD₂Cl₂) δ = 145.54 (C), 142.84 (C), 133.70 (C), 131.68 (CH), 129.14 (CH), 128.55 (CH), 127.20 (CH), 126.44 (CH), 124.80 (CH), 78.74 (C). **HR-MS (ESI-TOF)**: *m*/z calcd. for C₃₆H₂₅O [M–OH]*: 473.1900, found: 473.1899. **IR (ATR)**: 3544, 3447, 3071, 1488, 1005, 752 cm⁻¹.

DBHept-Th

To a suspension of SnCl₂ (220 mg, 1.16 mmol) in anhydrous dichloromethane (6 mL), a solution of compound **1** (57 mg, 0.116 mmol) in dry dichloromethane (2 mL) was added under Ar atmosphere. After stirring for 24 h at room temperature, the solvent was removed under vacuum and the crude was purified by flash column chromatography (SiO₂, CH₂Cl₂/Hexane 5:95) affording **DBHept-Th** (33 mg, 62%) as a 1:1 mixture of the *syn* and *anti*-isomers as a yellow solid (see **Scheme S1**, reaction (b)). **M.p:** > 250 °C. ¹**H NMR**: (500 MHz, C₂Cl₄D₂) δ = 7.41 – 7.25 (m, 16H), 6.95 (s, 2H), 6.87 (s, 2H), 6.61 (s, 2H) 6.49 (s, 2H). ¹³**C NMR**: (126 MHz, C₂Cl₄D₂) δ = 137.89 (C), 137.65 (C), 137.18 (C), 134.72 (C), 134.65 (C), 131.10 (CH), 131.05 (CH), 130.81 (C), 128.99 (CH), 128.76 (CH), 128.52

(CH), 128.47 (CH), 127.87 (CH), 127.77 (CH), 126.94 (CH), 126.90 (CH), 126.28 (CH), 126.15 (CH). **HR-MS (ESI-TOF):** m/z calcd. for $C_{36}H_{24}$ [M]⁺: 456.1878, found: 456.1875. **IR (ATR)**: 3017, 1483, 833, 798, 753 cm⁻¹.

Scheme S2. Synthesis of DBHept-TBC. a) *n*BuLi, THF, -78 °C, 1 h; then dibenzosuberenone, THF -78 °C to rt, 16 h, 86%. b) CF₃CO₂D, CD₂Cl₂, 1 min, rt, 100 %. c) Ferrocene (Fc), CD₂Cl₂, 1 min, RT, 100%. d) tris(4-bromophenyl) ammoniumyl hexachloroantimonate (*Magic Blue*), CD₂Cl₂, 1 min, 100%.

Compound 2

Firstly, 10,10'-dibromo-9,9'-bianthracene (400 mg, 0.78 mmol) was dissolved in freshly distilled THF (15 mL) under an Ar atmosphere and cooled to -78 °C. Secondly, *n*-butyllithium (2.5 M in hexanes, 0.7 mL, 1.72 mmol) was added and stirred for 1 h at the same temperature. After this time, a solution of dibenzosuberenone (354 mg, 1.72 mmol) in distilled THF (2 mL) was added dropwise to the orange mixture. The reaction was then heated up to room temperature and stirred for 16 h. After this time, the mixture was diluted with EtOAc (100 mL) and washed with water (15 mL) and brine (15 mL). The organic phase was separated and dried with anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude was purified by column chromatography (SiO₂, CH₂Cl₂/Hexane 1:1) affording diol **2** (517 mg, 86%) as a yellow solid (see**Scheme S2**, reaction (a)). **M.p.:** 260 °C decomposition. ¹H **NMR**: (600 MHz, CD₂Cl₂) δ = 8.54 (d, *J* = 8.4 Hz, 4H), 7.70 (d, *J* = 9.3 Hz, 2H), 7.68 (d, *J* = 9.1 Hz, 2H), 7.62 (t, *J* = 7.7 Hz, 4H), 7.21 (td, *J* = 7.4, 1.3 Hz, 4H), 7.01 (d, *J* = 7.5 Hz, 2H), 6.97 (m, 4H), 6.91 (d, *J* = 8.8 Hz, 4H), 6.79 (m, 4H), 6.72 (m, 2H), 6.22 (d, *J* = 11.4 Hz, 2H), 6.18 (d, *J* = 11.4 Hz, 2H), 3.97 (s, 2H). ¹³C **NMR**: (151 MHz, CD₂Cl₂) δ = 146.95 (C), 146.91 (C), 136.37 (C), 135.74 (C), 132.47 (C), 131.89 (C), 131.69 (C), 131.23 (CH), 131.15 (CH), 130.65 (C), 130.26 (C), 129.06 (C), 129.02 (CH), 128.36 (CH), 128.30 (CH), 127.09 (CH), 126.80 (CH), 126.42 (CH), 126.37 (CH), 126.14 (CH), 125.00 (CH), 124.65 (CH), 123.34 (CH), 123.32 (CH), 132.46 (CH), 126.42 (CH), 126.37 (CH), 126.42 (F), 126.42 (CH), 126.42 (CH), 126.70 (M-OH]*: 749.2839, found:749.2850 **IR (ATR):** 3456, 2917, 1716, 1248, 761 cm⁻¹.

[DBHept-TBC]²⁺

Compound **2** (5.0 mg, 6.5×10^{-3} mmol) was dissolved in CD₂Cl₂ (2 mL) under Ar atmosphere. An aliquot (0.5 mL) of this solution was transferred into a sealed NMR tube under Ar atmosphere, where a solution of CF₃CO₂D (0.019 mmol) in CD₂Cl₂ (2 mL) was added stepwise (see **Scheme S2**, reaction (b)) and monitored *in-situ* by ¹H NMR, (**Figure S1**). An immediate colour change from yellow to red was observed and a quantitative conversion towards [**DBHept-TBC**]²⁺ was obtained. ¹H **NMR**: (400 MHz, CD₂Cl₂) δ = 9.47 (s, 4H), 8.96 (d, *J* = 8.1 Hz, 4H), 8.69 (t, *J* = 7.5 Hz, 4H), 8.39 (d, *J* = 9.0 Hz, 4H), 8.16 (t, *J* = 7.9 Hz, 4H), 7.59 (d, *J* = 8.7 Hz, 4H), 7.44 (t, *J* = 7.6 Hz, 4H), 7.37 (t, *J* = 7.6 Hz, 4H), 6.96 (d, *J* = 8.7 Hz, 4H). ¹³C **NMR**: (101 MHz, CD₂Cl₂) δ = 147.30 (C), 146.28 (CH), 142.51 (CH), 140.80 (C), 139.63 (CH), 137.51 (CH), 137.00 (C), 135.44 (C), 135.33 (CH), 131.49 (C), 129.33 (CH), 127.85 (CH), 126.77 (CH). **HR-MS (ESI-TOF):** *m*/z calcd. for C₅₈H₃₆ [M]²⁺: 366.1408, found: 366.1414.

Figure S1. ¹H NMR (400 MHz, CD₂Cl₂) spectra for the generation of [DBHept-TBC]²⁺ (red) by addition of increasing amounts of CF₃CO₂D (≈ 10 mM) to a solution of diol 2 (green).

[DBHept-TBC]

A solution of **[DBHept-TBC]**²⁺ (3.2 mM) in CD₂Cl₂ (0.5 mL) was prepared in a sealed NMR tube under Ar atmosphere. A solution of ferrocene (10 mM, 3.8 mg, 0.020 mmol) in CD₂Cl₂ (2 mL) was added (i.e., from 0.15 to 0.75 mL. see**Scheme S2**, reaction (c)). The reaction was monitored by ¹H-NMR with quantitative conversion towards **DBHept-TBC** once the ¹H-NMR signals of **[DBHept-TBC]**²⁺ either disappeared or broadened (see **Figure S2**). On the other hand, a solution of tris(4-bromophenyl) ammoniumyl hexachloroantimonate, (*Magic Blue*)^{S1} (5.3 mg, 6.5 × 10⁻³ mmol) in CD₂Cl₂ (1 mL) was used to check the reversibility of the resulting **DBHept-TBC** (see **Figure S3**). **HR-MS (ESI-TOF):** *m/z* calcd. for C₅₈H₃₆ [M]⁺: 732.2817, found: 732.2820.

The isolation of **DBHept-TBC** as solid was performed by the addition of anhydrous Et_2O (70 mL) to a solution of **DBHept-TBC** (88 mg, 0.12 mmol) in CD_2CI_2 (8 mL) under Ar atmosphere. After the addition of Et_2O a red solid precipitate appeared, then the solvent was removed using a syringe and the red solid was dried under an Ar flow.

3. Titration and variable temperature ¹H-NMR spectra

Figure S2. ¹H NMR (400 MHz, CD₂Cl₂) spectra for the generation of DBHept-TBC from a solution of [DBHept-TBC]²⁺ (3.2 mM) in CD₂Cl₂ (0.5 mL) by the addition of several aliquots of a 10 mM solution of FeCp₂ (3.8 mg, 0.02 mmol) in CD₂Cl₂ (2 mL).

Figure S3. ¹H NMR (400 MHz, CD₂Cl₂) spectra for the generation of [DBHept-TBC]²⁺ from a solution of DBHept-TBC (3.2 mM) in CD₂Cl₂ (0.5 mL) by the addition

ure S3. 'H NMR (400 MHZ, CD₂Cl₂) spectra for the generation of [DBHept-1BC]²⁺ from a solution of DBHept-1BC (3.2 mM) in CD₂Cl₂ (0.5 mL) by the addition of *Magic Blue* (tris(4-bromophenyl)ammoniumyl hexachloroantimonate).^{S1} ¹H NMR signals of *Magic Blue*: δ = 8.36 and 7.39 ppm.

Figure S7. Partial VT ¹H NMR (600 MHz, CD₂Cl₂) spectra of DBHept-TBC: from 298K to 237 K and back to 298 K.

4. Crystallographic data

Single crystals of suitable quality for X-ray diffraction analysis of **DBHept-Th** and **2** were grown by slow evaporation of solutions of the corresponding compound in a CH_2Cl_2 /hexane mixture or in CH_2Cl_2 , respectively. X-ray diffraction measurements were carried out on a Bruker D8 Venture diffractometer equipped with a Photon 100 detector using a Mo radiation. The SHELXT^{S2} or SIR2014^{S3} software was used to solve the structures, which were refined with SHELX 2018^{S4} (full-matrix least-squares against F^2 procedure) using the WinGX32^{S5} suite. C–H hydrogen atoms were placed in idealized positions ($U_{eg}(H) = 1.2U_{eg}(C)$ or $U_{eg}(H) = 1.5U_{eg}(C)$) and were allowed to ride on their parent atoms.

2 was refined as a 2-component inversion twin. For **DBHept-Th**, the space group was initially determined as P2/c in a monoclinic system. However, the ADDSYM tool in PLATON^{S6} suggested a *Cmca* symmetry in an orthorrombic system with 100% of confidence. Therefore, the structure was solved again in the *Cmca* group using the SIR2014^{S2} software. For this reason, the value of the beta angle in the unit cell was constrained to 90° to fit the requirements of the crystalline group (initially measured as 90.013°. Moreover, after the refinement, there was some density corresponding to what it seemed hexane solvent molecules which could not be modelled and were removed using the SQUEEZE^{S7} routine in PLATON, which showed an electron density removed of 119 electrons/cell which fits with approximately 2 molecules of hexane per unit cell. These molecules were included in the formula. The refinement gave a wR_2 of 0.104 while the wR_2 value obtained in the refinement using the P2/c group was 0.17. Only the *anti*-**DBHept-Th** conformer was present in the unit cell.

The diffraction measurement and refinement data are summarized in Table S1.

CCDC-2012097 (**DBHept-Th**) and CCDC-2012098 (**2**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Figure S8. ORTEP-type^{S7} representation of the X-ray diffraction structure of DBHept-Th (left) and 2 (right) showing the 50% probability thermal ellipsoids: a) Colour code: C: gray, O: red, H: white. Hydrogen atoms for 2 and solvent molecules have been omitted for clarity.

	DBHept-Th	2·CH₂Cl₂
Chemical formula	C _{9.75} H _{7.75} ^b	C ₅₉ H ₄₀ Cl ₂ O ₂
<i>M</i> r	124.91 ^b	851.81
Crystal size [mm ³]	0.387 × 0.142 × 0.071	0.286 × 0.274 × 0.070
Crystal system	Orthorhombic	Triclinic
Space group	Cmca	<i>P</i> -1
a [Å]	20.1550(15)	10.9191(6)
b [Å]	4.7512(4)	14.2474(8)
c [Å]	26.999(2)	15.1184(9)
α [°]	90	87.560(2)
β [°]	90	70.753(2)
γ [°]	90	71.905(2)
V [Å ³]	2585.4(4)	2106.0(2)
Z	16	2
$ ho_{ m calcd}$ [Mg m ⁻³]	1.284	1.343
μ [mm ⁻¹]	0.072	0.202
F(000)	1060	888
θ range [°]	2.522 to 26.349	2.231 to 28.369
hkl ranges	-25/22,-5/5,-33/33	-14/14,-19/19,-20/20
Reflections collected	12788	54168
Independent reflections	1349	10509
R _{int}	0.0266	0.0534
Completeness [%]	99.8 (Ø = 25.242)	99.8 (Ø = 25.242)
Final <i>R</i> indices [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	$R_1 = 0.0392$ $wR_2 = 0.1015$	<i>R</i> ₁ = 0.0669 <i>wR</i> ₂ = 0.1845
<i>R</i> indices (all data)	$R_1 = 0.0437$ $wR_2 = 0.1044$	$R_1 = 0.0849$ $wR_2 = 0.1951$
Goodness-of-fit on <i>F</i> ²	1.089	1.103

	Table S1. Summa	arv of the single-crystal X-ra	av diffraction measurement and refinement data for DBHept-Th and 2 ^a
--	-----------------	--------------------------------	---

^aIn common: Wavelength: 0.71073 Å. Temperature, 100 K. Refinement method, full-matrix least-squares on *F*². Absorption correction: Numerical. ^b Two molecules of hexane per unit cell were included as compatible electron density was removed with SQUEEZE.

5. Optical properties

UV-Vis electronic absorption spectra were obtained at room temperature in an Analitik Jena SPECORD® 200 Plus spectrophotometer equipped with an UV-Vis lamp and working with a double beam configuration. For this purpose, solutions of the compounds in HPLC grade CH_2CI_2 at *ca.* 1 × 10⁻⁶ M and 5 × 10⁻⁴ M for **DBHept-Th** and **DBHept-TBC** respectively were used,

Figure S9. UV-Vis electronic absorption spectrum of DBHept-Th (blue) in CH₂Cl₂.

Figure S10. TOP UV-Vis electronic absorption spectra in CH₂Cl₂ of DBHept-TBC obtained by different ways: generated by reduction of 2 with SnCl₂ (green line); generated *in situ* by reduction of [DBHept-TBC]²⁺ with Fc (red line) and as isolated solid by precipitation with Et₂O (black line). BOTTOM: Time-evolution (24 h) of the UV-Vis absorption spectra of freshly generated DBHept-TBC from 2 (10⁻⁵ M in CH₂Cl₂) in the presence of excess of SnCl₂.

6. Electron Spin Resonance (ESR) measurements

ESR spectra for **DBHept-Th** and **DBHept-TBC** were recorded on a X-Band (9.4 GHz) Bruker ELEXSYS E500 spectrometer equipped with a TE102 microwave cavity, a Bruker variable temperature unit, a field frequency lock system Bruker ER 033 M and a NMR Gaussmeter Bruker ER 035 M. Samples were prepared following the same procedure described in section 2 for the *in situ* generation of **DBHept-TBC** from [**DBHept-TBC**]²⁺ in *o*-DCB-*d*₄ using 5 equiv. of ferrocene (Fc). Two different concentrations (10^{-4} M and 10^{-3} M in *o*-DCB-*d*₄) were chosen for the given purpose. In both cases, a temperature range varying from 300 to 400 K was explored, considering the reversibility of the experiments. The signal-to-noise ratio of spectra was increased by accumulation of scans. Precautions to avoid undesirable spectral distortion and line broadenings, such as those arising from microwave power saturation and magnetic field over modulation, were also taken into account to improve sensitivity. All samples were previously degassed with Ar.

Figure S11. ESR spectra of DBHept-Th (in o-DCB-d₄ at 10⁻⁴ M) at different temperatures (from 300 to 360K).

Figure S12. ESR spectra of DBHept-TBC (in o-DCB-d₄ at 10⁻⁴ M) at different temperatures (from 300 to 400 K) (first heating cycle).

Figure S13. ESR spectra of DBHept-TBC (in o-DCB-d₄ at 10⁻⁴ M) at different temperatures: from 400 to 300 K (left), going back to room temperature, and from 300 to 400 K (right) during a second heating process.

Figure S14. ESR spectra of DBHept-TBC (in o-DCB-d₄ at 10⁻³ M) at different temperatures (from 300 to 400 K).

Figure S15. ESR spectra of DBHept-TBC (*ca*. 10⁻³ M) at different temperatures: from 420 to 300 K (in *o*-DCB-*d*₄, left) and from 300 to 120 K (in Toluene/DCM 1:1, right).

Figures S16 and **S17** show the ESR experiments of a solution of the sample of **DBHept-TBC** previously isolated as solid by precipitation with Et₂O. In this case, samples were prepared by redissolving the isolated solid in *o*-DCB at 10^{-4} M.

Figure S16. ESR spectra of DBHept-TBC (in o-DCB-d₄ at 10⁻⁴ M). Top: from 300 K (blue) to 380 K (red) (first heating cycle). Bottom: well-resolved EPR spectrum at 380 K

Figure S17. ESR spectra of DBHept-TBC (in o-DCB-d₄ at 10⁻⁴ M) at different temperatures: left: from 380 (red) back to 300 K (blue); middle: second cycle from 300 (blue) to 380 K (red); right: second cycle from 380 K (red) back to 300 K (blue).

7. Theoretical calculations

7.1. Geometry optimizations

Gaussian 09^{S9} suite of electronic structure programs was used to optimize the geometries of **[DBHept-TBC]**²⁺ and the singlet and triplet state of **DBHept-TBC** in its contorted butterfly-like and orthogonal conformations, namely: **DBHept-TBC-CS** (*p*-QDM, contorted butterfly-like geometry singlet closed shell), **DBHept-TBC-TOS** (orthogonal conformation, triplet open-shell state – Table S5), **DBHept-TBC-SOS** (orthogonal conformation, singlet open-shell state – Table S6), *syn-DBHept-Th-CS*, *anti-DBHept-Th-CS* and **DBHept-Th-Th-CS** and **DBHept-Th-Th-TOS** by density functional theory. The optimizations were carried out at the B3LYP/6-31G(d,p) level of theory in gas phase or dichloromethane as solvent modelled as a polarizable continuum with the integral equation formalism (IEFPCM) model.^{S10} The optimized structures were analysed by analytical frequency calculation to demonstrate that they correspond to energy minima. Unrestricted DFT formalism was used for the calculations of the triplet states and broken symmetry (BS) formalism for the calculations of open-shell singlet states. An ultrafine integration grid was used for the calculation of the different **DBHept-Th** structures. The atomic coordinates of the optimized geometries either in solution or in the gas phase are shown in Tables S3-S14. The colour coding used is: C, gray; H, white.

The single point calculations to obtain the energies in Tables S2 and S23 were performed with a set of functionals (B3LYP, BMK, M06-2X, M11L, and PBE0) and cc-pVTZ basis set in gas phase. The final energies are reported as the sum of the electronic energy and the B3LYP/6-31G(d,p) zero-point vibrational energies used without scaling ($E_{el} + ZPVE$, 0K).

CASSCF calculations were performed using Molpro 2012^{S11} suite of electronic structure programs for **DBHept-TBC-TOS** (orthogonal conformation, triplet state), **DBHept-TBC-SOS** (orthogonal conformation, open-shell singlet state). The active space of two electrons in two degenerate orbitals (the two SOMOs residing on the end-groups in **DBHept-TBC-TOS**, see Figure S19) were used in connection with 6-31G(d) basis set. The geometries used in these calculations were generated by relaxed potential energy surface scan on geometries obtained by changing **DBHept-TBC-TOS** molecular coordinates along a number of low-frequency vibrational modes from the gas phase B3LYP/6-31G(d,p) D_{2d} -point-group-optimized geometry in Gaussian 09.

State	Coometruid	Energy [♭] (0K, in kcal mol⁻¹)						
State	Geometry	B3LYP	BMK	M06-2X	M11L	PBE0		
CS, closed-shell singlet	<i>p</i> -QDM, ^c diastereomer 1	0	0	0	0	0		
CS, closed-shell singlet	<i>p</i> -QDM, ^c diastereomer 2	4.7	5.1	5.0	4.8	4.9		
CS, closed-shell singlet	<i>p</i> -QDM, ^c diastereomer 3	9.4	10.2	10.1	9.7	9.8		
TOS, triplet state	Butterfly-like geometry, ^c diastereomer 1	45.1	49.6	52.5	42.7	44.1		
TOS, triplet state	Orthogonal geometry ^c	10.6	18.0	24.9	8.0	9.9		
SOS, open-shell singlet	Orthogonal geometry ^c	10.8	18.2	25.2	8.3	10.2		

 Table S2. Energies of individual singlet/triplet states of DBHept-TBC in different (p-QDM or twisted) geometries with respect to the most stable diastereomer of DBHept-TBC-SCS (p-QDM geometry, closed shell singlet).

^a The geometries were optimized in gas phase at B3LYP/6-31G(d,p) level of theory. ^b The energies were calculated with the respective functional using cc-pVTZ basis set and the zero-point vibrational energy correction that was used unscaled (*Energy* = E_{el} + *ZPVE*, 0K) with respect to **DBHept-TBC-CS** (Table S7, closed-shell singlet in contorted butterfly-like geometry). ^c Geometries are defined according to Chart 1D, (*p*-QDM: left, orthogonal geometry: right); individual *p*-QDM diastereomers of **DBHept-TBC-CS** (in contorted butterfly-like geometry) are depicted in Figure S18; **DBHept-TBC-TOS** in orthogonal geometry is shown in Table S6)

Diastereomer 1

Diastereomer 2

Diastereomer 3

Figure S18. DFT optimized structures of the three different diastereomers considered for DBHept-TBC-SCS.

Figure S19. Top (left) and side (right) views of the SOMOs (isovalue = 0.02) (aMO = 192 and 193) for DBHept-TBC-TOS.

Figure S20. Top (left) and side (right) views of the electron density from the spin SCF density (isovalue = 0.0004) for DBHept-TBC-TOS.

Table S3. Atomic coordinates for the optimized structure of $[DBHept-TBC]^{2+}$ (solution)

Atom	Х	Y	Z	С	1.465778	-2.575589	-2.612553
С	5.113022	-0.000050	-0.000037	н	0.928347	-3.238867	-3.282743
С	5.717202	0.948482	-0.893469	С	0.776621	-1.747020	-1.768155
С	7.136243	1.189118	-1.089669	н	-0.306971	-1.753323	-1.769088
С	8.209737	0.507247	-0.457648	С	1.456260	-0.860196	-0.871672
н	9.195232	0.847986	-0.760707	С	0.751246	-0.000227	0.000032
С	8.209818	-0.506955	0.457415	С	1.456215	0.859773	0.871736
н	9.195371	-0.847592	0.760396	С	0.776529	1.746587	1.768188
С	7.136438	-1.188881	1.089583	Н	-0.307063	1.752885	1.769068
С	5.717356	-0.948452	0.893427	С	1.465642	2.575207	2.612572
С	7.544618	-2.195141	2.005201	Н	0.928173	3.238476	3.282740
н	8.608068	-2.363198	2.134660	С	2.888023	2.571750	2.617994
С	6.644091	-2.947875	2.723311	н	3.424545	3.231320	3.292621
н	6.995017	-3.707259	3.413888	С	3.581573	1.741971	1.777973
С	5.264203	-2.719195	2.555413	н	4.665667	1.751460	1.795683
н	4.542500	-3.300311	3.118670	С	2.902537	0.860470	0.875679
С	4.826821	-1.758563	1.676142	С	-0.751241	-0.000172	-0.000048
н	3.763265	-1.610145	1.572127	С	-1.456321	-0.859999	0.871739
С	7.544252	2.195525	-2.005191	С	-0.776754	-1.746719	1.768379
н	8.607675	2.363741	-2.134654	Н	0.306837	-1.753092	1.769331
С	6.643597	2.948254	-2.723142	С	-1.465978	-2.575167	2.612842
н	6.994397	3.707775	-3.413631	Н	-0.928600	-3.238391	3.283128
С	5.263747	2.719355	-2.555236	С	-2.888358	-2.571613	2.618167
н	4.541941	3.300426	-3.118406	Н	-3.424969	-3.231053	3.292850
С	4.826530	1.758547	-1.676084	С	-3.581796	-1.741893	1.777995
н	3.762999	1.609923	-1.572101	Н	-4.665892	-1.751303	1.795640
С	3.598456	-0.000127	0.000013	С	-2.902644	-0.860555	0.875632
С	2.902585	-0.860825	-0.875602	С	-3.598449	0.000008	-0.000159
С	3.581665	-1.742330	-1.777861	С	-2.902465	0.860511	-0.875873
н	4.665758	-1.751782	-1.795560	С	-3.581431	1.742018	-1.778219
С	2.888159	-2.572107	-2.617919	н	-4.665522	1.751598	-1.795926
Н	3.424719	-3.231635	-3.292556	С	-2.887816	2.571666	-2.618314

н	-3.424287	3.231209	-3.293007	н	-8.608120	-2.363372	-2.134334
С	-1.465436	2.575018	-2.612889	С	-6.644166	-2.948007	-2.723098
н	-0.927919	3.238207	-3.283098	н	-6.995115	-3.707451	-3.413596
С	-0.776388	1.746444	-1.768407	С	-5.264276	-2.719275	-2.555305
н	0.307204	1.752665	-1.769279	н	-4.542587	-3.300430	-3.118540
С	-1.456142	0.859737	-0.871898	С	-4.826871	-1.758540	-1.676161
С	-5.113016	0.000153	-0.000145	н	-3.763314	-1.610055	-1.572259
С	-5.717173	0.948682	0.893312	С	-4.826486	1.758871	1.675781
С	-7.136216	1.189115	1.089749	н	-3.762950	1.610457	1.571568
С	-8.209723	0.507081	0.457919	С	-5.263697	2.719620	2.555006
н	-9.195213	0.847649	0.761184	н	-4.541882	3.300822	3.118029
С	-8.209829	-0.507101	-0.457164	С	-6.643552	2.948310	2.723159
н	-9.195389	-0.847869	-0.759978	н	-6.994342	3.707788	3.413700
С	-7.136466	-1.188920	-1.089467	С	-7.544218	2.195463	2.005347
С	-5.717381	-0.948377	-0.893462	н	-8.607644	2.363507	2.135016
С	-7.544668	-2.195240	-2.004998				

Charge = 2; multiplicity = 1; (0 imaginary frequencies) Zero-point correction = 0.753700 (Hartree/Particle) Thermal correction to Energy = 0.795934 Thermal correction to Enthalpy = 0.796879 Thermal correction to Gibbs Free Energy = 0.676591 Sum of electronic and zero-point Energies = -2230.819778 Sum of electronic and thermal Energies = -2230.777543 Sum of electronic and thermal Enthalpies = -2230.776599 Sum of electronic and thermal Free Energies = -2230.896886

Table S4. Atomic coordinates for the optimized structure of DBHept-TBC-SCS (solution) (contorted butterfly-like geometry)

Atom	х	Y	Z	С	-3.283737	-0.000001	0.720593
С	-7.237814	0.676134	0.882525	С	-2.552476	1.227036	1.152278
С	-7.237815	-0.676128	0.882542	С	-2.552474	-1.227023	1.152317
С	-6.439100	-1.570278	0.043087	С	-3.182803	2.317689	1.769816
С	-6.439097	1.570262	0.043048	С	-1.143002	1.223504	1.024642
С	-5.137918	-1.249433	-0.416127	С	-1.142999	-1.223491	1.024683
С	-5.137916	1.249401	-0.416158	С	-3.182799	-2.317652	1.769901
С	-4.458741	-0.000011	0.036833	С	-2.438210	3.389982	2.254836
н	-7.992231	1.167924	1.493764	н	-4.260164	2.311983	1.888900

С	-0.405559	2.303551	1.532502	С	-5.078019	3.322988	-1.693659
С	-0.509592	-0.000001	0.452642	н	-7.984261	3.070959	0.045954
С	-0.405554	-2.303508	1.532607	Н	-6.796159	4.615543	-1.478165
н	-4.260160	-2.311943	1.888983	н	-4.553408	3.986983	-2.374043
С	-2.438204	-3.389920	2.254972	Н	-7.992233	-1.167902	1.493793
С	-1.045319	3.381463	2.138640	С	-7.000097	-2.807988	-0.332613
н	-2.941658	4.220248	2.741097	С	-4.488822	-2.124527	-1.300624
н	0.676202	2.288970	1.462430	С	-6.335615	-3.674625	-1.192614
С	-1.045312	-3.381396	2.138788	С	-5.078029	-3.323049	-1.693580
н	0.676208	-2.288921	1.462550	Н	-7.984269	-3.070971	0.046028
н	-2.941651	-4.220166	2.741269	н	-6.796173	-4.615594	-1.478055
н	-0.457987	4.204207	2.535363	Н	-4.553421	-3.987062	-2.373950
н	-0.457977	-4.204117	2.535557	Н	-3.502636	-1.858474	-1.667656
С	0.509592	-0.000002	-0.452642	С	4.458741	-0.000009	-0.036834
С	1.143000	-1.223491	-1.024682	С	5.137917	-1.249432	0.416127
С	1.143001	1.223504	-1.024643	С	5.137917	1.249402	0.416158
С	0.405556	-2.303509	-1.532605	С	6.439098	-1.570280	-0.043088
С	2.552475	-1.227022	-1.152316	С	4.488819	-2.124525	1.300623
С	2.552476	1.227037	-1.152279	С	6.439099	1.570260	-0.043047
С	0.405557	2.303550	-1.532503	С	4.488819	2.124475	1.300674
С	1.045315	-3.381397	-2.138786	С	7.237814	-0.676130	-0.882543
н	-0.676206	-2.288923	-1.462548	С	7.000092	-2.807991	0.332610
С	3.182801	-2.317651	-1.769899	С	5.078024	-3.323049	1.693579
С	3.283737	0.000001	-0.720593	С	7.237815	0.676132	-0.882525
С	3.182801	2.317690	-1.769819	С	7.000094	2.807961	0.332683
н	-0.676204	2.288968	-1.462430	Н	3.502632	1.858412	1.667698
С	1.045316	3.381462	-2.138642	С	5.078024	3.322989	1.693660
С	2.438207	-3.389920	-2.254969	н	7.992232	-1.167905	-1.493794
н	0.457981	-4.204119	-2.535554	С	6.335609	-3.674627	1.192611
н	4.260162	-2.311942	-1.888980	н	7.984264	-3.070976	-0.046031
С	2.438207	3.389982	-2.254839	н	4.553415	-3.987061	2.373948
н	4.260162	2.311984	-1.888903	Н	7.992233	1.167922	-1.493764
н	0.457983	4.204206	-2.535365	С	6.335611	3.674577	1.192704
н	2.941654	-4.220167	-2.741265	Н	7.984267	3.070954	-0.045951
н	2.941654	4.220249	-2.741101	Н	4.553414	3.986984	2.374044
С	-4.488816	2.124473	-1.300674	н	6.796165	-4.615597	1.478052
С	-7.000089	2.807964	-0.332681	н	6.796167	4.615539	1.478168
н	-3.502629	1.858409	-1.667698	н	3.502634	-1.858470	1.667655
С	-6.335604	3.674579	-1.192702				

Charge = 0; multiplicity = 1; (0 imaginary frequencies) Zero-point correction = 0.749691 (Hartree/Particle)

Thermal correction to Energy = 0.791883Thermal correction to Enthalpy = 0.792827Thermal correction to Gibbs Free Energy = 0.673756Sum of electronic and zero-point Energies = -2231.157575Sum of electronic and thermal Energies = -2231.115383Sum of electronic and thermal Enthalpies = -2231.114439Sum of electronic and thermal Free Energies = -2231.233511

Atom	х	Y	Z	С	2.907111	0.863778	-0.863394
С	5.129924	0.000001	-0.000004	С	3.586687	1.756038	-1.755256
С	5.739978	0.934829	0.935139	Н	4.670870	1.757926	-1.757159
С	7.146854	1.155715	1.156017	С	2.897651	2.593131	-2.591926
С	8.233236	0.476765	0.476830	Н	3.435934	3.260149	-3.258625
н	9.218453	0.802764	0.802873	С	1.474449	2.593754	-2.592508
С	8.233227	-0.476747	-0.476918	Н	0.937484	3.261338	-3.259756
н	9.218439	-0.802725	-0.803000	С	0.782916	1.757721	-1.756868
С	7.146833	-1.155722	-1.156058	Н	-0.301120	1.761856	-1.760960
С	5.739961	-0.934843	-0.935147	С	1.460399	0.864412	-0.864013
С	7.559774	-2.108422	-2.108993	С	0.750891	0.000025	-0.000012
н	8.627383	-2.250590	-2.251158	С	1.460384	-0.864370	0.863993
С	6.669472	-2.861493	-2.862304	С	0.782885	-1.757674	1.756841
н	7.031576	-3.584783	-3.585769	Н	-0.301152	-1.761796	1.760926
С	5.301686	-2.660955	-2.661803	С	1.474402	-2.593716	2.592483
н	4.571332	-3.229132	-3.230192	Н	0.937426	-3.261295	3.259727
С	4.863192	-1.731308	-1.731917	С	2.897605	-2.593111	2.591910
н	3.796592	-1.609270	-1.609916	Н	3.435876	-3.260136	3.258611
С	7.559814	2.108402	2.108957	С	3.586656	-1.756025	1.755245
н	8.627426	2.250574	2.251095	Н	4.670839	-1.757926	1.757155
С	6.669527	2.861453	2.862304	С	2.907096	-0.863754	0.863382
н	7.031645	3.584733	3.585773	С	-0.750890	0.000030	-0.000017
С	5.301737	2.660913	2.661833	С	-1.460390	-0.864055	-0.864326
н	4.571394	3.229076	3.230248	С	-0.782898	-1.757034	-1.757505
С	4.863224	1.731280	1.731941	Н	0.301139	-1.761147	-1.761606
н	3.796622	1.609240	1.609964	С	-1.474422	-2.592770	-2.593448
С	3.618284	0.000008	-0.000004	н	-0.937450	-3.260105	-3.260940

Table S5. Atomic coordinates for the optimized structure of DBHept-TBC-TOS (solution) (orthogonal geometry)

С	-2.897624	-2.592171	-2.592857	С	-8.233259	0.476768	-0.476705
н	-3.435900	-3.258949	-3.259802	н	-9.218493	0.802797	-0.802669
С	-3.586669	-1.755399	-1.755873	С	-7.146912	1.156012	-1.155653
Н	-4.670852	-1.757297	-1.757778	С	-5.740023	0.935112	-0.934865
С	-2.907102	-0.863443	-0.863700	С	-7.559927	2.108994	-2.108274
С	-3.618284	0.000034	-0.000024	н	-8.627547	2.251162	-2.250355
С	-2.907103	0.863491	0.863674	С	-6.669684	2.862330	-2.861389
С	-3.586672	1.755427	1.755866	н	-7.031844	3.585833	-3.584612
н	-4.670855	1.757322	1.757772	С	-5.301883	2.661781	-2.661004
С	-2.897630	2.592186	2.592864	н	-4.571574	3.230158	-3.229249
н	-3.435907	3.258951	3.259821	С	-4.863316	1.731865	-1.731421
С	-1.474427	2.592790	2.593454	н	-3.796708	1.609833	-1.609505
Н	-0.937457	3.260114	3.260958	С	-4.863101	-1.731736	1.731426
С	-0.782902	1.757071	1.757495	н	-3.796508	-1.609589	1.609466
Н	0.301135	1.761184	1.761598	С	-5.301542	-2.661665	2.661055
С	-1.460392	0.864107	0.864300	н	-4.571155	-3.229944	3.229298
С	-5.129925	0.000015	-0.000011	С	-6.669317	-2.862351	2.861485
С	-5.739918	-0.935106	0.934876	н	-7.031380	-3.585867	3.584744
С	-7.146776	-1.156147	1.155700	С	-7.559663	-2.109140	2.108365
С	-8.233205	-0.477050	0.476736	Н	-8.627264	-2.251423	2.250476
н	-9.218400	-0.803205	0.802690				

Charge = 0; multiplicity = 3; (0 imaginary frequencies) Zero-point correction = 0.748478 (Hartree/Particle) Thermal correction to Energy = 0.790982 Thermal correction to Enthalpy = 0.791926 Thermal correction to Gibbs Free Energy = 0.668965 Sum of electronic and zero-point Energies = -2231.142438 Sum of electronic and thermal Energies = -2231.099934 Sum of electronic and thermal Enthalpies = -2231.098990

Sum of electronic and thermal Free Energies = -2231.221951

Table S6. Atomic coordinates for the optimized structure of DBHept-TBC-SOS (gas phase) (orthogonal geometry)

Atom	х	Y	Z	Н	0.803081	-0.802935	-9.217529
С	0.000000	0.000000	-5.130112	С	-0.476643	0.476558	-8.232270
С	0.934824	-0.934711	-5.740419	н	-0.803081	0.802935	-9.217529
С	1.155815	-1.155638	-7.146807	С	-1.155815	1.155638	-7.146807
С	0.476643	-0.476558	-8.232270	С	-0.934824	0.934711	-5.740419

С	-2.108248	2.107919	-7.559084	С	-1.756876	1.756895	0.783525
н	-2.250092	2.249714	-8.626967	н	-1.759850	1.759852	-0.300347
С	-2.861203	2.860789	-6.669356	С	-2.592065	2.592107	1.475277
н	-3.584753	3.584223	-7.031443	Н	-3.259522	3.259564	0.938065
С	-2.660456	2.660119	-5.302370	С	-2.591464	2.591532	2.897761
н	-3.228707	3.228319	-4.571766	Н	-3.258274	3.258366	3.436426
С	-1.731134	1.730940	-4.863967	С	-1.755221	1.755283	3.587015
н	-1.607805	1.607666	-3.797866	Н	-1.756283	1.756365	4.671051
С	2.108248	-2.107919	-7.559084	С	-0.863580	0.863609	2.907356
н	2.250092	-2.249714	-8.626967	С	0.000000	0.000000	3.618369
С	2.861203	-2.860789	-6.669356	С	0.863580	-0.863609	2.907356
н	3.584753	-3.584223	-7.031443	С	1.755221	-1.755283	3.587015
С	2.660456	-2.660119	-5.302370	н	1.756283	-1.756365	4.671051
н	3.228707	-3.228319	-4.571766	С	2.591464	-2.591532	2.897761
С	1.731134	-1.730940	-4.863967	н	3.258274	-3.258366	3.436426
н	1.607805	-1.607666	-3.797866	С	2.592065	-2.592107	1.475277
С	0.000000	0.000000	-3.618369	н	3.259522	-3.259564	0.938065
С	0.863580	0.863609	-2.907356	С	1.756876	-1.756895	0.783525
С	1.755221	1.755283	-3.587015	н	1.759850	-1.759852	-0.300347
н	1.756283	1.756365	-4.671051	С	0.864129	-0.864147	1.460749
С	2.591464	2.591532	-2.897761	С	0.000000	0.000000	5.130112
н	3.258274	3.258366	-3.436426	С	-0.934824	-0.934711	5.740419
С	2.592065	2.592107	-1.475277	С	-1.155815	-1.155638	7.146807
н	3.259522	3.259564	-0.938065	С	-0.476643	-0.476558	8.232270
С	1.756876	1.756895	-0.783525	н	-0.803081	-0.802935	9.217529
н	1.759850	1.759852	0.300347	С	0.476643	0.476558	8.232270
С	0.864129	0.864147	-1.460749	н	0.803081	0.802935	9.217529
С	0.000000	0.000000	-0.751020	С	1.155815	1.155638	7.146807
С	-0.864129	-0.864147	-1.460749	С	0.934824	0.934711	5.740419
С	-1.756876	-1.756895	-0.783525	С	2.108248	2.107919	7.559084
н	-1.759850	-1.759852	0.300347	Н	2.250092	2.249714	8.626967
С	-2.592065	-2.592107	-1.475277	С	2.861203	2.860789	6.669356
н	-3.259522	-3.259564	-0.938065	н	3.584753	3.584223	7.031443
С	-2.591464	-2.591532	-2.897761	С	2.660456	2.660119	5.302370
н	-3.258274	-3.258366	-3.436426	Н	3.228707	3.228319	4.571766
С	-1.755221	-1.755283	-3.587015	С	1.731134	1.730940	4.863967
н	-1.756283	-1.756365	-4.671051	н	1.607805	1.607666	3.797866
С	-0.863580	-0.863609	-2.907356	С	-1.731134	-1.730940	4.863967
С	0.000000	0.000000	0.751020	Н	-1.607805	-1.607666	3.797866
С	-0.864129	0.864147	1.460749	С	-2.660456	-2.660119	5.302370

н	-3.228707	-3.228319	4.571766	С	-2.108248	-2.107919	7.559084
С	-2.861203	-2.860789	6.669356	н	-2.250092	-2.249714	8.626967
н	-3.584753	-3.584223	7.031443				

Charge = 0; multiplicity = 1 Energy = −2231.88003229 Hartree

Table S7. Atomic coordinates for the optimized structure of DBHept-TBC-SCS (diastereomer 1, gas phase)

				-			
Atom	Х	Y	Z	Н	1.425735	0.721693	-2.292827
С	1.106902	-7.210738	-0.675768	н	2.823815	-2.851328	-4.224825
С	1.106902	-7.210738	0.675768	н	2.532867	-0.376730	4.210635
С	0.247454	-6.435475	1.570504	н	2.532867	-0.376730	-4.210635
С	0.247454	-6.435475	-1.570504	С	-0.469040	0.494738	0.000000
С	-0.247449	-5.147858	1.249766	С	-1.059981	1.109510	-1.223697
С	-0.247449	-5.147858	-1.249766	С	-1.059981	1.109510	1.223697
С	0.183789	-4.455438	0.000000	С	-1.537444	0.356559	-2.306212
н	1.739111	-7.948136	-1.167459	С	-1.234840	2.513526	-1.227135
С	0.828645	-3.258521	0.000000	С	-1.234840	2.513526	1.227135
С	1.234840	-2.513526	1.227135	С	-1.537444	0.356559	2.306212
С	1.234840	-2.513526	-1.227135	С	-2.160777	0.976348	-3.385075
С	1.869087	-3.123518	2.319096	н	-1.425735	-0.721693	-2.292827
С	1.059981	-1.109510	1.223697	С	-1.869087	3.123518	-2.319096
С	1.059981	-1.109510	-1.223697	С	-0.828645	3.258521	0.000000
С	1.869087	-3.123518	-2.319096	С	-1.869087	3.123518	2.319096
С	2.324443	-2.363734	3.392756	н	-1.425735	-0.721693	2.292827
н	2.022849	-4.196327	2.312996	С	-2.160777	0.976348	3.385075
С	1.537444	-0.356559	2.306212	С	-2.324443	2.363734	-3.392756
С	0.469040	-0.494738	0.000000	н	-2.532867	0.376730	-4.210635
С	1.537444	-0.356559	-2.306212	н	-2.022849	4.196327	-2.312996
н	2.022849	-4.196327	-2.312996	С	-2.324443	2.363734	3.392756
С	2.324443	-2.363734	-3.392756	Н	-2.022849	4.196327	2.312996
С	2.160777	-0.976348	3.385075	Н	-2.532867	0.376730	4.210635
н	2.823815	-2.851328	4.224825	Н	-2.823815	2.851328	-4.224825
н	1.425735	0.721693	2.292827	н	-2.823815	2.851328	4.224825
С	2.160777	-0.976348	-3.385075	С	-1.146851	-4.523805	-2.127104

С	-0.110516	-7.005766	-2.808429	С	-0.247454	6.435475	1.570504
н	-1.539792	-3.547659	-1.861159	С	1.146851	4.523805	2.127104
С	-0.985497	-6.365260	-3.676874	С	-1.106902	7.210738	-0.675768
С	-1.520448	-5.122409	-3.326357	С	0.110516	7.005766	-2.808429
н	0.293755	-7.980379	-3.069549	С	1.520448	5.122409	-3.326357
н	-1.256576	-6.833526	-4.618435	С	-1.106902	7.210738	0.675768
н	-2.212693	-4.615730	-3.992149	С	0.110516	7.005766	2.808429
н	1.739111	-7.948136	1.167459	н	1.539792	3.547659	1.861159
С	-0.110516	-7.005766	2.808429	С	1.520448	5.122409	3.326357
С	-1.146851	-4.523805	2.127104	н	-1.739111	7.948136	-1.167459
С	-0.985497	-6.365260	3.676874	С	0.985497	6.365260	-3.676874
С	-1.520448	-5.122409	3.326357	н	-0.293755	7.980379	-3.069549
н	0.293755	-7.980379	3.069549	н	2.212693	4.615730	-3.992149
н	-1.256576	-6.833526	4.618435	н	-1.739111	7.948136	1.167459
н	-2.212693	-4.615730	3.992149	С	0.985497	6.365260	3.676874
н	-1.539792	-3.547659	1.861159	н	-0.293755	7.980379	3.069549
С	-0.183789	4.455438	0.000000	н	2.212693	4.615730	3.992149
С	0.247449	5.147858	-1.249766	н	1.256576	6.833526	-4.618435
С	0.247449	5.147858	1.249766	н	1.256576	6.833526	4.618435
С	-0.247454	6.435475	-1.570504	н	1.539792	3.547659	-1.861159
С	1.146851	4.523805	-2.127104				

Table S8. Atomic coordinates for the optimized structure of DBHept-TBC-SCS (diastereomer 2, gas phase)

Atom	Х	Y	Z	С	2.207085	1.227898	-1.043057
С	6.902918	0.675696	-1.217016	С	2.207028	-1.227816	-1.043195
С	6.902886	-0.675820	-1.217090	С	2.774547	2.321143	-1.713536
С	6.184263	-1.570607	-0.309822	С	0.816908	1.223804	-0.780705
С	6.184337	1.570418	-0.309650	С	0.816847	-1.223685	-0.780852
С	4.930998	-1.249870	0.266611	С	2.774443	-2.320991	-1.713831
С	4.931057	1.249678	0.266748	С	1.985502	3.393665	-2.119671
С	4.212302	-0.000058	-0.119106	Н	3.835587	2.317380	-1.934506
н	7.598223	1.167413	-1.895242	С	0.031634	2.303142	-1.211212
С	2.976372	0.000003	-0.685739	С	0.241870	0.000041	-0.152870

С	0.031513	-2.302875	-1.211628	Н	7.723108	3.069445	-0.455160
Н	3.835486	-2.317251	-1.934782	н	6.677826	4.618800	1.164922
С	1.985344	-3.393394	-2.120170	н	4.525513	3.992974	2.260842
С	0.610682	3.383079	-1.871322	н	7.598168	-1.167496	-1.895369
н	2.439825	4.227091	-2.647494	С	6.776259	-2.808658	0.010478
н	-1.038447	2.283303	-1.038505	С	4.365736	-2.127715	1.203605
С	0.610512	-3.382740	-1.871897	С	6.193028	-3.677449	0.924291
н	-1.038579	-2.282977	-1.039004	С	4.986885	-3.327163	1.537660
н	2.439629	-4.226758	-2.648123	н	7.722964	-3.069690	-0.455494
н	-0.012256	4.207525	-2.205827	н	6.677610	-4.619171	1.164422
н	-0.012475	-4.207073	-2.206591	н	4.525328	-3.993360	2.260412
С	-0.688662	0.000068	0.841758	н	3.416340	-1.862185	1.657598
С	-1.274496	-1.223537	1.462414	С	-4.478417	0.000000	0.425662
С	-1.274512	1.223773	1.462180	С	-5.043483	-1.238398	-0.189644
С	-0.504192	-2.303001	1.912975	С	-5.043500	1.238270	-0.189886
С	-2.672130	-1.225890	1.689024	С	-4.644159	-1.566984	-1.509064
С	-2.672143	1.226154	1.688794	С	-5.957737	-2.064691	0.475620
С	-0.504225	2.303386	1.912409	С	-4.644184	1.566602	-1.509372
С	-1.100916	-3.380745	2.563249	С	-5.957767	2.064678	0.475215
Н	0.568799	-2.291305	1.757261	С	-3.824525	-0.677078	-2.334220
С	-3.256293	-2.311223	2.351795	С	-5.089067	-2.782492	-2.063773
С	-3.410273	0.000087	1.261710	С	-6.421241	-3.241784	-0.108138
С	-3.256313	2.311623	2.351336	С	-3.824536	0.676546	-2.334354
Н	0.568757	2.291697	1.756623	С	-5.089111	2.781993	-2.064320
С	-1.100959	3.381267	2.562448	н	-6.300290	1.780218	1.465690
С	-2.479124	-3.386118	2.780992	С	-6.421291	3.241649	-0.108774
Н	-0.488256	-4.206512	2.912925	н	-3.239567	-1.168871	-3.109362
Н	-4.319883	-2.303530	2.553755	С	-5.967476	-3.612106	-1.376682
С	-2.479157	3.386638	2.780259	н	-4.757120	-3.054196	-3.062511
Н	-4.319900	2.303957	2.553314	н	-7.120454	-3.874783	0.430193
Н	-0.488315	4.207147	2.911886	н	-3.239587	1.168195	-3.109593
Н	-2.947945	-4.216137	3.301355	С	-5.967533	3.611729	-1.377391
Н	-2.947984	4.216769	3.300436	н	-4.757171	3.053506	-3.063112
С	4.365835	2.127449	1.203834	н	-7.120514	3.874743	0.429433
С	6.776391	2.808407	0.010784	н	-6.308251	-4.537540	-1.831386
н	3.416426	1.861915	1.657797	н	-6.308323	4.537068	-1.832277
С	6.193200	3.677127	0.924690	н	-6.300264	-1.780042	1.466039
С	4.987040	3.326832	1.538019				

Table S9. Atomic coordinates for the optimized structure of DBHept-TBC-SCS (diastereomer 3, gas phase)

Atom	х	Y	Z	С	0.675659	0.079078	0.000000
С	0.000021	-4.494852	-0.676811	С	1.521866	0.178534	1.223676
С	0.000021	-4.494852	0.676811	С	1.521866	0.178534	-1.223676
С	-1.151387	-4.658590	1.566745	С	1.423080	-0.712366	2.299966
С	-1.151387	-4.658590	-1.566745	С	2.536749	1.165599	1.226706
С	-2.447771	-4.189884	1.238137	С	2.536749	1.165599	-1.226706
С	-2.447771	-4.189884	-1.238137	С	1.423080	-0.712366	-2.299966
С	-2.603337	-3.368722	0.000000	С	2.300349	-0.621232	3.378488
н	0.971164	-4.490016	-1.168529	н	0.662460	-1.484944	2.281904
С	-2.634948	-2.012656	0.000000	С	3.415881	1.238376	2.313132
С	-2.536810	-1.165611	-1.226713	С	2.634895	2.012640	0.000000
С	-2.536810	-1.165611	1.226713	С	3.415881	1.238376	-2.313132
С	-3.415950	-1.238376	-2.313133	н	0.662460	-1.484944	-2.281904
С	-1.521926	-0.178546	-1.223684	С	2.300349	-0.621232	-3.378488
С	-1.521926	-0.178546	1.223684	С	3.295674	0.356778	3.386625
С	-3.415950	-1.238376	2.313133	Н	2.215910	-1.323071	4.203045
С	-3.295747	-0.356774	-3.386624	Н	4.212376	1.971652	2.307676
н	-4.212451	-1.971646	-2.307675	С	3.295674	0.356778	-3.386625
С	-1.423143	0.712358	-2.299971	Н	4.212376	1.971652	-2.307676
С	-0.675717	-0.079092	0.000000	н	2.215910	-1.323071	-4.203045
С	-1.423143	0.712358	2.299971	Н	3.991755	0.422491	4.217752
н	-4.212451	-1.971646	2.307675	Н	3.991755	0.422491	-4.217752
С	-3.295747	-0.356774	3.386624	С	-3.527542	-4.525676	-2.064328
С	-2.300418	0.621232	-3.378489	С	-0.972569	-5.347152	-2.782051
н	-3.991834	-0.422479	-4.217746	н	-4.526256	-4.208050	-1.779829
н	-0.662522	1.484934	-2.281909	С	-2.048439	-5.641045	-3.611548
С	-2.300418	0.621232	3.378489	С	-3.336655	-5.246592	-3.241185
н	-0.662522	1.484934	2.281909	Н	0.026550	-5.678022	-3.053702
н	-3.991834	-0.422479	4.217746	Н	-1.887572	-6.186266	-4.536836
н	-2.215981	1.323075	-4.203043	Н	-4.186219	-5.485545	-3.874055
Н	-2.215981	1.323075	4.203043	н	0.971164	-4.490016	1.168529

С	-0.972569	-5.347152	2.782051	С	3.336732	5.246486	3.241210
С	-3.527542	-4.525676	2.064328	С	0.000021	4.494969	-0.676814
С	-2.048439	-5.641045	3.611548	С	0.972655	5.347193	-2.782065
С	-3.336655	-5.246592	3.241185	Н	4.526280	4.207904	-1.779842
Н	0.026550	-5.678022	3.053702	С	3.336732	5.246486	-3.241210
Н	-1.887572	-6.186266	4.536836	Н	-0.971123	4.490182	1.168532
Н	-4.186219	-5.485545	3.874055	С	2.048537	5.641012	3.611570
Н	-4.526256	-4.208050	1.779829	Н	-0.026446	5.678117	3.053717
С	2.603322	3.368706	0.000000	Н	4.186307	5.485378	3.874089
С	2.447796	4.189873	1.238141	Н	-0.971123	4.490182	-1.168532
С	2.447796	4.189873	-1.238141	С	2.048537	5.641012	-3.611570
С	1.151437	4.658648	1.566747	Н	-0.026446	5.678117	-3.053717
С	3.527584	4.525576	2.064344	Н	4.186307	5.485378	-3.874089
С	1.151437	4.658648	-1.566747	Н	1.887698	6.186230	4.536865
С	3.527584	4.525576	-2.064344	Н	1.887698	6.186230	-4.536865
С	0.000021	4.494969	0.676814	Н	4.526280	4.207904	1.779842
С	0.972655	5.347193	2.782065				

Table S10. Atomic coordinates for the optimized structure of DBHept-TBC-TOS (saddle butterfly geometry, gas phase)

Atom	х	Y	Z	С	-1.652520	3.318999	2.325113
С	-0.931097	7.424494	0.675657	С	-0.889327	1.277287	1.206488
С	-0.931097	7.424494	-0.675657	С	-0.889327	1.277287	-1.206488
С	-0.075253	6.642722	-1.567933	С	-1.652520	3.318999	-2.325113
С	-0.075253	6.642722	1.567933	С	-2.090199	2.577175	3.417662
С	0.405397	5.349171	-1.247634	н	-1.794647	4.393054	2.314740
С	0.405397	5.349171	1.247634	С	-1.354270	0.547653	2.333529
С	-0.030383	4.658360	0.000000	С	-0.392033	0.638325	0.000000
Н	-1.557832	8.165858	1.168370	С	-1.354270	0.547653	-2.333529
С	-0.667662	3.446253	0.000000	н	-1.794647	4.393054	-2.314740
С	-1.058883	2.701135	1.216839	С	-2.090199	2.577175	-3.417662
С	-1.058883	2.701135	-1.216839	С	-1.945332	1.183945	3.412415

н	1 204426						
	-1.294420	-0.532240	2.323994	Н	-1.557832	8.165858	-1.168370
С	-1.945332	1.183945	-3.412415	С	0.292541	7.212321	-2.803467
н	-1.294426	-0.532240	-2.323994	С	1.302145	4.718763	-2.124775
н	-2.564537	3.077401	-4.256465	С	1.164270	6.565865	-3.670338
н	-2.316656	0.592943	4.244592	С	1.685867	5.316731	-3.320493
н	-2.316656	0.592943	-4.244592	н	-0.101686	8.191342	-3.063461
С	0.392033	-0.638325	0.000000	н	1.443476	7.033758	-4.609691
С	0.889327	-1.277287	-1.206488	н	2.376332	4.805243	-3.984478
С	0.889327	-1.277287	1.206488	н	1.682759	3.737039	-1.861858
С	1.354270	-0.547653	-2.333529	С	0.030383	-4.658360	0.000000
С	1.058883	-2.701135	-1.216839	С	-0.405397	-5.349171	-1.247634
С	1.058883	-2.701135	1.216839	С	-0.405397	-5.349171	1.247634
С	1.354270	-0.547653	2.333529	С	0.075253	-6.642722	-1.567933
С	1.945332	-1.183945	-3.412415	С	-1.302145	-4.718763	-2.124775
н	1.294426	0.532240	-2.323994	С	0.075253	-6.642722	1.567933
С	1.652520	-3.318999	-2.325113	С	-1.302145	-4.718763	2.124775
С	0.667662	-3.446253	0.000000	С	0.931097	-7.424494	-0.675657
С	1.652520	-3.318999	2.325113	С	-0.292541	-7.212321	-2.803467
н	1.294426	0.532240	2.323994	С	-1.685867	-5.316731	-3.320493
С	1.945332	-1.183945	3.412415	С	0.931097	-7.424494	0.675657
С	2.090199	-2.577175	-3.417662	С	-0.292541	-7.212321	2.803467
н	2.316656	-0.592943	-4.244592	н	-1.682759	-3.737039	1.861858
н	1.794647	-4.393054	-2.314740	С	-1.685867	-5.316731	3.320493
С	2.090199	-2.577175	3.417662	н	1.557832	-8.165858	-1.168370
н	1.794647	-4.393054	2.314740	С	-1.164270	-6.565865	-3.670338
н	2.316656	-0.592943	4.244592	н	0.101686	-8.191342	-3.063461
н	2.564537	-3.077401	-4.256465	н	-2.376332	-4.805243	-3.984478
н	2.564537	-3.077401	4.256465	н	1.557832	-8.165858	1.168370
С	1.302145	4.718763	2.124775	С	-1.164270	-6.565865	3.670338
С	0.292541	7.212321	2.803467	н	0.101686	-8.191342	3.063461
н	1.682759	3.737039	1.861858	Н	-2.376332	-4.805243	3.984478
С	1.164270	6.565865	3.670338	Н	-1.443476	-7.033758	-4.609691
С	1.685867	5.316731	3.320493	Н	-1.443476	-7.033758	4.609691
н	-0.101686	8.191342	3.063461	н	-1.682759	-3.737039	-1.861858
н	1.443476	7.033758	4.609691				

С -3.665746 0.000000 1.475596 Atom Х Y Ζ С н -4.609659 0.000000 0.938450 0.000000 0.000000 5.129885 С -2.484679 0.000000 0.783756 С 0.000000 -1.321836 5.740026 -2.489163 0.000000 -0.300137 н С 0.000000 -1.634252 7.146271 С -1.222101 0.000000 1.460684 С 0.000000 -0.673996 8.231801 С 0.000000 0.000000 0.751078 н 0.000000 -1.135660 9.216987 С 1.222101 0.000000 1.460684 С 0.000000 0.673996 8.231801 С 2.484679 0.000000 0.783756 н 0.000000 1.135660 9.216987 2 489163 0 000000 -0.300137 н С 0.000000 1.634252 7.146271 С 3.665746 0.000000 1.475596 С 0.000000 1.321836 5.740026 н 4.609659 0.000000 0.938450 С 0.000000 2.980994 7.558725 С 0.000000 2.898182 Н 0.000000 3.181641 8.626556 3.664739 4.607611 0.000000 3.437045 н С 0.000000 4.045747 6.669084 3.587042 2.481975 0.000000 н 0.000000 5.068906 7.031222 С н 2.482979 0.000000 4.671122 С 0.000000 3.761974 5.302141 С 1.221240 0.000000 2.907194 Н 0.000000 4.565550 4.571588 С 0.000000 2.447860 4.863681 С 0.000000 0.000000 -0.751078 0.000000 -1.460684 С 1.222101 н 0.000000 2.273877 3.797528 С 0.000000 2.484679 -0.783756 С 0.000000 -2.980994 7.558725 Н 0.000000 2.489163 0.300137 0.000000 8.626556 н -3.181641 С 0.000000 3.665746 -1.475596 С 0.000000 -4.045747 6.669084 н 0.000000 4.609659 -0.938450 н 0.000000 -5.068906 7.031222 С 0.000000 3.664739 -2.898182 С 0.000000 -3.761974 5.302141 0.000000 4.607611 -3.437045 0.000000 -4.565550 4.571588 н н С 0.000000 2.481975 -3.587042 С 0.000000 -2.447860 4.863681 -4.671122 н 0.000000 2 482979 н 0.000000 -2.273877 3.797528 С 0.000000 1.221240 -2.907194 С 0.000000 0.000000 3.618108 С 0.000000 0.000000 -3.618108 С -1.221240 0.000000 2.907194 С 0.000000 -1.221240 -2 907194 С -2.481975 0.000000 3.587042 С 0.000000 -2.481975 -3.587042 -2.482979 0.000000 4.671122 н н 0.000000 -2.482979 -4.671122 С -3.664739 0.000000 2.898182 С 0.000000 -3.664739 -2.898182 -4.607611 0.000000 3.437045 н

Table S11. Atomic coordinates for the optimized structure of DBHept-TBC-TOS (orthogonal planar geometry, gas phase)

н	0.000000	-4.607611	-3.437045	Н	-3.181641	0.000000	-8.626556
С	0.000000	-3.665746	-1.475596	С	-4.045747	0.000000	-6.669084
н	0.000000	-4.609659	-0.938450	н	-5.068906	0.000000	-7.031222
С	0.000000	-2.484679	-0.783756	С	-3.761974	0.000000	-5.302141
н	0.000000	-2.489163	0.300137	н	-4.565550	0.000000	-4.571588
С	0.000000	-1.222101	-1.460684	С	-2.447860	0.000000	-4.863681
С	0.000000	0.000000	-5.129885	н	-2.273877	0.000000	-3.797528
С	1.321836	0.000000	-5.740026	С	2.447860	0.000000	-4.863681
С	1.634252	0.000000	-7.146271	н	2.273877	0.000000	-3.797528
С	0.673996	0.000000	-8.231801	С	3.761974	0.000000	-5.302141
н	1.135660	0.000000	-9.216987	н	4.565550	0.000000	-4.571588
С	-0.673996	0.000000	-8.231801	С	4.045747	0.000000	-6.669084
н	-1.135660	0.000000	-9.216987	н	5.068906	0.000000	-7.031222
С	-1.634252	0.000000	-7.146271	С	2.980994	0.000000	-7.558725
С	-1.321836	0.000000	-5.740026	н	3.181641	0.000000	-8.626556
С	-2.980994	0.000000	-7.558725				

b) <u>DBHept-Th</u>

DFT calculations in solution show two possible conformers (*syn* and *anti*) for **DBHept-Th-SCS** depending on the relative orientation of the DBHept groups. The calculations predict that very similar energies for both conformers, which, as result, should coexist, being the *syn* form slightly more stable ($\Delta G = 0.63$ kcal/mol). Moreover, the triplet state is higher in energy in comparison with the closed shell structures ($\Delta G = 16.9$ kcal/mol respect to the most stable *syn*-CS conformer).

Table S12. Atomic coordinates for the optimized structure of syn-DBHept-Th-CS

Atom	х	Y	Z	С	-0.090622	-0.677068	1.226030
С	-0.188858	-2.843231	0.000000	- н	-0.022435	-1.200466	2.172424
С	0.794958	-4.561252	1.576667	С	-0.155761	-1.463930	0.000000
С	-0.232220	-3.636083	1.257603	С	-0.294038	-5.014377	3.717416
С	0.754501	-5.211578	2.826263	Н	-0.305783	-5.539331	4.667781
Н	1.558862	-5.895939	3.082626	С	-1.332131	-4.141820	3.378504
С	-1.292469	-3.460793	2.164267	н	-2.161745	-3.983320	4.060904
н	-2.089560	-2.770582	1.906041	С	1.901844	-4.880929	0.675762

Н	2.795595	-5.263050	1.165447	С	-0.090622	0.677068	-1.226030
С	-0.188858	2.843231	0.000000	н	-0.022435	1.200466	-2.172424
С	0.794957	4.561253	-1.576667	С	-0.294039	5.014376	3.717416
С	-0.232220	3.636083	-1.257603	н	-0.305784	5.539329	4.667782
С	0.754500	5.211579	-2.826263	С	-1.332131	4.141818	3.378504
Н	1.558860	5.895940	-3.082626	Н	-2.161745	3.983316	4.060905
С	-1.292469	3.460792	-2.164267	С	1.901842	4.880932	0.675762
Н	-2.089559	2.770580	-1.906042	Н	2.795593	5.263054	1.165447
С	-0.090622	0.677068	1.226030	С	0.794958	-4.561252	-1.576667
Н	-0.022435	1.200466	2.172424	С	-0.232220	-3.636083	-1.257603
С	-0.155761	1.463931	0.000000	С	0.754501	-5.211578	-2.826263
С	-0.294039	5.014376	-3.717416	н	1.558862	-5.895939	-3.082626
Н	-0.305784	5.539329	-4.667782	С	-1.292469	-3.460793	-2.164267
С	-1.332131	4.141818	-3.378504	н	-2.089560	-2.770582	-1.906041
Н	-2.161745	3.983316	-4.060905	С	-0.090622	-0.677068	-1.226030
С	1.901842	4.880932	-0.675762	Н	-0.022435	-1.200466	-2.172424
Н	2.795593	5.263054	-1.165447	С	-0.294038	-5.014377	-3.717416
С	0.794957	4.561253	1.576667	Н	-0.305783	-5.539331	-4.667781
С	-0.232220	3.636083	1.257603	С	-1.332131	-4.141820	-3.378504
С	0.754500	5.211579	2.826263	н	-2.161745	-3.983320	-4.060904
Н	1.558860	5.895940	3.082626	С	1.901844	-4.880929	-0.675762
С	-1.292469	3.460792	2.164267	Н	2.795595	-5.263050	-1.165447
н	-2.089559	2.770580	1.906042				

Charge = 0; multiplicity = 1; (0 imaginary frequencies) Zero-point correction = 0.482994 (Hartree/Particle) Thermal correction to Energy = 0.509364 Thermal correction to Enthalpy = 0.510308 Thermal correction to Gibbs Free Energy = 0.425878 Sum of electronic and zero-point Energies = -1385.814824

Sum of electronic and thermal Energies = -1385.788454

Sum of electronic and thermal Enthalpies = -1385.787510

Sum of electronic and thermal Free Energies = -1385.871941

Table S13. Atomic coordinates for the optimized structure of anti-DBHept-Th-SCS

С	-0.635185	4.590082	1.575811	Н	2.609265	-5.365724	1.165830
С	0.353922	3.624954	1.255886	С	0.635185	-4.590082	-1.575811
С	-0.564120	5.242697	2.822852	С	-0.353922	-3.624954	-1.255886
Н	-1.340060	5.958754	3.080360	С	0.564120	-5.242697	-2.822852
С	1.412040	3.412826	2.156788	н	1.340060	-5.958754	-3.080360
Н	2.181366	2.692312	1.896860	С	-1.412040	-3.412826	-2.156788
С	0.065659	0.673884	1.226611	н	-2.181366	-2.692312	-1.896860
Н	0.109631	1.193923	2.176036	С	-0.065659	-0.673884	-1.226611
С	0.154039	1.457279	0.000000	н	-0.109631	-1.193923	-2.176036
С	0.480469	5.008101	3.709624	С	-0.480469	-5.008101	-3.709624
н	0.516964	5.535120	4.658222	н	-0.516964	-5.535120	-4.658222
С	1.483305	4.095949	3.368497	С	-1.483305	-4.095949	-3.368497
Н	2.309767	3.908554	4.047386	н	-2.309767	-3.908554	-4.047386
С	-1.730695	4.950196	0.675846	С	1.730695	-4.950196	-0.675846
Н	-2.609265	5.365724	1.165830	н	2.609265	-5.365724	-1.165830
С	-0.269902	-2.831955	0.000000	С	-0.635185	4.590082	-1.575811
С	0.635185	-4.590082	1.575811	С	0.353922	3.624954	-1.255886
С	-0.353922	-3.624954	1.255886	С	-0.564120	5.242697	-2.822852
С	0.564120	-5.242697	2.822852	н	-1.340060	5.958754	-3.080360
Н	1.340060	-5.958754	3.080360	С	1.412040	3.412826	-2.156788
С	-1.412040	-3.412826	2.156788	н	2.181366	2.692312	-1.896860
Н	-2.181366	-2.692312	1.896860	С	0.065659	0.673884	-1.226611
С	-0.065659	-0.673884	1.226611	н	0.109631	1.193923	-2.176036
Н	-0.109631	-1.193923	2.176036	С	0.480469	5.008101	-3.709624
С	-0.154039	-1.457279	0.000000	н	0.516964	5.535120	-4.658222
С	-0.480469	-5.008101	3.709624	С	1.483305	4.095949	-3.368497
Н	-0.516964	-5.535120	4.658222	н	2.309767	3.908554	-4.047386
С	-1.483305	-4.095949	3.368497	С	-1.730695	4.950196	-0.675846
Н	-2.309767	-3.908554	4.047386	Н	-2.609265	5.365724	-1.165830
С	1.730695	-4.950196	0.675846				

Charge = 0; multiplicity = 1; (0 imaginary frequencies) Zero-point correction = 0.482962 (Hartree/Particle) Thermal correction to Energy = 0.509358 Thermal correction to Enthalpy = 0.510302 Thermal correction to Gibbs Free Energy = 0.426354 Sum of electronic and zero-point Energies = -1385.814329 Sum of electronic and thermal Energies = -1385.787933 Sum of electronic and thermal Enthalpies = -1385.786989

Sum of electronic and thermal Free Energies = -1385.870937

Table S14. Atomic coordinates for the optimized structure of DBHept-Th-T

Atom	х	Y	Z	н	6.425429	-3.181785	-0.026638
С	-1.420386	-0.000001	-0.007245	С	-2.928720	0.000000	-0.010598
С	-0.703810	-0.000001	1.198800	С	-3.536761	-1.322197	-0.013565
С	0.691576	-0.000001	1.206036	С	-3.536760	1.322196	-0.013576
С	1.420386	-0.000001	0.007247	С	-4.943805	-1.634866	0.012090
С	0.703810	-0.000001	-1.198798	С	-2.661402	-2.450294	-0.043229
С	-0.691577	-0.000001	-1.206035	С	-4.943804	1.634867	0.012074
С	2.928720	0.000000	0.010599	С	-2.661400	2.450293	-0.043245
С	3.536761	-1.322197	0.013566	С	-6.029505	-0.674205	0.049827
С	4.943805	-1.634866	-0.012092	С	-5.357833	-2.981613	0.005837
С	6.029505	-0.674205	-0.049833	С	-3.101616	-3.764943	-0.049848
н	7.014267	-1.135348	-0.080625	С	-6.029505	0.674206	0.049819
С	6.029505	0.674207	-0.049826	С	-5.357831	2.981614	0.005807
н	7.014267	1.135351	-0.080612	С	-3.101614	3.764942	-0.049878
С	4.943804	1.634867	-0.012076	Н	-7.014267	-1.135348	0.080615
С	3.536761	1.322197	0.013576	н	-6.425429	-3.181785	0.026633
С	5.357831	2.981614	-0.005809	С	-4.469025	-4.047988	-0.025291
н	6.425427	3.181787	-0.026603	н	-2.372013	-4.569056	-0.074197
С	4.469023	4.047988	0.025329	Н	-7.014267	1.135351	0.080603
н	4.832239	5.070600	0.029533	н	-6.425427	3.181787	0.026598
С	3.101614	3.764942	0.049882	С	-4.469023	4.047988	-0.025328
н	2.372010	4.569055	0.074238	н	-2.372010	4.569055	-0.074231
С	2.661400	2.450293	0.043249	н	-4.832242	-5.070599	-0.029484
н	1.595133	2.279819	0.063703	Н	-4.832239	5.070600	-0.029532
С	2.661402	-2.450294	0.043232	н	1.245563	-0.000001	-2.140479
н	1.595135	-2.279821	0.063692	н	-1.223591	-0.000001	-2.153272
С	3.101617	-3.764943	0.049852	Н	-1.245563	-0.000001	2.140481
н	2.372013	-4.569056	0.074204	н	1.223591	-0.000001	2.153273
С	4.469025	-4.047988	0.025292	н	-1.595133	2.279819	-0.063697
н	4.832242	-5.070599	0.029485	н	-1.595135	-2.279821	-0.063686
С	5.357833	-2.981613	-0.005839				

Charge = 0; multiplicity = 3; (0 imaginary frequencies)
Zero-point correction = 0.480792 (Hartree/Particle) Thermal correction to Energy = 0.507594 Thermal correction to Enthalpy = 0.419224 Thermal correction to Gibbs Free Energy = 0.670270 Sum of electronic and zero-point Energies = -1385.783452 Sum of electronic and thermal Energies = -1385.756651 Sum of electronic and thermal Enthalpies = -1385.755707 Sum of electronic and thermal Free Energies = -1385.845021

7.2. Isotropic hyperfine coupling constants $(|a_{H}|)$

The performance of DFT methodology was tested to predict the $|a_H|$ by means of the "prop=epr" keyword. To this end, calculations based on the spin-unrestricted (U) approach with B3LYP and CAM-B3LYP functionals were run, in combination with 6-31G(d) or 6-31G(d,p) basis sets, and compared to the obtained experimental data. A triplet (m = 3) state was considered, as the most plausible electronic configuration, in line with the above reported data on energy differences. In all cases, same functional/basis coupling were applied for the structure optimization and the subsequent EPR calculations. Finally, actual $|a_H|$ data were extracted from the "Isotropic Fermi Contact Couplings" section of the output log file.

Table S15. $|a_H|$ calculated value (in G) at different level of theory, together with the experimentally determined ones for DBHept-TBC-TOS

	UCAM-B3LYP UB3LYP			UCAM-B3LYP UB3LYP	
н	6-31G(d)	6-31G(d,p)	6-31G(d)	6-31G(d,p)	EXPERIMENTAL
7	-0.52	-0.51	-0.55	-0.55	0.54
11	1.11	1.09	0.68	0.67	1.06
13	-2.41	-2.38	-2.12	-2.10	3.78
15	1.16	1.14	0.75	0.74	0.95
17	-2.35	-2.33	-1.98	-1.97	3.22
46	-0.03	-0.01	-0.04	-0.02	
44	0.02	0.02	0.03	0.03	

7.3. TD-DFT calculations

Time-dependent DFT calculations were carried out to model the electronic transitions for the **[DBHept-TBC]**²⁺, **DBHept-TBC-SCS** and **DBHept-TBC-TOS** and **DBHept-TBC-SOS** species. The calculations were performed at the (U)CAM-B3LYP/def2TZV or (U)CAM-B3LYP/6-31G(d,p) (only for **DBHept-TBC-SOS**) level of theory for using Gaussian 09.⁵⁹ The first 75 excited states were considered and the optimized coordinates shown in Tables S3-S6 were used for the calculations. An ultrafine integration grid was used in the calculations. Dichloromethane was used as solvent using the IEFPCM model also applied in the structure optimization. A correction of –0.3 eV was applied to the calculated values.

Figure S21. Calculated UV-Vis spectrum of [DBHept-TBC]²⁺ (black line) and DBHept-TBC-TOS (red line).

Figure S22. Calculated UV-Vis spectrum of DBHept-TBC-SCS (blue line) and DBHept-TBC-TOS (red line).

Figure S23. Calculated UV-Vis spectrum of [DBHept-TBC]²⁺.

Figure S24. Calculated UV-Vis spectrum of DBHept-TBC-TOS.

Figure S25. Calculated UV-Vis spectrum of DBHept-TBC-SOS.

Figure S26. Calculated UV-Vis spectrum of DBHept-TBC-SCS.

 Table S16. Lower energy electronic transitions (>300 nm) predicted by TDDFT at the CAM-B3LYP/def2TZV level for [DBHept-TBC]²⁺ in dichloromethane showing the molecular orbitals involved, the CI coefficients, the wavelength of the transition (nm) and the oscillator strength. The energy values obtained have been corrected by -0.3 eV. The most intense calculated transitions for each of the absorption bands predicted are highlighted in red.

State	λ_{cal} (nm)		CI	f
S ₁	767.06	190 →193 191 (H) →192 (L)	0.48850 0.49514	0.0009
S ₂	766.99	190 →192 191 →193	-0.48860 0.49507	0.0000
S ₃	509.09	188 →193 189 →192	0.48765 0.48772	0.3326
S 4	505.92	188 →192 189 →193	0.49207 0.49212	0.0000
S ₅	465.34	190 →192 190 →193 191 →192 191 →193	0.19805 0.46064 0.48035 0.12781	0.0000
S ₆	465.34	190 →192 190 →193 191 →192 191 →193	0.46056 -0.19823 -0.12761 0.48040	0.0000
S ₇	408.14	$182 \rightarrow 193$ $183 \rightarrow 192$ $184 \rightarrow 193$ $185 \rightarrow 192$ $186 \rightarrow 193$ $187 \rightarrow 192$ $188 \rightarrow 194$ $189 \rightarrow 195$	-0.13773 0.17292 -0.19348 0.26280 0.40854 -0.35906 0.13161 -0.13150	0.0285
S ₈	408.13	$182 \rightarrow 192$ $183 \rightarrow 193$ $184 \rightarrow 192$ $185 \rightarrow 193$ $186 \rightarrow 192$ $187 \rightarrow 193$ $188 \rightarrow 195$ $189 \rightarrow 194$	-0.13764 0.17284 -0.19351 0.26279 0.40851 -0.35889 -0.13165 0.13189	0.0343
S9	407.73	190 →197 191 →196	-0.48332 0.49992	0.5645
S ₁₀	386.37	190 →194 190 →195 191 →194 191 →195	-0.10509 0.47943 0.48401 -0.10955	0.0009
S ₁₁	386.36	190 →194 190 →195 191 →194 191 →195	0.48035 0.10471 0.10976 0.48375	0.0015
S ₁₂	385.90	190 →196 191 →197	-0.49353 0.49382	0.0000
S ₁₃	380.38	$182 \rightarrow 193$ $183 \rightarrow 192$ $184 \rightarrow 193$ $185 \rightarrow 192$ $186 \rightarrow 193$ $187 \rightarrow 192$ $188 \rightarrow 194$ $189 \rightarrow 195$	-0.20445 0.26195 -0.25033 0.16373 -0.23731 0.35271 0.22039 -0.21869	0.0093
S ₁₄	380.38	$182 \rightarrow 192$ $183 \rightarrow 193$ $184 \rightarrow 192$ $185 \rightarrow 193$ $186 \rightarrow 192$ $187 \rightarrow 193$ $188 \rightarrow 195$ $189 \rightarrow 194$	-0.20432 0.26180 -0.25026 0.16370 -0.23711 0.35232 -0.21847 0.22053	0.0092

S ₁₅	356.09	190 →197 191 →196	0.50205 0.48540	0.0001
S ₁₆	355.89	190 →196 191 →197	0.49399 0.49365	0.0000
S ₁₇	346.61	$180 \rightarrow 192$ $181 \rightarrow 193$ $182 \rightarrow 192$ $183 \rightarrow 193$ $184 \rightarrow 192$ $185 \rightarrow 193$ $187 \rightarrow 193$ $188 \rightarrow 195$ $189 \rightarrow 194$	0.19158 -0.20495 0.19175 -0.13565 -0.25385 0.36639 0.19922 0.23873 -0.23850	0.0598
S ₁₈	346.60	$180 \rightarrow 193$ $181 \rightarrow 192$ $182 \rightarrow 193$ $183 \rightarrow 192$ $184 \rightarrow 193$ $185 \rightarrow 192$ $187 \rightarrow 192$ $188 \rightarrow 194$ $189 \rightarrow 195$	0.19155 -0.20492 0.19172 -0.13566 -0.25380 0.36650 0.19946 -0.23839 0.23855	0.0574
S ₁₉	331.71	186 → 197 187 → 196 190 → 199 190 → 201 191 → 198 191 → 200	-0.34732 0.38030 -0.22139 -0.19691 0.33632 -0.11224	0.0068
S ₂₀	331.62	186 → 196 187 → 197 190 → 198 190 → 200 191 → 199 191 → 201	-0.35009 0.37822 -0.33422 0.11163 0.22273 0.19807	0.0055
S ₂₁	319.35	$180 \rightarrow 193$ $181 \rightarrow 192$ $182 \rightarrow 193$ $183 \rightarrow 192$ $185 \rightarrow 192$ $186 \rightarrow 193$ $187 \rightarrow 192$ $188 \rightarrow 194$ $189 \rightarrow 195$	0.36361 -0.35653 -0.21412 0.23143 -0.21883 -0.16868 -0.15798 -0.10865 0.10851	0.0871
S ₂₂	319.32	$180 \rightarrow 192$ $181 \rightarrow 193$ $182 \rightarrow 192$ $183 \rightarrow 193$ $185 \rightarrow 193$ $186 \rightarrow 192$ $187 \rightarrow 193$ $188 \rightarrow 195$ $189 \rightarrow 194$	0.36395 -0.35685 -0.21368 0.23091 -0.21887 -0.16887 -0.15833 0.10786 -0.10806	0.0996
S ₂₃	310.79	190 →194 191 →195	0.49866 -0.49410	0.0001
S ₂₄	303.72	190 →195 191 →194	0.49968 -0.49308	0.0001
S ₂₅	303.72	184 → 192 185 → 192 185 → 193 186 → 192 186 → 193 187 → 192 187 → 193	0.10090 -0.14883 -0.15902 0.39939 0.27669 0.28577 0.30527	0.0005

192 (LUMO)

191 (HOMO)

190

Figure S27. Molecular orbitals (isovalue = 0.02) involved in the excited states with more intense oscillator strengths calculated for [DBHept-TBC]²⁺.

 Table S17. Lower energy electronic transitions (>300 nm) predicted by TDDFT at the UCAM-B3LYP/def2TZV level for DBHept-TBC-TOS in dichloromethane showing the molecular orbitals involved, the CI coefficients, the wavelength of the transition (nm) and the oscillator strength. The energy values obtained have been corrected by -0.3 eV. The most intense calculated transitions for each of the absorption bands predicted are highlighted in red.

State	λ_{cal} (nm)		CI	f
S ₁	1085.44	185A→204A	-0.10119	0.0000
		187A→198A	0.10614	
		190A→194A	0.49529	
		191A→195A	-0.49530	
		187B→198B	0.10641	
		190B→194B	-0.49546	
		191B→195B	0.49547	
		190A←194A	0.16836	
		191A←195A	-0.16836	
		190B←194B	-0.16831	
		191B ← 195B	0.16831	
S ₂	1066.79	185A→205A	-0.10137	0.0000
		186A→198A	0.10629	
		190A-> 195A	0.49504	
		191A→194A	-0.49505	
		190B → 195B	-0.49526	
		191B→194B	0.49526	
		190A C 195A	0.16528	
		191A 194A	-0.10526	
		190B C 195B	-0.16524	
		191DC 194D	0.16524	
S ₃	858.28	189A→196A	-0.13238	0.0001
		103A7 137A 103A (SOMO)-2406A	-0.1313/	
		102A (SOMO)->107A	0.04004	
		180B->106B	0.04103	
		180B->107B	-0.10724	
		1090 - 1970	-0.10505	
S ₄	858.27	188A→196A	-0.13154	0.0001
		188A→197A	0.13242	
		192A (SOMO)→196A	-0.64154	
		192A (SOMO)→197A	0.64514	
		188B→196B	-0.18567	
		188B→197B	0.18722	
S ₅	533.91	192A→194A	0.38697	0.0000
		192A→195A	-0.33381	
		193A→194A	0.60154	
		193A→195A	0.57841	
S ₆	533.91	192A→194A	-0.50911	0.0000
		192A→195A	0.66122	
		193A→194A	0.43219	
		193A→195A	0.27274	
S 7	451.07	192A→202A	0.11805	0.1671
		193A→203A	0.11807	
		188B→192B	-0.59162	
		188B→193B	-0.29518	
		189B→192B	-0.29526	
		189B→193B	0.59176	
S ₈	449.74	192A→202A	-0.10588	0.0000
		193A→203A	0.10585	
		188B→192B	0.56974	
		188B→193B	0.34645	
		189B→192B	-0.34638	
		189B→193B	0.56960	
S ₉	449.30	189A→196A	0.30359	0.0000
		189A-7197A	0.3016	
		193A 7 196A	0.25473	
		193A-> 200A	0.25262	
		1908->1060	-0.10298	
			0.52009	
			0.01002	
S ₁₀	449.30	188A→196A	-0.30166	0.0000
		188A→197A	0.30353	
		192A→196A	0.25311	
		192A-7197A	-0.25424	
		192A7200A	0.10299	

		188B→196B 188B→197B	-0.51574 0.51998	
6	446.96	100P->102P	0 10675	0 0000
511	440.80	190B-> 192B	0.19075	0.0000
		101B->102B	0.00041	
		191B→192B	-0.19696	
S ₁₂	446.86	190B→192B	0.66889	0.0000
		190B→193B	-0.18818	
		191B→192B	0.18839	
		191B→192B	0.66885	
S ₁₃	424.53	178A→204A	-0.10488	0.0000
		179A-205A 180A-2105A	0.10903	
		1824→1954	0.22065	
		183A→194A	0.17663	
		184A→195A	0.19170	
		185A→194A	0.32798	
		190A→204A	-0.29484	
		191A→205A	0.29051	
		177B→203B	-0.10876	
		180B→195B	-0.25228	
		181B→194B	0.13481	
		182B -> 195B	0.14902	
		184B->194B	-0.23490	
		185B→194B	0.26695	
		186B→195B	-0.10880	
		190B→200B	0.17904	
		190B→202B	0.23794	
		191B→203B	-0.29000	
S ₁₄	424.53	178A→205A	-0.10902	0.0000
		179A→204A	0.10489	
		180A→194A	-0.11702	
		182A→194A	0.22066	
		183A→195A	0.17663	
		1854 -> 194A	0.1917	
		190A→205A	-0.29052	
		191A→204A	0.29484	
		176B→203B	0.10875	
		180B→194B	-0.25229	
		181B→195B	0.13481	
		182B→194B	0.14902	
		183B→195B	-0.2349	
		185B -> 194B	0.10437	
		186B→194B	-0.1088	
		190B→203B	0.29001	
		191B→200B	-0.17903	
		191B→202B	-0.23794	
S ₁₅	409.32	192A→198A	0.16522	0.0043
		192A→199A	-0.25198	
		192A→200A	0.46968	
		192A→201A 180B→192B	0.43005	
		181B→192B	0.11779	
		183B→192B	-0.12456	
		184B→192B	0.27489	
		184B→193B	0.15400	
		185B→192B	-0.28534	
		185B→193B	-0.15533	
		186B→192B	-0.20802	
		187B→192B	0.14317	
S ₁₆	409.32	193A→198A	0.16522	0.0043
		193A→199A	0.25198	
		193A→200A	0.46965	
		193A→201A	-0.43069	
		180B→193B	-0.10297	
		181B→193B	0.11779	
		10307 1930 1848-) 1028	-U. 12400 0 15/100	
		184B→193B	-0.27490	
		185B→192B	0.15533	

		182B-> 183B	-0.28534	
		186B→192B	-0.11653	
		186B→193B	0.20801	
		10/07 1930	0.14317	
S ₁₇	408.19	190A→194B	-0.48848	0.5957
		191A→195A	0.48852	
		190B→194B	-0.48793	
		191B→195B	0.48797	
S18	386.29	190A→195B	-0.49264	0.0000
010	000.20	191A→194A	0.49274	0.0000
		190B→195B	-0.49212	
		191B→194B	0.49222	
S.o	371 39	1804->1964	-0 16565	0.0106
019	571.50	181A→197A	0.19647	0.0100
		182A→196A	-0.16775	
		183A→197A	-0.15224	
		184A→196A	0.10098	
		188A→202A	0.14383	
		188A→203A 180A→202A	-0.11832	
		189A→203A	-0.12033	
		192A→202A	0.27844	
		192A→203A	-0.16532	
		192A→209A	0.12074	
		192A→210A	0.14074	
		193A→202A	0.16958	
		193A→209A	-0 14309	
		193A→210A	0.12362	
		178B→192B	0.13193	
		179B→193B	-0.13190	
		181B→197B	-0.20828	
		182B→196B	0.27441	
		184B→196B	-0.22957	
		185B→197B	-0.11647	
		188B→204B	-0.15112	
		188B→205B	0.12291	
		189B→204B	0 12511	
		1000 2010	0.12011	
		189B→205B	0.15435	
S ₂₀	371.36	189B→205B 180A→197A	0.15435	0.0000
S ₂₀	371.36	189B→205B 180A→197A 181A→196A	0.15435 0.16571 -0.19638	0.0000
S ₂₀	371.36	189B→205B 180A→197A 181A→196A 182A→197A	0.15435 0.16571 -0.19638 0.16767	0.0000
S ₂₀	371.36	$189B \rightarrow 205B$ $180A \rightarrow 197A$ $181A \rightarrow 196A$ $182A \rightarrow 197A$ $183A \rightarrow 196A$ $183A \rightarrow 196A$	0.15435 0.16571 -0.19638 0.16767 0.1524 0.40075	0.0000
S ₂₀	371.36	189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→197A 184A→200A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287	0.0000
S ₂₀	371.36	189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→197A 184A→200A 188A→202A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013	0.0000
S ₂₀	371.36	189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255	0.0000
S ₂₀	371.36	189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→203A 189A→202A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 188A→202A 189A→202A 189A→202A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.10018 0.15725	0.0000
S ₂₀	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 188A→202A 189A→202A 189A→203A 192A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621	0.0000
S ₂₀	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 188A→202A 189A→202A 189A→202A 192A→203A 192A→203A 192A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 188A→202A 189A→202A 189A→202A 192A→203A 192A→203A 192A→209A 192A→209A 192A→210A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 188A→203A 189A→203A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 188A→202A 189A→202A 192A→202A 192A→203A 192A→203A 192A→209A 192A→209A 192A→200A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 -0.24281	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 189A→202A 189A→202A 192A→203A 192A→203A 192A→203A 192A→209A 192A→202A 193A→202A 193A→203A 193A→203A 193A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 0.1444	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 189A→202A 189A→202A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 193A→202A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 189A→202A 189A→202A 192A→203A 192A→202A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 193A→202A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 189A→202A 189A→203A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 193A→202A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193B→193B 179B→192B 181B→196B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→200A 188A→202A 188A→202A 189A→202A 189A→202A 192A→203A 192A→202A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 193A→202A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193A→203A 193B→193B 179B→192B 181B→196B 182B→197B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455	0.0000
S20	371.36	189B→205B 189B→205B 180A→197A 181A→196A 182A→197A 183A→196A 184A→207A 184A→200A 188A→202A 188A→202A 188A→202A 189A→202A 192A→202A 192A→203A 192A→203A 192A→203A 192A→203A 192A→203A 193A→202A 193A→202A 193A→202A 193A→203A 103A→203A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.45502	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 202A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 193A → 202A 193A → 202A 193A → 202A 193A → 203A 193A → 203A 193B → 193B 179B → 192B 181B → 196B 182B → 197B 183B → 196B 184B → 197B 185B → 106B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 202A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 193A → 202A 193A → 202A 193A → 202A 193A → 203A 193A → 209A 193A → 209A 193A → 210A 178B → 193B 179B → 192B 181B → 196B 183B → 196B 184B → 197B 185B → 196B 185B → 196B 185B → 204B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 189A → 202A 189A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 193A → 202A 193A → 202A 193A → 203A 193A → 209A 193A → 209A 193B → 196B 183B → 196B 184B → 197B 185B → 196B 184B → 204B 188B → 204B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.24281 0.116514 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 189A → 202A 189A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 193A → 202A 193A → 202A 193A → 202A 193A → 203A 193A → 203A 193A → 203A 193A → 203A 193A → 203A 193A → 203A 193A → 209A 193A → 209A 193B → 196B 183B → 196B 184B → 197B 185B → 196B 184B → 204B 188B → 204B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211 -0.10965	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 193A → 202A 193A → 202A 193A → 203A 193A → 203A 193B → 196B 182B → 196B 183B → 196B 184B → 197B 185B → 196B 184B → 205B 189B → 205B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211 -0.10965 -0.16111	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 202A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 192A → 203A 193A → 203A 193B → 196B 182B → 197B 183B → 196B 184B → 197B 185B → 196B 184B → 197B 185B → 196B 184B → 205B 189B → 204B 189B → 205B	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211 -0.10965 -0.16111	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 202A 192A → 203A 192A → 203A 192A → 209A 192A → 209A 192A → 209A 193A → 202A 193A → 209A 193A → 209A 193B → 196B 182B → 197B 183B → 196B 184B → 197B 185B → 196B 188B → 204B 188B → 204B 188B → 205B 189B → 205B 184A → 194A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.10018 0.15725 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211 -0.10965 -0.16111 0.10869 -0.35519	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 202A 192A → 203A 192A → 203A 192A → 209A 192A → 209A 192A → 203A 193A → 205B 184B → 197B 185B → 196B 184B → 197B 185B → 196B 184B → 197B 185B → 196B 184B → 205B 189B → 205B 184A → 194A 186A → 194A 186A → 194A 186A → 195A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211 -0.10965 -0.16111 0.10869 -0.35519 -0.11039	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 202A 192A → 203A 192A → 209A 192A → 209A 192A → 209A 193A → 203A 193A → 203A 193A → 203A 193A → 209A 193A → 209A 193B → 196B 181B → 196B 182B → 197B 183B → 196B 184B → 197B 185B → 196B 184B → 197B 185B → 196B 184B → 205B 189B → 205B 184A → 194A 186A → 194A 186A → 194A 186A → 194A	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211 -0.10965 -0.16111 0.10869 -0.35519 -0.11039 -0.17569	0.0000
S20	371.36	189B → 205B 189B → 205B 180A → 197A 181A → 196A 182A → 197A 183A → 196A 184A → 197A 184A → 200A 188A → 202A 188A → 202A 189A → 202A 189A → 202A 192A → 203A 192A → 209A 192A → 209A 192A → 209A 193A → 203A 193A → 203A 193A → 203A 193A → 209A 193A → 209A 193	0.15435 0.16571 -0.19638 0.16767 0.1524 -0.10075 0.10287 0.16013 -0.10255 0.24837 -0.21621 0.14709 0.11925 -0.21289 -0.24281 0.11645 -0.14464 0.15614 -0.15614 -0.15782 0.2084 -0.27455 0.22973 0.15502 0.11675 -0.16414 0.11211 -0.10965 -0.16111 0.10869 -0.35519 -0.17569 -0.36354	0.0000

		190A→199A 191A→198A	-0.21227 0.26037	
		184B→194B	0.1/2//	
		186B→195B	0.34211	
		187B→194B	0.18041	
		187B→195B	0.36775	
		190B→199B	0.21398	
		191B→198B	0.25242	
S ₂₂	368.01	184A→195A	0.10869	0.0000
		186A→194A	0.11039	
		186A→195A	-0.3552	
		187A→194A	-0.30334	
		190A→198A	-0.26036	
		191A→198A	-0.10093	
		191A→199A	0.21227	
		184B→195B	0.17277	
		186B→194B	-0.10412	
		186B→195B	0.34211	
		187B→194B	0.30775	
		190B→198B	-0.1804	
		191B→199B	-0.21399	
S ₂₃	367.382	192A→194A	-0.56928	0.0000
- 20		192A→195A	-0.40602	
		193A→194A	-0.41281	
		193A→195A	0.57585	
S ₂₄	367.382	192A→194A	0.49357	0.0000
		192A→195A	0.50819	
		193A→194A	-0.50270	
		193A→195A	0.48588	
S ₂₅	357.39	190A→195A	-0.45197	0.0000
		191A→194A	-0.45199	
		190B→195B	0.52856	
		191B→194B	0.52857	
S ₂₆	357.20	190A→194A	-0.42859	0.0000
		191A→195A	-0.4286	
		190B→194B	0.54826	
		191B→195B	0.54827	
S ₂₇	356.46	190A→194A	0.54894	0.0000
		191A→195A	0.54889	
		190B→194B	0.42898	
		1910-7 1930	0.42695	
S ₂₈	356.25	190A→195A	0.52923	0.0000
		191A→194A	0.52912	
		190B→195B 101B→104B	0.45215	
-			0.43204	
S ₂₉	352.86	183A→200A	-0.12918	0.0467
		184A→201A 192A→202A	-0.11260	
		192A→202A 192A→203A	-0 27808	
		192A→209A	-0.13067	
		192A→210A	-0.15171	
		193A→202A	0.27744	
		193A→203A	0.46553	
		193A→209A	0.15150	
		193A→210A	-0.13038	
		178B→192D	-0.20300 0 13059	
		179B→192B	0.13103	
		179B→193B	0.20386	
		184B→201B	-0.10791	
		188B→192B	0.12713	
		189B→193B	-0.12691	
S ₃₀	352.80	183A→201A	0.12001	0.0000
		184A→200A	0.12118	
		192A→202A 192A→203A	-U.4U836 0 35685	
		192A→203A	0.35065	
		192A→210A	0.1258	

		193A→202A 193A→203A 193A→209A 193A→210A 178B→193B 179B→192B 185B→201B 188B→192B 189B→193B	0.35735 0.40918 0.12609 -0.15599 0.24197 -0.24173 -0.10408 -0.1217 -0.12193	
S31	346.87	186A→194A 187A→195A 190A→196A 190A→198A 190A→201A 191A→199A 191A→198A 184B→194B 186B→194B 186B→194B 187B→195B 190B→196B 190B→198B 190B→199B 191B→197B 191B→197B	0.24831 0.26570 -0.12227 -0.10903 -0.31403 -0.12244 0.13087 0.39548 -0.11072 -0.23636 -0.26330 -0.12600 -0.10928 0.32905 0.13298 0.39715	0.0000
S ₃₂	346.87	186A→195A 187A→194A 190A→197A 190A→198A 191A→196A 191A→198A 191A→198A 191A→201A 184B→195B 186B→195B 186B→195B 187B→194B 190B→197B 190B→197B 191B→196B 191B→198B 191B→199B	-0.24831 -0.26570 0.13109 0.39547 -0.12205 0.10903 -0.31404 -0.12244 0.11071 0.23636 0.2633 0.13328 0.39714 -0.12570 0.10928 0.32907	0.0000
S ₃₃	344.57	188A→196A 188A→197A 189A→197A 189A→197A 192A→199A 192A→201A 193A→199A 193A→200A 193A→200A 193A→201A 183B→192B 183B→193B 184B→193B 185B→193B 185B→193B 185B→193B 186B→193B 186B→193B 187B→192B 187B→192B 187B→193B	-0.10135 0.13563 0.28953 0.27370 0.14744 -0.11842 0.27305 0.27735 0.29425 -0.22277 -0.15245 0.12024 0.32486 -0.26638 0.21010 -0.26654 0.14854 -0.11715	0.092
S ₃₄	344.57	188A→196A 188A→197A 189A→196A 189A→197A 192A→200A 192A→201A 193A→199A 193A→199A 193A→199A 193A→201A 183B→192B 183B→192B 185B→192B 185B→192B 185B→192B 186B→192B 186B→192B	-0.28777 0.27554 -0.10222 -0.13498 -0.27304 0.27735 -0.29427 -0.22275 -0.14744 0.11843 -0.12024 -0.15245 0.32485 -0.21010 -0.26638 -0.26654 0.11715	0.092

		187B→193B	0.14854	
S ₃₅	333.79	186A→194A 187A→194A	0.31509 0.14881	0.0001
		187A→195A	0.32893	
		190A→196A	-0.13030	
		190A→198A 100A→100A	-0.11519	
		190A→199A 190A→201A	-0.25301	
		191A→197A	0.13780	
		191A→198A	0.32107	
		184B→194B	0.12697	
		186B→194B 187B→194B	0.28126	
		187B→195B	0.30704	
		190B→196B	0.14550	
		190B→198B	0.11712	
		190B→199B 191B→197B	-0.26872	
		191B→198B	-0.32695	
		191B→199B	0.10018	
S ₃₆	333.79	186A→195A	0.31509	0.0001
		187A→194A	0.32893	
		10/A→195A 190A→197A	-0.14000	
		190A→198A	-0.32106	
		191A→196A	0.12999	
		191A→198A	-0.11520	
		191A→199A 191A→201A	0.25302	
		184B→195B	0.12697	
		186B→195B	0.28127	
		187B→194B	0.30704	
		187B→195B 190B→197B	-0.14109 0.15227	
		190B→197B	0.32694	
		190B→199B	0.10018	
		191B→196B	-0.14505	
		191B→198B 191B→199B	0.11713 0.26873	
S37	333 02	178A→194A	0 31566	0 0000
007	000.02	179A→195A	-0.31566	0.0000
		182A→205A	-0.13811	
		183A→204A	-0.10510	
		185A→204A	-0.18481	
		190A→207A	-0.28631	
		191A→206A	0.28635	
		176B→194B	-0.31584	
		177B→195B 180B→203B	0.31564	
		183B→202B	0.10955	
		185B→202B	-0.12110	
		190B→207B	0.29186	
			-0.23100	
S ₃₈	332.24	178A→195A 170A→104A	0.31342	0.0000
		182A→204A	-0.13780	
		183A→205A	-0.10981	
		184A→204A	-0.11636	
		185A→205A 100A→206A	-0.18506	
		191A→207A	0.28542	
		176B→195B	-0.31376	
		177B→194B	0.31378	
		180B→202B 183B→203B	0.12852	
		185B→203B	-0.14475	
		190B→206B	0.29095	
		191B→207B	-0.29094	
S20		1804->1064	-0.18909	0.0518
0.39	321.97	103A 7 130A	• · • • • · · ·	
035	321.97	189A→197A 189A→200A	-0.18725	
- 35	321.97	189A→197A 189A→200A 189A→201A	-0.18725 -0.15646 0.15199	
- 35	321.97	189A→197A 189A→200A 189A→201A 193A→198A	-0.18725 -0.15646 0.15199 0.20838	

		193A→200A 180B→193B 181B→192B 181B→193B 182B→192B 182B→193B 183B→192B 183B→193B 189B→196B 189B→196B 189B→200B 189B→201B 189B→202B	0.11057 0.17461 0.19899 -0.34719 -0.21485 0.40406 0.15469 -0.26988 0.17844 0.17623 0.19771 -0.22842 -0.12954	
S40	321.97	$188A \rightarrow 196A$ $188A \rightarrow 197A$ $188A \rightarrow 200A$ $188A \rightarrow 201A$ $192A \rightarrow 198A$ $192A \rightarrow 199A$ $192A \rightarrow 200A$ $180B \rightarrow 192B$ $181B \rightarrow 192B$ $182B \rightarrow 192B$ $182B \rightarrow 192B$ $182B \rightarrow 193B$ $183B \rightarrow 192B$ $183B \rightarrow 193B$ $188B \rightarrow 196B$ $188B \rightarrow 200B$ $188B \rightarrow 201B$ $188B \rightarrow 202B$	0.18789 -0.18846 -0.15647 -0.15198 -0.20837 0.18377 -0.11057 0.17461 0.34719 0.19900 0.40406 0.21485 0.26988 0.15468 -0.17695 0.17772 0.19772 0.22842 -0.12954	0.0518
S ₄₁	318.79	190B→192B 190B→193B 191B→192B 191B→193B	-0.19688 -0.67754 0.68087 -0.18551	0.0000
S ₄₂	318.79	1908→1928 1908→1938 1918→1928 1918→1938	-0.67501 0.20558 0.19416 0.67819	0.0000
S43	312.54	189A→198A 193A→198A 193A→199A 193A→200A 193A→201A 193A→205A	0.10296 0.67916 0.39406 -0.32739 0.37750 -0.12625	0.0123
S44	312.54	188A→198A 192A→198A 192A→199A 192A→200A 192A→201A 192A→205A	-0.10296 0.67916 -0.39406 -0.32742 -0.37747 0.12625	0.0123
S45	310.88	190B→196B 190B→197B 190B→198B 190B→199B 191B→196B 191B→197B 191B→197B 191B→198B 191B→199B	-0.47165 -0.46229 0.14358 -0.11207 0.47700 0.46906 -0.14568 0.11334	0.0048
S ₄₆	310.88	190B→196B 190B→197B 190B→198B 190B→199B 191B→196B 191B→197B 191B→197B 191B→198B 191B→199B	-0.47301 0.47302 -0.14567 -0.11333 -0.46777 0.46627 -0.14358 -0.11207	0.0048
S ₄₇	307.86	180A→196A 181A→197A 183A→197A 184A→196A	-0.15618 0.14327 0.19164 -0.24882	0.0057

		$185A \rightarrow 197A$ $186A \rightarrow 196A$ $188A \rightarrow 202A$ $188A \rightarrow 203A$ $189A \rightarrow 202A$ $189A \rightarrow 202A$ $192A \rightarrow 209A$ $192A \rightarrow 209A$ $192A \rightarrow 210A$ $193A \rightarrow 210A$ $180B \rightarrow 196B$ $181B \rightarrow 197B$ $184B \rightarrow 196B$ $185B \rightarrow 197B$ $186B \rightarrow 196B$ $187B \rightarrow 197B$ $186B \rightarrow 204B$ $188B \rightarrow 204B$ $189B \rightarrow 205B$	$\begin{array}{c} -0.21744\\ -0.14204\\ 0.17211\\ -0.14159\\ -0.14405\\ -0.17595\\ -0.11836\\ -0.13796\\ 0.14032\\ -0.12123\\ 0.16141\\ -0.2116\\ 0.31350\\ 0.33466\\ -0.25403\\ -0.17541\\ -0.16256\\ 0.13222\\ 0.13463\\ 0.16610\end{array}$	
S48	307.85	$180A \rightarrow 197A$ $181A \rightarrow 196A$ $183A \rightarrow 196A$ $183A \rightarrow 197A$ $185A \rightarrow 196A$ $186A \rightarrow 197A$ $186A \rightarrow 202A$ $188A \rightarrow 202A$ $189A \rightarrow 202A$ $189A \rightarrow 203A$ $192A \rightarrow 209A$ $192A \rightarrow 210A$ $193A \rightarrow 210A$ $193A \rightarrow 210A$ $178B \rightarrow 193B$ $179B \rightarrow 192B$ $180B \rightarrow 197B$ $181B \rightarrow 196B$ $184B \rightarrow 197B$ $185B \rightarrow 196B$ $184B \rightarrow 197B$ $185B \rightarrow 196B$ $186B \rightarrow 197B$ $187B \rightarrow 196B$ $186B \rightarrow 197B$ $187B \rightarrow 196B$ $186B \rightarrow 204B$ $189B \rightarrow 205B$	$\begin{array}{c} -0.15630\\ 0.14334\\ 0.19175\\ -0.24866\\ -0.21725\\ -0.14210\\ -0.19141\\ 0.12259\\ -0.11969\\ -0.18788\\ 0.14372\\ 0.11652\\ 0.11372\\ -0.14127\\ 0.10229\\ -0.10342\\ 0.16131\\ -0.21154\\ 0.31360\\ 0.33502\\ -0.25443\\ -0.17552\\ 0.17660\\ -0.12063\\ 0.11792\\ 0.17327\end{array}$	0.0000
S49	306.84	190A → 196A 190A → 197A 190A → 198A 190A → 199A 191A → 196A 191A → 197A 191A → 198A 191A → 199A	-0.44219 -0.48931 0.15578 0.10992 0.50356 0.43947 -0.14001 -0.12526	0.0039
S ₅₀	306.84	190A → 196A 190A → 197A 190A → 198A 190A → 199A 191A → 196A 191A → 197A 191A → 198A 191A → 199A	0.50071 -0.44265 0.14001 -0.12526 0.43908 -0.49216 0.15578 -0.10992	0.0040

α 198

 α 202

 α 203

α 199

 α 200

α 197

 α 195

α 193 (SOMO)

α-189

α 196

 α 194

α 192 (SOMO)

α-188

Figure S28. Molecular orbitals (α spin, isovalue = 0.02) involved in the excited states with more intense oscillator strengths calculated for DBHept-TBC-TOS.

Figure S29. Molecular orbitals (β spin, isovalue = 0.02) involved in the excited states with more intense oscillator strengths calculated for DBHept-TBC-TOS.

 Table S18.
 Lower energy electronic transitions (>300 nm) predicted by TDDFT at the UCAM-B3LYP/6-31G(d,p) level for DBHept-TBC-SOS in dichloromethane showing the molecular orbitals involved, the CI coefficients, the wavelength of the transition (nm) and the oscillator strength. The energy values obtained have been corrected by -0.3 eV. The most intense calculated transitions for each of the absorption bands predicted are highlighted in red.

State	λ _{cal} (nm)		CI	f
S1	1097 95	187A → 198A	-0 10388	0 0000
01	1007.00	$190\Delta \rightarrow 194\Delta$	-0.49868	0.0000
		1010 -> 1050	0.40813	
		187B -> 108B	-0 10388	
		190B → 194B	0.49868	
		101B -> 105B	-0.49800	
			-0.49013	
		1010 - 1050	-0.17013	
		191A C 195A	0.17009	
		190B ← 194B	0.17013	
		191B ← 192B	-0.17009	
Sa	1083 47	190A → 194A	0 49813	0 0000
02	1000.47	1010 -> 1050	0.40754	0.0000
		100B -> 10/B	0.40704	
		191B → 195B	0.49754	
		190A ← 194A	0 16763	
		$191\Delta \leftarrow 195\Delta$	0.16758	
		190B ← 194B	0.16763	
		191B ← 195B	0.16758	
		1318 (1338	0.10700	
S ₃	872.85	188A → 197A	0.19256	0.0002
03	0.2.00	188A → 200A	0 10006	0.0001
		192A (SOMO) → 197A	0.91225	
		189B → 196B	-0.26628	
			0.20020	
S₄	872.85	189A → 196A	-0.26628	0.0002
	0.2.00	188B → 197B	0 19256	0.0001
		188B → 200B	0.10006	
		192B (SOMO) → 197B	0.91225	
		132B (COMIC) 7 131B	0.01220	
S ₅	526.85	192A → 195A	0.72522	0.0000
- 5		192B → 195B	-0.65530	
Se	526.85	192A → 195A	0.65530	0.0000
0		192B → 195B	0.72522	
S7	461.35	180A → 201A	-0.10244	0.0000
-		188A → 197A	-0.42765	
		192A → 197A	0.36455	
		192A → 200A	-0.12867	
		172B → 196B	0.10923	
		172B → 215B	0.10166	
		185B → 193B	0.1007	
		189B → 196B	0.73702	
Sଃ	461.35	172A → 196A	0.10923	0.0000
		172A → 215A	0.10166	
		185A → 193A	0.10070	
		189A → 196A	0.73702	
		180B → 201B	-0.10244	
		188B → 197B	-0.42765	
		192B → 197B	0.36455	
		192B → 200B	-0.12867	
S 9	459.89	189A → 193A	0.66571	0.1584
		192A → 201A	0.12138	
		189B → 193B	-0.66569	
		192B → 201B	-0.12138	
S ₁₀	458.53	189A → 193A	0.67063	0.0000
		192A → 201A	-0.12383	
		189B → 193B	0.67065	
		192B → 201B	-0.12382	
S ₁₁	449.95	190A → 193A	0.70631	0.0000
		190B → 193B	-0.68253	
S ₁₂	449.95	190A → 193A	0.68253	0.0000
		190B → 193B	0.70631	
S ₁₃	430.67	181A → 194A	0.17282	0.0000
		181A → 195A	0.16968	
		182A → 194A	-0.10463	
		182A → 195A	0.11118	

			0.40750	
		183A → 194A	0.19750	
		184A → 195A	0.22727	
		185A → 194A	-0.19471	
		185A → 195A	0.15061	
		$100A \rightarrow 203A$	-0.20123	
		1004 > 2004	0.20120	
		190A 7 204A	-0.21159	
		191A → 203A	-0.19470	
		191A → 204A	0.20461	
		181B → 194B	0 17019	
		181B -> 105B	-0 17229	
		1010 2 1950	-0.17225	
		182B → 194B	-0.10305	
		182B → 195B	-0.11289	
		183B → 194B	0.19450	
		184B → 195B	0.23078	
		185B → 194B	-0 19176	
		100D 9 104D	0.15170	
		165B -> 195B	-0.15294	
		190B → 203B	-0.19816	
		190B → 204B	-0.20839	
		191B → 203B	0.19768	
		191B → 204B	-0.20778	
		1012 / 2012	0.20170	
6	420.67	1914 \ 1044	0 17071	0 0000
314	430.07	101A - 7 194A	-0.17071	0.0000
		181A → 195A	0.17177	
		182A → 194A	0.10270	
		182A → 195A	0.11321	
		183A → 194A	-0 19452	
		1944 -> 1054	0.22002	
		104A -7 195A	0.23093	
		185A → 194A	0.19129	
		185A → 195A	0.15352	
		190A → 203A	0.19906	
		190A → 204A	0 20744	
		$101A \rightarrow 202A$	0 10679	
		191A - 203A	-0.19678	
		191A → 204A	0.20872	
		181B → 194B	0.17333	
		181B → 195B	0.16916	
		182B → 194B	-0 10429	
		1020 > 1040	0.11140	
		1020 7 1950	0.11149	
		183B → 194B	0.19752	
		184B → 195B	-0.22743	
		185B → 194B	-0.19425	
		185B → 195B	0 15120	
		1000 > 1000	0.00011	
		190B 7 203B	-0.20211	
		190B → 204B	-0.21065	
		191B → 203B	-0.19378	
		191B → 204B	0.20557	
S15	412 17	188A → 200A	-0 13574	0.0013
015	112.17	100/() 200/(0.11002	0.0010
		192A 7 197A	0.11992	
		192A → 198A	-0.14600	
		192A → 199A	0.21126	
		192A → 200A	0.62284	
		179B → 202B	0 13343	
		1010 -> 1020	0.11406	
		1018 -7 1938	0.11400	
		182B → 193B	-0.15199	
		184B → 193B	0.22215	
		185B → 193B	0.43251	
		186B → 193B	0 23437	
		187B -> 103B	0.22010	
		107B -> 195B	-0.22919	
		189B → 202B	0.12531	
S ₁₆	412.17	179A → 202A	0.13343	0.0013
		181A → 193A	0.11406	
		182A → 193A	-0 15199	
		1944 -> 1024	0.22215	
		104A 7 195A	-0.22213	
		185A → 193A	0.43251	
		186A → 193A	-0.23437	
		187A → 193A	0.22919	
		189A → 202A	0 12531	
		188R > 200P	0.12001	
			-0.135/4	
		192B → 197B	0.11992	
		192B → 198B	0.14600	
		192B → 199B	-0.21126	
		192B →200B	0 62284	
			U.ULLUT	
0	410.00	1004 -> 1044	0 40005	0 5000
O ₁₇	412.00	190A 7 194A	-0.49005	0.5820
		191A → 195A	0.49048	
		190B → 194B	-0.49005	
		191B →195B	0.49048	
S	380 31	1904 -> 1944	0 10306	0 0000
U18	003.04	130A / 134A	0.49000	0.0000

		191A → 195A 190B → 194B 191B → 195B	0.49350 -0.49306 -0.49350	
S19	374.80	$185A \rightarrow 194A$ $186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 195A$ $190A \rightarrow 198A$ $190A \rightarrow 198A$ $190A \rightarrow 199A$ $191A \rightarrow 199A$ $185B \rightarrow 194B$ $186B \rightarrow 194B$ $186B \rightarrow 194B$ $186B \rightarrow 195B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $190B \rightarrow 199B$ $191B \rightarrow 198B$ $191B \rightarrow 199B$	-0.12371 -0.18464 -0.32625 0.36022 -0.22305 0.17590 0.15545 0.17664 -0.14432 -0.11862 0.17701 -0.34021 -0.34544 -0.23266 0.16864 0.14909 -0.18418 0.15053	0.0000
S ₂₀	374.80	$185A \rightarrow 194A$ $186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 194A$ $187A \rightarrow 195A$ $190A \rightarrow 198A$ $190A \rightarrow 199A$ $191A \rightarrow 199A$ $185B \rightarrow 194B$ $186B \rightarrow 194B$ $186B \rightarrow 194B$ $186B \rightarrow 194B$ $187B \rightarrow 195B$ $187B \rightarrow 195B$ $190B \rightarrow 198B$ $190B \rightarrow 198B$ $191B \rightarrow 199B$	$\begin{array}{c} -0.11875\\ -0.17805\\ 0.33967\\ 0.34473\\ 0.23371\\ 0.16947\\ 0.14840\\ -0.18341\\ 0.15121\\ 0.12384\\ -0.18564\\ -0.32569\\ 0.35954\\ -0.22414\\ -0.17670\\ -0.15479\\ -0.17584\\ 0.14503\end{array}$	0.0000
S ₂₁	373.91	$179A \rightarrow 193A$ $180A \rightarrow 197A$ $181A \rightarrow 197A$ $182A \rightarrow 196A$ $183A \rightarrow 196A$ $184A \rightarrow 196A$ $185A \rightarrow 196A$ $185A \rightarrow 201A$ $189A \rightarrow 205A$ $192A \rightarrow 201A$ $192A \rightarrow 208A$ $179B \rightarrow 193B$ $180B \rightarrow 197B$ $181B \rightarrow 197B$ $182B \rightarrow 196B$ $183B \rightarrow 196B$ $183B \rightarrow 196B$ $184B \rightarrow 196B$ $184B \rightarrow 196B$ $184B \rightarrow 196B$ $184B \rightarrow 196B$ $184B \rightarrow 201B$ $189B \rightarrow 205B$ $192B \rightarrow 201B$ $192B \rightarrow 208B$	0.19620 -0.19873 -0.12944 -0.16662 -0.23565 0.11546 -0.13303 -0.19729 0.20193 -0.21723 -0.21472 -0.19620 0.19874 0.12944 0.16662 0.23565 0.11546 0.13303 0.19729 -0.20193 0.21724 0.21472	0.0024
S ₂₂	373.91	$179A \rightarrow 193A$ $180A \rightarrow 197A$ $181A \rightarrow 197A$ $182A \rightarrow 196A$ $183A \rightarrow 196A$ $183A \rightarrow 196A$ $185A \rightarrow 196A$ $185A \rightarrow 196A$ $188A \rightarrow 201A$ $189A \rightarrow 205A$ $192A \rightarrow 201A$ $192A \rightarrow 201A$ $192B \rightarrow 197B$ $181B \rightarrow 197B$ $182B \rightarrow 196B$	0.19625 0.19869 0.12921 -0.16641 -0.23579 0.11532 -0.13304 0.19732 0.20192 0.21696 0.21473 0.19625 0.19869 0.12920 -0.16641	0.0000

		183B → 196B 184B →196B 185B →196B 188B →201B 189B →205B 192B →201B 192B → 208B	-0.23579 -0.11532 -0.13304 0.19731 0.20193 0.21695 0.21473	
S ₂₃	372.40	192A → 193A 192B → 193B	0.99077 -0.13197	0.0000
S ₂₄	372.40	192A → 193A 192B → 193B	-0.13197 0.99077	0.0000
S ₂₅	362.72	192A → 194A 192B → 194B	0.73389 0.67522	0.0000
S ₂₆	362.72	192A → 194A 192B → 194B	-0.67520 0.73388	0.0000
S ₂₇	357.57	$186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 195A$ $187A \rightarrow 195A$ $190A \rightarrow 196A$ $190A \rightarrow 198A$ $190A \rightarrow 199A$ $191A \rightarrow 197A$ $191A \rightarrow 197A$ $191A \rightarrow 198A$ $191A \rightarrow 199B$ $186B \rightarrow 194B$ $186B \rightarrow 194B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $190B \rightarrow 198B$ $190B \rightarrow 199B$ $191B \rightarrow 197B$ $191B \rightarrow 198B$ $191B \rightarrow 199B$	0.10421 0.20161 -0.20928 0.14161 -0.13057 0.29658 0.25685 -0.13292 0.30920 -0.24701 -0.10663 0.19707 0.21410 0.13840 0.13359 0.30346 0.26275 -0.12993 -0.30225 0.24141	0.0000
S ₂₈	357.57	$186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 195A$ $197A \rightarrow 195A$ $190A \rightarrow 196A$ $190A \rightarrow 198A$ $190A \rightarrow 199A$ $191A \rightarrow 197A$ $191A \rightarrow 197A$ $191A \rightarrow 198A$ $191B \rightarrow 194B$ $186B \rightarrow 194B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $187B \rightarrow 195B$ $190B \rightarrow 198B$ $190B \rightarrow 198B$ $190B \rightarrow 199B$ $191B \rightarrow 197B$ $191B \rightarrow 198B$ $191B \rightarrow 199B$	-0.10723 0.19675 0.21367 0.13905 0.13361 -0.30483 -0.26165 -0.12990 0.30086 -0.24261 -0.10482 -0.20130 0.20884 -0.14224 0.13060 0.29798 0.25572 0.13290 0.30784 -0.24818	0.0000
S ₂₈	357.57	$186A \Rightarrow 194A$ $186A \Rightarrow 195A$ $187A \Rightarrow 194A$ $187A \Rightarrow 195A$ $190A \Rightarrow 195A$ $190A \Rightarrow 198A$ $190A \Rightarrow 199A$ $191A \Rightarrow 197A$ $191A \Rightarrow 197A$ $191A \Rightarrow 197B$ $186B \Rightarrow 194B$ $186B \Rightarrow 194B$ $186B \Rightarrow 195B$ $187B \Rightarrow 195B$ $190B \Rightarrow 196B$ $190B \Rightarrow 198B$ $190B \Rightarrow 199B$ $191B \Rightarrow 199B$ $191B \Rightarrow 199B$ $190A \Rightarrow 195A$ $191A \Rightarrow 194A$ $190B \Rightarrow 195B$ $190B \Rightarrow 195B$ $191B \Rightarrow 194B$	$\begin{array}{c} -0.10723\\ 0.19675\\ 0.21367\\ 0.13905\\ 0.13361\\ -0.30483\\ -0.26165\\ -0.12990\\ 0.30086\\ -0.24261\\ -0.10482\\ -0.20130\\ 0.20884\\ -0.14224\\ 0.13060\\ 0.29798\\ 0.25572\\ 0.13290\\ 0.30784\\ -0.24818\\ \hline 0.16744\\ 0.67715\\ -0.16745\\ -0.67709\\ \hline \end{array}$	0.0000
S ₂₈ S ₂₉ S ₃₀	357.57 357.57 357.18	$186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 194A$ $187A \rightarrow 195A$ $190A \rightarrow 196A$ $190A \rightarrow 199A$ $190A \rightarrow 199A$ $191A \rightarrow 199A$ $191A \rightarrow 199A$ $191A \rightarrow 199A$ $191A \rightarrow 199A$ $186B \rightarrow 194B$ $186B \rightarrow 194B$ $186B \rightarrow 194B$ $187B \rightarrow 195B$ $190B \rightarrow 196B$ $190B \rightarrow 199B$ $191B \rightarrow 197B$ $191B \rightarrow 197B$ $191B \rightarrow 197B$ $190A \rightarrow 195A$ $190A \rightarrow 195B$ $190A \rightarrow 195B$ $190A \rightarrow 195B$ $191B \rightarrow 194B$	-0.10723 0.19675 0.21367 0.13905 0.13361 -0.30483 -0.26165 -0.12990 0.30086 -0.24261 -0.10482 -0.20130 0.20884 -0.14224 0.13060 0.29798 0.25572 0.13290 0.30784 -0.24818 0.16744 0.67715 -0.16745 -0.16745 -0.67709 -0.15014 0.68109 -0.15012 0.68116	0.0000 0.0000 0.0000
S ₂₈ S ₂₉ S ₃₀ S ₃₁	357.57 357.57 357.18 355.14	$186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 194A$ $187A \rightarrow 195A$ $190A \rightarrow 196A$ $190A \rightarrow 199A$ $190A \rightarrow 199A$ $191A \rightarrow 199A$ $191A \rightarrow 199A$ $191A \rightarrow 199A$ $191A \rightarrow 199A$ $186B \rightarrow 194B$ $186B \rightarrow 194B$ $186B \rightarrow 195B$ $190B \rightarrow 195B$ $190B \rightarrow 199B$ $190B \rightarrow 199B$ $191B \rightarrow 198B$ $190A \rightarrow 195A$ $191B \rightarrow 194B$ $190A \rightarrow 195B$ $191B \rightarrow 194B$ $190A \rightarrow 195B$ $191B \rightarrow 194B$ $190A \rightarrow 195B$ $191B \rightarrow 194B$ $190A \rightarrow 195A$ $191B \rightarrow 194B$ $190A \rightarrow 195A$ $191B \rightarrow 194B$	$\begin{array}{c} -0.10723\\ 0.19675\\ 0.21367\\ 0.13905\\ 0.13361\\ -0.30483\\ -0.26165\\ -0.12990\\ 0.30086\\ -0.24261\\ -0.10482\\ -0.20130\\ 0.20884\\ -0.14224\\ 0.13060\\ 0.29798\\ 0.25572\\ 0.13290\\ 0.30784\\ -0.24818\\ 0.16744\\ 0.67715\\ -0.16745\\ -0.67709\\ -0.15014\\ 0.68109\\ -0.15012\\ 0.68116\\ -0.67737\\ 0.16801\\ 0.67746\\ -0.16800\\ \end{array}$	0.0000 0.0000 0.0000

		191B → 194B	0.15090	
S ₃₃	347.39	183A → 193A	0.13785	0.0714
		184A → 193A	-0.17433	
		185A → 193A	0.32156	
		186A → 193A	-0.18462	
		187A → 193A	0.18744	
		188A → 197A	0.27887	
		192A → 198A	0.15780	
		192A → 199A	-0.16877	
		192A → 200A	-0.26081	
		183B → 193B	0.10117	
		184B → 193B	0.12795	
		185B →193B	0.23600	
		186B → 193B	0.13550	
		187B →193B	-0.13757	
		188B → 197B	0.37996	
		192B → 198B	-0.21501	
		192B → 199B	0.22995	
		192B → 200B	-0.35535	
		192B → 212B	0.10701	
S ₃₄	347.39	183A → 193A 184A → 193A	-0.10117	0.0714
		185A -> 193A	-0.23600	
		186A -> 193A	-0.23000	
		1874 -> 1934	-0 13757	
		1884 -> 1974	0.37006	
		$1924 \rightarrow 1984$	0.21501	
		192A → 199A	-0 22995	
		192A → 200A	-0.35535	
		192A → 212A	0.10701	
		183B → 193B	0.13785	
		184B → 193B	0.17433	
		185B → 193B	0.32156	
		186B →193B	0.18462	
		187B → 193B	-0.18744	
		188B → 197B	-0.27887	
		192B → 198B	0.15780	
		192B → 199B	-0.16877	
		192B → 200B	0.26081	
S ₃₅	346.76	179A → 193A	0.22525	0.0449
		189A → 193A	-0.12615	
		192A → 201A	0.58162	
		192A → 208A	-0.16717	
		179B → 193B	-0.22531	
		189B → 193B	0.12618	
		192B → 201B	-0.58146	
		192B → 208B	0.16713	
S ₃₆	346.70	179A → 193A	-0.22502	0.0000
		189A → 193A	0.12670	
		192A → 201A	0.58146	
		192A → 208A	-0.16774	
		179B → 193B	-0.22496	
		189B → 193B	0.12666	
		192B → 201B	0.58162	
		192B → 208B	-0.16779	
S ₃₇	337.08	177A → 195A	0.31827	0.0000
		178A → 194A	0.31980	
		181A → 204A	0.15071	
		184A → 203A	-0.10640	
		185A → 203A	-0.13165	
		190A → 206A	-0.28936	
		191A → 207A	0.29519	
		1788 - 1010 1788 - 1010	-U.J 1021	
		181B -> 20/B	-0 15071	
		184B → 203B	-0 10640	
		185B → 203B	0.13165	
		190B → 206B	-0.28936	
		191B → 207B	-0.29519	
S ₃₈	336.46	177A → 195A	0.31718	0.0000
		178A → 194A	-0.31864	
		181A →203A	-0.14177	
		181A →203A 184A → 204A	-0.14177 0.11594	

		190A → 206A 191A → 207A 177B → 195B 178B → 194B 181B → 203B 184B → 204B 185B → 204B 190B → 206B 191B →> 207B	0.28793 0.29375 0.31718 0.31864 -0.14177 -0.11594 0.13604 -0.28793 0.29375	
S ₃₉	336.23	$186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 195A$ $187A \rightarrow 195A$ $190A \rightarrow 196A$ $190A \rightarrow 198A$ $190A \rightarrow 199A$ $191A \rightarrow 197A$ $191A \rightarrow 197A$ $191A \rightarrow 198A$ $191A \rightarrow 199B$ $186B \rightarrow 194B$ $186B \rightarrow 195B$ $187B \rightarrow 194B$ $187B \rightarrow 194B$ $190B \rightarrow 196B$ $190B \rightarrow 198B$ $190B \rightarrow 199B$ $191B \rightarrow 197B$ $191B \rightarrow 198B$ $191B \rightarrow 198B$ $191B \rightarrow 199B$	-0.14234 -0.28042 0.28282 -0.19535 0.16356 -0.23926 -0.20429 0.14962 -0.24417 0.19232 -0.14314 0.27886 0.28440 0.19426 0.16447 0.24061 0.20543 -0.14878 -0.24282 0.19125	0.0002
S40	336.23	$186A \rightarrow 194A$ $186A \rightarrow 195A$ $187A \rightarrow 195A$ $187A \rightarrow 195A$ $190A \rightarrow 196A$ $190A \rightarrow 198A$ $190A \rightarrow 199A$ $191A \rightarrow 197A$ $191A \rightarrow 197A$ $191A \rightarrow 199A$ $186B \rightarrow 194B$ $186B \rightarrow 195B$ $187B \rightarrow 194B$ $187B \rightarrow 195B$ $190B \rightarrow 195B$ $190B \rightarrow 198B$ $190B \rightarrow 198B$ $190B \rightarrow 199B$ $191B \rightarrow 197B$ $191B \rightarrow 198B$ $191B \rightarrow 199B$	-0.14400 0.27842 0.28380 0.19512 0.16450 -0.24171 -0.20456 -0.14876 0.24171 -0.19218 0.14320 0.27999 -0.28222 0.19621 -0.16358 -0.24037 -0.20341 -0.14959 -0.24307 0.19326	0.0002
S41	326.06	$181A \rightarrow 193A$ $182A \rightarrow 193A$ $183A \rightarrow 193A$ $184A \rightarrow 193A$ $189A \rightarrow 202A$ $189A \rightarrow 202A$ $189A \rightarrow 201B$ $182B \rightarrow 193B$ $182B \rightarrow 193B$ $183B \rightarrow 193B$ $188B \rightarrow 197B$ $188B \rightarrow 200B$ $189B \rightarrow 202B$ $192B \rightarrow 198B$ $192B \rightarrow 199B$ $192B \rightarrow 200B$	-0.18409 0.43803 0.47981 -0.12727 0.19837 -0.30052 0.10797 0.11714 0.16547 0.18125 0.19268 0.22539 -0.11352 0.15999 -0.15021 0.18977	0.0454
S ₄₂	326.06	$180A \rightarrow 201A$ $182A \rightarrow 193A$ $183A \rightarrow 193A$ $188A \rightarrow 197A$ $188A \rightarrow 200A$ $189A \rightarrow 202A$ $192A \rightarrow 198A$ $192A \rightarrow 199A$ $192A \rightarrow 200A$ $181B \rightarrow 193B$ $182B \rightarrow 193B$	0.11714 -0.16547 -0.18125 0.19268 0.22539 0.11352 -0.15999 0.15021 0.18977 -0.18409 0.43803	0.0454

		183B → 193B 184B → 193B 189B → 196B 189B → 202B 189B → 203B	0.47981 0.12727 0.19837 -0.30052 -0.10797	
S ₄₃	319.95	191A → 193A 191B → 193B	0.72148 -0.68971	0.0000
S44	319.94	191A → 193A 191B → 193B	0.68967 0.72144	0.0000
S45	313.52	$179A \Rightarrow 193A$ $180A \Rightarrow 197A$ $181A \Rightarrow 196A$ $182A \Rightarrow 197A$ $182A \Rightarrow 197A$ $182A \Rightarrow 197A$ $183A \Rightarrow 197A$ $183A \Rightarrow 197A$ $184A \Rightarrow 196A$ $186A \Rightarrow 196A$ $186A \Rightarrow 197A$ $186A \Rightarrow 197A$ $186A \Rightarrow 201A$ $189A \Rightarrow 205A$ $192A \Rightarrow 208A$ $179B \Rightarrow 193B$ $180B \Rightarrow 197B$ $181B \Rightarrow 196B$ $182B \Rightarrow 197B$ $183B \Rightarrow 197B$ $183B \Rightarrow 197B$ $184B \Rightarrow 196B$ $184B \Rightarrow 196B$ $184B \Rightarrow 197B$ $184B \Rightarrow 196B$ $184B \Rightarrow 197B$ $185B \Rightarrow 197B$ $186B \Rightarrow 197B$ $187B \Rightarrow 196B$ $186B \Rightarrow 197B$ $187B \Rightarrow 196B$ $187B \Rightarrow 196B$ $188B \Rightarrow 201B$ $189B \Rightarrow 205B$ $192B \Rightarrow 208B$	0.10646 0.15701 -0.11187 0.17698 -0.11874 0.11719 0.13717 0.19162 -0.29417 0.16714 0.10598 -0.16490 0.22146 -0.20543 -0.17136 -0.10671 -0.15664 0.11213 -0.17740 0.11847 -0.11692 0.13749 0.19116 0.29486 0.16753 0.10573 -0.16529 -0.22094 0.20592 0.17096	0.0022
S46	313.52	$179A \rightarrow 193A$ $180A \rightarrow 197A$ $181A \rightarrow 196A$ $182A \rightarrow 196A$ $182A \rightarrow 197A$ $183A \rightarrow 197A$ $183A \rightarrow 197A$ $183A \rightarrow 197A$ $184A \rightarrow 196A$ $186A \rightarrow 196A$ $186A \rightarrow 196A$ $186A \rightarrow 196A$ $186A \rightarrow 201A$ $187A \rightarrow 205A$ $192A \rightarrow 205A$ $192A \rightarrow 208A$ $179B \rightarrow 193B$ $180B \rightarrow 197B$ $181B \rightarrow 196B$ $182B \rightarrow 197B$ $183B \rightarrow 197B$ $183B \rightarrow 197B$ $183B \rightarrow 197B$ $184B \rightarrow 196B$ $184B \rightarrow 196B$ $185B \rightarrow 196B$ $186B \rightarrow 197B$ $186B \rightarrow 196B$ $186B \rightarrow 196B$ $186B \rightarrow 197B$ $187B \rightarrow 196B$ $186B \rightarrow 197B$ $187B \rightarrow 196B$ $186B \rightarrow 197B$ $187B \rightarrow 196B$ $187B \rightarrow 205B$ $192B \rightarrow 208B$	-0.17096 -0.10676 0.15678 0.11200 -0.17767 -0.11764 0.11682 -0.13685 0.19184 0.29539 -0.16692 0.10618 0.16583 0.22089 0.20593 -0.17069 -0.10651 0.15715 0.11174 -0.17726 -0.11792 0.11792 0.11709 0.13653 -0.19229 0.2947 0.16653 -0.10643 -0.16544 0.22141 0.20544 -0.17109	0.0000
S ₄₇	312.23	190A → 196A 190A → 198A 190B → 196B 190B → 198B 190B → 199B 192B → 198B	0.52014 0.11356 0.76098 -0.16613 -0.13203 -0.11763	0.0031

S ₄₈	312.23	$190A \rightarrow 196A$ $190A \rightarrow 198A$ $190A \rightarrow 199A$ $192A \rightarrow 198A$ $190B \rightarrow 196B$ $190B \rightarrow 198B$	0.76103 0.16611 0.13209 0.11742 -0.52025 0.11354	0.0031
S49	312.15	$188A \rightarrow 197A$ $190A \rightarrow 196A$ $192A \rightarrow 198A$ $192A \rightarrow 199A$ $192A \rightarrow 200A$ $192B \rightarrow 198B$ $192B \rightarrow 199B$ $192B \rightarrow 200B$	-0.13544 -0.16604 0.61876 -0.37943 0.38759 0.31034 -0.19030 -0.19439	0.0035
S ₅₀	312.15	192A → 198A 192A → 199A 192A → 200A 188B → 197B 190B → 196B 192B → 198B 192B → 199B 192B → 200B	-0.31025 0.19025 -0.19434 0.13543 0.16625 0.61873 -0.37941 -0.38757	0.0035
S ₅₁	308.27	191A → 197A 191A → 198A 191A → 199A 191B → 197B 191B → 198B	0.82607 0.18742 -0.14664 -0.44740 0.10146	0.0041
S ₅₂	308.27	191A → 197A 191A → 198A 191B →197B 191B → 198B 191B → 199B	0.44739 0.10158 0.82607 -0.18748 0.14657	0.0041
S ₅₃	304.29	192A -> 196A	0.99271	0.0000
S ₅₄	304.29	192B -> 196B	0.99271	0.0000

 Table S19.
 Lower energy electronic transitions (>300 nm) predicted by TDDFT at the CAM-B3LYP/def2TZV level for DBHept-TBC-SCS in dichloromethane showing the molecular orbitals involved, the CI coefficients, the wavelength of the transition (nm) and the oscillator strength. The energy values obtained have been corrected by -0.3 eV. The most intense calculated transitions for each of the absorption bands predicted are highlighted in red.

State	λ_{cal} (nm)		CI	f
S ₁	355.67	190 →193	0.15704	1.0915
		191 →196	0.12052	
		192 (H) →193 (L)	0.65620	
S ₂	309.80	188 →196	-0.10242	0.0000
		189 →193	-0.21086	
		190 →196	-0.19587	
		191 →193	0.50130	
		191 →197	-0.16707	
		192 →196	0.32655	
S₃	308.89	190 →195	0.32039	0.0000
		191 →194	0.47009	
		192 →195	-0.38856	
S₄	308.23	190 →194	0.31778	0.3899
		191 →195	0.46936	
		192 →194	-0.39209	
Ss	302 67	188 →193	0.33118	0 3728
		190 →193	0.47893	
		191 → 196	-0.30790	
		192 →197	0.12540	

Figure S30. Molecular orbitals (isovalue = 0.02) involved in the excited states with more intense oscillator strengths calculated for DBHept-TBC-SCS.

7.4. Energy barrier between geometries of DBHept-Anthracene

To evaluate the energy barrier between the orthogonal planar geometry of **DBHept-TBC-TOS** and the saddle-butterfly shape of **DBHept-TBC-SCS**, we considered the simple model radical compound **DBHept-Anthracene**, incorporating a dibenzocycloheptatriene (DBHept) unit and an anthracene moiety (Figure S31), previously studied by Nishiuchi, Kubo and co-workers.^{S12} We repeated the optimization of this model compound by DFT methods in both geometries and calculated the corresponding transition state between them at our level of theory, different from that employed in the original paper. Thus, the calculations were performed at the UB3LYP/6-31G(d,p) level of theory in dichloromethane as solvent using the polarizable continuum model with the integral equation formalism (IEFPCM) model.^{S10} The transition state was calculated using the synchronous transit-guided quasi-Newton method^{S13} implemented in Gaussian 09 (QST2 or QST3). Analytical frequencies were also calculated for all the structures to corroborate they corresponded to an energy minimum or a transition state, respectively. The calculated coordinates and structures are shown in Tables S20-S22.

Figure S31. Structure of the model compound DBHept-Anthracene modelled to evaluate the energy barrier between geometries.^{S12}

In this radical model compound the orthogonal planar geometry is more stable ($\Delta G \approx 36$ kcal/mol) in agreement with the results on **DBHept-TBC**, where this planar structure is also the more stable geometry in an open shell configuration such as the triplet, as the saddle butterfly geometry is higher in energy ($\Delta E \approx 34.5$ kcal/mol, see Table S2). Therefore, starting from this orthogonal geometry, the transition state in the interconversion path to the saddle geometry is *ca*. 20 kcal/mol higher in free energy. These results agree with those already reported.^{S12}

It should be noted that this model system probably underestimates the real energy barrier in **DBHept-TBC** as only the steric clash between the DBHept and the anthracene unit is considered but not the one that could arise from two connected anthracene units. Therefore, these results suggest that this energy barrier between geometries makes that, at room temperature, the orthogonal planar geometry of **DBHept-TBC** should be maintained upon reduction of the cation species, giving rise to an open shell system rather than the overall more stable **DBHept-TBC-SCS** geometry. The relative energies of the different species are shown in Figure S32.

Figure S32. DFT-calculated relative free energies of the different geometries for the radical model compound and the corresponding transition state.

Table S20. Atomic coordinates for the saddle-butterfly geometry of DBHept-Anthracene

Atom	х	Y	Z	С	3.640201	2.442971	0.238149
С	-0.599236	-0.000154	0.079743	с	3.112939	3.615229	-0.269135
С	-1.409384	1.231023	0.314356	С	1.828479	3.607683	-0.840866
С	-2.485810	1.555670	-0.547606	С	1.064965	2.444553	-0.838456
С	-2.935303	0.675600	-1.627689	С	1.550342	1.247840	-0.283302
С	-2.935008	-0.676805	-1.627720	н	-3.427123	1.172399	-2.461930
С	-2.485157	-1.556727	-0.547662	н	-3.426601	-1.173780	-2.461991
С	-1.408897	-1.231658	0.314348	н	-3.970483	-3.041931	-1.027624
С	-3.168241	-2.773582	-0.345250	н	-3.409495	-4.533467	0.864968
С	-2.858219	-3.609096	0.721248	н	-1.602207	-3.883742	2.458340
С	-1.843324	-3.245619	1.613470	н	-0.315626	-1.804040	2.073957
С	-1.126186	-2.071959	1.403651	н	-3.971790	3.040252	-1.027458
С	-3.169405	2.772226	-0.345128	н	-3.411409	4.531942	0.865188
С	-2.859723	3.607826	0.721399	н	-1.603769	3.882963	2.458449
С	-1.844622	3.244768	1.613558	н	-0.316317	1.803807	2.073975
С	-1.126988	2.071417	1.403679	н	0.080150	-2.463634	-1.284671
С	0.753430	0.000135	-0.184280	н	1.428079	-4.511533	-1.286564
С	1.550918	-1.247213	-0.283226	н	3.700025	-4.528355	-0.252458
С	1.066125	-2.444169	-0.838347	н	4.651738	-2.418658	0.637709
С	1.830222	-3.606919	-0.840759	н	4.518395	0.001037	0.951214
С	3.114695	-3.613822	-0.269047	н	4.650565	2.420839	0.637653
С	3.641384	-2.441296	0.238212	н	3.697814	4.530054	-0.252553
С	2.900070	-1.230086	0.202280	н	1.425879	4.512107	-1.286647
С	3.506119	0.000801	0.556334	н	0.078956	2.463542	-1.284733
С	2.899483	1.231393	0.202241				

Charge = 0; multiplicity = 2; (0 imaginary frequencies) Zero-point correction = 0.383683 (Hartree/Particle) Thermal correction to Energy = 0.404372 Thermal correction to Enthalpy = 0.405316 Thermal correction to Gibbs Free Energy = 0.334147 Sum of electronic and zero-point Energies = -1116.155176 Sum of electronic and thermal Energies = -1116.134487 Sum of electronic and thermal Enthalpies = -1116.133543

Sum of electronic and thermal Free Energies = -1116.204712

Table S21. Atomic coordinates for the orthogonal planar geometry of DBHept-Anthracene

Atom	х	Y	Z	С	-3.603641	-0.002959	-2.468279
С	0.762488	0.000000	-0.000002	С	-2.926091	-0.004265	-3.658138
С	1.372113	-1.322338	0.001336	С	-1.500958	-0.004129	-3.668030
С	2.778919	-1.634995	0.001460	С	-0.793105	-0.002732	-2.494200
С	3.865105	-0.674212	0.000562	С	-1.457617	-0.001400	-1.224928
С	3.865050	0.674468	-0.000472	н	4.850389	-1.135180	0.000904
С	2.778784	1.635160	-0.001450	н	4.850296	1.135517	-0.000750
С	1.372006	1.322381	-0.001357	н	4.258668	3.184330	-0.002705
С	3.191166	2.982698	-0.002665	н	2.661964	5.070660	-0.004708
С	2.300234	4.047495	-0.003812	н	0.201802	4.566849	-0.004686
С	0.932465	3.763428	-0.003776	н	-0.572223	2.275120	-0.002596
С	0.494284	2.448475	-0.002598	н	4.258943	-3.184032	0.002705
С	3.191422	-2.982496	0.002641	н	2.662411	-5.070506	0.004595
С	2.300588	-4.047374	0.003726	н	0.202204	-4.566918	0.004533
С	0.932794	-3.763430	0.003667	н	-0.572028	-2.275265	0.002501
С	0.494494	-2.448517	0.002522	н	0.291261	0.002636	2.514050
С	-0.748352	-0.000038	0.000006	н	-0.973989	0.005104	4.617638
С	-1.457600	0.001315	1.224950	н	-3.469197	0.005249	4.598426
С	-0.793070	0.002685	2.494214	н	-4.690196	0.002836	2.449384
С	-1.500908	0.004061	3.668053	н	-4.674910	-0.000108	0.000033
С	-2.926041	0.004139	3.658180	н	-4.690230	-0.003042	-2.449318
С	-3.603607	0.002797	2.468331	н	-3.469260	-0.005390	-4.598376
С	-2.903581	0.001329	1.220113	Н	-0.974052	-0.005145	-4.617622
С	-3.587593	-0.000088	0.000026	Н	0.291227	-0.002640	-2.514051
С	-2.903597	-0.001471	-1.220071				

Charge = 0; multiplicity = 2; (0 imaginary frequencies) Zero-point correction = 0.384369 (Hartree/Particle) Thermal correction to Energy = 0.405161 Thermal correction to Enthalpy = 0.406105 Thermal correction to Gibbs Free Energy = 0.333551 Sum of electronic and zero-point Energies = -1116.164708 Sum of electronic and thermal Energies = -1116.143916 Sum of electronic and thermal Enthalpies = -1116.142971 Sum of electronic and thermal Free Energies = -1116.215526 Table S22. Atomic coordinates for the transition state between geometries of DBHept-Anthracene

Atom	х	Y	Z	С	-1.830538	-3.616379	-1.361215
С	0.509170	0.433920	0.375123	С	-0.678238	-4.357692	-1.422377
С	1.808621	-0.076092	0.870947	С	0.511573	-3.822626	-0.875614
С	2.959132	-0.213897	0.048797	С	0.529401	-2.567377	-0.304868
С	2.932324	0.053725	-1.385934	С	-0.638315	-1.757468	-0.212364
С	2.157105	0.940853	-2.045826	н	3.662055	-0.500089	-1.973550
С	1.274113	1.954693	-1.467545	н	2.320592	1.032934	-3.117712
С	0.570229	1.810164	-0.235047	Н	1.704957	3.252665	-3.125356
С	1.200620	3.176582	-2.165790	н	0.513747	5.215903	-2.194843
С	0.544967	4.282744	-1.640732	н	-0.527580	5.039424	0.073185
С	-0.042478	4.180419	-0.380672	н	-0.491506	2.924635	1.273357
С	-0.025992	2.964379	0.301633	н	5.008808	-0.865975	-0.020676
С	4.138847	-0.732640	0.616937	Н	5.136561	-1.462508	2.376445
С	4.210304	-1.075458	1.962781	н	3.117574	-1.210741	3.822253
С	3.079370	-0.932994	2.773225	н	1.008938	-0.355198	2.847187
С	1.894561	-0.448544	2.225946	н	-1.314741	1.472815	2.161858
С	-0.674737	-0.392694	0.305881	н	-3.512289	2.478966	2.595864
С	-1.983795	0.151100	0.597649	н	-5.524116	1.692891	1.338021
С	-2.166811	1.173089	1.565089	Н	-5.315179	-0.227742	-0.212987
С	-3.408966	1.713305	1.832999	н	-3.954171	-2.045030	-1.158524
С	-4.553051	1.248924	1.140620	н	-2.761464	-4.006056	-1.764209
С	-4.436511	0.191555	0.269593	н	-0.677466	-5.343925	-1.876408
С	-3.171527	-0.420801	0.023158	Н	1.426986	-4.406502	-0.901776
С	-3.067308	-1.615866	-0.699761	Н	1.459759	-2.210918	0.105843
С	-1.855645	-2.324181	-0.753959				

-1.855645 -2.324181 -0.753959

Charge = 0; multiplicity = 2; (1 imaginary frequency)

Zero-point correction = 0.383320 (Hartree/Particle)

Thermal correction to Energy = 0.403285Thermal correction to Enthalpy = 0.404229

Thermal correction to Gibbs Free Energy = 0.335098

Sum of electronic and zero-point Energies = -1116.135183

Sum of electronic and thermal Energies = -1116.115218

Sum of electronic and thermal Enthalpies = -1116.114274

Sum of electronic and thermal Free Energies = -1116.183405

7.5. Radical stabilization energies

Reaction 1:

Scheme S3. Isodesmic reactions used to calculate the radical stabilization energies (RSEs) of different end-groups relative to (9-anthryldiphenyl)methyl radical (see Table S23).

Table S23. Radical stabilization energies (RSEs) of substituted (9-anthryl)methyl radicals employing the end-groups considered in this and previous studies
according to isodesmic reactions displayed in Scheme S3.

Reaction ^a	<i>RSE</i> ^₅ (0K, in kcal mol ^{−1})				
	B3LYP	ВМК	M06-2X	M11L	PBE0
1	-2.0	-1.0	-0.2	-2.1	-1.5
2	-3.4	-2.8	-2.3	-2.5	-2.8
3	-0.7	-1.2	-1.0	-1.1	-0.5

^a According to Scheme S3. ^b Calculated *via* isodesmic reactions depicted in Scheme S3 with cc-pVTZ basis set and the corresponding density functional (gas phase) at B3LYP/6-31G(d,p) gas phase optimized geometries. The final energies (kcal mol⁻¹) of individual molecules individual are the sum of the electronic energy and the unscaled zero-point vibrational energy corrections ($RSE = E_{el} + ZVPE$). UKS formalism was used for the radicals.

We evaluated the RSEs to investigate their relative ability to stabilize radical centers. We used to (9-anthryldiphenyl)methyl radical as simplified model. In this case, as shown in Table S23, all groups exert a similar stabilization of a radical center and are, therefore, all alike. Therefore, in our case, the orthogonal diradical might be kinetically stabilized due to the size of planar DBHept, that enhances the steric clash with central anthracenes. Previous works of Wu (ref 13a in the manuscript) and Kubo (ref 18e in the manuscript) suggested that fluorenyl end-group can exert an extra radical stabilization ability because it is not fully orthogonal to the anthracene unit. As a result, the triplet diradical form of a Chichibabin PAH synthesized by Wu was shown to be the thermodynamic product of the precursor diol reduction. However, fluorenyl could also increase the energy of the closed-shell singlet state in the "butterfly-like" geommetry.

8. Electrochemical properties

Cyclic voltammograms (CV) and square wave voltammograms (SWV) were recorded on a *PGSTAT204* potentiostat/galvanostat (*Metrohm Autolab B. V.*) in a conventional three-electrode cell under inert atmosphere at 25 °C. WE = glassy carbon disk, CE= Pt wire and RE= silver wire, were used together with ferrocene as an internal reference. Potential values were referenced to the ferrocenium/ferrocene (Fc⁺/Fc) system. All the experiments were carried out at *ca*. 4 × 10⁻³ M in HPLC grade DCM with a 0.1 M solution of tetra-*n*-butylammonium hexfluorophosphate (TBAPF₆) as electrolyte.

Figure S33. Cyclic (black line) and square wave (red line) voltammograms of [DBHept-TBC]²⁺ (c.a. 10⁻³ M) in DCM (internal standard Fc/Fc⁺, scan rate = 0.1 V/s).

In-situ UV-Vis spectroelectrochemical studies were conducted on a JASCO V-780 UV-visible/NIR spectrophotometer together with an Autolab electrochemical analyzer (PGSTAT 204 potentiostat/galvanostat) with NOVA 1.9 software, connected to a thin-layer cell from a demountable omni cell from Specac (WE = CE = Pt gauze and RE= silver wire). All the spectra were collected at constant potential electrolysis at room temperature and a 400 nm/min scan rate. The electrochemical medium used was 0.2 M TBAPF₆ in fresh distilled CD₂Cl₂, at room temperature with a sample concentration of 10^{-3} M.

Figure S34. Spectroelectrochemistry measurement of [DBHept-TBC]²⁺ (10⁻³ M) in dry DCM: UV-Vis absorption spectrum of [DBHept-TBC]²⁺ (black); UV-Vis absorption spectrum with external potential of -1.4V (dark green); UV-Vis spectra after removal of the external potential (light green).

9. SQUID Measurements

Experimental. Magnetic susceptibility measurements were carried out in the temperature range 2-350 K with an applied magnetic field of 0.1 T on a solid sample of compound **DBHept-TBC** (with a mass of 21.334 mg) with a Quantum Design MPMS-XL-5 SQUID susceptometer. Susceptibility data were corrected for the sample holder and for the diamagnetic contribution of the salts using Pascal's constants.^{S14}

To fit the thermal variation of $\chi_m T$ (Figure S35) we have used the classic Bleaney Bowers model^{S15} for a S = $\frac{1}{2}$ dimer including interdimer interactions (*zJ'*) using the mean field approximation. This model reproduces very satisfactorily the magnetic properties of compound **DBHept-TBC** in the whole temperature range with g = 2.06, *J* = -258 cm⁻¹, *zJ'* = -17 cm⁻¹ and a paramagnetic impurity of 12.9 % (solid line in Figure S35, the Exchange hamiltonian is written as H = -JS₁S₂ and, therefore, J represents the singlet-triple gap: $\Delta E_{S-T} = 258 \text{ cm}^{-1} = 0.74 \text{ kcal/mol}$). The interdimer interaction (*zJ'*) may be attributed to the presence of intermolecular π - π interactions of the radical centres in the solid state.

Figure S35. Thermal variation of χ_m T for compound 1. Solid line is the best fit to the model (see text).

10. References

- S1 N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877.
- S2 G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- S3 M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, J. Appl. Cryst., 2015, 48, 306.
- S4 a) G. M. Sheldrick, Acta Cryst., 2008, A64, 112; (b) G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- S5 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849.
- S6 A. L. Spek, Acta Cryst., 2009, **D65**, 148.
- S7 A. L. Spek, Acta Cryst., 2015, C71, 9.
- S8 The ellipsoid image was generated with the OLEX2 software package: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
- S10 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev. 2005, 105, 2999.
- S11 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. {Miller III}, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang and M. Welborn, MOLPRO 2012.
- S12 T. Nishiuchi, R. Ito, A. Takada, Y. Yasuda, T. Nagata, E. Stratmann and T. Kubo, Chem. Asian J., 2019, 14, 1830.
- S13 a) C. Peng, P. Y. Ayala, H. B. Schlegel and M. J. Frisch, J. Comput. Chem., 1996, 17, 49; b) C. Peng and H. B. Schlegel, Isr. J. Chem., 1994, 33, 449.
- S14 G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
- S15 B. Bleaney and K. D. Bowers, *Proc. R. Soc. Lond. A.* **1952**, *214*, 451.
ANNEX I: ¹H and ¹³C NMR spectra of new compounds

Figure S39. 13 C NMR (125 MHz, C₂D₂Cl₄) spectrum of DBHept-Th.

ANNEX II: 2D-NMR and HRMS spectra of selected compounds

Figure S44. Partial HSQC NMR (500 MHz and 125MHz C2D2Cl4) spectrum DBHept-Th.

Figure S46. Partial COSY NMR (600 MHz, CD₂Cl₂) spectrum of 2.

Figure S48. Partial COSY NMR (500 MHz, CD_2Cl_2) spectrum of compound [DBHept-TBC]²⁺.

Figure S49. HRMS (ESI*-TOF) of DBHept-Th.

Figure S51. Theoretical (top) and experimental (bottom) isotopic for the signal of the [M]²⁺ ion in the HRMS (ESI⁺-TOF) of [DBHept-TBC]²⁺.

Figure S53. Theoretical (top) and experimental (bottom) isotopic distribution for the signal of the [M]⁺ ion in the HRMS (ESI⁺-TOF) of DBHept-TBC.