Submission: 5387

First Receiver Functions on Mars – Constraints on the Martian Crust from InSight

Started at: 1/14/2020 07:02 AM - Finalized at: 1/14/2020 07:46 AM

Page: Submitter Information
First Name Brigitte
First Middle Initial
Second Middle Initial
Last Name Knapmeyer-Endrun
Email Address brigitte.knapmeyer-endrun@uni-koeln.de
Mobile Phone Number +49 160 8850969
Institution Name Bensberg Observatory, University of Cologne
City Cologne
Country Germany
State / Province
Student Presentation No
Page: Author Information

Brigitte Knapmeyer-Endrun
Presenting Author Corresponding Author
brigitte.knapmeyer-endrun@uni-koeln.de
Bensberg Observatory, University of Cologne, Cologne, Germany
Felix Bissig
felix.bissig@erdw.ethz.ch
ETH Zuerich, Zuerich, Switzerland
Nicolas Compaire
nicolas.compaire@isae-supaero.fr
ISAE SUPAERO, Toulouse, France
Rakshit Joshi
joshir@mps.mpg.de
Max Planck Institute for Solar System Research, Göttingen, Germany
Raphael Garcia
raphael.garcia@isae-supaero.fr
ISAE SUPAERO, Toulouse, France
Amir Khan
amir.khan@erdw.ethz.ch
ETH Zuerich, Zuerich, Switzerland
Doyeon Kim
dk696@umd.edu
University of Maryland, College Park, Maryland, United States
Vedran Lekić
ved@umd.edu
University of Maryland, College Park, Maryland, United States
Ludovic Margerin
Ludovic.Margerin@irap.omp.eu
Institut de Recherche en Astrophysique et Planetologie, Toulouse, France

Mark P Panning mark.p.panning@jpl.nasa.gov Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States
Martin Schimmel schimmel@ictja.csic.es Instituto de Ciencias de la Tierra Jaume Almera, Barcelona, Spain
Nicholas C Schmerr nschmerr@umd.edu University of Maryland, College Park, Maryland, United States
Eléonore Stutzmann stutz@ipgp.fr Institute de Physique du Globe de Paris, Paris, France
Benoit Tauzin Benoit Tauzin@anu.edu.au Universite de Lyon, Lyon, France
Saikiran Tharimena saikiran.tharimena@jpl.nasa.gov Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States
Ebru H Bozdağ bozdag@mines.edu Colorado School of Mines, Golden, Colorado, United States
Daniel B Peter daniel.peter@kaust.edu.sa KAUST, Jeddah, Saudi Arabia
Ana-Catalina Plesa ana.plesa@dlr.de DLR, Berlin, Germany

Paul M Davis pdavisucla@gmail.com University of California Los Angeles, Los Angeles, California, United States
Baptiste Pinot baptiste.pinot@isae-supaero.fr ISAE SUPAERO, Toulouse, France
John-Robert Scholz scholz@mps.mpg.de Max Planck Institute for Solar System Research, Göttingen, Germany
Simon C Stähler simon.staehler@erdw.ethz.ch ETH Zuerich, Zuerich, Switzerland
Daniele Antonangeli daniele.antonangeli@upmc.fr Sorbonne Université, Paris, France
Lu Pan lu.pan@univ-lyon1.fr Université de Lyon, Lyon, France
Clément Perrin perrin@ipgp.fr Institute de Physique du Globe de Paris, Paris, France
Mark Wieczorek mark.wieczorek@oca.eu Observatoire de la Côte d'Azur, Nice, France
Philippe Lognonné lognonne@ipgp.fr Institute de Physique du Globe de Paris, Paris, France

Domenico Giardini

domenico.giardini@erdw.ethz.ch

ETH Zuerich, Zuerich, Switzerland

Suzanne E Smrekar

suzanne.e.smrekar@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States

William B Banerdt

william.b.banerdt@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States

Page: Abstract Information

Abstract Title

First Receiver Functions on Mars - Constraints on the Martian Crust from InSight

Abstract Description

NASA's InSight mission has for the first time deployed a very broad-band seismometer, SEIS, on the surface of Mars, which has been collecting data continuously since early February 2019. The main focus of InSight is to enhance our understanding of the internal structure and dynamics of Mars, including better constraints on its crustal thickness. Various models based on topography and gravity observed from the orbit currently differ by more than 100% for the average crustal thickness. Here, we present P-to-S and S-to-P receiver functions, which are available for 4 and 3 marsquakes, respectively, up to now. All of these quakes are located at comparatively small epicentral distances, between 25° and 40°. We observe three consistent phases within the first 10 seconds of the P-to-S receiver functions. The S-to-P receiver functions also show a consistent first phase. Later arrivals are harder to pinpoint, which could be due to the comparatively shallow incidence of the S-waves at the considered distances, which prevents the generation of converted waves. To obtain better constraints on velocity, we also calculated apparent velocity curves from the P-to-S receiver functions, but these provide meaningful results for only one event so far, implying a large uncertainty. Due to difficulties in clearly identifying multiples, the receiver functions can currently be explained by either two crustal layers and a thin (25-30 km) crust or three crustal layers and a thicker (40-45 km) crust at the landing site. This model range already improves the present constraints by providing a new maximum value of less than 70 km instead of more than 100 km for the average crustal thickness. Information from noise autocorrelations as a complementary method, identification of P-reverberations and Sprecursors in the event recordings, and more extensive modeling, ultimately including 3D-effects, are investigated to tighten the constraints.

Page: Technical Sessions

Technical Session

Insight Seismology on Mars: Results From the First (Earth) Year of Data and Prospects for the Future

Presentation Preference

Oral

Are you the abstract presenting author?

Yes

SSA will be recording presentations at the 2019 Annual Meeting. As the presenting author, does SSA have your permission to publish a video, audio or image file of your presentation on the SSA website?

No