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On-chip polarization splitters are key elements for 
coherent optical communication systems and 
polarization diversity circuits. These devices are often 
implemented with directional couplers that are 
symmetric for one polarization and strongly asymmetric 
for the other polarization. To achieve this asymmetry, 
highly dissimilar waveguides are used in each coupler 
arm, often requiring additional material layers or etch 
steps. Here we demonstrate polarization splitting with a 
directional coupler composed of two fully etched 
subwavelength waveguides, which only differ in the tilt 
angle of the silicon segments. Our device exhibits deep-
UV compatible feature sizes, is only 14 µm long, and 
covers a 72 nm bandwidth with insertion losses below 1 
dB and an extinction ratio in excess of 15 dB.  
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Silicon-on-Insulator (SOI) offers multiple benefits as a photonics platform, including CMOS compatible fabrication, and a high index contrast that enables dense integration [1]. The high contrast enables waveguiding at sub-micron scale and, consequently, very high integration densities, albeit at the cost of a high polarization dependence, which is why polarization diversity schemes are required for many applications [2–5]. While larger micron-scale waveguides can significantly reduce this polarization dependence [6,7], they do so at the expense of integration density. Polarization beam splitters (PBS) are key building blocks for on-chip polarization diversity architectures. For applications in optical communications, such as polarization multiplexed coherent receivers, PBS with an extinction ratio of 16 dB are deemed almost ideal as digital signal processing is used at the receiver end. Moreover, insertion losses have to be kept as low as possible [5]. 

PBS can be implemented with a variety of approaches, including 1D or 2D grating couplers [8,9], multimode interferometers [10], slotted waveguides [11], mode evolution based devices [12,13] or devices designed via inverse/non-linear algorithms [14,15]. Among those approaches, mode evolution based PBS traditionally show the better performance at expense of relatively large footprints. On the contrary, inverse/non-linear algorithm designs achieve extremely short devices at expense of a complex design process and a limited low-loss bandwidth. However, arguably the most widely used mechanism for polarization splitting in integrated photonic chips is directional coupling (DC-PBS) [16–26]. These splitters can be classified in two categories, symmetric and asymmetric. Symmetric DC-PBS comprise two identical coupled waveguides where both polarizations satisfy the phase matching condition. The device length L is designed to verify L = = , where  is the coupling length of the TE/TM modes, and m and n are integers with |m – n| being an odd number. However, symmetric DC-PBS are often long because the above condition usually requires high values for m and n. Moreover, the operational bandwidth and robustness of symmetric DC-PBS is limited because they exhibit a wavelength dependent behavior for both polarizations caused by the narrowband behavior of the phase matching condition. On the contrary, in an asymmetric DC-PBS only one of the polarizations satisfies the phase matching condition, thus coupling to the second waveguide, while the other polarization remains in the original waveguide. The device length is then optimized for the polarization that couples to the second waveguide, while the other polarization does not impose additional restrictions. As a result, asymmetric configurations are typically more compact and exhibit a better performance and tolerance to fabrication errors. On the downside, achieving the required asymmetry complicates the design and fabrication process, requiring additional materials [17,22,25], or two etch steps [26].  
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