ANALISIS GENETICO DE CARACTERES DE VALOR AGRONOMICO EN SORGO

PARA GRANO (Sorghum bicolor L. Moench)

Directores:

Pilar Gracia Gimeno
Colaboradora Científica

José M. Lasa Dolhagaray
Profesor de Investigación

Memoria que para optar al grado de Doctor en Biología presenta el Licenciado Ernesto Igartua Arregui

Zaragoza, Julio de 1990
INDICE

I. INTRODUCCION ... 1

1. INCIDENCIA DE LA SALINIDAD Y LA SEQUIA EN AGRICULTURA 2

2. INTERES DEL SORGO COMO CULTIVO TOLERANTE A LA SEQUIA Y
 LA SALINIDAD .. 3

3. IMPORTANCIA ECONOMICA DEL SORGO 4

4. ORIGEN Y EVOLUCION .. 5

5. TAXONOMIA Y BOTANICA DE LA ESPECIE 6

II. ESTADO ACTUAL DE CONOCIMIENTOS 8

1. SALINIDAD ... 9

 1.1. Efectos perjudiciales de la salinidad 10
 1.1.1. Sobre las plantas ... 10
 1.1.2. Sobre la germinación 17
 1.1.3. Sobre caracteres de interés agronómico 20

 1.2. Mecanismos de tolerancia a la salinidad 20
 1.2.1. Protección frente a la pérdida de agua 22
 1.2.2. Protección frente a la toxicidad iónica 23

 1.3. Comparación de la tolerancia en fase de germinación-
 emergencia con la del estado adulto 26

2. SEQUIA ... 29

 2.1. Daños producidos por el estrés hídrico 29
 2.1.1. Sobre las plantas ... 29
 2.1.2. Sobre caracteres de interés agronómico 32

 2.2. Mecanismos de tolerancia al estrés hídrico 33

3. RELACION ENTRE LOS ESTRESES HIDRICO Y SALINO 38

4. GENETICA Y MEJORA ... 41

 4.1. Variabilidad y regulación genética de caracteres de
 tolerancia a la salinidad 42
 4.1.1. En fase de germinación-emergencia 43
 4.1.2. En fase de desarrollo y planta adulta 44

 4.2. Variabilidad y regulación genética de caracteres de
 tolerancia a la sequía ... 45
4.3. Criterios indirectos de selección 47
 4.3.1. De tolerancia a salinidad 49
 4.3.1.1. En fase germinación-emergencia 49
 4.3.1.2. En fase de desarrollo y adulta 50
 4.3.2. De tolerancia a la sequia 52

III. OBJETIVOS .. 55

IV. MATERIAL Y METODOS ... 57
 1. MATERIAL VEGETAL .. 58
 2. METODOS ... 59
 2.1. Ensayos de germinación-emergencia 59
 2.2. Ensayos de campo ... 60
 2.2.1. Descripción de la triple línea de aspersión .. 60
 2.2.1.1. Preparación de la solución salina 65
 2.2.1.2. Instrumentación de la TLA 65
 2.2.2. Manejo de los ensayos 66
 2.2.3. Parámetros evaluados 68
 2.3. Tratamiento estadístico 72
 2.4. Análisis genético ... 75

V. RESULTADOS
 1. SALINIDAD EN FASE DE GERMINACION - EMERGENCIA 79
 1.1. Cribado inicial ... 79
 1.2. Germinación-emergencia en 10 niveles salinos 81
 1.3. Elección de parámetros 84
 1.4. Contribución relativa efectos tóxicos y osmóticos .. 85
 1.5. Comparación entre genotipos 86
 1.6. Regulación genética de los caracteres estudiados ... 90
 2. VOLUMENES HIDRICOS, CONCENTRACIONES SALINAS DEL AGUA DE
 RIEGO Y SALINIDAD DE SUELOS 92
 2.1. Volumenes hídricos 92
 2.2. Salinidad del agua aplicada 94
 2.3. Salinidad en el suelo. Sensor electromagnético 95
 2.4. Relación entre salinidad del agua y del suelo 97
 3. ESTRES SALINO EN PLANTA ADULTA 98
 3.1. Producción ... 98
 3.1.1. Comportamiento general del cultivo 98
 3.1.2. Variabilidad intergenotípica 101
 3.1.3. Análisis genético 102
3.2. Peso hectolitrico .. 105
 3.2.1. Comportamiento general del cultivo 105
 3.2.2. Variabilidad intergenotípica 106
 3.2.3. Análisis genético 107

3.3. Componentes de la producción 108
 3.3.1. Comportamiento general del cultivo 108

3.4. Caracteres fenológicos 112
 3.4.1. Comportamiento general del cultivo 112
 3.4.2. Variabilidad intergenotípica 114
 3.4.3. Análisis genético 115

3.5. Enrollado foliar 117
 3.5.1. Comportamiento general del cultivo 117
 3.5.2. Variabilidad intergenotípica 117
 3.5.3. Análisis genético 118

3.6. Daño foliar .. 119
 3.6.1. Comportamiento general del cultivo 119
 3.6.2. Variabilidad intergenotípica 120
 3.6.3. Análisis genético 121

3.7. Altura de la planta 121
 3.7.1. Comportamiento general del cultivo 121
 3.7.2. Variabilidad intergenotípica 124
 3.7.3. Análisis genético 124

3.8. Longitud de la panícula 125
 3.8.1. Comportamiento general del cultivo 125

3.9. Longitud del pedúnculo 128
 3.9.1. Comportamiento general del cultivo 128
 3.9.2. Variabilidad intergenotípica 128
 3.9.3. Análisis genético 131

3.10. Peso seco de la planta sin panícula 132
 3.10.1. Comportamiento general del cultivo 132
 3.10.2. Variabilidad intergenotípica 132
 3.10.3. Análisis genético 135

3.11. Índice de cosecha 136
 3.11.1. Comportamiento general del cultivo 136
 3.11.2. Variabilidad intergenotípica 136
 3.11.3. Análisis genético 139

3.12. Caracteres de status hídrico 140
 3.12.1. Contenido relativo de agua 140
 3.12.2. Tasa de pérdida de agua en hoja cortada 141
 3.12.3. Peso específico foliar 142
 3.12.4. Relación peso turgente/peso seco 143
3.13. Contenidos iónicos ... 144
3.13.1. Comportamiento general del cultivo 144
3.13.2. Variabilidad intergenotípica 149
3.13.3. Análisis genético ... 150

4. ESTRES HÍDRICO EN PLANTA ADULTA 152

4.1. Producción ... 152
4.1.1. Comportamiento general del cultivo 152
4.1.2. Variabilidad intergenotípica 153
4.1.3. Análisis genético ... 155

4.2. Peso hectolítrico ... 157
4.2.1. Comportamiento general del cultivo 157
4.2.2. Variabilidad intergenotípica 159
4.2.3. Análisis genético ... 160

4.3. Componentes de la producción 161
4.3.1. Comportamiento general del cultivo 161

4.4. Caracteres fenológicos 164
4.4.1. Comportamiento general del cultivo 164
4.4.2. Variabilidad intergenotípica 167
4.4.3. Análisis genético ... 168

4.5. Enrollado foliar ... 170
4.5.1. Comportamiento general del cultivo 170
4.5.2. Variabilidad intergenotípica 171
4.5.3. Análisis genético ... 172

4.6. Altura de la planta ... 172
4.6.1. Comportamiento general del cultivo 172
4.6.2. Variabilidad intergenotípica 174
4.6.3. Análisis genético ... 174

4.7. Longitud de la panícula 175
4.7.1. Comportamiento general del cultivo 175
4.7.2. Variabilidad intergenotípica 175
4.7.3. Análisis genético ... 177

4.8. Longitud del pedúnculo 178
4.8.1. Comportamiento general del cultivo 178
4.8.2. Variabilidad intergenotípica 178
4.8.3. Análisis genético ... 180

4.9. Peso seco de la planta sin panícula 181
4.9.1. Comportamiento general del cultivo 181
4.9.2. Variabilidad intergenotípica 181
4.9.3. Análisis genético ... 183

4.10. Índice de cosecha .. 184
4.10.1. Comportamiento general del cultivo 184
4.10.2. Variabilidad intergenotípica 184
4.10.3. Análisis genético 186
4.11. Caracteres de status hídrico 187
 4.11.1. Contenido relativo de agua 187
 4.11.2. Tasa de pérdida de agua en hoja cortada 188
 4.11.3. Peso específico foliar 189
 4.11.4. Relación peso turgente/peso seco 190

VI. DISCUSION ... 191

1. SALINIDAD EN FASE DE GERMINACION - EMERGENCIA 192
 1.1 Cribado inicial ... 192
 1.2. Germinación-emergencia en 10 niveles salinos 192
 1.3. Elección de parámetros 194
 1.4. Contribución relativa de efectos tóxicos y osmóticos. 194
 1.5. Comparación entre genotipos 195
 1.6. Regulación genética de los caracteres estudiados ... 196
 1.7. Utilización en mejora ... 197

2. ESTRES SALINO EN PLANTA ADULTA 199
 2.1. Comportamiento general del cultivo 199
 2.2. Variabilidad intergenotípica 207
 2.3. Análisis genético .. 208

3. ESTRES HIDRICO EN PLANTA ADULTA 210
 3.1. Comportamiento general del cultivo 210
 3.2. Variabilidad intergenotípica 214
 3.3. Análisis genético .. 215

4. COMPARACION DE TOLERANCIA A SALINIDAD EN GERMINACION -
 EMERGENCIA CON PLANTA ADULTA 217

5. COMPARACION ENTRE TOLERANCIAS A SALINIDAD Y SEQUIA 219

6. ELECCION DE CARACTERES PARA SELECCION 221
 6.1. En fase de germinación-emergencia, para salinidad ... 221
 6.2. Estrés salino en planta adulta 221
 6.3. Estrés hídrico en planta adulta 222

VII. CONCLUSIONES .. 224

VIII. REFERENCIAS .. 228
AGRADECIMIENTOS

Quiero expresar mi más sincero agradecimiento a las personas e instituciones cuya colaboración ha sido indispensable para la realización de este trabajo:

A los Dtres. Pilar Gracia y José Manuel Lasa, por su constante guía y apoyo durante la labor de dirección del presente trabajo. Asimismo, a todo el personal del Departamento de Mejora y Genética Vegetal de la Estación Experimental de Aula Dei, especialmente a Carmen Pérez, Clarisa Gracia y Mª Jesús Espiau, por su experta e inestimable ayuda, y a todos los compañeros becarios de la Estación.

Al Consejo Asesor de Investigación de la Diputación General de Aragón, por la concesión de la beca que ha financiado la realización de esta tesis.

A los Dtres. Ramón Aragüés, José Mª Faci y Antonio Royo, y a Miguel Izquierdo, del Departamento de Suelos y Riegos del Servicio de Investigación Agraria de la DGA, por la orientación y apoyo técnico y humano, prestados en el diseño y desarrollo de los experimentos; y al resto del personal de dicho Departamento.

A todo el personal de la Casa de Labor de la EEAD, cuyo consejo y ayuda han sido fundamentales en el desarrollo de los experimentos de campo.

Al Departamento de Fertilidad y Nutrición Vegetal de la EEAD, por la realización de los análisis espectrofotométricos.

A Jesús Pescador y Ricardo Gracia, por el entusiasmo y abnegación demostrados en la conducción de los ensayos de campo.

Y, finalmente, a toda mi familia, por la gran ayuda prestada y por la comprensión que han mostrado en todo momento.
I. INTRODUCCIÓN
1. INCIDENCIA DE LA SALINIDAD Y LA SEQUIA EN LA AGRICULTURA

Incluso en los sistemas agrícolas más avanzados, es difícil que los cultivos lleguen a expresar todo su potencial genético de producción, debido a diversas limitaciones ambientales. La sequía y la salinidad se encuentran entre los factores limitantes más importantes.

Dudal (1976), estimó que sólo un 10% de la totalidad del suelo cultivable en el mundo está libre de sufrir algún tipo de estrés. Alrededor de un tercio de las tierras potencialmente laborables adolecen de un inadecuado suministro de agua y, en la mayoría de las restantes, los rendimientos se ven periódicamente reducidos a causa de la sequía (Kramer, 1980). Según Seetharama et al. (1983), el estrés hídrico causa más pérdidas en las cosechas que el efecto conjunto de todos los factores bióticos.

El remedio clásico para enfrentarse a la sequía ha sido la irrigación. Aproximadamente, un 14% de la superficie cultivada está irrigada (Christiansen, 1982). El riego no es, sin embargo, una solución viable en todos los casos, ya que el agua es un bien escaso en muchos lugares y, en otros, la energía y el coste necesario para aprovecharla son excesivos. A escala mundial, se calcula que un 80% del agua fácilmente disponible se utiliza ya en agricultura. Además, muchos acuíferos subterráneos están desapareciendo, y los sistemas de riego suelen producir un efecto secundario de aumentar la salinidad del suelo.

Aparte de las zonas irrigadas, la salinidad puede suponer un problema para la agricultura en las zonas costeras, áridas y semiáridas, que comprenden más del 25% de la superficie terrestre (Carter, 1975). Datos de FAO (Dudal y Purnell, 1986) estiman en más de mil millones las hectáreas afectadas por salinidad en nuestro planeta, con el agravante de que la tercera parte de las tierras en regadío presentan estos problemas (Croughan y Rains, 1982).

Causas geológicas y climáticas, junto a un manejo inadecuado del agua y del suelo, han hecho que en Aragón existan unas 300.000 ha de suelos afectados por sales (Alberto et al., 1986). Desde el punto de vista del regadío, Herrero y Aragüés (1988), indican que el 28% del área estudiada en el valle del Ebro está afectado por este problema, que puede agravarse hasta el punto de obligar a abandonar la práctica de la agricultura (Porta et al., 1986).

Según Meiri y Plaut (1985), las estrategias para minimizar el daño a los cultivos en condiciones salinas se pueden clasificar en tres ti-
pos:

a - Control del nivel de salinidad de la rizosfera por debajo de limites perjudiciales, mediante técnicas de riego (método, cantidad, intervalo), drenaje (cantidad y distribución), y prácticas culturales especiales (lavado pre-siembra, preparación del lecho de siembra, emplazamiento de las semillas).

b - Aceptación del daño producido al nivel de planta y cambio del sistema de cultivo (espaciamiento inter e intrasurco de las plantas), para reducir los daños al nivel del cultivo.

c - Cambio de los factores de manejo con objeto de reducir el daño al nivel de la planta (método de riego, condiciones climáticas, concentración de CO₂ atmosférico, aplicación de fertilizantes).

Sin embargo, como apunta Blum (1988), las soluciones para cerrar la brecha entre la productividad potencial y la real a través de manipulaciones del ambiente, no son viables económica o tecnológicamente en todas las situaciones. La búsqueda de cultivos tolerantes a los estreses ambientales, y la mejora genética de los ya existentes son alternativas que requieren menor costo económico y energético, por lo que actualmente se considera de gran interés su desarrollo (Epstein et al., 1980; Tal, 1985).

2. INTERES DEL SORGO COMO CULTIVO TOLERANTE A LA SEQUIA Y LA SALINIDAD

El sorgo es un cultivo con reconocida tolerancia a la sequía y de forma más moderada a la salinidad. Al competir por el mismo "nicho agrícola" que el maíz (por tipo de planta, de cultivo y de aprovechamiento económico parecidos), las comparaciones entre ambas especies han sido numerosas.

Martin (1930), destaca la mejor adecuación del sorgo para las condiciones de baja disponibilidad de agua. De hecho, es una alternativa muy extendida al maíz en los secanos marginales de los EEUU (Rosenow y Clark, 1981). Grignac (1985) cita que el sorgo resiste mejor las altas temperaturas y la sequía, siendo capaz de reemprender su crecimiento, contrariamente al maíz, tras un periodo de estrés.

Ayers y Westcot(1976) y Maas (1985) clasifican el sorgo como más tolerante a la salinidad que el maíz, situándolo este último autor entre los cultivos moderadamente tolerantes. Strogonov (1964), lo define entre
las especies capaces de crecer ante una salinidad del suelo entre media y alta.

Dadas estas caractéristicas, el sorgo podria ser una alternativa rentable al maiz en zonas marginales de los regadios del valle del Ebro, descartada su utilizacion en secano por la aridez extrema de esta zona, donde el suelo presente problemas de salinidad y el riego pueda no estar asegurado durante todo el ciclo de crecimiento.

3. IMPORTANCIA ECONOMICA DEL SORGO

El sorgo es el quinto cereal mas cultivado, tras el trigo, el maiz, el arroz y la cebada, siendo el mas importante en los secanos semiáridos tropicales y subtropicales. Presenta unas notables caracteristicas de tolerancia al calor y a la sequia, lo que le ha convertido en el cereal mas empleado para consumo humano en el Africa Sahel y sub-Saheliana y en la region seca central de la peninsula india (Poehlman, 1959). Tambien es muy cultivado, pero destinado al consumo animal, en paisajes mas desarrollados como los EEUU , Argentina y Australia. En los cuadros 1 y 2 se recogen algunos datos de produccion de este cultivo.

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>RENDIMIENTO (kg/ha)</th>
<th>PRODUCCION (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4987</td>
<td>14057</td>
</tr>
<tr>
<td>Aragón</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huesca</td>
<td>4500</td>
<td>4500</td>
</tr>
<tr>
<td>Teruel</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Cataluña</td>
<td>1875</td>
<td>1920</td>
</tr>
<tr>
<td>Gerona</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Andalucia</td>
<td>3123</td>
<td>6445</td>
</tr>
<tr>
<td>Cadiz</td>
<td>3122</td>
<td>2923</td>
</tr>
<tr>
<td>Cordoba</td>
<td>1287</td>
<td>1287</td>
</tr>
<tr>
<td>Sevilla</td>
<td>1500</td>
<td>1500</td>
</tr>
</tbody>
</table>

Cuadro 1. Datos españoles de produccion de sorgo (adaptado del Anuario de Estadistica Agraria 1986, M.A.P.A.)
<table>
<thead>
<tr>
<th></th>
<th>SUPERFICIE 1000 ha</th>
<th>RENDIMIENTO kg/ha</th>
<th>PRODUCCION 1000 t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mundial</td>
<td>46807</td>
<td>1526</td>
<td>71445</td>
</tr>
<tr>
<td>África</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>16311</td>
<td>881</td>
<td>14373</td>
</tr>
<tr>
<td>Sudán</td>
<td>4600</td>
<td>1087</td>
<td>5000</td>
</tr>
<tr>
<td>América N.</td>
<td>4896</td>
<td>736</td>
<td>3605</td>
</tr>
<tr>
<td>EEUU</td>
<td>7748</td>
<td>3943</td>
<td>30548</td>
</tr>
<tr>
<td>México</td>
<td>5627</td>
<td>4251</td>
<td>23919</td>
</tr>
<tr>
<td>América S.</td>
<td>1619</td>
<td>3702</td>
<td>6000</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>2245</td>
<td>2697</td>
<td>6055</td>
</tr>
<tr>
<td>India</td>
<td>19450</td>
<td>944</td>
<td>18355</td>
</tr>
<tr>
<td>Europa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francia</td>
<td>1877</td>
<td>3484</td>
<td>6538</td>
</tr>
<tr>
<td>España</td>
<td>16361</td>
<td>656</td>
<td>10500</td>
</tr>
<tr>
<td>Italia</td>
<td>12</td>
<td>3335</td>
<td>425</td>
</tr>
<tr>
<td>URSS</td>
<td>48</td>
<td>3896</td>
<td>187</td>
</tr>
<tr>
<td>Oceanía</td>
<td>19</td>
<td>5579</td>
<td>106</td>
</tr>
<tr>
<td>Países desarrollados</td>
<td>12</td>
<td>4963</td>
<td>61</td>
</tr>
<tr>
<td>Países no desarrollados</td>
<td>200</td>
<td>2000</td>
<td>400</td>
</tr>
</tbody>
</table>

Cuadro 2. Datos mundiales de producción de sorgo (adaptado de FAO, 1986).

4. ORIGEN Y EVOLUCION

Según Doggett (1979) la domesticación del sorgo como cultivo se produjo hace cinco o seis mil años en África, bien en Etiopía y los países cercanos, bien en África del Oeste, o bien en el largo cinturón de sabana entre Nigeria y Sudán. Ese área está reconocida actualmente como centro de origen del cultivo, presentando la mayor diversidad de razas y especies silvestres emparentadas. Hace unos tres mil o tres mil quinientos años, el sorgo se expandió hacia la India y China, donde el
posible cruzamiento con especies silvestres propias de esas zonas, fomentó la aparición de un nuevo centro de diversidad.

Según Doggett (1979) y Miller y Kebede (1984) los cultivares actuales de zonas templadas proceden principalmente de los programas de mejora norteamericanos, que datan de hace menos de 100 años. Los viejos cultivares eran altos, tardíos y difíciles de cosechar, aunque de reconocida resistencia a la sequía y gran estabilidad. Estas variedades fueron desplazadas por los materiales fruto de los primeros programas de mejora, más bajos y erectos, y por tanto, mejor adaptados para la cosecha mecánica. Sin embargo no se consiguieron aumentos reales de productividad hasta que se puso a punto un sistema de producción de híbridos. Esto ocurrió a principios de la década de los 50, gracias a la identificación de un citoplasma androesterilizante, y de los genes nucleares restauradores, en las razas milo y kafir, respectivamente.

La variabilidad genética indispensable para el desarrollo del cultivo se acrecienta gracias al programa de conversión de variedades originarias de los centros de origen o dispersión de la especie. La utilización de estos materiales precisa de una adaptación previa a las condiciones templadas, que se logra mediante retrocruzamientos con materiales ya adaptados, para sustituir los hasta ocho genes que gobiernan la altura y el ciclo de desarrollo (Miller y Kebede, 1984).

5. TAXONOMIA Y BOTANICA DE LA ESPECIE

El sorgo pertenece a la tribu Andropogonae, sub-tribu Sorghastrae, género Sorghum. Todas las variedades cultivadas pertenecen a la especie Sorghum bicolor subsp. bicolor, en la que se distinguen cinco razas principales, Bicolor, Caudatum, Durra, Guinea y Kafir, además de muchos tipos intermedios. Todas ellas tienen una dotación cromosómica de 2n=20.

El sorgo cultivado, Sorghum bicolor L. Moench, es una planta C4, con las siguientes características principales:

a - Las raíces principales, muy abundantes, se encuentran reunidas en un fascículo. Este sistema radicular está reforzado por un conjunto de raíces adventicias, que nacen de los dos o tres primeros nudos del tallo. Alcanzan un notable desarrollo, profundizando en pocas semanas hasta 30-60 cm, y llegando con facilidad a los 150 cm.

b - Normalmente tienen un sólo tallo procedente de la semilla, aunque pueden producir un número moderado de hijuelos, según las condiciones.
La altura de los tallos varía entre menos de 0,5 y 3 m, según razas y variedades. Las hojas, en número de cinco a veinticuatro, tienen un limbo de forma lanceolada-acintada, y miden entre 30 y 120 cm de longitud.

c - La panicula del sorgo es una estructura muy ramificada en el ápice del tallo, con multitud de pequeñas espiguillas que se presentan a pares, siendo una sésil y la otra pedicelada. La primera contiene dos flores, una fértil y otra estéril, y la segunda es estéril o estaminada. La apertura floral comienza en el ápice de la panicula y continúa en dirección a la base, tardando en total unos 6-9 días. Las anteras y el estigma salen del interior de las glumas al abrirse éstas, produciéndose la dehiscencia de las anteras en ese momento. El polen es viable durante unas pocas horas, mientras que el estigma permanece receptivo uno o dos días. La fecundación es normalmente autógama, con un porcentaje de alógama en torno al 6%. En cada panicula se producen de varios cientos a varios miles de granos.

d - El grano es una cariópside redondeada, con un diámetro de tres a seis mm; en su madurez adopta coloraciones diversas (blanco, amarillo, rojo, marrón, etc.).
II. ESTADO ACTUAL DE CONOCIMIENTOS
1. SALINIDAD

"Salinidades, no salinidad", esta afirmación de Epstein y Rains (1987) quiere poner de manifiesto la gran variedad de situaciones que se suelen englobar bajo el epígrafe general de salinidad.

Al hablar de "sales del suelo" hay que especificar que en esta definición se incluyen sólo las sales muy solubles, presentes en la solución del suelo. Otras, como el yeso, no se consideran a estos efectos, ya que apenas contribuyen a la fracción disuelta de las sales del suelo (Roquero, 1986).

Los métodos de medida de la salinidad y las unidades empleadas para expresarla han ido variando a lo largo de este siglo, habiendo incluso Escuelas enfrentadas a este respecto (Bernstein, 1975). Actualmente, el criterio más seguido es el del United States Salinity Laboratory (U.S.S.L. Staff, 1954). Su método se basa en la extracción de las sales solubles del suelo a partir de una pasta saturada del mismo, expresándose la salinidad en unidades de conductividad eléctrica (CE), siendo la más habitual el decisiemens por metro (dS/m), aunque en trabajos de hace algunos años se utilizaba el término "mho" en lugar de "Siemens".

Los problemas para los cultivos comienzan cuando la concentración de sales en el suelo aumenta por encima de valores que afecten al desarrollo de las plantas. Estos valores varían según el cultivo de que se trate, y también según el tipo de sal predominante en el sustrato. Aunque el cloruro sódico suele ser el principal responsable de la salinización del suelo (Shannon, 1984), existen numerosos ejemplos donde son otras las sales mayoritarias (otros cloruros, sulfatos, carbonatos, etc.).

Un aspecto muy importante en la caracterización de los suelos afectados por salinidad es la proporción de sodio. La excesiva presencia de este ion acarrea problemas específicos, no sólo por su elevada toxicidad sobre las plantas, sino por su efecto de alteración de la estructura del suelo. Esto ocurre cuando el porcentaje de sodio de cambio en la solución del suelo, la proporción de sodio frente al total de cationes fijables, conocido por sus siglas en inglés ESP, supera el 10-15%.

De este modo, atendiendo tanto a la concentración total de iones solubles, como a la proporción de sodio, los suelos se clasifican en:
- SALINOS, cuando la CE>4 dS/m y la ESP<15
- SODICOS, cuando la CE<4 dS/m y la ESP>15
- SALINO-SODICOS, cuando la CE>4 dS/m y la ESP>15
En adelante nos referiremos al problema de la salinidad y no de la sodicidad, salvo cuando se especifique lo contrario.

La presencia de sales en el suelo tiene asimismo la peculiaridad de mostrar una enorme heterogeneidad espacial (tanto horizontal como vertical, en el perfil del suelo), y temporal (Roquero, 1986; Epstein y Rains, 1987), por lo que es muy difícil caracterizar un área de estudio, sobre todo a la escala necesaria en trabajos de mejora genética vegetal. Más adelante incidiremos de nuevo sobre esta cuestión.

Otro aspecto, importante desde el punto de vista agronómico, es la presencia de las sales en el suelo, previamente a la siembra. En este caso, a la esperable reducción del crecimiento del cultivo se añade un perjuicio sobre la germinación y nascencia de las plántulas. Cuando el suelo es de buena calidad, y las sales son aportadas por el agua de riego, el control de la salinización por medios agronómicos es más factible, y la incidencia de este problema es menor.

La salinidad no es incompatible con la vida vegetal (Rains, 1979). Sin tener en cuenta a las algas, existen muchas especies terrestres capaces de crecer en medios muy salinos.

Atendiendo a su respuesta frente a la salinidad, las plantas se clasifican en glicofitas o halofitas. No es una distinción absoluta, pues el abanico de respuestas abarca desde una tolerancia muy alta a una sensibilidad extrema (Lauchli y Epstein, 1984). Dentro de las halofitas se pueden distinguir otros dos grupos, las que crecen sin problemas a concentraciones externas de NaCl de 200 a 500 mM (euhalofitas), constituidas principalmente por especies dicotiledóneas, y las que crecen lentamente por encima de 200 mM (miohalofitas), que suelen ser monocotiledóneas (Greenway y Munns, 1980; Gorham et al, 1985a). Desafortunadamente la gran mayoría de las especies cultivadas pertenecen al grupo de las glicofitas.

1.1 Efectos perjudiciales de la salinidad

1.1.1 Sobre las plantas

Es un hecho comúnmente aceptado que la sal causa una reducción en el crecimiento en las plantas, aunque las concentraciones que afectan a las distintas especies son muy variables. Según Long y Baker (1986) esta reducción se puede deber principalmente al deterioro de dos procesos: la
La reducción de la tasa de expansión foliar trae como consecuencia un menor tamaño de las hojas (Bernstein, 1975; Maas y Nieman, 1978; Papp et al., 1983), y un menor crecimiento general (Bernstein, 1975), aunque la tasa de aparición de nuevas hojas pueda no verse afectada (Terry y Waldron, 1986; Yeo y Flowers, 1986).

La reducción del crecimiento parece ser consecuencia de una reducción de la expansión celular (Meiri y Poljakoff-Mayber, 1970; Tal, 1985), aunque también se han encontrado evidencias de una inhibición de la división celular (Wignarajah et al., 1975; Tal, 1985).

Otros efectos morfológicos que puede causar la salinidad son un incremento de suculeancia, especialmente en dicotiledóneas (Bernstein, 1975; Levitt, 1980); engrosamiento de la cutícula (Maas y Nieman, 1978); incremento de la cantidad de ceras epicuticulares (Bernstein, 1975), y necrosis de la lámina foliar (Bernstein y Hayward, 1958; Bernstein, 1975; Bernstein y Francois, 1975). Este último fenómeno ha sido descrito en varias especies glicofitas, y ha sido interpretado como un efecto tóxico debido a la acumulación de iones de cloro o sodio; su aparición, normalmente en los ápices y márgenes de las hojas, supone una reducción del área fotosintética útil, que hay que añadir a la mera reducción del crecimiento.

En la Figura 1 (adaptada de Pasternak, 1987), se resume la secuencia de mecanismos propuestos, por los cuales la salinidad reduce el crecimiento de las plantas. En ella se distinguen tres tipos de efectos: sobre las relaciones hídricas; sobre el balance de energía, y nutricionales (subdivididos éstos en efectos tóxicos, también denominados específicos de iones, y en desequilibrios nutricionales). Como aclara el citado autor, esta es una clasificación artificial, pues todos los me-
Figura 1. Efectos de la salinidad sobre las plantas.
(Adaptada de Pasternak, 1987)
canismos interactúan entre sí. Además, la importancia relativa de cada uno, en la respuesta final frente a la salinidad, puede diferir notablemente de una especie a otra o bajo distintas condiciones ambientales.

El primer problema que se le presenta a una planta sometida a condiciones de salinidad es enfrentarse a la "sequía fisiológica" impuesta por la disminución del potencial osmótico del suelo, que dificulta la toma de agua por las raíces y el mantenimiento de la turgencia de las células. La pérdida de turgencia provocaría el cierre estomático y, con suavidad, una disminución de la fotosíntesis neta, e inhibiría la elongación celular, que es un proceso turgo-dependiente (Hsiao, 1973). Como consecuencia de estos dos fenómenos, el crecimiento se retrasa.

La respuesta inmediata de la planta es intentar disminuir a su vez el potencial osmótico interno, con objeto de mantener el gradiente de potencial hídrico que permite la entrada de agua por las raíces, aunque la capacidad de realizarlo varía entre las distintas especies. Este ajuste osmótico, o su término equivalente "osmorregulación", que debe realizar la planta, lo puede llevar a cabo acumulando dos tipos de solutos: iones, incorporados de la solución del suelo mediante el flujo transpiracional, y/o solutos orgánicos compatibles, sintetizados por la propia planta. Ambas vías exigen de la planta un sacrificio energético, sin que haya consenso en la bibliografía sobre cuál es la estrategia más "barata". Para Epstein (1980), la osmorregulación con iones inorgánicos resulta menos gravosa, pues su transporte por el xilema es metabólicamente barato, y ahora los fotosíntetos que serían necesarios para la síntesis de compuestos orgánicos, así como el alto coste energético de transportar estos últimos de la parte aérea a la raíz vía floema. Sin embargo, Yeo (1983) considera que este punto no está tan claro, argumentando que es posible estimar el coste del incremento de la presión osmótica en las células, mientras que no hay suficientes datos para estimar el coste de su mantenimiento.

Oertli (1968) propuso la idea de que la sequía fisiológica podía no ser aliviada con una mera absorción de iones. Si estos iones se quedan en el apoplasto, cuyo volumen es comparativamente muy pequeño frente al del simplobto, pequeñas cantidades de iones aumentarían enormemente la presión osmótica de este espacio, pudiendo provocar pérdida de turgencia, cierre estomático y deshidratación celular. Yeo y Flowers (1986) sugieren que este mecanismo explicaría la reducción del crecimiento, el cierre estomático y la disminución de la fotosíntesis en tejidos cuyas concentraciones de sodio son bajas como para considerarse tóxicas, pero suficientes para ajustar osmoticamente a la salinidad exterior.
La estrategia del ajuste osmótico plantea nuevos y no menos graves problemas: el efecto tóxico de la sal sobre las células vegetales e, indirectamente, desequilibrios nutricionales. Una excesiva concentración de iones inorgánicos en el citoplasma, en la pared o en las membranas puede alterar el funcionamiento normal de numerosos procesos metabólicos celulares.

La sal puede afectar a la eficiencia fotosintética disminuyendo el contenido en clorofila o inhibiendo enzimas del aparato fotosintético (Levitt, 1980). Long y Baker (1986) confirman que más allá de la reducción del área foliar, la salinidad afecta a largo plazo a la naturaleza del aparato fotosintético. Hsiao (1986) es más contundente en este sentido, indicando que el efecto sobre la fotosíntesis es atribuible principalmente a una pérdida en la capacidad bioquímica de asimilar dióxido de carbono, y sólo en menor grado al cierre estomático. Para Pitman (1984), sin embargo, no está claro cuál de estos dos fenómenos es el principal culpable de la reducción de la fotosíntesis neta. La respiración se ha visto incrementada en algunos casos, probablemente por el esfuerzo suplementario exigido por la osmorregulación (Poljakoff-Mayber, 1982), y disminuida en otros (Levitt, 1980). Para Leopold y Willing (1984) una de las causas primarias de la reacción tóxica a la salinidad son las lesiones en las membranas, distorsionando su estructura y aumentando su permeabilidad. El descenso de la fotosíntesis y la respiración reflejaría un daño sobre las membranas de los cloroplastos y las mitocondrias. Cramer et al. (1985) concretaron un mecanismo por el cual la sal daña las membranas: el calcio asociado a ellas sería desplazado por el sodio, aumentando la permeabilidad, y facilitando la salida del protoplasto de otros elementos indispensables, como el potasio. Por otra parte, en algunos casos el cloruro sódico cambia el mecanismo de asimilación de carbono de C3 a C4 o CAM (Rains, 1979; Poljakoff-Mayber, 1982; Ostrem et al., 1987).

Otros procesos celulares afectados por la salinidad son la síntesis de proteínas, el metabolismo de los ácidos nucleicos (Levitt, 1980) y la actividad de numerosos enzimas (Levitt, 1980; Poljakoff-Mayber, 1982). Sin embargo, se ha observado que tanto enzimas de glicofitas como de halofitas son igualmente afectados por la salinidad "in vitro", por lo que las diferencias a nivel de planta entre estos grupos no se deben a enzimas más o menos tolerantes, sino al mejor o peor aislamiento de la sal de los sistemas enzimáticos (Rains, 1979).

La acumulación de sal en las paredes celulares es otro factor de toxicidad (Flowers y Yeo, 1986), así como de alteración de las relaciones hídricas (Greenway y Munns, 1980). Para Wyn Jones y Pritchard (1989), el
reajuste del crecimiento tras una perturbación del potencial hídrico ex-
terno, sobre todo cuando es causado por iones, subraya la estrecha inte-
gración de las características de las paredes y las membranas, y cues-
tiona la distinción convencional entre estreses hídrico e iónico-
espécifico.

Los desequilibrios nutricionales, inducidos secundariamente por la
presencia de sal en el suelo, se suelen explicar por la competencia en-
tre los iones "no deseados" y los necesarios para la nutrición vegetal
(Levitt, 1980; Pasternak, 1987). Un ejemplo lo ofrece la deficiencia en
potasio inducida por la absorción de sodio, cuando este último ion es
mayoritario (Solov'ev, 1969); o la disminución en el contenido de fósfo-
ro inorgánico provocado por la presencia de sales (Bernstein et al.,
1974; Bernstein, 1975), aunque en algunos casos, como en mijo, la absor-
ción de fósforo se ve estimulada por la presencia de sodio (Ravikovitch,
1973). De todos modos, Levitt (1980) dice que hay pocos ejemplos en los
que el daño producido por la salinidad haya sido aliviado por la adición
de algún nutriente supuestamente limitante, sugiriendo que la deficien-
cia de determinados nutrientes es muy improbable que sea la única causa
del daño producido por la sal.

Este largo muestro de efectos tóxicos y desequilibrios nutri-
cionales se complica aún más si se considera que los distintos iones no
afectan del mismo modo al crecimiento de las plantas. Strogenov, en su
libro "Physiological Basis of Salt Tolerance of Plants" (1964), recopil-
ó, y realizó a su vez, los principales trabajos de investigación en
este sentido.

Läuchli y Epstein (1984) informaron de la mayor toxicidad del sul-
fato sódico que del cloruro sódico para el sorgo, mientras que Weinberg
et al. (1984) y Grieve y Maas (1988) observaron efectos distintos de di-
versas sales en esta misma especie. Younis y Hatata (1971) encontraron
que, para el trigo, existe un umbral característico de cada sal para el
comienzo de la disminución de la germinación. Tanto estos autores como
otros (Strogenov, 1964; Redmann, 1974; Mozafar y Goodin, 1986; Bal y
Chattopadhyay, 1987; y varios más, citados por Levitt, 1980) observaron
diferencias, bien entre aniones y cationes, entre distintos aniones y/o
cationes, o bien entre distintas combinaciones de ambos, en fase de ger-
minación-emergencia. Por otra parte, la toxicidad de los iones puede de-
pender de otros iones acompañantes, así desde antiguo se conoce que el
efecto tóxico del cloruro sódico es aliviado en gran parte con la adi-
ción de calcio (Levitt, 1980; Kurth et al, 1986). Estudiando la germina-
ción de diversos cultivos en presencia de distintas sales, Norlyn y Ep-
stein (1984) y Bal y Chattopadhyay (1987) encontraron una relación simi-
lar entre ambos iones. Este antagonismo entre ambos iones tiene que ver con los daños que la sal produce en las membranas, anteriormente citados.

No hay un acuerdo sobre la importancia relativa de los efectos tóxicos y osmóticos en la reducción del crecimiento de las plantas. Greenway y Munns (1980) plantean una explicación bastante lógica para las especies glicofitas, en la que un exceso de contenido iónico afectaría más a las hojas totalmente expandidas, y el déficit hídrico sería más notorio en los tejidos en expansión.

Una conclusión de todo lo expuesto hasta ahora es que la complejidad y variedad de los efectos de las sales sobre las plantas hace muy improbable la existencia de una única alteración metabólica primaria responsable de todas las demás (Levitt, 1980). Sin embargo, recientes investigaciones aportan nueva información a este respecto. Termaat et al. (1985) encontraron que la limitación del crecimiento en condiciones de salinidad no era consecuencia únicamente de la pérdida de turgencia de los tejidos. Estos autores observaron que restableciendo artificialmente la turgencia en plantas crecidas en un medio con cloruro sódico, el efecto de la sal sobre la tasa de crecimiento no llegó a recuperarse a largo plazo. Munns y Termaat (1986) sugieren como explicación a este hecho que debe existir algún mensaje procedente de la raíz, que regula la expansión foliar.

Los trabajos que se acaban de citar sugieren un papel de algún regulador del crecimiento en el daño producido por la salinidad. De hecho, anteriores trabajos (Bernstein, 1975; Poljakoff-Mayber, 1982) ya mencionaban la alteración de los niveles de varias hormonas en plantas sometidas a estrés salino, especialmente la citoquinina y el ABA. Estos cambios podrían tener que ver con la reacción de cierre estomático que suele aparecer como adaptación a las condiciones salinas.

El daño que produce la sal depende además de otra serie de factores, citándose los más relevantes a continuación.

Se ha demostrado que existe una interacción entre condiciones climáticas y salinidad: el daño producido por ésta es mayor con bajas que con altas temperaturas (Ayoub, 1977), y con humedades relativas bajas (Magistad et al, 1943; Hoffman y Rawlins, 1971).

El estado de desarrollo de la planta en el momento de sufrir el estrés es otro factor a tener en cuenta, sobre todo si se comparan estados tan distintos como la germinación, el desarrollo vegetativo, o in-
cluso el periodo de formación del aparato reproductor. Además, el momento de actuación del estrés condiciona el desarrollo posterior. Ayers et al. (1952) obtenían mayor producción de grano de cebada cuando la sal se aplicaba en fase de plántula que cuando se hacía en germinación. En sorgo, Maas et al. (1986) observaron que la salinidad aplicada durante el desarrollo vegetativo afecta mucho más al rendimiento que si actúa en la fase de llenado del grano.

En los cultivos de regadío, el sistema de aplicación y la frecuencia del riego pueden agravar o aliviar los efectos de la salinidad. Bernstein y Francois (1975) observaron, en un cultivo de pimiento, que el riego con agua salina mediante aspersión era más perjudicial que el riego por goteo. Maas (1985) sugiere que la causa es la absorción foliar directa de los iones que se suman a los que llegan con el flujo de la transpiración, que ocurre en un cultivo regado por aspersión, aunque el sorgo fue, con diferencia, el que menos cloro y sodio absorbía de los once cultivos que consideró en su estudio.

A la vista de lo expuesto, vamos a incidir con más detalle en el análisis de los efectos de la salinidad sobre un momento clave del cultivo, como es la germinación, y sobre aquellos caracteres de especial importancia económica, como son los de valor agronómico.

1.1.2 Sobre la germinación

La germinación es, probablemente, el estado más vulnerable por el que pasa una planta durante su ciclo biológico. Cuanto mayor sea el período que transcurra entre el comienzo de la imbibición y la emergencia de la plántula por encima del suelo para comenzar su vida independiente, mayores serán las posibilidades que tenga esa planta de morir. Además de dificultar la absorción de agua por las raíces, lo cual afecta tanto a la puesta en marcha como al desarrollo de la germinación (Ayers et al., 1952), y de provocar la entrada de iones potencialmente tóxicos en las plántulas, la salinidad en el lecho de siembra perjudica de diversos modos al establecimiento normal de un cultivo.

El riesgo de producirse daños causados por patógenos o por diversos factores ambientales es más elevado, al aumentar el tiempo de germinación y, por tanto, el de exposición a esos factores (Younis y Hatata, 1971; Shannon y Francois, 1977; Norlyn y Epstein, 1984).

La posible formación de costra superficial, especialmente en los suelos afectados por sodicidad (Donovan y Day, 1969; Bernstein, 1975;
Aragüés, 1986), impone una barrera física a la emergencia de las plántulas.

La suma de todos estos factores puede llevar a efectos tan drásticos como la ausencia total de plantas (Norlyn, 1980), aunque la imagen más normal en un campo afectado por salinidad es la de un cultivo con altura desigual, salpicado de rodales baldíos sin planta alguna, reflejo de la característica distribución irregular de las sales en un campo salinizado natural (Bernstein, 1975). Así pues, independentemente de posteriores efectos perjudiciales de la sal sobre el crecimiento de las plantas, la producción de los cultivos en suelos salinos se ve comprometida desde el principio por un deficiente establecimiento de los mismos.

Thomson (1986), trabajando con Vigna unguiculata, propuso varias hipótesis acerca de los efectos de la salinidad sobre las membranas durante la germinación. Algunas de ellas fueron:

a - La disminución de la germinación debida a la aplicación de sal desde el comienzo de la imbibición, es una respuesta osmótica.

b - Las semillas deben alcanzar un umbral crítico de hidratación antes de comenzar la germinación.

c - La sal tiene un efecto tóxico sobre la germinación si se aplica después de que se haya alcanzado el umbral de hidratación.

d - El calcio alivia la toxicidad inducida por el cloruro sódico, probablemente a través de una interacción con el plasmalema.

En apoyo de las tres primeras hipótesis, observa que altas concentraciones de NaCl aplicadas antes de llegarse al umbral de hidratación no dañan a las semillas, ya que si se trasladan a un medio no salino, son capaces de germinar casi al mismo nivel que los controles que germinan en agua; mientras que si la aplicación es posterior, las semillas mueren rápidamente. Bernstein y Hayward (1958) citan un caso parecido referido a remolacha azucarera en el que semillas sembradas en un suelo salinizado con NaCl y CaCl₂, fueron incapaces de germinar durante todo un verano, sin embargo, durante el otoño, la lluvia arrastró la sal de la proximidad de las semillas, y éstas germinaron y produjeron plántulas normales.

En contradicción con estos resultados, Abatalivov (citado por Stroganov, 1964) observó que semillas de algodón incapaces de germinar en sustratos salinos, no lo conseguían tampoco al ser sembradas en sue-
los no salinos, incluso tras lavarlas con abundante agua. Asimismo, Haigh y Barlow (1987), utilizando varias combinaciones salinas de fosfatos y nitratos de potasio, observaron una falta de recuperación de la germinación de semillas de sorgo, comparada con la obtenida para un tratamiento isoosmótico de polietilenglicol, tras trasplantar semillas no germinadas de los tratamientos salinos a un medio sólo con agua. Redmann (1974) observó algo parecido en alfalfa, aunque el porcentaje de recuperación variaba según el tipo de sal con que se hubiera tratado. Estas contradicciones sugieren diferencias de los efectos tóxicos entre especies y/o sales.

La toxicidad salina no se limita probablemente al efecto de los iones absorbidos bien por la semilla o por las raíces incipientes. Waissman y Miyamoto (1987) descubrieron que, al cubrir con una fina capa de arena salinizada unas macetas donde estaban germinando con normalidad semillas de alfalfa, la emergencia final disminuía significativamente, achacándolo a un daño directo de la sal sobre los hipocótilos.

El efecto durante la imbibición parece ser sólo osmótico. Uhvits (1946) encontró que las "fuerzas imbíbicionales" actuaban igual en semilla viva o muerta de alfalfa, demostrando su exclusiva dependencia de caracteres físicos. De hecho, las fuerzas matriciales, responsables principales de la absorción de agua, están influenciadas por la composición y permeabilidad de las cubiertas de la semilla.

Varios trabajos han encontrado un efecto hormonal sobre la germinación en condiciones de estrés. Stout et al. (1980) estudiaron el efecto de varias hormonas sobre la germinación del sorgo en condiciones de estrés hídrico, observando que la kinetina no ejercía efecto alguno sobre ninguno de los dos cultivares (con baja y alta capacidad de germinación bajo estrés hídrico) analizados, ni en un tratamiento control, ni en otro con polietilenglicol. El ABA retrasaba ligeramente la germinación en el cultivar más tolerante, y la hacía disminuir claramente en el más susceptible, y en el tratamiento control. El ácido indolacético y el giberélico mostraban efectos contrapuestos en los dos cultivares en el tratamiento con PEG; el primero inhibía la germinación en el más tolerante sin afectar al susceptible, mientras que el segundo incrementaba la germinación en el susceptible y no en el tolerante. Evans y Stickler (1961) también dan cuenta de un efecto promotor del GA sobre la germinación del cultivar RS608.
1.1.3 Sobre caracteres de interés agronómico

Desde el punto de vista de la producción de cultivos en condiciones de salinidad, es importante conocer cómo afecta este tipo de estrés a caracteres de interés agronómico.

El rendimiento en condiciones de salinidad disminuye en todos los cultivos de especies glicofitas. Está generalmente aceptado que los componentes del rendimiento son afectados negativamente por la salinidad, aunque no hay acuerdo sobre cuál lo es en mayor grado. Las discrepancias pueden guardar relación con diferencias metodológicas en cuanto al momento y la intensidad de aplicación del estrés (Royo, 1989). Este mismo autor, empleando un gradiente de riego salinizado creado por un sistema de aspersión, encontró que el orden de tolerancia del rendimiento y sus componentes, y otros caracteres estudiados, era el siguiente: Cuajado >> Número de flores por espiga > Número de granos por espiga > Índice de cosecha > Peso específico > Altura > Peso de 1000 granos >> Peso de grano por espiga > Número de espigas por metro² >> Producción.

François et al. (1984) encontraron que, para el sorgo, la disminución del rendimiento se debía más al menor peso de panícula, consecuencia de una disminución en el número de granos, que a la disminución en el número de panículas, permaneciendo casi inalterable el peso unitario de la semilla. Asimismo observó un fuerte efecto sobre la altura. Maas et al. (1986) observaron distintos efectos sobre varios caracteres, según el momento en que fuera aplicado el estrés; en general, si éste se producía antes de la maduración, el rendimiento de materia seca de la parte vegetativa y la altura se veían afectadas, y no así el peso unitario de grano, pero la situación era justo lo contrario si la aplicación de la sal se realizaba en fase de maduración.

1.2 Mecanismos de tolerancia a la salinidad

Dada la complejidad de los efectos de la sal sobre las plantas, no es sorprendente que los mecanismos de tolerancia sean, asimismo, muy variados. La Figura 2, adaptada de Greenway y Munns (1980) y Pasternak (1987), recoge la mayoría de mecanismos propuestos hasta este momento.
Figura 2. Mecanismos de tolerancia a la salinidad.
(Adaptada de Greenway y Munns, 1980 y Pasternak, 1987)
En ella se mezclan caracteres cuya función ha sido comprobada experimentalmente con otros sólo teóricos, los encuadrados con una línea discontinua. Por otra parte, no se puede esperar que todos ellos aparezcan simultáneamente en un mismo individuo, pues varios son antagónicos, fruto del dilema sequía fisiológica - toxicidad iónica al que se enfrentan las plantas sometidas a un estrés salino.

Pasternak (1987) agrupa los mecanismos de tolerancia en dos grandes conjuntos, los que protegen a la planta frente a la pérdida de agua, y los que lo hacen de la toxicidad iónica.

1.2.1 Protección frente a la pérdida de agua

Un primer grupo engloba aquellos procesos que minimizan la pérdida de agua, a través de un incremento de la resistencia foliar a la difusión. Esto se puede conseguir mediante un incremento del espesor cuticular, reduciendo la cantidad de estomas, o provocando el cierre estomático que, como ya se ha indicado anteriormente, puede estar regulado hormonalmente.

El interés de estos mecanismos a efectos de supervivencia es innegable, pero, a efectos de rendimiento agronómico, su coste en limitación de crecimiento es tan alto, que es preferible que tarden en aparecer. Sin embargo, una rápida reacción de cierre estomático puede resultar favorable en casos de un estrés de corta duración, pues al retornar las condiciones no limitantes, la planta puede ser capaz de reanudar su crecimiento habiendo sufrido escaso daño, y sin comprometerse en mecanismos más complejos que exijan mayor dispendio energético. Pero tratándose de un estrés salino, esta situación es improbable.

En realidad, el cierre estomático se suele poner en marcha cuando las tácticas dirigidas a aumentar la captación de agua han agotado sus posibilidades. Entre estas últimas se encuentra la elevación de la relación raíz/parte aérea, que es habitual en condiciones salinas (Maas y Nieman, 1978); Sinha et al. (1986) lo observaron en el sorgo de Halepo, y Weinberg et al. (1984) en el sorgo cultivado. Gracias a esta alteración en el patrón de crecimiento, se optimiza la explotación del volumen de agua del suelo.

El incremento de la permeabilidad de las raíces y de la extensibilidad de las paredes celulares, que permitiría a las células una cierta pérdida de agua sin que se resintiera la turgencia, son dos vías para incrementar la absorción de agua sin recurrir a la acumulación de
agentes osmóticos. Sin embargo, aún precisan ser comprobadas experimentalmente (Greenway y Munns, 1980).

Otra alternativa que existe para evitar la desecación es realizar un ajuste osmótico interno, que mantenga el gradiente de potencial hídrico necesario para absorber el agua del suelo.

Además de lo ya expuesto en un capítulo anterior, el resto de particularidades de este mecanismo se tratarán en el siguiente apartado.

1.2.2 Protección frente a la toxicidad íónica

La verdadera tolerancia, es decir, el funcionamiento normal de los procesos celulares en presencia de sal, sólo se ha encontrado en bacterias halofíticas (Rains, 1979). El resto de los organismos, incluidas las plantas superiores, debe mantener los niveles de sal en el citoplasma dentro de unos límites relativamente estrechos. De hecho, la tolerancia "in vitro" a la salinidad de los sistemas enzimáticos de halofítas y glicofítas es bastante parecida (Greenway y Osmond, 1972; Flowers et al., 1977), pese a que las primeras suelen contener mayor cantidad de sal. Por tanto, "in vivo", los iones presentes en las halofítas deben estar aislados en algún compartimento.

Los mecanismos de extrusión mediante órganos especializados, como glándulas y tricomas, y la dilución de la sal mediante suculencia, existen sólo en especies halofítas (Flowers et al, 1977; Rains, 1979). La dilución mediante un crecimiento vigoroso ha demostrado su eficacia en un genotipo de lino (McHughen, 1987), y fue propuesto por Yeo y Flowers (1986) como la causa de la mayor tolerancia a la salinidad de variedades tradicionales de arroz, de talla elevada, comparadas con las variedades enanas modernas.

Ya se ha señalado con anterioridad que el ajuste osmótico, en condiciones de salinidad, se puede conseguir gracias a la incorporación de iones del exterior, o mediante la síntesis interna de solutos orgánicos. Las halofítas consiguen un ajuste osmótico perfecto utilizando los iones disponibles (Flowers et al, 1977), mientras que las glicofítas suelen tener dificultades para incorporar la cantidad suficiente con objeto de adaptarse osmoticamente (Greenway y Munns, 1980). El sodio y el potasio han sido identificados como los dos cationes principales de la osmorregulación, almacenándose preferentemente el primero en la vacuola y el segundo en el citoplasma (Gorham et al, 1985a), al ser un elemento indispensable en muchos procesos celulares (Flowers y Laüchli, 1983).
La eficiencia de la compartimentación citoplasma-vacuola de los iones ha sido propuesta por Kingsbury et al. (1984) y por Haghibagheri et al. (1987) para explicar la diferente tolerancia a la salinidad que presentan dos genotipos de trigo y otros dos de maíz, respectivamente. Sin embargo, bajo condiciones hiperosmóticas, el mantenimiento del equilibrio osmótico a través del tonoplasto requiere la acumulación de solutos orgánicos no tóxicos en el citoplasma, los llamados "solutos compatibles" (Gorham et al., 1985a). Los más habituales en los principales cultivos son la prolina y la glicina-betaína. Los solutos compatibles, además, podrían actuar como estabilizadores de la conformación activa de los enzimas (Lerner, 1985; Paleg et al., 1985), y protegiendo las membranas, aunque este último caso sólo ha sido descrito en relación con un estrés térmico (Jolivet et al., 1982).

Según Weinberg y Poljakoff-Mayber (1982) y Weinberg et al. (1984), el potasio es el principal agente responsable de la osmorregulación en el sorgo. Observaron que por encima de un umbral de concentración de cationes monovalentes, principalmente potasio y, en mucha menor proporción sodio, se comenzaba a acumular sacarosa y, posteriormente, prolina en las hojas, en cantidades proporcionales a las de aquéllos, y suficientes para actuar como contrapeso osmótico en el citoplasma. Sin embargo, sus resultados se basan, en buena parte, en el comportamiento de las plantas crecidas en sustratos con alta concentración de sal (una mezcla de cloruros, sódico y cálcico) y baja relación Na:K, lo cual es difícilmente extrapolable a las condiciones de salinidad naturales, donde el cloruro sódico suele ser la sal predominante. La fuerte selectividad del sorgo a favor del potasio puede originar que, en las condiciones experimentales citadas, la entrada de potasio en la parte aérea sea anormalmente grande. No es fácil que, en condiciones naturales, se alcance el umbral necesario para la acumulación de prolina a base, principalmente, de potasio.

Los denominados "mecanismos de exclusión" engloban toda una serie de filtros y reservorios que intentan evitar la llegada masiva de iones al mesófilo de las láminas foliares, donde tiene lugar la mayor parte de la fotosíntesis. Se han descrito barreras a nivel de la raíz en las paredes celulares suberizadas de la endodermis, y en la entrada al xilema (Gorham et al., 1985a). También se puede producir una reabsorción del sodio transportado por el xilema (Lauchli, 1984). Esta estrategia actúa, por ejemplo, en las plántulas del maíz, que almacenan cantidades importantes de sal en el mesocótilo (Johanson y Cheeseman, 1983; Johanson et al., 1983). La transición raíz-tallo también ha sido propuesta como lugar de control para el paso de iones (Greenway y Thomas, 1965), pudiendo ser un control inespecífico, como el encontrado en el género Thinopyrum.
(Gorham et al., 1985b), o discriminatorio, como el que ejerce Aegilops squarrosa, que permite el paso del potasio a la parte aérea y restringe el del sodio (Wyn Jones y Gorham, 1989).

En la parte aérea, se ha encontrado mayor acumulación iónica en tallos (Greenway et al., 1966), en las hojas más viejas (Yeo y Flowers, 1986), en los pecíolos (Greenway et al., 1966), vainas y nervios centrales de las hojas (Boursier et al., 1986), y en las células epidérmicas de la lámina foliar, frente a una menor concentración en las células del mesófilo (Huang y van Steveninck, 1989).

Por último, se ha observado un fenómeno de retranslocación de los iones perjudiciales por el floema (Greenway y Munns, 1980; Gorham et al., 1985a), aunque este mecanismo parece tener mayor importancia como vía de aporte de potasio a las zonas en crecimiento (Bogemans et al., 1990).

El sorgo presenta algunos de estos mecanismos del tipo "exclusión"; está ampliamente aceptado que esta especie impide drásticamente el paso del sodio a la parte aérea, reteniéndolo en las raíces (Francois et al., 1984; Weinberg et al., 1984; Grieve y Maas, 1988; Khan y Ashraf, 1988) y evitando el posible efecto tóxico del sodio sobre el aparato fotosintético. Además, incluso en la parte aérea, se almacena preferentemente en las vainas de las hojas, y no en las láminas (Grieve y Maas, 1988). Puede tratarse de un mecanismo similar al descrito por Gorham et al. (1987) para el trigo. Sin embargo, esta capacidad de retención parece tener un límite, lo que se pone de manifiesto si hay poco potasio en el medio, como sucede en los suelos sodicos; así Devitt et al. (1984) encontraron un umbral de 0.6 mol kg⁻¹ de concentración de sodio en la raíz de sorgo, por encima del cual se producía un fenómeno de "saturación", comenzando a exportarse sodio hacia la parte aérea, donde provocaba un aumento de la resistencia estomática. Además, según estos mismos autores, la tasa de elongación de la raíz está negativamente correlacionada con la concentración de sodio en la misma.

Por otra parte, este patrón de comportamiento puede presentar ligeras variaciones. Grieve y Maas (1988) estudiaron las respuestas de tres genotipos de sorgo a diferentes salinidades y proporciones de sodio y calcio en el medio, observando que dos de los genotipos excluían eficientemente el sodio de sus hojas en todas las condiciones experimentadas, presentando una selectividad K:Na elevada. Sin embargo, el tercer genotipo, una raza africana apenas alterada, que presentó un mejor crecimiento con altas salinidades y altas proporciones de Na/Ca, mostraba en esas condiciones una disminución de la selectividad K:Na, trans-
portando sodio en gran cantidad a las hojas. Los autores opinaban que este hecho guarda relación con el eficiente transporte de calcio a las zonas en crecimiento en dicho genotipo, incluso con una muy baja disponibilidad de este ion en el sustrato. Estos resultados alentan la posibilidad de desarrollar variedades de sorgo para cultivo en suelos sólidos y, por otra parte, ilustran acerca de la utilidad del germoplasma "exótico" en los programas de mejora.

Otra característica llamativa del sorgo es la distribución del ion cloro en la planta. Este ion, al contrario que el sodio, se acumula más en la parte aérea que en las raíces (Weinberg et al., 1984; Khan y Ashraf, 1988). Boursier et al. (1986) observaron que la acumulación de cloro en el sorgo no es homogénea, sino que se localiza sobre todo en las vainas y en los nervios centrales de las hojas, manteniendo la concentración en las láminas foliares en un nivel moderado. Por otra parte, Grieve y Maas (1984) encontraron que la glicina-betaina, compuesto que actúa como agente osmótico compatible en varias especies, se acumulaba preferentemente en las láminas foliares de plantas de sorgo sometidas a un estrés salino. Juntando estos dos hechos, Boursier et al. (1986) defienden que la partición recíproca del cloro y la glicina-betaina en la vaina y la lámina de las hojas, permitiría a estas últimas ajustarse osmoticamente a potenciales hídricos más bajos provocados por la presencia de sal en el medio externo.

1.3 Comparación de la tolerancia en fase de germinación-emergencia con la del estado adulto

El estudio de la tolerancia en la fase más temprana del desarrollo de las plantas, desde el punto de vista de la mejora, puede tener dos objetivos: a) la mejora de la capacidad de germinación-emergencia en aquellos cultivos y zonas donde haya un problema de establecimiento inicial, y b) la predicción de la tolerancia en las fases posteriores del cultivo. Para que este segundo objetivo pueda cumplirse, es obvia la necesidad de demostrar una correlación positiva entre la tolerancia en fase inicial y en estados posteriores.

Bernstein y Hayward (1958) afirman que es difícil comparar la tolerancia a la sal durante la germinación con la de estados posteriores, debido a la disparidad de los criterios empleados para evaluarla. Una creencia común ha sido que los cultivos son más susceptibles a las condiciones salinas en fase de germinación que en estado adulto, debido a los habituales fallos de nascencia que se producen en campos que podrían soportar fácilmente el crecimiento del mismo cultivo, una vez que ya es-
tuviera establecido. Los autores citados argumentan que la sal se concentra normalmente en los primeros centímetros de suelo, a causa de la evaporación y del ascenso por capilaridad de aguas salinas. Por tanto, las semillas se pueden encontrar en un entorno más salino que las raíces de las plantas ya establecidas, lo que ha llevado a la creencia mencionada.

Shannon (1984), recoge en un cuadro los datos de diversos autores sobre la tolerancia de varios cultivos a la salinidad, en fase de germinación y en el estado adulto (Cuadro 3). En él se observan especies más tolerantes durante la germinación que en estado adulto, y viceversa.

<table>
<thead>
<tr>
<th>CULTIVO</th>
<th>50% PROD*</th>
<th>50% EMERG*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebada</td>
<td>18</td>
<td>16-24</td>
</tr>
<tr>
<td>Algodón</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Remolacha (azuc.)</td>
<td>15</td>
<td>6-12</td>
</tr>
<tr>
<td>Sorgo</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Cártamo</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Trigo</td>
<td>13</td>
<td>14-16</td>
</tr>
<tr>
<td>Remolacha (mesa)</td>
<td>9.6</td>
<td>13.8</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>8.9</td>
<td>8-13</td>
</tr>
<tr>
<td>Tomate</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>Berza</td>
<td>7.0</td>
<td>13</td>
</tr>
<tr>
<td>Maíz</td>
<td>5.9</td>
<td>21-24</td>
</tr>
<tr>
<td>Lechuga</td>
<td>5.2</td>
<td>11</td>
</tr>
<tr>
<td>Cebolla</td>
<td>4.3</td>
<td>5.6-7.5</td>
</tr>
<tr>
<td>Arroz</td>
<td>3.6</td>
<td>18</td>
</tr>
<tr>
<td>Judía</td>
<td>3.6</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Cuadro 3. Tolerancia relativa a la sal durante la emergencia y durante el crecimiento, hasta la madurez.
* CE del extracto saturado del suelo.
(modificado de Shannon, 1984)

Estudios posteriores con sorgo, han encontrado una mayor tolerancia para la emergencia, que no sufre reducción a 22 dS/m, que para la producción, con un umbral de 6.8 dS/m (Francois et al., 1984). Maas et al. (1986) también hallaron distintas tolerancias en el sorgo en tres etapas de su desarrollo.
En cuanto a la variabilidad intraespecífica los resultados no son concluyentes. Aunque una mayoría de trabajos encuentra correlaciones poco consistentes entre la tolerancia durante la germinación-emergencia y durante el desarrollo posterior (Norlyn, 1980; Ashraf y McNeilly, 1988; Ashraf y McNeilly, 1989), también existen evidencias en sentido contrario (Schaller et al., 1981).
2. SEQUIA

La sequía, en términos agronómicos, es definida como un periodo en el cual la falta de agua afecta al crecimiento de un cultivo, a sus posibilidades, o a sus técnicas culturales.

Se puede distinguir entre sequía atmosférica y del suelo (Winslow, 1984). La primera es causada por una baja humedad relativa del aire, a menudo asociada con temperaturas altas y vientos fuertes. En esas condiciones, el incremento de la demanda transpirativa puede llegar a dañar a la planta, incluso en suelos relativamente húmedos. La segunda aparece cuando el suministro de agua del suelo cae por debajo de la tasa de transpiración, esta condición se suele desarrollar gradualmente, dando tiempo a que la planta se ajuste, hasta ciertos límites, a las nuevas condiciones.

También se puede distinguir entre una sequía intermitente y otra terminal (Hanson y Nelsen, 1980; Ludlow y Muchow, 1988); la primera cuando el estrés puede aparecer en cualquier momento del desarrollo del cultivo, la segunda cuando el cultivo debe mantenerse, principalmente, de las reservas de agua que acumula el suelo en el momento de la siembra. Esta distinción ha de tenerse en cuenta cuando se toman decisiones acerca de qué mecanismo de tolerancia a la sequía se desea para un cultivo.

2.1 Daños producidos por el estrés hídrico

2.1.1 Sobre las plantas

Al ser el sorgo un cultivo con una probada reputación de tolerancia a la sequía, existe mucha información acerca de las respuestas de esta especie al estrés hídrico, y de los mecanismos que reúne para hacer frente a sus efectos perjudiciales. Debido a ésto, las referencias que se citan en este capítulo son todas sobre este cultivo, salvo cuando se indique expresamente.

La limitación del crecimiento es el primer efecto visible del estrés hídrico. Para Hsiao (1973), la expansión celular es el proceso más sensible al estrés hídrico. McCree y Davis (1974) observaron que la reducción del tamaño de las láminas foliares se debía a una combinación de un menor número de células, junto a la reducción del tamaño celular, por lo que parece que también la inhibición de la división celular es
otro efecto del estrés hídrico. La reducción del crecimiento, además, se produce sin una pérdida previa de turgencia de las células, como observaron Michelena y Boyer (1982) en el maíz.

Otros efectos de la sequía que limitan el área fotosintética útil son los movimientos foliares, como verticalidad de las hojas y enrollamiento de la lámina foliar (Rosenow et al., 1983), que disminuyen la superficie expuesta para la captación de radiación luminica por el cultivo. En este sentido se puede apuntar también la senescencia acelerada de las hojas inferiores.

La transpiración, en un principio, disminuye en función de la reducción del área foliar pero, si el estrés se agrava, llega a verse afectada la tasa de transpiración por unidad de área foliar (Rosenthal et al., 1987). La tasa de transpiración afecta a su vez a la de fotosíntesis. Los efectos del estrés hídrico sobre la fotosíntesis han sido divididos en estomáticos y no estomáticos (Begg y Turner, 1976); la fotosíntesis disminuye inicialmente como resultado del cierre estomático que se produce en respuesta al estrés hídrico, pero un estrés hídrico prolongado y severo puede causar daños en el aparato fotosintético y, por consiguiente, no de tipo estomático. Sullivan y Ross (1979) y Krieg (1983) encontraron ambos tipos de efectos en el sorgo. Estas limitaciones no estomáticas pueden estar causadas por la pérdida de la capacidad de los cloroplastos para la fotorreducción de aceptores de electrones, o por una alteración de la capacidad carboxilativa por reducción en la actividad o en los niveles de enzimas del cloroplasto (Hanson y Hitz, 1982).

La desecación a nivel celular causa los siguientes daños (Hsiao y Bradford, 1983): reducción de la actividad química del agua, concentración de solutos y macromoléculas, eliminación de agua de hidratación de las macromoléculas, y alteraciones en las membranas celulares, que suelen resultar en la pérdida de electrolitos de las células (Sullivan y Ross, 1979).

La capacidad de translocación se ve afectada en menor grado por el estrés hídrico. Para Hsiao (1973) es el proceso más resistente a este estrés, mientras que para Begg y Turner (1976) la disminución en translocación debida al estrés hídrico es consecuencia de una reducción en la capacidad fotosintética o en el crecimiento del órgano de destino, más que de un efecto directo sobre el sistema de conducción.

Las hormonas vegetales parecen estar involucradas en la respuesta al estrés hídrico, pues hay cada vez más evidencias de que la condición
hidrica del suelo ejerce su influencia sobre la conductancia estomática, en alguna forma diferente al efecto sobre la condición hídrica foliar. Schulze (1986) y Turner (1986) sugieren que la relación es de tipo hormonal, Sharp y Davies (1989) sugieren que la señal puede ser una reducción de la citokinina producida en las raíces, o bien del mismo ABA producido en las raíces y rápidamente translocado a la parte aérea. Ambos mecanismos pueden causar el cierre estomático y la inhibición del crecimiento, antes de que se resienta la turgencia en las zonas en crecimiento. La puesta en marcha de esta señal podría producirse por la dificultad que encuentran las raíces para penetrar en el suelo seco.

Blum (1988) ofrece un resumen de los procesos que ocurren en una planta sometida a estrés hídrico progresivo, poniendo de manifiesto la secuencia de fenómenos y el nivel de integración en el que ocurren, lo cual es de gran importancia a la hora de comprender el papel de los distintos mecanismos de tolerancia.

Cuando la expansión celular se ralentiza, el crecimiento foliar pierde importancia como destino de los productos fotosintéticos. Al no ser afectada en principio la tasa de fotosíntesis por unidad de área foliar, los productos fotosintéticos son parcialmente desviados para realizar ajuste osmótico, o bien para favorecer el crecimiento de otros órganos como las raíces. La mayor relación raíz/parte aérea resultante y la limitación de la expansión del área foliar, permiten evitar el desarrollo de gradientes de potencial hídrico grandes entre la raíz y las hojas. El ajuste osmótico protege a las células de la desecación y permite un intercambio gaseoso continuado.

Al aumentar el grado de estrés, el área foliar decrece por la senescencia de las hojas más viejas. El uso de agua por el cultivo se ve ahora reducido por la menor área foliar y las crecientes resistencias hidráulicas en la planta. Mientras la turgencia se mantenga en las hojas vivas, gracias al ajuste osmótico o a la menor evapotranspiración, los estomas no se cierran del todo y continúa realizándose fijación de carbono. La tasa de esta fijación y su relación con la transpiración, eficiencia de la transpiración, durante esta etapa, están determinadas parcialmente por la resistencia estomática y por la del mesófilo al dióxido de carbono, siendo controvertida la importancia relativa de ambos fenómenos.

Al agravarse el estrés, se pierde turgencia, cierran por completo los estomas, cesa el crecimiento, las hojas aún vivas se enrollan (en cereales), el intercambio gaseoso es nulo, y la planta entra en una fase pre-letal de supervivencia. En esta fase, hay una pérdida neta de carbo-
no por la respiración, la condición hídrica de los tejidos decaen lentamente. Sin transpiración, la temperatura de las hojas vivas aumenta a niveles letales, y éstas acaban por morir. Los únicos tejidos que permanecen viables son los meristemos. La planta se consideraría muerta cuando sus meristemos fueran incapaces de recuperarse y reiniciar el crecimiento tras una rehidratación.

Se distinguen, pues, dos fases diferenciadas en la respuesta de una planta al estrés hídrico. Durante la primera, la planta conserva su capacidad de mantener un intercambio gaseoso y una ganancia neta de carbono, y en la segunda, la planta sólo sobrevive con una pérdida neta de carbono.

2.1.2 Sobre caracteres de interés agronómico

La reducción del rendimiento causada por el estrés hídrico se puede explicar, además de por la reducción en el crecimiento vegetativo, por un efecto negativo sobre los componentes del rendimiento o el índice de cosecha.

El tipo de acción de la sequía dependiendo del estado de desarrollo fenológico del cultivo suele ser el causante del efecto sobre los componentes del rendimiento. El sorgo es más susceptible a los efectos del estrés hídrico en las etapas próximas a la floración o durante la misma (Musick y Dusek, 1971). En general, la sequía antes de la antesis provoca una reducción en el número de granos, mientras que después de ese momento, la reducción aparece en el peso individual de los mismos (Eastin et al., 1983).

El estudio más completo en este sentido es el de Manjarrez-Sandoval et al. (1989), que se basó en la imposición del estrés en 10 periodos sucesivos, cubriendo todo el ciclo de un cultivo de sorgo. El efecto más drástico se producía cuando la sequía ocurriera durante la microsporogénesis, pues la panícula se destruía por completo. Antes de ese momento, el efecto producido fue disminuir el número de granos por panícula, en un 25-55%, debido a abortos de primordios de ramas de la panícula; con posterioridad a la microsporogénesis, el número de granos no se redujo, pero sí el peso individual de grano, hasta un 50%.

En cualquier caso, el sorgo posee una notable capacidad de compensación entre sus componentes de producción. Una característica reseñable es la producción de hijuelos en cualquier entrenudo, no solo en el basal (Faci, 1986), cuando la panícula principal no ofrece el volumen suficien-
ciente como para recibir todos los asimilados producidos. Bagga et al. (1973) y Blum (1973) mostraron que, cuando el número de panículas se reducía a consecuencia del estrés hídrico, el peso de grano por panícula se compensaba por un incremento en el número de granos o por aumento del tamaño de los mismos. No obstante, estos fenómenos de compensación tienen un límite en el número y tamaño máximo de granos por panícula. Blum (1970) encontró que en un cultivo con alta densidad de plantas, como suele ser lo habitual en cultivos comerciales, el rendimiento era determinado por la interacción del número de granos por panícula y el peso individual de un grano. Garrity et al. (1982) describieron una reducción en el rendimiento paralela a la de la materia seca total producida, sugiriendo que el índice de cosecha no se vió afectado. Faci (1986), en cambio, encontró un efecto de la sequía sobre el índice de cosecha, que se redujo en aproximadamente un 35%. Este mismo autor observó con respecto a la fenología, que un déficit hídrico moderado inducía una maduración temprana, comparada con la obtenida en ausencia de estrés o con un estrés hídrico severo.

2.2 Mecanismos de tolerancia al estrés hídrico

Existe mucha información acerca de los mecanismos involucrados en la tolerancia a la sequía en el sorgo. Algunas de las recopilaciones más interesantes se encuentran en Turner (1979); Seetharama et al. (1983); Blum (1988); Ludlow y Muchow (1988) y Blum et al. (1989). Existe asimismo abundante literatura acerca del fundamento fisiológico de los diversos mecanismos, y de su integración en las estrategias frente al estrés hídrico que muestran las distintas especies.

Bastantes de los mecanismos propuestos han demostrado su relación con el rendimiento de grano, y es en ellos en los que se va a centrar el presente apartado.

Las diferentes estrategias que pueden utilizar las plantas para hacer frente al estrés hídrico se suelen clasificar en (Levitt, 1980):

a) mecanismos de escape, por los que el cultivo no llega a sufrir las condiciones de sequía

b) mecanismos de evitación, por los que las plantas son capaces de mantener su condición hídrica, pese a estar sometidas a limitaciones en el suministro de agua. Incluyen procesos destinados a mantener la absorción de agua o a evitar su pérdida, y cambios en determinadas características de los tejidos

c) mecanismos de tolerancia, referidos a los que ayudan a la planta a soportar déficits hídricos internos (tolerancia protoplásmica).
El mecanismo más importante del tipo de evitación, es la capacidad de mantener la apertura estomática a potenciales hídricos foliares relativamente bajos, lo que le confiere una ventaja frente a su principal cultivo competidor, el maíz (Sanchez-Diaz y Kramer, 1971; Beadle et al., 1973; Sanchez-Diaz y Kramer, 1973; Fereres et al., 1978). La causa de este fenómeno hay que buscarla en la eficacia del sorgo para realizar ajuste osmótico en condiciones de sequía (Jones y Turner, 1978; Turner et al., 1978; Acevedo et al., 1979; Ackerson et al., 1980), gracias a la acumulación de azúcares solubles (Turner et al., 1978; Acevedo et al., 1979). La osmorregulación afecta a otros muchos procesos del desarrollo de la planta, Turner (1986) realizó un estudio de cómo se integran todos estos procesos, y su relación con el rendimiento; McCree y Richardson (1987) observaron que el ajuste osmótico en el sorgo no suponía un coste adicional, mas allá de la mera diversión de asimilados del crecimiento.

Además del ajuste osmótico, Turner (1979), Jordan y Monk (1980) y Seetharama et al. (1983) recopilaron toda la serie de mecanismos que se han ido proponiendo en relación con la tolerancia a la sequía en el sorgo. Varios son los mecanismos de escape, como el desarrollo fenológico rápido, la plasticidad en el desarrollo o la sensibilidad al fotoperíodo. Otros están en relación con la evitación de déficits hídricos internos, como el aumento de resistencia cuticular y osmótica, la reducción de área foliar por enrollamiento o senescencia, disminuyendo así la radiación interceptada, y están dirigidos a limitar la pérdida de agua.

El mantenimiento de la absorción de agua se puede lograr gracias a un sistema radicular más profundo y denso, por alteración de la partición de los asimilados entre la raíz y el tallo, ofreciendo bajas resistencias al paso del agua por la planta, aunque esto puede ser contraproducente en el caso de un estrés terminal (Passioura, 1983), pues se agotarían las reservas de agua del suelo para los momentos críticos de floración y llenado del grano; por aumento de la elasticidad de las paredes celulares; y por disminución del tamaño celular (Turner y Jones, 1980).

Finalmente están los mecanismos de tolerancia protoplasmica a la desecación, que en esta especie son de mayor importancia para el estrés de calor (Sullivan y Ross, 1989).

Otros procesos relacionados con la tolerancia al estrés hídrico se basan en la capacidad de retranslocar los asimilados del tallo hacia la panícula (Blum et al., 1983), lo que redundará en beneficio del índice de cosecha; y en la acumulación de prolina bajo condiciones de estrés, como posible fuente de energía respiratoria para la recuperación del
crecimiento cuando la situación de estrés haya pasado (Blum y Ebercon, 1976; Sivaramakrishnan et al., 1988).

El estudio de los comportamientos diferenciales de genotipos tolerantes y susceptibles a la sequía, ofrece una valiosa información acerca de los mecanismos que realmente determinan esa reacción. De todos modos, no hay que olvidar que los resultados de un pequeño conjunto de genotipos no tienen que ser extrapolables a otros, y que las diferencias que aparecen pueden ser función de los distintos grados de estrés empleados, de distintas condiciones experimentales, o de distintos métodos de medida.

En general, las variedades tolerantes de sorgo suelen presentar un ajuste osmótico más eficiente que las susceptibles (Wright et al., 1983a). Santamaría (1986) encontró una asociación positiva entre osmorregulación y rendimiento en condiciones de estrés en un conjunto de genotipos de sorgo, sin embargo, Blum et al. (1989) no observaron diferencias en este sentido.

Blum y Sullivan (1986) estudiaron ecotipos de sorgo y mijo procedentes de zonas húmedas y secas, esperando encontrar caracteres adaptados a las condiciones en que habían evolucionado esos cultivos. Los ecotipos de zonas secas resultaron tener un mejor ajuste osmótico, asociado con una mayor tasa de respiración y menor senescencia foliar. Otros autores también han encontrado caracteres de evitación de estrés asociados a la osmorregulación en las variedades tolerantes, así Wright et al. (1983a y 1983b) informaron de una mayor relación raíz/parte aérea, una mayor duración del área foliar verde y menos abortos florales. En los mismos genotipos Wright y Smith (1983) señalaron que el genotipo tolerante E-57, pese a favorecer el crecimiento de la raíz a costa de la parte aérea, utilizó menos agua antes de la antesis que el susceptible TX-671, cambiando esta relación tras la antesis. La explicación que dan es similar a la de Passloura (1983), en el sentido de un uso más racional del agua por E-57, con un menor desarrollo foliar y, por consiguiente, menor demanda transpirativa antes de la antesis. Kirkham (1988) estudiando dos genotipos distintos a los citados, informó de un resultado similar en cuanto a la utilización del agua. Blum (1972) encontró que la eficiencia de uso del agua en sorgo aumentaba cuando se limitaba la extracción de agua antes de la antesis.

Abd-Elalatif y Weibel (1978), estudiando 10 cultivares, encontraron una relación significativa positiva entre tolerancia a sequía, peso y volumen de raíces producidas, y el cociente raíz/parte aérea.
Blum (1974) sugiere que las distintas capacidades de evitar la deshidratación, observadas en 10 genotipos de sorgo, pueden ser debidas a variaciones en las características de extensibilidad de las paredes celulares.

Wenzel y van den Berg (1988a) encontraron diferencias en la tasa de pérdida de agua en hojas cortadas (transpiración residual, principally cuticular) en dos grupos de genotipos, tolerantes y susceptibles. El grupo "tolerante" perdía menos agua, bajo estrés hídrico, que el "susceptible", antes de la anesis, y más después de la floración. Además los genotipos tolerantes sobrepasaron en rendimiento a los susceptibles. En un estudio posterior, esos mismos autores (1988b) encontraron distinta expresión de este carácter en condiciones de regadío o secano, concluyendo que, para un grado de estrés moderado, la tasa de pérdida de agua no discriminaba a los genotipos tolerantes y susceptibles.

La transpiración residual aparece asociada a la tolerancia a la sequía en otros cereales como trigo (Dedio, 1975; Clark y McCaig, 1982; McCaig y Romagosa, 1989), cebada (Quisenberry et al., 1982), maíz (Greenfield et al., 1986). En este último caso los genotipos más tolerantes presentaban una cutícula más gruesa, pero no había diferencias en cuanto a cantidad de ceras epicuticulares. Una buena discusión acerca del papel de las ceras epicuticulares en la tolerancia a la sequía, se puede encontrar en Blum (1988a), la cantidad y disposición de estos compuestos han sido responsabilizados como los principales reguladores de la transpiración cuticular. En el sorgo, Ross (1972) encontró una asociación entre el carácter "hojas glaucas", determinado por la disposición de las ceras epicuticulares, y el rendimiento bajo estrés hídrico. Muchow y Sinclair (1989) estudiaron la conductancia epidermática en varios genotipos de sorgo en condiciones de estrés hídrico, concluyendo que estaba muy relacionada con la densidad estomática, debido a que la pérdida de agua es más fácil por ciertas zonas del aparato estomático, por lo que se puede apreciar que la transpiración residual tiene también un fuerte componente estomático. Estos autores concluyen que una baja densidad estomática puede ser una característica favorable en condiciones de estrés hídrico severo. Clarke y Townley-Smith (1986) y Clarke y Romagosa (1989) observaron, en trigo, una relación entre menor tasa de pérdida de agua por transpiración residual y rendimiento, sólo en condiciones de estrés.

Blum et al. (1989) definen una estrecha relación entre la fenología y la tolerancia, en un conjunto de seis genotipos de sorgo, siendo más resistentes los genotipos más tempranos. Estos genotipos resistentes se
caracterizaban también por un mayor potencial hídrico, medido al mediodía, que indicaba un menor déficit hídrico; y una menor temperatura foliar, consecuencia de mantener un mayor flujo transpiratorio que los genotipos susceptibles. Sin embargo no hallaron relación entre la tolerancia y el enrollado foliar, aunque este carácter estaba estrechamente relacionado con el potencial hídrico foliar.

Ya se ha indicado anteriormente cómo Blum y Ebercon (1976) y Sivaramakrishnan et al. (1988) propusieron un papel importante de la prolinha en la capacidad de recuperación de las plantas tras un estrés hídrico; en ambos trabajos se encontró mayor acumulación de proлина en genotipos tolerantes que en los susceptibles. Finalmente, Rosenow y Clark (1981), basándose en la experiencia de un amplio programa de mejora, dividen la tolerancia a la sequía del sorgo en dos fases, pre y post-antesis, informando, también, que no han encontrado genotipos que conjuguen la tolerancia en ambas fases. La tolerancia pre-antesis se declara por una serie de síntomas que revelan mecanismos de evitación del déficit hídrico, mientras que, en post-antesis, aparece relacionada principalmente con un retraso de la senescencia foliar. Este último hecho parece entrar en contradicción con el mecanismo de tolerancia basado en la capacidad de retranslocar asimilados del tallo y hojas al grano, propuesto por Blum et al. (1983), pues una fuerte expresión de este mecanismo aceleraría la senescencia.

Ludlow y Muchow (1988) presentan un análisis crítico de todos los mecanismos de tolerancia propuestos en sorgo, basándose en el coste de adoptar el mecanismo, su relación con el rendimiento y la existencia de variabilidad genética heredable. Concluyeron que, para un tipo de agricultura moderna, los mecanismos deseables para cualquier tipo de estrés hídrico serían, por orden de prioridad: desarrollo fenológico ajustado al suministro de agua, ajuste climático de tallos y raíces, sistema radial denso y profundo, vigor temprano de desarrollo asegurando una pronta cobertura del terreno y mayor reflectancia foliar para absorber menor cantidad de radiación. Añaden los mecanismos de plasticidad en el desarrollo, mantenimiento del área foliar verde, y bajo estatus hídrico letal, en el caso de estrés intermitente; y para un estrés terminal proponen además, una buena capacidad de retranslocación de la materia seca acumulada antes de la floración.
3. RELACION ENTRE LOS ESTRESES HIDRICO Y SALINO

Como ya se ha indicado, existe un amplio acuerdo sobre la existencia de un estrés hídrico secundario que afecta a las plantas expuestas a condiciones salinas. Esta posible relación entre los estreses hídrico y salino lleva inmediatamente al planteamiento de varias cuestiones: ¿son comparables los daños producidos por ambos tipos de estrés?; ¿existen mecanismos de tolerancia comunes?; ¿se pueden encontrar criterios de selección válidos para los dos casos? Las respuestas a estas preguntas no son fáciles, como se verá a continuación.

El principal factor que diferencia las situaciones de estrés hídrico producidas por una disminución de los potenciales matricial u osmótico del suelo, es la abundancia de iones disueltos y fácilmente disponibles por la planta en este último caso, para efectuar un ajuste osmótico.

Un enfoque habitual para abordar estos interrogantes es la comparación entre los efectos de la sal y de otros agentes osmóticos, como polietilenoglicol, manitol, betaína, etc. En el caso del sorgo, la opinión generalizada se inclina hacia una mayor reducción de la germinación y el crecimiento en soluciones salinas, que cuando el agente osmótico es supuestamente inerte (Sinha y et al., 1982; Thomson, 1986; Haigh y Barlow, 1987). Lyles y Fanning (1964) en cambio, defienden que la emergencia del sorgo en un suelo salinizado es función de lo que llaman "estrés hídrico total en el suelo". Este concepto equivale al más actual de potencial hídrico, y es la suma del potencial osmótico de la solución del suelo y del potencial matricial.

Hsiao (1986) estudió el efecto de la sequía y la salinidad sobre tres especies cultivadas, algodón, pimiento y judía, llegando a las siguientes conclusiones: a) existen algunas claras diferencias entre las respuestas de las plantas a ambos estreses, aunque tanto bajo estrés hídrico como bajo estrés salino las plantas sufren una disminución del potencial hídrico foliar; b) se observa que potenciales que causan marchitez bajo condiciones de estrés hídrico, no lo hacen en condiciones de salinidad; c) los procesos de osmorregulación siguen patrones distintos en los dos casos: en condiciones de salinidad la planta puede optar por la vía de incorporar los iones del suelo, mientras que en condiciones de sequía los solutos deben ser producidos mayoritariamente en la planta. Parece que, como ya se ha indicado anteriormente, el primero de estos mecanismos es más eficaz, y energéticamente más barato.

Richardson y McCree (1985) y McCree y Richardson (1987) estudiaron
el efecto de un tratamiento con estrés hídrico y salino, y otro sólo de estrés hídrico, sobre tres cultivos: remolacha, sorgo y Vigna unguiculata, con la particularidad de que estas tres especies presentan comportamientos bien distintos frente a los dos estreses. La remolacha es tolerante a la salinidad, el sorgo moderadamente tolerante, y la Vigna sensible. Respecto al estrés hídrico, la remolacha es un cultivo capaz de adaptarse a él mediante osmorregulación; la Vigna apenas realiza ajuste osmótico, optando por cerrar sus estomas a potenciales hídricos relativamente altos, limitando fuertemente el intercambio gaseoso y, por tanto, la pérdida de agua y la asimilación de carbono; y el sorgo muestra una combinación de respuestas intermedias que le permite asimilar el doble de carbono que las otras dos especies antes de mostrar síntomas de desecación. No obstante, en los tres cultivos la respuesta al tratamiento con sal fue similar, reduciéndose la tasa de pérdida de agua por planta, y aumentando la eficiencia de uso del agua (cantidad de carbono asimilado por unidad de agua evapotranspirada). Además, las tres fueron capaces de osmorregulación, presumiblemente gracias a la incorporación de iones, sin que la turgencia llegara a resentirse. Como consecuencia, el tratamiento que reunía déficit hídrico y salinidad fue más ventajoso que el de déficit hídrico "per se", pues en aquél se retrasó la aparición de síntomas de desecación, especialmente en el sorgo.

Otro punto de coincidencia entre los efectos causados por la sequía y la salinidad es la aparición de lesiones necróticas foliares. A este respecto, Bernstein (1975) diferencia las lesiones producidas por la salinidad, ya que en ellas el tejido no se reseca, dando a entender que las membranas celulares se han vuelto más permeables y permiten que los espacios intercelulares se rellenen de líquido, a diferencia de lo que ocurre cuando el factor causante es la sequía.

Pese a estas diferencias, la opinión de que las variedades de un cultivo tolerantes a la salinidad son también tolerantes a otros tipos de estreses, como la sequía o el frío, es una afirmación común entre mejoradores (Ramage, 1980). Mozafar y Goodin (1986) compararon la germinación y el desarrollo inicial de las plántulas de dos genotipos de trigo con tolerancia diferencial a la sequía, en soluciones con distintas sales; el cultivar tolerante a la sequía germinó y creció mejor en varias de las soluciones empleadas. Otro ejemplo lo ofrecen Vasudevan y Balasubramanian (1965) que encontraron una mayor germinación para cultivares de sorgo de secano que para cultivares de regadío, en soluciones con NaCl o manitol. Este hecho se ha intentado explicar postulando la existencia de algún proceso a nivel molecular que sea el blanco de acción común de varios estreses ambientales, por ejemplo las membranas, o la actividad del ABA (Tal, 1985). Un dato a favor de esta hipótesis lo
ofrecen los recientes trabajos que sugieren la acción de alguna señal química procedente de las raíces en la limitación del crecimiento de la parte aérea, tanto en condiciones de estrés hídrico (Schulze, 1986), como salino (Munns y Termaat, 1986), como ya se ha citado anteriormente.

Como se ve, este es un campo donde la polémica permanece abierta, a la espera sobre todo de nuevos resultados acerca del papel de los reguladores del crecimiento en la respuesta a los estreses ambientales.
4. GENETICA Y MEJORA

El rendimiento es, intrínsecamente, un carácter con una heredabilidad bastante baja, causada por responder a la culminación de multitud de procesos bioquímicos y fisiológicos a todos los niveles de organización de la planta. Estos procesos pueden interactuar entre sí en multitud de formas, siendo muy difícil predecir cómo afectarán al rendimiento.

Las varianzas genéticas en cuanto al rendimiento son, además, superiores en condiciones de cultivo óptimas que en condiciones de estrés. Es decir, las diferencias entre los genotipos se expresan con mayor amplitud en ausencia de estrés, que cuando hay un factor limitante severo (Quisenberry, 1982), por lo que la eficiencia de selección en condiciones de estrés se verá limitada (Blum, 1988).

Otra razón de que la varianza genética y la heredabilidad sean menores bajo estrés, es la gran variabilidad ambiental que se presenta en zonas con alguna condición estresante, de tal modo que se enmascara la varianza genética.

Por otra parte está la opinión, bastante extendida, de que es mejor obtener variedades con alto potencial de producción en ambientes favorables, pues es probable que ese potencial le permita, pese a una importante reducción en términos relativos, seguir siendo buena en ambientes desfavorables (Rosielle y Hamblin, 1981; Richards, 1983). Esta opinión responde a los conceptos de "estabilidad horizontal" (rendimiento superior en todo el rango de condiciones ambientales) de Finlay y Wilkinson (1963), "tolerancia absoluta" de Rawson et al. (1988), o "amplia adaptabilidad".

Un aspecto de crucial importancia es la probabilidad de ocurrencia de determinado grado de estrés en las condiciones del área para la que se realiza la selección. Lo expuesto en el párrafo anterior tiene sentido en el caso de estreses moderados. Sin embargo, hay numerosos ejemplos de zonas con graves limitaciones ambientales, donde las variedades mejoradas modernas, con amplia adaptabilidad, son superadas por ecotipos locales específicamente adaptadas a esas condiciones limitantes (Ceccarelli, 1984). Por tanto, la definición precisa de las condiciones del área para las que se trabaja, es una cuestión relevante, ya que la interacción genotipo x ambiente provoca cambios en la clasificación de las variedades en ambientes contrastados.

El caso de la salinidad presenta además características propias.
Tal como lo definen Srivastava y Jana (1989), un campo afectado por salinidad típico, es un mosaico de micro-ambientes, con gran variabilidad espacial en la distribución de las sales. En ese sentido, la mejoría para la tolerancia a la salinidad sería lo mismo que mejora para amplia adaptabilidad. No obstante, Richards (1983) y McColl (1987), defienden que la mejoría para zonas salinas debería hacerse en ambientes no salinos, con el único fin de elevar la producción potencial. Estos autores argumentan que, en un campo salino, la mayor parte de la producción procede de los "microambientes" menos salinos, de tal modo, que, en comparación, la producción de las zonas más salinas llega a ser despreciable. Rawson et al. (1988) apoyan esta hipótesis con sus resultados de un cribado de genotipos de varios cereales; dividieron la tolerancia a la salinidad en dos términos, "tolerancia absoluta", determinada por el potencial de crecimiento, y "tolerancia relativa", es decir, el crecimiento en condiciones salinas, expresado como porcentaje de un control no salino, encontrando que la primera era relativamente más importante que la segunda.

La conclusión de todo esto parece ser que la selección por rendimiento, para áreas con factores ambientales limitantes, debe llevarse a cabo en ausencia de estrés, salvo si se acepta pagar el alto precio de manejar grandes poblaciones, y repetir los ensayos en numerosos años y localidades, minimizando la interacción genotipo x ambiente (Blum, 1988).

4.1 Variabilidad y regulación genética de caracteres de tolerancia a la salinidad

La existencia de variabilidad es una premisa indispensable para iniciar un plan de mejora genética. Consideramos de interés la subdivisión de este apartado, por la diversidad que presenta, en dos fases del cultivo, la de germinación-emergencia, y el desarrollo posterior vegetativo y de planta adulta.

Se cree que la tolerancia a la salinidad está controlada por un gran número de polígenes. Sin embargo, esto puede ser la consecuencia de la falta de conocimiento a nivel fisiológico de los mecanismos que confieren tolerancia y, consiguientemente, de su regulación genética (Tal, 1985).
4.1.1 En fase de germinación-emergencia

Numerosos trabajos han encontrado variabilidad intraespecífica en muchos cultivos respecto a los caracteres de germinación-emergencia. En el Cuadro 4 se recogen algunos ejemplos referidos a cereales y alfalfa.

En otros casos, sin embargo, la variabilidad encontrada es bastante pequeña, como señalan Horst y Dunning (1989) para el carácter "supervivencia de semillas", que se puede considerar como emergencia, en 48 genotipos de Lolium perenne.

Padoley (1984) menciona la existencia de variabilidad intraespecífica en sorgo respecto a la capacidad de germinación en condiciones salinas. Otros autores (Evans y Stickler, 1961; Saint-Clair, 1976 y Stout et al., 1980), han puesto de manifiesto la existencia de variabilidad de respuestas en la germinación frente a agentes osmóticos no salinos, encontrando diferencias entre genotipos; Saint-Clair llegó a utilizar 11, mientras que Evans y Stickler lo hicieron además entre lotes de semillas de distintas procedencias de un mismo cultivar, resaltando la importancia que tiene la producción de la semilla en cualquier estudio sobre el comportamiento de la germinación.

Existen pocos datos acerca de la regulación genética de los caracteres de germinación-emergencia en sustratos salinos. Norlyn (1980), en cebada, sugiere que la capacidad de germinación y emergencia en condiciones de fuerte estrés salino está bajo algún tipo de control genético, posiblemente complejo. Omara et al. (1987), también en cebada, indicaron un control poligénico y efectos génicos complementarios.

Uno de los resultados más interesantes y esperanzadores desde el punto de vista del mejorador es el de Allen et al. (1985), que en alfalfa, después de cinco ciclos de selección masal a favor de la germinación en presencia de NaCl, aumentaron en un 75% el potencial osmótico necesario para disminuir en un 1% el porcentaje de germinación. La heredabilidad, en sentido amplio, se estimó en un 50%. Ledbetter (1987), fue capaz de incrementar un 4.1% la emergencia de una población de algodón en un sólo ciclo de selección, estimando la heredabilidad, en sentido estricto, para este carácter en 0.38.

Horst y Dunning (1989), en cambio, encontraron unas heredabilidades bajas, en sentido amplio, de 0.19 y 0.17 para el porcentaje y la tasa de germinación, respectivamente, en Lolium perenne.
<table>
<thead>
<tr>
<th>CULTIVO</th>
<th>CRITERIO</th>
<th>SAL</th>
<th>NCV*</th>
<th>AUTORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>germinación</td>
<td>varias</td>
<td>3</td>
<td>Redmann (1974)</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>emergencia</td>
<td>agua riego simulada</td>
<td>2</td>
<td>Waissman y Miyamoto (1987)</td>
</tr>
<tr>
<td>Arroz</td>
<td>germinación</td>
<td>variedad</td>
<td>2</td>
<td>Bal y Chattopadhyay (1987)</td>
</tr>
<tr>
<td>Cebada</td>
<td>long. y peso de plántulas germinación, emergencia</td>
<td>NaCl</td>
<td>49</td>
<td>Donovan y Day (1969)</td>
</tr>
<tr>
<td>Cebada</td>
<td>emergencia</td>
<td>NaCl+CaCl₂</td>
<td>sal marina 22000</td>
<td>Norlyn (1980)</td>
</tr>
<tr>
<td>Cebada</td>
<td>germinación, emergencia</td>
<td>NaCl</td>
<td>11</td>
<td>Schaller et al. (1981)</td>
</tr>
<tr>
<td>Cebada</td>
<td>germinación, emergencia</td>
<td>NaCl+CaCl₂</td>
<td>24</td>
<td>Martínez-Cob et al. (1987)</td>
</tr>
<tr>
<td>Maíz</td>
<td>germinación</td>
<td>NaCl</td>
<td>3</td>
<td>Kayani y Mujeeb (1987)</td>
</tr>
<tr>
<td>Maíz</td>
<td>germinación (Z y tasa)</td>
<td>NaCl</td>
<td>9</td>
<td>Ashraf y McNeilly (1982)</td>
</tr>
<tr>
<td>Trigo</td>
<td>germinación</td>
<td>NaCl</td>
<td>14</td>
<td>Larik y Hafiz (1983)</td>
</tr>
<tr>
<td>Trigo</td>
<td>crecimiento de plántulas emergencia y crecimiento</td>
<td>NaCl+CaCl₂</td>
<td>sal marina 5000</td>
<td>Kingsbury y Epstein (1984)</td>
</tr>
<tr>
<td>Trigo</td>
<td>germinación (Z y tasa)</td>
<td>NaCl</td>
<td>9</td>
<td>Ashraf y McNeilly (1988)</td>
</tr>
<tr>
<td>Triticale</td>
<td>emergencia</td>
<td>NaCl</td>
<td>4</td>
<td>Norlyn y Epstein (1980)</td>
</tr>
</tbody>
</table>

| Cuadro 4. Ejemplos de variabilidad intraespecífica para caracteres de germinación. *número de cultivares estudiados |

4.1.2 En fase de desarrollo vegetativo y planta adulta

En las fases de desarrollo posteriores a la emergencia, Hassanenin (1985) y Azhar y McNeilly (1987) informan de la existencia de variabilidad genética en 50 y 51 genotipos de sorgo, respectivamente, evaluados por su crecimiento en fase de plántula en un medio con NaCl. Taylor et al. (1975), también en fase de plántula, llegaron a resultados similares al analizar 48 cultivares de sorgo en cultivo hidropónico con NaCl y CaCl₂.

En otros cereales, se han llevado a cabo algunos intentos de evaluar la variabilidad intraespecífica a gran escala, con el fin de explorarla directamente en programas de mejora. Srivastava y Jana (1984) encontraron variabilidad en cuanto a capacidad de germinación, vigor temprano y rendimiento al analizar colecciones de cebada (4779 entradas), trigo duro (2839), trigo blando (306) o triticale (87). Abo-Aleinín et
al. (1981) analizaron la supervivencia y el rendimiento en 1163 entradas de una colección de cebada, encontrando 34 con buena tolerancia. Kingsbury y Epstein (1984) cribaron una colección de trigo de 5000 entradas a lo largo de todo su ciclo de crecimiento, empezando por la germinación.

La regulación genética de los mecanismos relacionados con la tolerancia a la salinidad ha sido poco estudiada hasta el momento. En soja, Abel y McKenzie (1964) encontraron un gen con un alelo dominante (Ncl) responsable de la exclusión del ión cloro de la parte aérea. En pepino, Jones (1984) encontró también un gen principal dominante gobernando la resistencia a la aparición de lesiones necróticas foliares; las heredabilidades, en sentido estricto, para ese carácter variaron entre un 41 y un 86%. Dvorak et al. (1985), en un cruce interespecífico de Elytrigia elongata x Triticum aestivum, observó que la tolerancia aportada por el primero estaba condicionada por factores interactuantes en varios cromosomas. El ejemplo más claro hasta el momento de localización precisa de un mecanismo de tolerancia a la salinidad, lo ofrecen Gorham et al. (1987); según estos autores, la capacidad de discriminación potasio/sodio en el trigo, radica en el brazo largo del cromosoma 4 del genoma D.

En cuanto a la regulación genética de la tolerancia en el sorgo, Azhar y McNeill (1988), empleando un dialélo completo 8 x 8, encontraron componentes significativos aditivos y dominantes, aunque con mayor peso para estos últimos. Las heredabilidades que encontraron, entre 0.19 y 0.82, les hacen recomendar la utilización de fuertes presiones de selección en poblaciones F2.

En otros cultivos, Ashraf et al. (1986) y Ashraf et al. (1987), en 11 especies forrajeras, obtuvieron estimaciones de heredabilidad suficientemente altas, para caracteres de crecimiento, longitud de tallos y raíces, como para esperar el éxito en la utilización de estos criterios en programas de selección recurrente.

4.2 Variabilidad y regulación genética de caracteres de tolerancia a la sequía

Los trabajos citados en el apartado 2.2 ponen de manifiesto la variabilidad genética existente en el sorgo respecto a varios mecanismos de tolerancia a la sequía. Foster et al. (1979), Garrity et al. (1982) y Seetharama et al. (1982) encontraron también una diversidad de respuestas del rendimiento de variedades de sorgo al estrés hídrico.
Rosenow y Clark (1981) mencionan una posible herencia de tipo dominante para la tolerancia al estrés pre-antesis, y de tipo recesivo, con alguna excepción, para la tolerancia post-antesis, en un estudio con híbridos F1. Además, en general los híbridos son más tolerantes en pre-antesis que sus parentales.

Rosenow et al. (1983) observaron que el carácter de mantener verde el área foliar, relacionado con tolerancia post-antesis, está bajo control genético.

En cuanto a los caracteres de raíz, los estudios sobre su variabilidad y herencia son más escasos. Los trabajos de Armenta-Soto et al. (1983) y Ekanayake et al. (1985), mostraron varianza genética aditiva y dominante en varios caracteres de raíz en el arroz. En el sorgo, Blum et al. (1977) observaron un efecto heterótico en algunos híbridos, respecto a crecimiento total de raíces y otros caracteres. En este mismo cultivo se ha observado que los genes que controlan la longitud del ciclo afectan al desarrollo radicular, con un sistema radicular más extenso en genotipos más tardios (Blum et al., 1977; Blum y Arkin, 1984). Sin embargo, Jordan y Miller (1980) llegaron a la conclusión de que apenas existe variabilidad genética para el crecimiento radicular del sorgo en los materiales clásicos, pero sí que existía en los materiales modernos derivados de entradas exóticas.

Morgan (1983) informó de la existencia de variabilidad genética, probablemente de herencia sencilla, para la osmorregulación en el trigo.

En cuanto a los caracteres que determinan la transpiración residual, Wenzel y van den Berg (1987) encontraron un mayor peso de la aptitud combinatoria general (ACG) en la capacidad de retención de agua por la hoja, no siendo significativo el componente de aptitud combinatoria específica (ACE). Las estimaciones de heredabilidad oscilaban entre 0.31 y 0.43. La genética de la acumulación de cera epicuticular es simple, el carácter cuticular "bloomlessness" (ausencia de vello) en sorgo, aparece controlado por dos loci (Peterson et al., 1982); para este mismo carácter, la ACG es de nuevo significativa, y no así la ACE (Jordan et al., 1983). Según Tarumoto (1980), otro carácter cuticular, el carácter "glossy" de las hojas de sorgo, que tiene que ver con las ceras y la humectabilidad de la superficie foliar, está determinado por un alelo recesivo (gl).
4.3 Criterios indirectos de selección

La selección para condiciones de estrés se puede llevar a cabo por parámetros indirectos, además de por el rendimiento. Los llamados "criterios de selección fisiológicos" son aquellos que determinan la respuesta de la planta en condiciones de estrés.

El desarrollo de un criterio de selección indirecto útil para la mejora debe seguir las siguientes etapas (Hanson y Nelsen, 1980):

a) Definir el efecto del estrés sobre el cultivo y las estrategias que éste puede presentar para enfrentarse al posible daño.

b) Identificar caracteres medibles que determinen respuestas a cada tipo específico de estrés.

c) Investigar los mecanismos fisiológicos involucrados en condiciones controladas, y desarrollar tests rápidos y fiables para identificarlos.

d) Mediante esos tests, estudiar la variabilidad natural existente para los mecanismos de tolerancia elegidos, asegurándose de que existe variabilidad suficiente para ser utilizada en mejora.

e) Verificar que esa variabilidad está bajo control genético, y averiguar de qué tipo de control se trata.

f) Comprobar los criterios indirectos en colecciones de materiales de tolerancia conocida.

Según Tal (1985) deben cumplir además otros dos requerimientos, estar correlacionados con el rendimiento y poder llevar a cabo los tests en ensayos a gran escala. Si además son aplicables en etapas tempranas del desarrollo, y no son destructivos, mejor.

Este sería un enfoque "ideotipo" (Fischer, 1981), aplicado a la mejora, que busca predecir el rendimiento a través de la comprensión de los procesos involucrados en su determinación. Pero también es válido otro tipo de enfoque, definido por el mismo autor, el llamado "black-box", en el que se comienza por observar el rendimiento y ver qué otros caracteres están asociados al mismo. Este enfoque está más difundido actualmente que el anterior, pero a medida que se conozcan mejor los procesos fisiológicos que determinan la tolerancia al estrés, cobrará mayor importancia el "ideotipo".
Los caracteres así identificados entrarían en la etapa "d" de las previamente definidas.

El estudio del papel de estos caracteres como componentes de la resistencia al estrés, se suele llevar a cabo comparando su expresión en genotipos de "tolerancia" o "susceptibilidad" contrastadas.

Las desventajas que presentan los criterios fisiológicos se centran en la dependencia excesiva de las condiciones microambientales momentáneas, y en la dificultad de que los fisiólogos, que deben desarrollar las técnicas de cribado, sacrificuen precisión y complejidad por la rapidez necesaria en la mejora (Blum, 1988). A ello hay que añadir la dificultad real en juzgar la contribución a la tolerancia y al rendimiento bajo estrés de un determinado atributo, en parte por los distintos transfondos genéticos en que se suele evaluar.

El empleo de los caracteres fisiológicos, sobre todo en un enfoque "ideotipo", adquiere una mayor relevancia en el caso de la salinidad, a la luz de los argumentos expuestos por Yeo y Flowers (1986); la tolerancia a la salinidad ha sido tratada en muchas ocasiones como un carácter único, cuando en realidad está determinada por una variada gama de mecanismos. Al contrario que en algunos casos frente al estrés hídrico, las especies cultivadas no han recibido presión de selección a favor de la tolerancia a la salinidad durante su domesticación, por tanto, es muy improbable que una óptima combinación de mecanismos haya coincidido en alguna variedad actual. Además, los caracteres que confieren tolerancia podrían estar ocultos, de forma que su expresión no fuera suficiente como para afectar al fenotipo, de modo que este fuera identificado en un proceso de selección. Concluyen estos autores que sería posible seleccionar, por separado, a favor de cada uno de los mecanismos fisiológicos o bioquímicos, que han demostrado validez, y una vez que estuvieran bien enfatizados y fijados, combinarlos para lograr variedades con una tolerancia que habría sido más improbable de lograr por métodos convencionales.

Teniendo en cuenta que aumentar el rendimiento es el fin último de casi todos los programas de mejora, se consideran aquí como indirectos los criterios de selección distintos del rendimiento "per se".
4.3.1 Criterios indirectos de tolerancia a la salinidad

4.3.1.1 En fase de germinación-emergencia

La principal ventaja de los caracteres de germinación-emergencia es que permiten la evaluación de grandes colecciones de materiales en un espacio y un periodo de tiempo relativamente pequeños. Así, se han llegado a cribar colecciones de hasta 22000 entradas (Cuadro 4).

Los medios empleados son, normalmente, placas petri con papel de filtro embebido en la solución correspondiente, cuando se trata de evaluar la germinación (Redmann, 1974; Donovan y Day, 1969; y un largo etcétera). Este método es criticado por someter a las semillas a unas condiciones ambientales bastante distintas de las naturales, y por no ocuperse de la fase crucial que abarca desde el inicio de la germinación hasta la nascencia. Por ello, se ha diseñado otra serie de técnicas con objeto de estimar la emergencia, tratando de imitar mejor el ambiente de un lecho de siembra; consisten fundamentalmente en suelo o arena tratados y equilibrados con una solución salina, emplazados en contenedores del tipo de tiestos o bandejas (Francois et al., 1986). La ventaja de estos métodos es que obligan a los hipocótilos a atravesar una capa salinizada, como ocurriría en un campo natural. Su mayor desventaja es la laboriosidad. Stout et al. (1980), Schaller et al. (1981) y Francois et al. (1982), encontraron buenas correlaciones entre los resultados proporcionados por técnicas basadas en germinaciones en papel o en suelo, y la tolerancia en campo.

Otros autores han optado por una solución de compromiso entre las dos técnicas citadas, colocando las semillas en algún tipo de soporte, en contacto con la solución salina, y aguardando un lapso de tiempo suficiente para que las plántulas lleguen a desarrollar la primera hoja verdadera, considerando ese momento como la "emergencia". Ejemplos de esta técnica son los de Norlyn y Epstein (1984) y Martínez-Cob et al. (1987b).

Los criterios más comunes empleados en cualquiera de estas técnicas son el porcentaje final y la tasa de germinación y/o emergencia. También se utilizan otros, como la tasa de imbibición (Chapman, 1978); la longitud o el peso seco de la plántula, del coleóptilo o de la radícula y la relación entre ambos (Mozafar y Goodin, 1986; Bal y Chattopadhyay, 1987); o el índice de estrés de germinación-emergencia (Martínez-Cob et al., 1987a), que mide la velocidad de la germinación-emergencia en un tratamiento salino, relativo a un control no salino.
Mención aparte merecen los parámetros basados en las técnicas de regresión propuestas por Maas y Hoffman (1977) y van Genuchten (1983). Hay que hacer la salvedad de que son muy costosas para el cribado de grandes colecciones, pues precisan de la utilización de suficientes niveles salinos para asegurar una buena estimación de los parámetros. Maas y Hoffman proponen definir la tolerancia mediante una regresión lineal simple del rendimiento frente a la CE del suelo, pero introduciendo el concepto de conductividad umbral, que es aquélla a la que se inicia el descenso de producción. Sin embargo la respuesta real no es lineal, siguiendo una curva sigmoide inversa. Van Genuchten propone varios modelos curvilíneos, además del rectilíneo de Maas y Hoffman.

Estas ecuaciones son fácilmente extrapolables a la fase de germinación, cambiando la variable producción por cualquier otra que exprese la respuesta de los fenotipos a la salinidad.

En sorgo, Lyles y Fanning (1964) encontraron un umbral de potencial hídrico en el suelo de unas 8 atmósferas, equivalente al que provocaría una CE de 22 dS/m, hasta el cual la emergencia del cultivar RS610 no se veía afectada. Francois et al. (1984), trabajando con los híbridos Double-TX y NK-265, no advirtieron un efecto significativo de la sal (NaCl+CaCl₂) sobre la emergencia hasta pasados los 8.2 dS/m de CE en la solución del suelo. Por encima de ese valor el proceso se ralentizaba, pero sin llegar a afectar al porcentaje final de emergencia, que se mantuvo hasta la concentración máxima utilizada de 22.1 dS/m.

4.3.1.2 En fase de desarrollo vegetativo y planta adulta

En estas fases, es muy común realizar la selección en condiciones controladas, cámara de crecimiento o invernaderos, para asegurar la precisión en la aplicación de los tratamientos salinos.

Un criterio empleado es la supervivencia en esas condiciones (Kingsbury y Epstein, 1984), aunque hay que adoptarlo con precaución pues la supervivencia no lleva aparejado necesariamente un rendimiento económicamente aceptable.

Otro criterio suele ser el desarrollo vegetativo, bien como producción de biomasa de la parte aérea, o como alguna medida de peso y longitud de raíces y tallos. En este caso, es necesario referir las variables a un control no salino para obviar las diferencias genotípicas en crecimiento potencial (Blum, 1988).
La selección en condiciones de campo presenta las dificultades derivadas de la variabilidad ambiental. Un modo de controlar hasta cierto punto esa variabilidad, es la imposición de un gradiente de tratamientos salinos mediante líneas de aspersión. Se trata de un sistema desarrollado por Royo (1989), modificando un diseño previo de Hanks et al. (1976). Otra alternativa es la de medir la salinidad real en cada parcela cosechada (Richards et al., 1987), aunque es un método demasiado laborioso para emplearlo en cribados de materiales.

La falta de un conocimiento preciso de los procesos fisiológicos que actúan en la tolerancia a la salinidad, hace que apenas haya buenos criterios fisiológicos disponibles (Srivastava y Jana, 1989).

Las lesiones necróticas foliares suelen estar relacionadas con la llegada de iones a la parte aérea (Shannon, 1979), lo que ha sido demos-trado para el cloro en el caso de *Agropyrum elongatum* (Shannon, 1978), aunque, en el sorgo, esta relación no haya sido encontrada (Maas, 1985). En algunos casos, por tanto, la selección en contra de la aparición de estas lesiones, lo sería también a favor de un comportamiento de exclusión iónica de la parte aérea.

La acumulación de solutos compatibles es otro criterio relativamente rápido de juzgar y útil, en cultivos que los empleen en osmorregulación (Shannon, 1979). Las medidas directas de ajuste osmótico son demasiado lentas para ser consideradas como criterios útiles.

Los contenidos iónicos foliares pueden ser válidos como criterios en cultivos con mecanismos de exclusión (Blum, 1988). Flowers y Yeo (1981), Hajibagheri et al. (1987) en arroz, y Bizid et al. (1988) en triticale, encontraron una relación entre contenido en sodio y tolerancia a salinidad, aunque en otros trabajos (Richards et al., 1987) esta relación no se manifestó. Sin embargo Yeo y Flowers (1986) estiman que, en el arroz, el contenido de sodio sólo explica un 50% de la variabilidad genotípica en cuanto a la supervivencia de plantas, por lo que recomiendan no centrarse sólo en este carácter para realizar la selección; argumentan, además, que favorecer exclusivamente el mecanismo de exclusión, puede llevar a problemas de ajuste osmótico a niveles más altos de salinidad.

El contenido foliar en potasio también ha sido propuesto como criterio de selección. Según Pathamanabhan y Rao (1976), los genotipos con mayor contenido en potasio serían los más tolerantes. El fundamento de este criterio podría estar en una mayor capacidad de retranslocación del potasio, vía floema, hacia las zonas en crecimiento, donde su pre-
sencia es más necesaria (Bogemans et al., 1990).

Existen otros criterios, recopilados por Shannon (1979), con mayor o menor fundamento fisiológico, pero que no se han aceptado ampliamente.

Recientemente, se han propuesto nuevas técnicas, como el contenido de etileno (Khan et al., 1987), que mostraba una excelente correlación con la tolerancia del arroz en fase de plántula; la tasa de fotosíntesis (Pandey y Srivastava, 1987), bastante correlacionada con el rendimiento de grano en 12 variedades de arroz; o el contenido de histamina de las semillas de girasol (Beletskii et al., 1987). Todas ellas necesitan de estudios posteriores que las confirmen.

4.3.2 Criterios indirectos de tolerancia a la sequía

En el caso del estrés hídrico, como en el de salinidad, se han desarrollado técnicas de cribado, tanto de campo como en condiciones controladas. Aquí también el sistema de gradiente de riego creado por una línea de aspersión (Hanks, 1976) es un método eficaz de imponer diferentes tratamientos de estrés hídrico, de un modo homogéneo. Hang y Miller (1983) en trigo, Pandey et al. (1984) en leguminosas de grano, Specht et al. (1986) en soja, y Paci (1986) en sorgo, han empleado este sistema para comparar genotipos, o para estudiar la validez de posibles mecanismos de tolerancia a la sequía.

En cuanto a criterios útiles para realizar cribados de colecciones, el principal trabajo en el sorgo ha sido desarrollado por Rosenow y Clark (1981). Estos investigadores identificaron unos "síndromes" de síntomas característicos del sufrimiento provocado por el estrés hídrico a las plantas, pre o post-antesis. Los síntomas observados pre-antesis, y contra los cuales efectúan la selección son enrollado foliar, excesiva verticalidad foliar, color blanquecino de las hojas, puntas o márgenes de las hojas secas, retraso de la floración, efecto "silla de montar" (solo forman panícula las plantas situadas junto a los pasillos), pedúnculo corto, corrido de flores y tamaño de panícula reducido. Los síntomas de estrés post-antesis, en cambio, son senescencia prematura, tallos podridos, y encamado y reducción del tamaño del grano sobre todo en la base de la panícula. Todos estos caracteres son evaluados en cinco localidades con regímenes hídricos contrastados.

El enrollado foliar también ha sido empleado por Blum et al. (1989), como carácter discriminatorio de la tolerancia al estrés hídrico. La tardía aparición del enrollado es un mecanismo que indica mante-
nimiento de la turgencia, pero puede ser reflejo de otros dos mecanismos, ajuste osmótico, o sistema radicular más desarrollado, aunque ambos también pueden aparecer conjuntamente. A pesar de ser un carácter útil, es posible que su presencia en dos genotipos no tenga el mismo significado, por lo que ha de tratarse con precaución. Este es un problema general que aparece cuando los distintos mecanismos de tolerancia no operan al mismo nivel de integración.

Otro criterio de selección muy popular es la diferencia de la temperatura del dosel del cultivo con el aire, medida mediante un termómetro infrarrojo. Hofmann et al. (1984) y Chaudhuri et al. (1986) hallaron diferencias significativas para este carácter en genotipos de sorgo, lo que realmente se estima con esta temperatura es la capacidad de evitar la deshidratación. Si un genotipo presenta una temperatura bastante más alta que la del aire, se interpreta que no puede disipar calor por el flujo transpiratorio, es decir que probablemente ha sobrepasado ya el potencial hídrico foliar al que se produce el cierre estomático, y adopta la postura conservadora de evitar la pérdida de agua. Por tanto, otro genotipo con menor diferencia de temperatura respecto al aire, será capaz de posponer la deshidratación por más tiempo. Aunque este criterio es uno de los pocos que se emplean rutinariamente en programas de mejora (Blum, 1986), su utilización presenta bastantes complicaciones (Blum, 1988a). La expresión de este carácter, como en el caso del enrollado, puede deberse a otros mecanismos subyacentes.

Algunos caracteres de la superficie foliar involucrados en la evitación de la deshidratación pueden ser evaluados visualmente (Blum, 1988a), y la cantidad de cera epicuticular puede ser medida con bastante facilidad (Gay, 1986).

La tasa de pérdida de agua en hojas cortadas, aunque no siempre muestra una correlación clara con el rendimiento, es muy rápida de medir y se emplea rutinariamente en un programa de mejora de trigo a gran escala en Canadá, y en otro de mejora de sorgo en Sudáfrica.

Los caracteres de raíz son laboriosos y difíciles de medir. Para arroz (Chang y Loresto, 1985) se diseñó un sistema de cultivo aeropónico para poder observar con comodidad el desarrollo radicular, pero es dudo-so que los resultados sean extrapolables a cultivo real.

La formación de panículas es muy sensible al estrés hídrico en sorgo (Manjarrez-Sandoval et al., 1989). O'Neill et al. (1983), empleando un gradiente de estrés hídrico creado con una línea simple de aspersión, observaron una drástica disminución en el número de panículas al aument-
tar el grado de estrés. Es un criterio fácil y rápido de medir, siempre que se cuente con parcelas control para las comparaciones.

La capacidad de retranslocar a la espiga los asimilados acumulados antes de la antesis es relativamente fácil de medir. Requiere el uso de desecantes foliares que provocan la pérdida de la clorofila de todo el área verde, con lo que el llenado del grano depende exclusivamente de las reservas acumuladas previamente (Blum et al., 1983). Sin embargo, como se indicaba en el apartado de mecanismos de tolerancia, no está claro el beneficio de éste en el sorgo.

Sullivan y Ross (1979) pusieron a punto un método para evaluar la tolerancia celular a la desecación. Se basa en la alteración de las membranas que produce el estrés hídrico o térmico, que se traduce en una mayor permeabilidad y un escape de electrolitos al medio circundante; una simple medida de CE daría una idea de la integridad de las membranas. Sin embargo, a este criterio le falta una confirmación experimental de su relación con el funcionamiento de las plantas bajo estrés hídrico.

Un criterio propuesto recientemente es la medida de la fluorescencia de la clorofila (Krause y Weis, 1984). Este carácter viene a reflejar el funcionamiento del fotosistema II, que se ve afectado en condiciones de sequía (sería un efecto no estomático sobre la tasa de fotosíntesis). Havaux et al. (1988), Martiniello y Blum (1989) y Pastore et al. (1989), lo han empleado con cierto éxito en trigo.

Finalmente, un carácter que se está revelando de gran interés es la relación 13C/12C en los tejidos de la planta en el momento de la cosecha (Farquhar y Richards, 1984), que también tiene que ver con los efectos no estomáticos sobre la fotosíntesis. Durante la carboxilación se produce una discriminación contra el isótopo 13C, relativamente poco frecuente en el aire, ya que cuanto menor es la presión parcial de dióxido de carbono en el interior de la hoja, la eficiencia de la transpiración es mayor, y disminuye la discriminación contra el isótopo raro. Acevedo y Ceccarelli (1988) revelaron la importancia de este carácter para discriminar genotipos tolerantes y susceptibles, en condiciones de estrés hídrico. Como dice Passiourea (1986), lo más importante de este carácter es que ha mostrado variabilidad genética en la eficiencia de la transpiración, donde antes parecía no existir. Además es una medida que integra todo el ciclo de un cultivo, frente a otras determinaciones fisiológicas, que son excesivamente puntuales y dependientes de las condiciones del momento de la medida.
III. OBJETIVOS
Con un objetivo general de conocer la respuesta del sorgo para grano, *Sorghum bicolor* (L.) Moench, a los estreses hídrico y salino, y las posibilidades de mejora ante estas condiciones ambientales adversas, para su aplicación en programas nacionales, este trabajo doctoral se concreta en los objetivos específicos que se detallan a continuación.

1. Analizar las respuestas del cultivo al estrés salino, tanto en fase de germinación-emergencia, como en fases de desarrollo vegetativo y planta adulta, estableciendo la posible relación entre ellas.

2. Analizar la respuesta del sorgo en estado adulto, al estrés hídrico.

3. Establecer la posible relación entre las tolerancias a ambos tipos de estrés.

4. Estudiar el comportamiento de diversos caracteres morfológicos y fisiológicos, en relación a la tolerancia a ambos tipos de estrés.

5. Evaluar la variabilidad genética y posibilidades de mejora, existentes en los caracteres estudiados, y analizar su utilidad como criterios indirectos de selección, para la aplicación a programas de mejora para tolerancia a condiciones ambientales adversas.
IV. MATERIAL Y MÉTODOS
1. MATERIAL VEGETAL

El cribado inicial en fase de germinación-emergencia se realizó sobre 85 líneas puras, 42 mantenedoras (B) y 43 restauradoras (R) de la androesterilidad citoplásmica, procedentes de diversas colecciones norteamericanas. Fueron multiplicadas en la Estación Experimental de Aula Dei en 1986, y se seleccionaron entre un grupo más amplio, por sus caracteres de producción y ciclo.

El resto de los experimentos se llevó a cabo sobre las 12 líneas seleccionadas en dicho cribado, y los 18 híbridos resultantes de los cruzamientos entre ellas según un diseño factorial incompleto. Los nombres y orígenes de las líneas, así como los cruzamientos efectuados, se recogen en el Cuadro 5, indicándose en el mismo el número que identificará a cada genotipo en el resto del trabajo. En el Cuadro 6 se muestran los genotipos empleados en cada uno de los experimentos efectuados.

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre (origen)</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>6</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IA-9 (a)</td>
<td>20</td>
<td>23</td>
<td>(14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IA-17 (a)</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>N-4692 (d)</td>
<td>21</td>
<td>15</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>IA-33 (a)</td>
<td>24</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>KS-22 (e)</td>
<td></td>
<td>13</td>
<td></td>
<td>16</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>G-68027 (b)</td>
<td></td>
<td></td>
<td>28</td>
<td>17</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

ORIGENES:
- a - Ames, Iowa
- b - Beltsville, Maryland
- c - Stillwater, Oklahoma
- d - Lincoln, Nebraska
- e - Manhattan, Kansas
- f - El Centro, California

Cuadro 5. Nombre, origen y numeración de los genotipos.
I - Germinación-emergencia en 10 niveles de salinidad
II - Ensayo con línea simple de aspersión
III - Ensayo con triple línea de aspersión (1988)
IV - Ensayo con triple línea de aspersión (1989)

2. METODOS

2.1 Ensayos de germinación-emergencia

La germinación se realizó en bandejas de plástico, con papel plisado previamente humedecido con la solución correspondiente; asegurando una cantidad suficiente de solución poniendo una bayeta sintética, embebida en ella, en el fondo de la bandeja, que se tapaba herméticamente (Martínez, 1985). Antes de su puesta en germinación, las semillas se espolvoreaban con un fungicida de amplio espectro (ortho-difolatan 80).

Las soluciones empleadas se prepararon a base de cloruro sódico y cálcico, al 50% en peso, sobre agua destilada y desionizada. Las CE de las soluciones del cribado inicial fueron de 0 (control), 10 y 20 dS/m, mientras que el experimento sobre la respuesta de 30 genotipos a 10 niveles salinos se realizó con soluciones de 2 (control de agua de pozo), 4, 8, 12, 16, 20, 24, 28, 32 y 36 dS/m.

El periodo de incubación para el cribado inicial fue de 14 días, en oscuridad a temperatura constante de 23°C. La ralentización de la germinación, debida a la salinidad, aconsejó extender ese periodo a 28 días para la germinación en los 10 niveles salinos.

Cada variante genotipo x nivel salino constó de 4 repeticiones con 25 semillas cada una.
Tras un conteo de semillas germinadas (SG), plántulas con la primera hoja emergida (PPH) (Figura 3), plántulas viables sin la primera hoja emergida (PV), plántulas no viables o plántulas anormales (PNV), se han elaborado los índices, que a continuación se describen, con el fin de eliminar las diferencias debidas a un distinto potencial de germinación de los genotipos:

- porcentaje relativo de emergencia (PRE), definido como:

\[
\text{PRE} = \frac{\text{PPH tratamiento salino} \times 100}{\text{PPH tratamiento control (media de 4 repeticiones)}}
\]

- porcentaje relativo de semillas germinadas (PRG), análogo al anterior.

2.2 Ensayos de campo

2.2.1 Descripción de la triple línea de aspersión

Los genotipos estudiados han sido sometidos a distintos grados de estrés hídrico o salino en 1988 y 1989, impuestos mediante el riego con una triple línea de aspersión (TLA), cuya línea central suministra agua con sal y las dos laterales agua dulce. En 1987 se realizó un ensayo en un gradiente de estrés hídrico, creado con una línea simple de aspersión (Hanks et al, 1976).

La TLA consiste en tres líneas de aspersión colocadas en disposición paralela y separadas por una distancia de 15 m, que es el alcance de los aspersores (Figuras 4 y 5). Por ello, mediante la superposición de las distribuciones de agua producidas por la línea central de agua salina y las dos laterales de agua dulce, se establece un gradiente de salinidad, manteniéndose constante la cantidad de agua aplicada. Situando los genotipos en franjas perpendiculares a las líneas de aspersión, (Figura 5), se obtienen diversas parcelas de un mismo cultivar sometidas a salinidades diferentes, máximas cerca de la línea central y mínimas cerca de las dos laterales.

Por otra parte, en las dos zonas externas a las líneas laterales se produce un gradiente de agua dulce, apto para el estudio de la respuesta de la planta frente al déficit hídrico.
Figura 3. Plántulas con la primera hoja emergida.
Cada una de las tres líneas de aspersión estuvo formada por dos tubos de aluminio de 3 pulgadas de diámetro, con aspersores cada 9 m, por lo que en el conjunto de los dos tubos de cada línea hay aspersores cada 4.5 m, asegurando así una distribución muy uniforme del riego.

Los aspersores utilizados son de la casa Wright, modelo MPL-75 con dos boquillas de 3/32" y 9/64" de diámetro y de caudal \(Q = 2044 \text{ l/h} \), a una presión de 2.1 Kg/cm\(^2\). La tubería desde el hidrante hasta los tubos de los aspersores es de 4 pulgadas de diámetro.

En la tubería central se inyecta una solución salina concentrada, preparada previamente en un depósito de 3100 l, al que se acopla una moto-bomba de gasoil, marca Campeón modelo D-350 de 7 HP, a 3000 rpm.

La disolución y concentración uniforme de las sales en el depósito se consigue mediante agitación, utilizando para ello una manguera con una lanza que reintroduce la solución en el depósito. La preparación de la misma se hacía el día anterior a cada riego manteniéndose en agitación durante unos cuarenta minutos, tiempo suficiente para la completa disolución de las sales.

Tanto la manguera para el llenado del depósito desde el hidrante, como la inyección en la tubería central de aspersores, es de 1.5 pulgadas de diámetro. En la manguera de inyección se instaló un caudalímetro.

Para controlar la conductividad eléctrica de la solución salina suministrada por la línea central, que es la resultante de la proporción del volumen y salinidad del agua inyectada desde el tanque y de la que proviene del hidrante de riego, se acopló a la tubería central una manguera de 20 mm de diámetro, aguas abajo del punto de inyección, a través de la cual se media periódicamente la CE con un conductímetro portátil.

Actuando sobre las revoluciones del motor, se inyecta más o menos solución concentrada a la línea central, consiguiéndose de esta forma un ajuste muy aproximado a la solución final deseada en la misma.

Siendo el viento un elemento fundamental en la distribución del agua en el riego por aspersión, antes de cada riego se realizaban medidas de la velocidad del viento en la propia parcela, mediante un anemómetro portátil Richards 5393-1 y solo si la velocidad era inferior a 1.5 m/s se procedía al riego.
2.2.1.1 Preparación de la solución salina

Las sales utilizadas fueron, como ya se ha comentado, cloruro sódico y cloruro cálcico. El primero porque buena parte de la salinidad natural se debe a la presencia de esta sal, y el segundo con objeto de minimizar el riesgo de sodificación del suelo. Este fenómeno ocurre cuando la presencia de sodio en la solución del suelo es relativamente alta, frente a otros iones como calcio y magnesio, y provoca serios problemas de permeabilidad del suelo, por lo que su aparición en forma grave limitaría aún más el tiempo estipulado para cada riego.

La cantidad de cada sal que se aportó al tanque antes de cada riego fue de unos 40 kg de cloruro sódico y 45 kg de cloruro cálcico, según una proporción análoga a la calculada por Royo (1989). Con estas cantidades, la solución del tanque se agotaba casi completamente en cada riego (35-40 minutos), aplicando una CE en la línea central de unos 13 dS/m.

2.2.1.2 Instrumentación de la TLA

Para controlar la distribución y salinidad del agua de riego en la parcela, así como para conocer la salinidad y el estado hídrico del perfil del suelo, se usaron una serie de instrumentos cuya descripción es la siguiente:

a) Pluviómetros. Se utilizaron latas de 161 mm de diámetro, colocadas sobre una chapa a la que se soldó una varilla de hierro para clavarlas al suelo, a una altura de unos 150 cm sobre el mismo. Se instalaron 80 pluviómetros agrupados en dos bandas en la misma dirección que las bandas de los cultivos de sorgo, una después de la cuarta y otra después de la undécima banda de sorgo.

b) Sensor electromagnético (SEM). Se ha utilizado el modelo EM-38 de la casa Geónica que da lecturas de la CE del suelo en cuatro intervalos, 0-30, 0-100, 0-300 y 0-1000 mhos/m. Según sea la colocación del SEM sobre la superficie del suelo, horizontal o vertical, las medidas integran una profundidad aproximada de 1 y 2 metros, respectivamente.

c) Conductímetro. Se ha usado un conductímetro portátil y un termómetro para el control de la inyección de sal durante el riego, y posteriormente para la medida de la CE en cada uno de los pluviómetros de las zonas con gradientes de salinidad en la parcela. Este conductímetro da lecturas en decisiemens por metro (dS/m), unidad equivalente a la más
antigua de milimho por centímetro (mmho/cm), a la temperatura del agua, que posteriormente se transforman a su equivalente a 25°C. El conductímetro utilizado es un modelo de campo HANNA HI 8333, con un rango de medida entre 0.00001 y 200 dS/m.

2.2.2 Manejo de los ensayos

La experimentación se llevó a cabo en la finca del Campus de Aula Dei, en Montañana (Zaragoza). El suelo de la zona empleada es franco mixto mésico, típico torrifuvent.

Se estudiaron 11 genotipos de sorgo en 1987, 20 en 1988, y 30 en 1989, disponiéndolos de manera aleatoria, la mitad a cada lado de la línea central de la TLA, o de la línea simple, en su caso. El número de genotipos sólo permitió la realización de repeticiones en 1987, cuando se sembraron la totalidad de ellos a ambos lados de la línea de aspersión. La distribución de los genotipos en los ensayos se muestra en el Cuadro 7.

<table>
<thead>
<tr>
<th></th>
<th>1987</th>
<th></th>
<th>1988</th>
<th></th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IZQ</td>
<td>DER</td>
<td>IZQ</td>
<td>DER</td>
<td>IZQ</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>19</td>
<td>19</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>21</td>
<td>21</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>17</td>
<td>17</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>26</td>
<td>26</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Cuadro 7. Distribución de los genotipos en los ensayos de campo, a la izquierda y derecha de la línea central de aspersión.

La siembras se realizaron el 5 de mayo en 1987, el 4 de Mayo en 1988, y el 8 de Mayo en 1989, sobre suelo sin salinizar. Cada genotipo
se sembró con una densidad de 45 semillas por m² los dos primeros años, y 70 semillas por m² el tercero, con empleo de sembradora de ensayos desarrollada en la Estación Experimental de Aula Dei.

Se establecieron bandas a uno y otro lado de la línea central formadas por 20 parcelas cada una, con tres líneas de siembra, paralelas a las líneas de aspersión, de 2.80 m de longitud y 0,50 m entre líneas, dejándose un pasillo de 0,70 m entre cultivares.

En 1989, y dada la gran nascencia obtenida, se realizó un aclarado manual de las parcelas, antes de comenzar a regar, para alcanzar una densidad final no superior a 50 plantas por m².

El primer riego se aplicó el 23, 20 y 19 de Junio en los tres años sucesivos, estando el cultivo en estado vegetativo de 5 hojas.

El tiempo de cada riego fue, en general, de unos 35-40 minutos, con el fin de minimizar los posibles encharcamientos o escorrentías superficiales. Los tres últimos minutos de cada riego se dieron sin inyección de solución salina en la línea central, para producir un efecto de lavado de restos de sal sobre la superficie de las hojas y por consiguiente, minimizar la absorción foliar de iones.

La cantidad de agua recogida en los pluviómetros tras cada riego, se media en probeta graduada, y la CE con el conductímetro portátil ya comentado.

La salinidad del agua de riego aplicada por la línea central se fue incrementando en cada riego, hasta alcanzar en el quinto una CE de 13 dS/m. Este nivel se mantuvo en los riegos posteriores.

La frecuencia de riegos y cantidad aplicada en cada uno se calcula teóricamente de acuerdo con varios parámetros, tales como la evapotranspiración potencial del cultivo a lo largo de todo su ciclo en las condiciones locales, sistema de riego y eficiencia del sistema, y precipitación y humedad relativa. En nuestro caso, sin embargo, la baja permeabilidad del suelo de la parcela ha limitado la duración de los riegos a 35-40 minutos, momento a partir del cual se producían encharcamientos. De este modo, la frecuencia de tres riegos por semana, adoptada por cuestiones operativas, no llegó a cubrir las necesidades hídricas del sorgo en el periodo de mayor demanda, por lo que el cultivo se mantuvo ligeramente estresado en la fase central del desarrollo vegetativo.

67
En 1989 se realizaron medidas semanales con el SEM, colocándolo en posición horizontal en cada una de las parcelas de cada genotipo, en las zonas con gradiente de salinidad. La medida se realizaba 24 horas después de cada riego para tomarlas en condiciones parecidas de humedad del suelo. Dentro de cada parcela, el punto en el que se colocó el SEM era aproximadamente el mismo en cada fecha de lectura.

Las 20 parcelas de 2.80 x 1.50 m, que formaban la banda de cada genotipo, se consideraron como 20 tratamientos: 10 con una cantidad de agua recibida similar, pero con una CE variable (gradiente de estrés salino) y 10 con una cantidad de agua recibida variable, pero de igual salinidad (gradiente de estrés hídrico). Estos tratamientos se numeraron del 1 al 20 siendo el 1 el que recibió menos agua, el 10 y el 11 los que recibieron máximo riego no salinizado, y el 20 máximo riego con máxima salinidad (Figura 4). Los tratamientos 10 y 11 fueron considerados como controles no estresados de sus respectivos gradientes.

2.2.3 Parámetros evaluados

a) **Producción de grano**: En base a cosechadora de ensayos diseñada en la Estación Experimental de Aula Dei, ajustando la producción a 14º de humedad. En la totalidad de las parcelas. (kg/paercla).

b) **Peso hectolitrico**: Con empleo de analizador Dickey-John GAC III. En la totalidad de las parcelas. (En kg/hl).

c) **Plantas por parcela**: Número final de plantas existentes en la parcela. En la totalidad de las parcelas en 1987 y 1988, y en parcelas alternas en 1989. (En nº/paercla).

d) **Ahijamiento**: En base al número total de tallos de la parcela. En la totalidad de las parcelas en 1987 y 1988, y en parcelas alternas en 1989. (En nº de tallos/planta).

e) **Porcentaje de tallos con panicula con grano**: Basado en el conteo de paniculas con grano. En la totalidad de las parcelas. (En %).

f) **Granos por panicula**: Derivado de los caracteres a, c, d, e y g. (En nº).

g) **Peso de 1000 granos**: En base a contador de granos Numigral. En todas las parcelas. (En g).
h) **Fecha de floración:** En días desde siembra hasta floración del 50% de la parcela. En todas las parcelas. (En n°).

i) **Fecha de maduración:** En días desde siembra a cambio de color del 50% de la parcela. En todas las parcelas. (En n°).

j) **Período de llenado de grano:** Derivado de (i-h). (En n°).

k) **Enrollado foliar:** Evaluación visual, según escala de Blum et al. (1989), realizada cerca de la floración, cuando se empezaban a apreciar los efectos del estrés. En todas las parcelas, en los años 88 y 89. (0-ausencia, 5-máximo enrollamiento).

l) **Necrosis foliar:** Evaluación visual, según escala mostrada en la Figura 6. En todas las parcelas del gradiente de salinidad en 1989.

m) **Altura de planta:** Medida desde el suelo hasta el ápice de la hoja que llega más arriba, extendida manualmente. En todos los genotipos, en los tratamientos 2, 5, 10, 16 y 20 (1988) y 1, 5, 8, 11, 14, 18 y 20 (1989). (En cm).

n) **Longitud del pedúnculo:** Medida desde la inserción del pedúnculo a la base de la panicula. En todos los genotipos, en los tratamientos 2, 5, 10, 16 y 20 (1988) y 1, 5, 8, 11, 14, 18 y 20 (1989). (En cm).

k) **Longitud de la panicula:** Medida desde la base hasta el ápice. En todos los genotipos, en los tratamientos 2, 5, 10, 16 y 20 (1988) y 1, 5, 8, 11, 14, 18 y 20 (1989). (En cm).

o) **Peso seco de la planta:** Sin la panicula, tras dos meses de secado en invernadero. En todos los genotipos, en los tratamientos 2, 5, 10, 16 y 20 (1988) y 1, 5, 8, 11, 14, 18 y 20 (1989). (En g).

p) **Índice de cosecha:** Como cociente entre el peso de grano por planta y el peso seco total de la planta. En todos los genotipos, en los tratamientos 2, 5, 10, 16 y 20 (1988) y 1, 5, 8, 11, 14, 18 y 20 (1989). (En %).

Las medidas de los parámetros "m" a "p" se realizaron sobre cuatro plantas marcadas al comienzo del cultivo en cada parcela escogida, teniendo cuidado de elegir plantas en el mismo estado de desarrollo y con espaciamiento uniforme dentro del surco, evitando los bordes.
Figura 6. Escala visual para evaluación de necrosis foliar.
q) **Contenido relativo de agua (CRA):** Es una medida del estado hídrico de la planta. Se define como el porcentaje de agua que contiene un tejido vegetal respecto al máximo posible. Se calcula con la fórmula:

\[
PESO FRESCO - PESO SECO
\]

\[
CRA = \frac{PESO TURGENTE - PESO SECO}{PESO FRESCO - PESO SECO} \times 100
\]

En todos los genotipos, en los tratamientos 2, 5, 10, 16 y 20 (1988) una vez; y en los tratamientos 1, 6, 10, 16 y 20 (1989) dos veces en los genotipos del lado derecho y tres en los del izquierdo. Las mediciones se realizaron en fase de desarrollo vegetativo suficientemente avanzado para que se manifestaran los síntomas del estrés.

Se ha medido en cinco puntos para cada genotipo, de acuerdo con el siguiente protocolo: se toman tres discos de 21 mm de diámetro, de 4 hojas de plantas distintas, en cada punto. Los doce discos se introducen inmediatamente en un tubo de ensayo de cierre hermético que contiene agua destilada, y que ha sido tarado previamente. Se llevan los tubos al laboratorio y se pesan; la diferencia entre ambos pesos es, directamente, el peso fresco. Tras 24 horas, los discos se sacan de los tubos, se secan superficialmente con toallas de papel y se pesan; este es el peso turgente. Posteriormente, se colocan en una estufa a 65°C, durante otras 24 horas, tras las cuales se vuelven a pesar, obteniéndose el peso seco.

r) **Tasa de pérdida de agua en hojas cortadas (TPA):** Es un método rápido de evaluar la transpiración cuticular. En todos los genotipos, en los tratamientos 2, 5, 10, 16 y 20 (1988) una vez; y en los tratamientos 1, 6, 10, 16 y 20 (1989) dos veces en los genotipos del lado derecho y tres en los del izquierdo. Las mediciones se realizaron en fase de desarrollo vegetativo suficientemente avanzado para que se manifestaran los síntomas del estrés.

La tasa de pérdida de agua se calcula como miligramos de agua perdida por gramo de peso seco y por minuto.

Se ha medido en cinco puntos para cada genotipo de acuerdo con el siguiente protocolo: se cortan hojas recién expandidas de los puntos de muestreo, dejándolas secar en un ambiente estándar (25°C, en un secadero de semillas en nuestro caso). Se pesan al llevarlas al laboratorio, y después de 3 y 6 horas de secado, respectivamente, se repiten las pesadas. Si se asume que el cierre estomático máximo ocurre antes de que transcurran unos veinte minutos desde que se cortan las hojas, el agua perdida a partir de ese momento se debe a la transpiración cuticular y, en teoría, con una tasa de pérdida constante. Para calcular esta tasa es preciso conocer el peso seco de las muestras, lo que se hace del mismo
modo que para el CRA.

s) **Peso específico foliar (PEF):** Como relación entre el peso seco y la unidad de superficie foliar. Se realiza paralelo al apartado "q". (En mg/cm²).

t) **Relación peso turgente/peso seco:** Derivado de las medidas obtenidas en el método "q".

u) **Contenidos iónicos foliares:** Se realizaron muestreos en 1988 y 1989, en las zonas de gradiente de salinidad, con objeto de medir los contenidos iónicos foliares de los iones Cl⁻, Na⁺, K⁺, Ca²⁺ y Mg²⁺. En todos los genotipos en la fase de floración o comienzo de llenado de grano, muestreadándose en los tratamientos 11, 16 y 20 (1988) 3 plantas por separado; y en 1989, en los mismos tratamientos, una única muestra por parcela, constituida por hojas de varias plantas. La metodología empleada se basa en cortar segundas o terceras hojas, por debajo de la hoja bandera, que se llevan al laboratorio, donde se lavan dos veces con agua destilada y un pincel grueso. A continuación, después de eliminar los márgenes necrosados, se introducen las muestras en una estufa a 65°C. Tras 24 horas de secado, se sacan y muelen en un molinillo de muestras "Cyclone Sample Mill". Medio gramo de cada muestra molida se utilizó para la determinación del contenido de cloruro, mediante un clorurómetro Buchler, y un gramo para la determinación de los cationes, mediante calcinación seguida de espectrofotometría de absorción atómica (calcio y magnesio), o espectrofotometría de emisión (sodio y potasio).

2.3 **Tratamiento estadístico**

La evaluación de las diferencias entre las respuestas genotípicas a los estreses hídrico y salino se puede abordar con distintos procedimientos. Uno de ellos, muy empleado para este propósito, es el análisis de regresión conjunta de Finlay y Wilkinson (1963) que, en principio, parece indicado para un caso como el presente, en el que un sólo factor ambiental, disponibilidad de agua o salinidad de la misma, es la causa principal de la variación. Para evitar la confusión entre efectos aditivos y multiplicativos, debería aplicarse sobre valores relativos a un control; así, las diferencias reveladas serían atribuibles a la interacción genotipo x tratamiento. Sin embargo, este análisis sólo refleja con claridad las respuestas a la variación ambiental de tipo rectilíneo, y al menos en el caso de la salinidad, las respuestas observadas son de tipo curvilíneo, siguiendo un patrón aproximado de umbral-pendiente. Por
tanto, si se les aplica una regresión lineal, estas respuestas son "linealizadas" artificialmente, perdiéndose información.

Otra posibilidad sería aplicar un análisis AMMI (efectos aditivos principales e interacción multiplicativa). Su utilidad en la mejora genética vegetal y la comparación con otros análisis, incluyendo la regresión conjunta de Finlay y Wilkinson, aparecen comentados en una publicación de Zobel et al. (1988). El AMMI es aplicable a cualquier diseño factorial de dos factores; se basa en la estimación de los efectos debidos a los factores principales mediante un análisis de varianza convencional, tratamientos y genotipos en el presente caso, para después eliminarlos de la matriz de datos, dejando sólo los efectos debidos al error y a la interacción. Esos residuos son sometidos seguidamente a un análisis de componentes principales, cuyo resultado pondrá de manifiesto los efectos multiplicativos por la proximidad de los niveles de los dos factores en la representación de los componentes. Se pueden encontrar más detalles acerca de este análisis en Gauch (1988) y Gauch y Zobel (1988).

En teoría, el AMMI es capaz de reconocer y tratar como tales, los patrones de respuesta curvilíneos. Los resultados obtenidos, sin embargo, son poco claros. Por ejemplo, aplicado a los datos de rendimiento relativo de los ensayos de campo en condiciones de salinidad, aparecían agrupados los tratamientos de mayor y menor salinidad, siendo imposible discernir si los genotipos asociados a ellos lo estaban por verse favorecidos en condiciones de alta o en condiciones de baja CE. Para los mismos datos, pero en valores absolutos, los tratamientos quedaban bien diferenciados. No obstante, algunos genotipos se clasificaban de un modo aparentemente arbitrario, especialmente aquellos que apenas mostraban variación a lo largo del gradiente. Es posible que las variaciones entre parcelas debidas a errores ambientales y experimentales, hayan afectado al análisis.

Los problemas surgidos con la utilización de los dos tipos de análisis expuestos han aconsejado su rechazo en el estudio de las respuestas a la salinidad.

Van Genuchten (1983) propuso el empleo de varias ecuaciones para modelizar la respuesta del rendimiento de los cultivos a la salinidad. La más conocida es la función lineal de tres rectas, la cual considera que el rendimiento no sufre alteración según aumenta la salinidad del suelo, hasta que se alcanza una CE determinada (CEumbral). A partir de este punto, disminuye con una tasa constante, hasta alcanzar otro valor de CE, en que llega a hacerse 0. Otra de las funciones propuestas es de
tipo sigmoide, y viene dada por la ecuación

\[Y = \frac{Y_m}{1 + (CE/CE_{50})^p} \]

donde CE₅₀ es la CE a la que el rendimiento decrece un 50% del potencial (Y_m), y p es una constante empírica que gobierna la forma de la curva. Estas funciones son directamente aplicables a los caracteres de la fase de germinación-emergencia, sustituyendo rendimiento por el carácter en cuestión.

Así como en la función rectilínea de tres partes se puede calcular un CE₅₀, en la sigmoide se puede estimar un valor de CE_{umbral}, según la ecuación (Martínez-Cob et al., 1987)

\[CE_{umbral} = \frac{CE_{50}}{99^{1/p}} \]

lo que permite comparar los resultados de aplicar ambas funciones a las mismas series de datos. Martínez-Cob et al. (1987) encontraron que los parámetros derivados de ambas funciones, aplicadas a las respuestas de varios cultivares de cebada en fase de germinación, estaban fuertemente correlacionados. En el presente trabajo, se ha optado por emplear la función de tipo sigmoide pues, en algún carácter, la escasez de puntos con una CE superior a la umbral se traducía en una sobreestimación de la CE₅₀ para la función rectilínea de tres partes. Las comparaciones entre genotipos, tanto en fase de germinación-emergencia como en estado adulto, en condiciones de estrés hídrico o salino, se han llevado a cabo mediante la comparación de los CE₅₀ obtenidos, pues este parámetro es el que mejor integra las distintas fases de la curva de respuesta.

Las comparaciones múltiples entre medias se han realizado mediante el criterio de "mínima diferencia significativa de Bayes" (Waller y Duncan, 1969), en adelante mdsB, para un valor de k=100, que equivale a un error de significación α de 0.05.

Para los análisis de varianza en los caracteres de producción, peso hectolitríco, fechas de floración y de maduración, duración del periodo de llenado, enrollado y daño foliar se reagrupan los 10 tratamientos de cada gradiente en cuatro nuevos tratamientos, ante la imposibilidad de plantear repeticiones por el incremento en trabajo y costes que esto supondría. Estas reagrupaciones, que se muestran a continuación, se efe-
tuan de acuerdo a las pautas marcadas por la separación de medias (Cuadros 21 y 22, apartado V.2).

<table>
<thead>
<tr>
<th>Gradiente sequía</th>
<th>Tratamientos</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagrupación</td>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gradiente salinidad</th>
<th>Tratamientos</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagrupación</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las variables del cribado inicial en fase de germinación se han representado por medio de un gráfico "box and whisker"; mostrándose mediante un rectángulo la amplitud del valor intercuartílico (datos entre los percentiles 25 y 75), en el que se muestran asimismo la media y la mediana. El rango del total de los datos se expresa mediante dos líneas verticales, que llegan hasta una distancia de 1.5 rangos intercuartílicos, representándose de forma individual los valores más lejanos.

El soporte informático ha consistido en ordenadores de tipo PC-AT y portatil Toshiba T-1000, con la aplicación de los programas DBase III+, SAS versión 6.03 y Harvard Graphics.

2.4 Análisis genético

El estudio de la varianza genética de los caracteres, y su partición se ha desarrollado según el diseño factorial conocido como North Carolina II, o NCII (Comstock y Robinson, 1952). En este diseño se emplean dos conjuntos de parentales, "m" machos y "h" hembras. Cuando se aplica de forma completa, cada macho se cruza con la totalidad de las hembras. De esta manera se obtienen m x h cruzamientos distintos, que se pueden agrupar en conjuntos de medios hermanos (MH) de padres o de madres, y conjuntos de hermanos completos (HC).

El análisis de varianza de este modelo para un diseño experimental de bloques al azar se muestra en el Cuadro 8. Este análisis contiene dos componentes de varianza que estiman la covarianza de medios hermanos y, a partir de ellos, la varianza aditiva. En general, si las muestras de padres y madres proceden de la misma población, y si no existen efectos maternos, ambas estimaciones deberían ser idénticas. La heredabilidad, proporción de la varianza total transmisible a la descendencia, se calcula según las siguientes ecuaciones:
\[h^2(\text{sentido estricto}) = \frac{(\sigma^2_m + \sigma^2_h)/2}{\sigma^2_{\text{total}}} \]

siendo \(\sigma^2_{\text{total}} = \sigma^2_m + \sigma^2_h + \sigma^2_{hm} + \sigma^2_e \)

La aplicación del diseño completo implica siempre un costo económico muy elevado, al obligar al ensayo de la totalidad de los híbridos, de aquí que se haya extendido fuertemente entre los mejoradores la aplicación de este diseño en su forma incompleta. Este diseño incompleto se basa en el ensayo de un subconjunto de híbridos, que se recomienda superior al 20% de los posibles, y permite conseguir las estimaciones necesarias, mediante dos fases: a) análisis de varianza de un sólo factor (genotipo) para las 30 líneas e híbridos, y b) análisis de varianza de dos factores (machos y hembras), pero sin tener en cuenta la interacción. La estimación de la interacción machos x hembras se calcula en base a la diferencia en la variabilidad explicada por ambos análisis. En el Cuadro 5, se describe el subconjunto de híbridos utilizado.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>Estimaciones de CM</th>
<th>Componentes varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>mhr-1</td>
<td>(\sigma_e^2 + \sigma_{mh}^2 + \sigma_{hm}^2)</td>
<td>(\sigma_h^2 = \text{Cov}(MH_h) = D/8)</td>
</tr>
<tr>
<td>Hembras</td>
<td>h-1</td>
<td>(\sigma_e^2 + \sigma_{mh}^2 + \sigma_{hm}^2)</td>
<td>(\sigma_m^2 = \text{Cov}(MH_m) = D/8)</td>
</tr>
<tr>
<td>Machos</td>
<td>m-1</td>
<td>(\sigma_e^2 + \sigma_{mh}^2)</td>
<td>(\sigma_{hm}^2 = \text{Cov}(HC) - \text{Cov}(MH_h) - \text{Cov}(MH_m) = H/16)</td>
</tr>
<tr>
<td>HxM</td>
<td>(m-1)(h-1)</td>
<td>(\sigma_{mh}^2)</td>
<td></td>
</tr>
<tr>
<td>Bloques</td>
<td>r-1</td>
<td>(\sigma_e^2)</td>
<td>(\sigma_e^2 = D/4 + 3H/16 + E)</td>
</tr>
</tbody>
</table>

\[D = \text{varianza genética de tipo aditivo} \]
\[H = \text{varianza genética de tipo dominante} \]
\[E = \text{varianza ambiental (dentro de familias)} \]

Cuadro 8. Análisis de varianza de un diseño NCII.
V. RESULTADOS
Derivados de la metodología empleada, con experimentación de laboratorio y campo, como ya ha quedado descrita en el apartado anterior, se presentan a continuación los resultados obtenidos, agrupados en los siguientes apartados:

1. Salinidad en fase de germinación-emergencia.

2. Comprobación de volúmenes hídricos, concentraciones salinas, salinidad de suelos, etc., en la experimentación de campo.

3. Estrés salino en planta adulta.

4. Estrés hídrico en planta adulta.
1. SALINIDAD EN FASE DE GERMINACION - EMERGENCIA

1.1 Cribado inicial

En el Cuadro 9 puede observarse el efecto de las diferentes concentraciones salinas sobre la germinación y la emergencia, para el conjunto de los 88 genotipos incluidos en el cribado inicial. Se aprecia que la disminución en cuanto a la emergencia (PPH) es progresiva y significativa, mientras que, en lo relativo a la germinación, tan sólo sufre un ligero descenso para la concentración máxima utilizada.

<table>
<thead>
<tr>
<th>NIVELES</th>
<th>SG</th>
<th>PPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80.1 a+</td>
<td>63.3 a</td>
</tr>
<tr>
<td>10</td>
<td>80.5 a</td>
<td>47.6 b</td>
</tr>
<tr>
<td>20</td>
<td>76.4 b</td>
<td>16.1 c</td>
</tr>
</tbody>
</table>

+valores seguidos por la misma letra no difieren significativamente para α=0.05

Los distintos genotipos mostraron diferencias en cuanto a la capacidad de germinación y emergencia en el tratamiento control (datos no presentados), y para evitar que esas diferencias enmascararan las respuestas de los genotipos en los diversos niveles salinos, el estudio de la variabilidad intergenotípica se llevó a cabo con las variables PPHR y GERTOTR, relativas al control. Los análisis de varianza correspondientes a estas dos variables en los dos niveles salinos mostraron un comportamiento diferencial de los genotipos en todos los casos. Sin embargo, en la Figura 7 se aprecia que la capacidad discriminatoria de PPHR es mayor que la de GERTOTR en las dos concentraciones. Asimismo, cabe destacar que una cierta salinidad en el sustrato aumenta la capacidad germinativa de algunas líneas.

Los coeficientes de correlación entre algunas de las variables estudiadas se presentan en el Cuadro 10. Se observa que ni la capacidad de germinación en condiciones no salinas, ni la germinación relativa al control en los dos niveles salinos son buenos predictores de la "emergencia".
Figura 7. Representación "box and whisker" de las variables empleadas en el cribado de materiales.
Cuadro 10. Coeficientes de correlación de Pearson.
** probabilidad de error de tipo 1 menor que 0.01

<table>
<thead>
<tr>
<th></th>
<th>PPHR-10</th>
<th>PPHR-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERTOT-C</td>
<td>-0.097</td>
<td>0.054</td>
</tr>
<tr>
<td>GERTOT-10</td>
<td>0.393 **</td>
<td>0.035</td>
</tr>
<tr>
<td>GERTOT-20</td>
<td>0.274 **</td>
<td>0.118</td>
</tr>
</tbody>
</table>

De acuerdo con los resultados de este cribado, tal como se recoge en el capítulo IV, se seleccionaron 12 líneas que mostraran alta, media o baja tolerancia (Cuadro 11) en las condiciones de experimentación empleadas, para su posterior estudio detallado.

<table>
<thead>
<tr>
<th>ALTA</th>
<th>MEDIA</th>
<th>BAJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS-22</td>
<td>G-68027</td>
<td>IA-33</td>
</tr>
<tr>
<td>KS-24</td>
<td>OK-24</td>
<td>N-4692</td>
</tr>
<tr>
<td>IA-17</td>
<td>MELOLAND</td>
<td>IA-9</td>
</tr>
<tr>
<td>KS-3</td>
<td>N-4610</td>
<td>KS-33</td>
</tr>
</tbody>
</table>

Cuadro 11. Líneas de los distintos grupos de tolerancia seleccionados

1.2 Germinación-emergencia en 10 niveles salinos

Tras el periodo de incubación, se anotaron los resultados de las siguientes categorías de semillas y plántulas:

- PPH: plántulas con la primera hoja verdadera emergida del coleoptilo.
- PV: plántulas viables, pero sin la primera hoja emergida.
- PNV: plántulas no viables; bien debido a anormalidades, enfermedades o toxicidad por sal.
- SNG: semillas no germinadas

La Figura 8 muestra el comportamiento global de los 30 genotipos estudiados. En ella se observa una disminución casi lineal de PPH según aumenta la conductividad del sustrato. A sus expensas crecen, en primer lugar las PV y, después, las SNG y las PNV; siendo el aumento de las SNG paralelo a la caída de PPH por encima de los 20 dS/m.
RESULTADOS GLOBALES
(30 genotipos)

PLANTULAS NO VIABLES
(% frente a n° de semillas germinadas)

Figura 8. Resultados globales para los 30 genotipos.
De los resultados obtenidos, y discusión que se presenta en el próximo capítulo, podría deducirse que, parecen presentarse tres efectos distintos actuando en el proceso de germinación en condiciones salinas: a) un efecto osmótico en fase de imbibición (EOI); b) un efecto de retraso de la germinación debido a efectos osmóticos y/o tóxicos (ERG), y c) un efecto tóxico letal (ETL).

De esta forma se han definido dos nuevas variables, que se sumarán a PPHR y GERTOTR en el intento de evaluar la importancia relativa de dichos efectos en la explicación de la variabilidad intergenotípica encontrada:

- **PPHRGTC**: proporción de plántulas con primera hoja, relativa al número total de semillas germinadas en cada nivel 'i', y relativa a su vez a la proporción existente en el control

\[
\text{PPHRGTC} = \frac{\text{PPH}_i/\text{GERTOT}_i}{\text{PPH}_C/\text{GERTOT}_C} \times 100
\]

- **PPHPVRGTC** es análoga a la anterior, referida a la suma de PPH y PV

\[
\text{PPHPVRGTC} = \frac{\text{PPH}+\text{PV}_i/\text{GERTOT}_i}{\text{PPH}+\text{PV}_C/\text{GERTOT}_C} \times 100
\]

Así, sobre cada una de estas variables operan distintos efectos (Cuadro 12), lo que permitirá, hasta cierto punto, analizarlos por separado.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>EFECTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPHR</td>
<td>EOI + ERG + ETL</td>
</tr>
<tr>
<td>GERTOTR</td>
<td>EOI</td>
</tr>
<tr>
<td>PPHRGTC</td>
<td>*EOI + ERG + ETL</td>
</tr>
<tr>
<td>PPHPVRGTC</td>
<td>ETL</td>
</tr>
</tbody>
</table>

Cuadro 12. Variables utilizadas en los análisis de regresión, y efectos que operan sobre ellas.

(*) aunque el EOI no debería afectar al desarrollo de la plántula una vez que comenzara la germinación, al retrasar su puesta en marcha sitúa en peor posición de partida a los genotipos más afectados por él.
1.3 Elección de parámetros para las comparaciones genotípicas

Se ha aplicado el modelo de análisis de regresión propuesto por van Genuchten (1983) a los 30 genotipos, 12 líneas y 18 híbridos, para las cuatro variables descritas en el Cuadro 12. Los resultados de los análisis de varianza de los parámetros derivados de las ecuaciones de regresión se muestran en el Cuadro 13. Destaca el hecho de que los parámetros CE_{50} se comportan con mayor consistencia que los umbrales, ya que el coeficiente de variación es mucho menor en los cuatro casos, y las diferencias genotípicas explican mayor porcentaje de la varianza en tres de las variables; para PPHPVRGTC, los bajos coeficientes de determinación se explican por una varianza total muy baja, no existiendo diferencias genotípicas para este carácter. Como consecuencia, la MDSB es menor para los CE_{50}, siendo mejor su capacidad discriminatoria.

En el Cuadro 14 se presentan los coeficientes de correlación entre los parámetros de las ecuaciones de van Genuchten, para los 30 genotipos estudiados.

Se observa que la CE_{50} es el parámetro que mejor integra el patrón de respuesta a la salinidad. La correlación positiva observada en todos los casos entre CE_{UMBRAL} y el parámetro p, que determina la forma de la curva, indica una tendencia a una caída más abrupta de la curva (mayor p) a más alto umbral.

<table>
<thead>
<tr>
<th></th>
<th>MEDIA</th>
<th>CV</th>
<th>RANGO</th>
<th>R²</th>
<th>MDSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPHR</td>
<td>20.86</td>
<td>14.66</td>
<td>24.95</td>
<td>0.867**</td>
<td>4.00</td>
</tr>
<tr>
<td>GERTOTR</td>
<td>33.10</td>
<td>11.49</td>
<td>30.54</td>
<td>0.811**</td>
<td>5.05</td>
</tr>
<tr>
<td>PPHRGTC</td>
<td>23.28</td>
<td>13.43</td>
<td>25.59</td>
<td>0.872**</td>
<td>4.08</td>
</tr>
<tr>
<td>PPHPVRGTC</td>
<td>31.85</td>
<td>5.57</td>
<td>5.05</td>
<td>0.350</td>
<td>3.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MEDIA</th>
<th>CV</th>
<th>RANGO</th>
<th>R²</th>
<th>MDSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPHR</td>
<td>9.79</td>
<td>50.39</td>
<td>22.50</td>
<td>0.712**</td>
<td>6.79</td>
</tr>
<tr>
<td>GERTOTR</td>
<td>15.61</td>
<td>40.45</td>
<td>26.36</td>
<td>0.567**</td>
<td>9.43</td>
</tr>
<tr>
<td>PPHRGTC</td>
<td>12.04</td>
<td>50.12</td>
<td>25.28</td>
<td>0.720**</td>
<td>8.27</td>
</tr>
<tr>
<td>PPHPVRGTC</td>
<td>25.77</td>
<td>24.04</td>
<td>15.52</td>
<td>0.375*</td>
<td>12.44</td>
</tr>
</tbody>
</table>

Cuadro 13. Valores derivados de los análisis de varianza de los 30 genotipos para las variables de germinación-emergencia. *,** probabilidad de error de tipo 1 menor de 0.05 y 0.01
Cuadro 14. Coeficientes de correlación entre los parámetros de las ecuaciones de regresión, para los 30 genotipos.
1=PPHR; 2=GERTOTR; 3=PPHRGTC; 4=PPHPVRGTC

1.4 Contribución relativa de los efectos tóxicos y osmóticos

En el Cuadro 13, y atendiendo a las medias de los ocho parámetros, se observa que para el sorgo en conjunto, el ETL no comienza a actuar hasta los 26 dS/m, creciendo después notablemente su importancia. La producción de plántulas "emergidas", en cambio, presenta un umbral relativamente bajo, debido a todos los factores que actúan sobre ella. La pequeña diferencia entre los CE50 para PPHR y PPHRGT, sugiere un escaso efecto del EOI sobre la producción de plántulas "emergidas". Por contra, la gran distancia entre los mismos parámetros de PPHRGT y PPHPVRGT hace pensar en un fuerte componente de ERG.

Estos indicios se ven corroborados por los coeficientes de correlación de Pearson y parciales entre los CE50 que se presentan en el Cuadro 15.

Cuadro 15. Coeficientes de correlación parciales (sobre la diagonal) y de Pearson (debajo) para los 30 genotipos.

\[
\begin{array}{cccc}
\text{CE501} & \text{CE502} & \text{CE503} & \text{CE504} \\
\hline
\text{CE501} & --- & .478 & .860 & -.007 \\
\text{CE502} & .558 ** & --- & -.247 & .079 \\
\text{CE503} & .881 ** & .397 ** & --- & .121 \\
\text{CE504} & .260 ns & .186 ns & .278 ns & --- \\
\end{array}
\]

@ 1=PPHR; 2=GERTOTR; 3=PPHRGTC; 4=PPHPVRGTC
**,,*,ns: significación (0.01, 0.05 y no significativo) del coeficiente de correlación de Pearson.
1.5 Comparaciones entre genotipos

En los Cuadros 16 y 17 se presentan los promedios de los CE50 de las cuatro variables estudiadas para las 12 líneas puras y los 18 híbridos.

<table>
<thead>
<tr>
<th>GENOTIPOS</th>
<th>PPHR</th>
<th>GERTOTR</th>
<th>PPHARGTC</th>
<th>PHPVARGTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS-3 1</td>
<td>27.3 (7) cd</td>
<td>33.8 (15) g-k</td>
<td>30.4 (7) a-d</td>
<td>31.4 (20) a-c</td>
</tr>
<tr>
<td>MELDANL 2</td>
<td>26.6 (8) de</td>
<td>34.9 (12) f-i</td>
<td>27.2 (11) c-f</td>
<td>30.8 (27) a-c</td>
</tr>
<tr>
<td>IA-9 3</td>
<td>15.8 (22) k</td>
<td>30.7 (21) l-n</td>
<td>17.0 (26) l-m</td>
<td>30.9 (23) a-c</td>
</tr>
<tr>
<td>IA-17 4</td>
<td>31.0 (3) a-c</td>
<td>39.3 (6) b-f</td>
<td>31.5 (5) ab</td>
<td>34.0 (1) a</td>
</tr>
<tr>
<td>N-4610 5</td>
<td>23.1 (12) e-h</td>
<td>37.1 (7) c-g</td>
<td>26.4 (13) d-h</td>
<td>30.9 (24) a-c</td>
</tr>
<tr>
<td>KS-33 6</td>
<td>14.5 (25) k</td>
<td>36.3 (9) d-h</td>
<td>19.0 (21) j-1</td>
<td>30.8 (25) a-c</td>
</tr>
<tr>
<td>KS-22 7</td>
<td>33.1 (1) a</td>
<td>41.9 (3) a-c</td>
<td>32.5 (3) a</td>
<td>32.9 (6) ab</td>
</tr>
<tr>
<td>G-68027 8</td>
<td>14.6 (26) k</td>
<td>25.4 (11) e-i</td>
<td>18.3 (23) k-l</td>
<td>30.6 (28) a-c</td>
</tr>
<tr>
<td>KS-24 9</td>
<td>18.1 (19) i-k</td>
<td>32.2 (19) g-i</td>
<td>23.3 (16) f-i</td>
<td>32.8 (8) ab</td>
</tr>
<tr>
<td>DK-24 10</td>
<td>16.3 (21) k</td>
<td>36.8 (8) d-h</td>
<td>17.5 (25) l-m</td>
<td>30.8 (25) a-c</td>
</tr>
<tr>
<td>N-4692 11</td>
<td>15.6 (23) k</td>
<td>29.7 (22) j-o</td>
<td>9.4 (29) o</td>
<td>33.0 (5) ab</td>
</tr>
<tr>
<td>IA-33 12</td>
<td>21.8 (14) f-i</td>
<td>25.6 (10) e-i</td>
<td>22.4 (18) h-j</td>
<td>31.7 (18) a-c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PESO (mg cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2399</td>
</tr>
<tr>
<td>2088</td>
</tr>
<tr>
<td>2847</td>
</tr>
<tr>
<td>2510</td>
</tr>
<tr>
<td>2131</td>
</tr>
<tr>
<td>2185</td>
</tr>
<tr>
<td>2047</td>
</tr>
<tr>
<td>2361</td>
</tr>
<tr>
<td>1978</td>
</tr>
<tr>
<td>1820</td>
</tr>
<tr>
<td>3019</td>
</tr>
<tr>
<td>2222</td>
</tr>
<tr>
<td>1435</td>
</tr>
<tr>
<td>1794</td>
</tr>
<tr>
<td>1927</td>
</tr>
<tr>
<td>2628</td>
</tr>
<tr>
<td>1772</td>
</tr>
<tr>
<td>2150</td>
</tr>
<tr>
<td>2188</td>
</tr>
<tr>
<td>1791</td>
</tr>
<tr>
<td>1962</td>
</tr>
<tr>
<td>2101</td>
</tr>
<tr>
<td>2584</td>
</tr>
<tr>
<td>1975</td>
</tr>
<tr>
<td>1473</td>
</tr>
<tr>
<td>2614</td>
</tr>
<tr>
<td>1970</td>
</tr>
<tr>
<td>3544</td>
</tr>
<tr>
<td>2137</td>
</tr>
</tbody>
</table>

Cuadro 16. Valores medios de los 30 genotipos para el parámetro CE50 de las variables de germinación-emergencia (valores seguidos por la misma letra no son distintos para una significación de 0.05).
<table>
<thead>
<tr>
<th>GENOTIPOS</th>
<th>PPHR</th>
<th>GERTOTR</th>
<th>PPHRGTG</th>
<th>PPVMGTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS-3</td>
<td>12.9 (9) c-f</td>
<td>18.4 (8) a-g</td>
<td>20.4 (8) ab</td>
<td>21.4 (25) a-c</td>
</tr>
<tr>
<td>MELoland</td>
<td>17.9 (7) a-d</td>
<td>23.2 (5) a-e</td>
<td>18.1 (10) a-c</td>
<td>20.6 (27) a-c</td>
</tr>
<tr>
<td>IA-9</td>
<td>4.3 (22) h-k</td>
<td>13.8 (18) e-i</td>
<td>4.7 (23) e-g</td>
<td>23.4 (22) a-c</td>
</tr>
<tr>
<td>IA-17</td>
<td>22.1 (2) ab</td>
<td>25.4 (3) a-c</td>
<td>22.8 (5) ab</td>
<td>28.2 (11) a-c</td>
</tr>
<tr>
<td>N-4610</td>
<td>8.0 (17) f-k</td>
<td>24.7 (5) a-d</td>
<td>10.1 (14) c-e</td>
<td>17.6 (29) bc</td>
</tr>
<tr>
<td>KS-33</td>
<td>1.6 (30) k</td>
<td>20.5 (7) a-f</td>
<td>4.6 (24) e-g</td>
<td>21.2 (26) a-c</td>
</tr>
<tr>
<td>KS-22</td>
<td>18.8 (5) a-c</td>
<td>27.7 (1) a</td>
<td>21.6 (7) ab</td>
<td>23.1 (23) a-c</td>
</tr>
<tr>
<td>G-68027</td>
<td>3.4 (26) h-k</td>
<td>7.7 (28) g-j</td>
<td>4.8 (22) e-g</td>
<td>24.2 (21) a-c</td>
</tr>
<tr>
<td>KS-24</td>
<td>4.4 (21) h-k</td>
<td>15.0 (17) e-i</td>
<td>10.6 (12) c-e</td>
<td>30.9 (2) a</td>
</tr>
<tr>
<td>OK-24</td>
<td>2.1 (27) i-k</td>
<td>17.2 (12) b-g</td>
<td>2.4 (28) e-g</td>
<td>21.5 (24) a-c</td>
</tr>
<tr>
<td>N-4892</td>
<td>9.9 (12) e-h</td>
<td>24.8 (4) a-c</td>
<td>1.0 (30) g</td>
<td>31.5 (1) a</td>
</tr>
<tr>
<td>IA-33</td>
<td>12.0 (10) d-g</td>
<td>17.4 (11) b-g</td>
<td>10.5 (13) c-e</td>
<td>29.2 (7) ab</td>
</tr>
</tbody>
</table>

GEHM-13	20.5 (3) ab	13.6 (19) f-i	26.3 (1) a	27.0 (15) a-c
10x14	8.0 (15) f-k	12.1 (22 f-i	8.5 (19) e-g	16.0 (30) c
11x15	7.5 (18) f-k	17.7 (10) b-g	5.7 (20) e-g	29.7 (5) ab
7x21	24.1 (1) a	25.7 (2) ab	25.9 (2) a	26.8 (16) a-c
8x21	4.0 (23 h-k	10.1 (24) g-j	4.4 (25) e-g	19.1 (28) a-c
11x21	1.6 (29) k	10.4 (23) g-j	1.4 (29) fg	30.8 (3) a
9x31	3.9 (24 h-k	9.8 (25 g-j	3.8 (26) e-g	25.4 (20) a-c
10x31	5.3 (20 g-k	15.4 (14) d-i	9.1 (18) d-g	29.7 (6) ab
11x31	1.7 (28) jk	9.8 (27 g-j	5.5 (21) e-g	28.8 (9) a-b
9x42	15.6 (8) b-e	15.3 (15) e-i	25.5 (3) a	28.5 (10) ab
10x42	8.5 (15) f-j	13.0 (21) f-i	10.0 (15) c-e	26.1 (17) a-c
12x42	19.9 (4) ab	9.8 (26 g-j	24.8 (4) ab	29.0 (9) ab
7x52	9.3 (13 e-h	16.3 (13 c-h	16.6 (11) b-d	27.9 (12) a-c
8x52	3.5 (25 h-k	1.3 (30 j	2.8 (27) e-g	25.8 (18) a-c
12x52	18.0 (6) a-d	15.1 (16) e-i	19.8 (9) ab	27.8 (12) a-c
8x62	6.2 (19 f-k	6.8 (29 ij	9.4 (16) d-f	25.8 (19) a-c
9x62	11.7 (11 d-g	13.3 (20 f-i	22.2 (6) ab	27.8 (14) a-c
12x62	8.9 (14 e-i	18.0 (9 b-g	9.3 (17) d-g	23.8 (4) ab

Cuadro 17. Valores medios de los 30 genotipos para el parámetro CEUMBRAL de las variables de germinación-emergencia (valores seguidos por la misma letra no son distintos para una significación de 0.05).
Atendiendo a los CE\textsubscript{50} PPHR, se confirma la bondad de la selección realizada el año anterior con dos concentraciones salinas. Tres de las líneas calificadas como tolerantes (KS-22, IA-17 y KS-3) y tres de las intermedias (MELOLAND, N-4610 y OK-24) repiten su comportamiento. Por otro lado las tolerancias de KS-24 y G-68027 estaban sobreestimadas, y la de IA-33 subestimada. La observación de los umbrales lleva a parecidas conclusiones, pero con menor consistencia, habida cuenta de la peor calidad discriminatoria de este parámetro.

En general, el comportamiento de los híbridos es más cercano al de los parentales femeninos que a los masculinos. Sin embargo, se puede apreciar cómo los dos padres más tolerantes (IA-17 y KS-3), confieren a sus descendientes una tolerancia mayor que la que podrían esperar de sus madres.

Por otra parte, en estos Cuadros 16 y 17 se manifiestan las notables diferencias genotípicas para desarrollar plántulas en condiciones salinas (PPHR); también frente al EOI (GERTORT) y al ERG (PPHRGTC). No obstante, las medias para el parámetro CE\textsubscript{50} PPHVRGTC apenas se distinguen entre sí.

En la Figura 9 se detallan los patrones de respuesta mostrados por algunos de los genotipos más característicos. IA-17 es uno de los genotipos más tolerantes; IA-9, uno de los más susceptibles, y N-4692 presenta un patrón de respuesta muy distinto al resto.

Hay que resaltar el patrón de respuesta de la línea N-4692 y, en menor grado, de sus híbridos. Mientras que los demás genotipos mantienen un comportamiento "clásico" de umbral y caída, N-4692, tras germinar y desarrollar PPH en el tratamiento control en cantidades normales, sufre un brusco descenso para ambos caracteres en la concentración de 4 dS/m, disminuyendo luego paulatinamente según aumenta la salinidad. Este comportamiento se reveló incompatible con un ajuste mediante regresión, a la fórmula propuesta por van Genuchten, por lo que hubo de eliminarse el tratamiento control de este genotipo del análisis de regresión para PPHR, de esta forma los resultados mostrados en los Cuadros están basados en los 9 tratamientos salinos.
Figura 9. Patrones de respuesta de tres genotipos
1.6 Regulación genética de los caracteres estudiados

Una primera comparación lógica que cabe realizar con estos materiales es la de los híbridos frente a las líneas puras. Esta se ha llevado a cabo, mediante contrastes de significación, para los CE50 de las cuatro variables tratadas en los apartados anteriores (Cuadro 18).

<table>
<thead>
<tr>
<th></th>
<th>CE50₁</th>
<th></th>
<th>CE50₂</th>
<th></th>
<th>CE50₃</th>
<th></th>
<th>CE50₄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x})</td>
<td>(\sigma)</td>
<td>(\bar{x})</td>
<td>(\sigma)</td>
<td>(\bar{x})</td>
<td>(\sigma)</td>
<td>(\bar{x})</td>
</tr>
<tr>
<td>Líneas</td>
<td>21.5 (7.2)</td>
<td>35.9 (3.9)</td>
<td>22.9 (7.2)</td>
<td>31.7 (1.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Híbridos</td>
<td>20.4 (7.3)</td>
<td>31.6 (9.0)</td>
<td>23.5 (7.9)</td>
<td>31.9 (1.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPHR;</td>
<td>GERTOTR;</td>
<td>PPHRGTC;</td>
<td>PPHPVRGTC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 18. Resultados de los contrastes de significación entre híbridos y líneas puras.

Las diferencias entre los dos grupos no son significativas, destacándose un efecto heterótico general para estos caracteres, excepto en el caso de CE₅₀ GERTOTR. El valor más bajo que presentan los híbridos hace pensar que éstos son más susceptibles al EOI. Sin embargo, también puede deberse a la peor calidad de la semilla de los híbridos, motivada por las condiciones de su obtención.

En los Cuadros 19 y 20 se resumen los resultados de los análisis de varianza de los híbridos, según el diseño II de North Carolina. Las varianzas debidas al factor repetición y a sus interacciones con otros factores, no han sido significativas en ninguno de los casos, por lo que se han sumado al error. Los demás efectos principales, padres, madres e híbridos se han considerado como aleatorios, ya que la elección de los dos conjuntos de parentales se realizó de tal modo que representaran el mayor rango de variabilidad posible para la tolerancia a la salinidad en fase de germinación-emergencia. El análisis se realizó en dos fases, en la primera analizando efectos híbridos y error, y en la segunda padre, madre y error. El efecto padre x madre se dedujo de la utilización de los dos modelos.
<table>
<thead>
<tr>
<th>Fte.var.</th>
<th>GL</th>
<th>CE$_{50}^1$</th>
<th>CE$_{50}^2$</th>
<th>CE$_{50}^3$</th>
<th>CE$_{50}^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madres</td>
<td>5</td>
<td>2023.1 **</td>
<td>3472.8 **</td>
<td>1920.0 **</td>
<td>62.5 **</td>
</tr>
<tr>
<td>Padres</td>
<td>5</td>
<td>299.4</td>
<td>490.4</td>
<td>431.9</td>
<td>10.7</td>
</tr>
<tr>
<td>MXP</td>
<td>7</td>
<td>437.0 **</td>
<td>372.5 *</td>
<td>540.7 **</td>
<td>10.9</td>
</tr>
<tr>
<td>Error</td>
<td>50</td>
<td>303.7</td>
<td>1053.7</td>
<td>554.3</td>
<td>152.9</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>0.951</td>
<td>0.807</td>
<td>0.866</td>
<td>0.361</td>
</tr>
</tbody>
</table>

Cuadro 19. Sumas de cuadrados de los análisis de varianza, según el modelo NCII, de las variables CE$_{50}$.
1=PPhR; 2=GERTOTR; 3=PPhRGTC; 4=PPhPVRGTC

<table>
<thead>
<tr>
<th></th>
<th>CE$_{50}^1$</th>
<th>CE$_{50}^2$</th>
<th>CE$_{50}^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>14.3</td>
<td>26.7</td>
<td>12.8</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>0.0</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>14.1</td>
<td>8.0</td>
<td>16.5</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>6.1</td>
<td>21.1</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Cuadro 20. Componentes genéticos de la varianza de las variables CE$_{50}$, según el diseño NCII.

La varianza debida a las madres es responsable de la mayor parte de la variabilidad total, apareciendo siempre como significativa (Cuadro 19). Por contra, en ningún caso es significativo el efecto atribuible a los padres.

La información que dan los componentes genéticos de la varianza (Cuadro 20), redunda sobre lo mismo. En general, las magnitudes del componente materno de aptitud combinatoria general y del de la interacción, reflejo de la aptitud combinatoria específica, son bastante parecidas, y ambas mucho mayores que el componente debido a la aptitud combinatoria general de los padres.
2. VOLUMENES HÍDRICOS, CONCENTRACIONES SALINAS DEL AGUA DE RIEGO, Y SALINIDAD DE SUELOS

2.1. Volumenes hídricos

En la Figura 10 se representa la distribución del volumen total de agua aplicada, en base a una banda de pluviómetros en 1988 (88-AGUA), y a la media de las dos bandas en 1989 (89-AGUA), incrementado en la pluviometría natural recibida. Para el año 1987 se representan en la Figura 11 las curvas de distribución en ambas bandas de pluviómetros.

Se puede observar una aproximación bastante aceptable al efecto deseado, con una zona central de distribución de pluviometría homogénea, y dos zonas simétricas en los extremos, hacia donde el volumen de agua aplicada decrece casi linealmente, sin diferencias apreciables entre las bandas de pluviómetros.

Las diferencias de pluviometría que pueden observarse en la Figura 10, en las zonas de gradiente salino, pueden atribuirse en mayor o menor medida a los siguientes factores durante los riegos: ráfagas de viento, funcionamiento de los aspersores en relación con la presión de trabajo y sus oscilaciones, errores de medida, no exacta verticalidad en los pluviómetros, etc. De todos ellos, el factor que parece haber influido más es la falta de presión de trabajo provocada por las limitaciones del equipo moto-bomba del hidrante; esto provocó que el solapamiento entre las líneas de aspersión no fuera perfecto. Sin embargo las diferencias que se observan no afectan de forma importante al análisis, únicamente se traducen en una pequeña pérdida en los coeficientes de determinación.

En el Cuadro 21, se presentan los resultados referentes a las zonas de riego diferencial; la distribución de la pluviometría muestra una caída casi lineal, rotada por un allanamiento del perfil en la zona central (tratamientos 5-7) en el ensayo de 1989, debido probablemente a las causas comentadas anteriormente. En este mismo año, los 10 tratamientos son significativamente distintos entre sí, excepto el 1, 2 y 3, a los que apenas llega agua, y el 5 y 6, que coinciden con el allanamiento citado. En 1987, el gradiente de sequía establecido fue más abrupto y lineal, favorecido por una menor pluviometría natural y una mayor presión de trabajo en el sistema. Puede por tanto apreciarse la bondad del sistema para la simulación de condiciones limitantes en cuanto a estrés hídrico.
Figuras 10 y 11. Volúmenes hídricos recibidos, y CE del agua de riego en los ensayos de campo.
<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA - 1987*</th>
<th>MEDIA - 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54.9 g</td>
<td>94.0 g</td>
</tr>
<tr>
<td>2</td>
<td>58.2 fg</td>
<td>94.2 f</td>
</tr>
<tr>
<td>3</td>
<td>75.3 fg</td>
<td>106.5 e</td>
</tr>
<tr>
<td>4</td>
<td>104.7 ef</td>
<td>163.5 d</td>
</tr>
<tr>
<td>5</td>
<td>137.2 de</td>
<td>216.7 c</td>
</tr>
<tr>
<td>6</td>
<td>178.8 d</td>
<td>222.2 c</td>
</tr>
<tr>
<td>7</td>
<td>232.1 c</td>
<td>243.7 b</td>
</tr>
<tr>
<td>8</td>
<td>314.7 b</td>
<td>284.7 a</td>
</tr>
<tr>
<td>9</td>
<td>402.3 a</td>
<td>316.2 a</td>
</tr>
<tr>
<td>10</td>
<td>450.6 a</td>
<td>362.5 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no difieren significativamente entre sí para un nivel del 5% (LSD).

Cuadro 21: Medias de agua aplicada, en mm, en la zona de riego diferencial.

2.2. Salinidad del agua aplicada.

En la Figura 10 se presentan las distribuciones de la CE, valores medios ponderados con el tiempo, del agua recogida en cada uno de los pluviómetros de las dos bandas instaladas en las parcelas (88-CE y 89-CE).

En el Cuadro 22 se presentan los valores de CE para cada parcela de tratamiento diferencial, y año de experimentación.

Puede observarse el efecto buscado de creación de un gradiente de salinidad por el solapamiento del agua salina de la línea central con la dulce de las laterales. Sin embargo, encontramos nuevamente que la falta de un solapamiento perfecto provoca cierto distanciamiento del modelo teórico, que sería una línea recta. En los dos tratamientos de cada extremo se produce una cierta horizontalidad de la curva, debido a que no ha llegado agua de la línea opuesta. Este efecto, por otra parte, nos garantiza que las zonas del ensayo donde provocamos el estrés hídrico no son salinizadas.

Pese a los inconvenientes expuestos, mediante la triple línea se ha consagrado imponer dos gradientes de estrés, subdivisibles en suficientes tratamientos distintos entre sí, como para poder estudiar con fiabilidad las respuestas de los genotipos probados, a los estreses hídrico y salino.
<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA - 1988*</th>
<th>MEDIA - 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2.2 a</td>
<td>2.2 a</td>
</tr>
<tr>
<td>12</td>
<td>2.4 a</td>
<td>2.8 a</td>
</tr>
<tr>
<td>13</td>
<td>3.9 b</td>
<td>4.5 b</td>
</tr>
<tr>
<td>14</td>
<td>6.3 c</td>
<td>5.9 c</td>
</tr>
<tr>
<td>15</td>
<td>7.2 d</td>
<td>7.0 d</td>
</tr>
<tr>
<td>16</td>
<td>8.1 e</td>
<td>7.5 d</td>
</tr>
<tr>
<td>17</td>
<td>9.2 f</td>
<td>8.5 e</td>
</tr>
<tr>
<td>18</td>
<td>11.0 g</td>
<td>9.8 f</td>
</tr>
<tr>
<td>19</td>
<td>12.4 h</td>
<td>11.2 g</td>
</tr>
<tr>
<td>20</td>
<td>12.8 h</td>
<td>11.9 g</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no difieren significativamente entre sí para un nivel del 5% (MDSB)

Cuadro 22: Valores de CE del agua aplicada en los tratamientos de la zona de riego diferencial salinizado.

2.3. Salinidad en el suelo. Sensor electromagnético.

Como se indicó en el Capítulo IV, este instrumento se utilizó de forma sistemática durante toda la duración del ensayo de 1989, midiendo la CE del suelo hasta 1 metro de profundidad, en cada una de las 300 subparcelas de la zona con riego salino. Se han respetado las lecturas originales del SEM (CE en dS/m x 100) por no manejar cifras demasiado pequeñas.

Las diferencias entre tratamientos registradas de este modo, han sido significativas tanto para el estado final de la parcela (última lectura, 15 de septiembre; Cuadro 23), como para la media ponderada de las lecturas a lo largo del ciclo de cultivo (Cuadro 24).
<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA *</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>55.9 a</td>
</tr>
<tr>
<td>11</td>
<td>63.9 b</td>
</tr>
<tr>
<td>13</td>
<td>65.0 b</td>
</tr>
<tr>
<td>15</td>
<td>89.4 c</td>
</tr>
<tr>
<td>14</td>
<td>91.0 c</td>
</tr>
<tr>
<td>16</td>
<td>95.8 c</td>
</tr>
<tr>
<td>17</td>
<td>107.1 d</td>
</tr>
<tr>
<td>18</td>
<td>123.2 e</td>
</tr>
<tr>
<td>19</td>
<td>124.5 e</td>
</tr>
<tr>
<td>20</td>
<td>140.3 f</td>
</tr>
</tbody>
</table>

* Valores seguidos por la misma letra no difieren significativamente entre sí para un nivel del 5% (MDSB)

Cuadro 23. Medias de la lectura final del SEM tras el último riego.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA *</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>43.4 a</td>
</tr>
<tr>
<td>13</td>
<td>43.4 a</td>
</tr>
<tr>
<td>11</td>
<td>45.9 a</td>
</tr>
<tr>
<td>14</td>
<td>52.5 b</td>
</tr>
<tr>
<td>15</td>
<td>54.1 b</td>
</tr>
<tr>
<td>16</td>
<td>58.4 c</td>
</tr>
<tr>
<td>17</td>
<td>65.1 d</td>
</tr>
<tr>
<td>18</td>
<td>73.4 e</td>
</tr>
<tr>
<td>19</td>
<td>74.3 e</td>
</tr>
<tr>
<td>20</td>
<td>86.2 f</td>
</tr>
</tbody>
</table>

* Valores seguidos por la misma letra no difieren significativamente entre sí para un nivel del 5% (MDSB)

Cuadro 24. Medias de la lectura media ponderada del SEM a lo largo de todo el ciclo de cultivo.
2.4. Relación entre la salinidad del agua de riego y del suelo medida con el SEM.

Esta comparación es interesante porque, aunque las plantas responden a la salinidad de la solución del suelo, es mucho más fácil medir la del agua de riego. Si la correlación entre ambas variables es alta, se facilitarían trabajos futuros, al necesitarse únicamente una lectura sencilla como la de CE.

En el Cuadro 25 se presentan los valores de los coeficientes de determinación de las regresiones entre ambos parámetros, para los cuatro genotipos situados más cerca de las banda de pluviómetros.

<table>
<thead>
<tr>
<th>C_{E_a}-SEM$_{fin}$</th>
<th>C_{E_a}-SEM$_{med}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87</td>
<td>0.91</td>
</tr>
<tr>
<td>0.93</td>
<td>0.79</td>
</tr>
<tr>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>0.75</td>
<td>0.80</td>
</tr>
</tbody>
</table>

MEDIA=0.84

Cuadro 25. Coeficientes de determinación

Los valores de los coeficientes de determinación obtenidos, confirman la utilidad del empleo de lecturas de CE del agua aplicada.
3. ESTRES SALINO EN PLANTA ADULTA

A continuación se presentan los resultados obtenidos para cada uno de los parámetros estudiados, ya descritos en el Capítulo IV.

3.1 Producción

3.1.1 Comportamiento general del cultivo

Como se aprecia en el Cuadro 26, el rendimiento fue superior en 1988 que en 1989, sin que se pueda achacar esta diferencia sólo a los nuevos genotipos introducidos el segundo año. Hay que reseñar que, en todos los análisis de los caracteres del rendimiento y sus componentes, se han excluido los genotipos IA-33 e IA-33 x N-4610 del año 1989, por haber resultado androestériles.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>PRODUCCIÓN ABSOLUTA *</th>
<th>PRODUCCIÓN RELATIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3.31 a</td>
<td>2.37 a</td>
</tr>
<tr>
<td>12</td>
<td>3.04 b</td>
<td>2.21 b</td>
</tr>
<tr>
<td>13</td>
<td>2.67 c</td>
<td>1.98 c</td>
</tr>
<tr>
<td>14</td>
<td>2.56 c</td>
<td>1.76 d</td>
</tr>
<tr>
<td>15</td>
<td>2.22 d</td>
<td>1.68 d</td>
</tr>
<tr>
<td>16</td>
<td>1.93 e</td>
<td>1.54 e</td>
</tr>
<tr>
<td>17</td>
<td>1.74 f</td>
<td>1.33 f</td>
</tr>
<tr>
<td>18</td>
<td>1.49 g</td>
<td>1.07 g</td>
</tr>
<tr>
<td>19</td>
<td>1.13 h</td>
<td>0.78 h</td>
</tr>
<tr>
<td>20</td>
<td>0.99 h</td>
<td>0.72 h</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

En el Cuadro 27 se presenta el análisis de varianza para producción absoluta, en diseño split-split-plot, con empleo de los genotipos comunes en ambos años de experimentación, y los 10 tratamientos reagrupados en 4 como se explicó en el apartado IV.2.3.
Pueden apreciarse diferencias significativas entre años, tratamientos, genotipos y la interacción de estos últimos con el efecto año. Sin embargo, es destacable la no existencia de interacción año por tratamiento, lo que permitiría a efectos de estudio de salinidad "per se", un análisis de tipo anual.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>1.34</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>36.80**</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>44.38**</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>2.53 ns</td>
</tr>
<tr>
<td>ERROR B</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>18</td>
<td>3.07**</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>18</td>
<td>0.92**</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>54</td>
<td>0.18**</td>
</tr>
<tr>
<td>ERROR C</td>
<td>272</td>
<td>0.06</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>1.78</td>
</tr>
</tbody>
</table>

***, * y ns significación al 1, 5 % y no significativo

Sin embargo, considerando el rendimiento en porcentaje respecto al control, los 10 tratamientos muestran un comportamiento parecido ambos años, por lo que se han tratado conjuntamente para calcular el modelo de respuesta global del sorgo a la salinidad. El resultado se muestra en la Figura 12. En la misma se observa la distribución de los valores del rendimiento relativo al control para el conjunto de todos los genotipos en los dos ensayos, frente a la CE media del agua recibida. La relación entre ambas variables se estableció mediante la aplicación de dos modelos de regresión: regresión lineal simple y regresión no lineal según el modelo curvilíneo de van Genuchten, tal como se explicó en el Capítulo IV. Las líneas de regresión obtenidas y sus ecuaciones correspondientes, están también representadas en la Figura 12.

El porcentaje de varianza explicado es bastante alto, y similar para ambos modelos (alrededor del 67%). Según el modelo rectilíneo, el rendimiento disminuye un 6.6% por cada dS/m que aumente la salinidad del
agua aplicada, mientras que para el segundo modelo, esa disminución es ligeramente mayor, por encima de un valor umbral de 3 dS/m, hasta el cual el rendimiento no se vería afectado. Los parámetros de este modelo indican que la disminución del rendimiento potencial, estimado en un 96.8%, se produce con una CE de 9.9 dS/m.

Gráfica 12. Análisis de regresión. Producción relativa frente a la CE del agua de riego. Conjunto de genotipos y años.
3.1.2. Variabilidad intergenotípica

Como complemento a lo anterior se presenta el análisis de varianza tipo split block, referido a la totalidad de los materiales vegetales empleados en el año 1989, con análisis independientes para líneas puras e híbridos, por si la constitución genética de los materiales pudiera afectar a la respuesta general ante la salinidad. Se presentan valores referidos a producción absoluta (Cuadro 28) y relativa sobre el tratamien- to no salino (Cuadro 29).

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>0.207</td>
<td>2</td>
<td>0.418</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>6.500 **</td>
<td>3</td>
<td>18.834 **</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>0.385</td>
<td>4</td>
<td>0.687</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>0.539 **</td>
<td>16</td>
<td>0.418 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>0.059 ns</td>
<td>48</td>
<td>0.211 **</td>
</tr>
<tr>
<td>GENOT x REP</td>
<td>20</td>
<td>0.011</td>
<td>32</td>
<td>0.058</td>
</tr>
<tr>
<td>GE x TR x RE</td>
<td>40</td>
<td>0.039</td>
<td>64</td>
<td>0.050</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.95</td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>1.12</td>
<td></td>
<td>1.81</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>17.7</td>
<td></td>
<td>12.4</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>798</td>
<td>2</td>
<td>568</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>21580 **</td>
<td>3</td>
<td>24069 **</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>1097</td>
<td>4</td>
<td>774</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>938 **</td>
<td>16</td>
<td>2035 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>210 *</td>
<td>48</td>
<td>166 **</td>
</tr>
<tr>
<td>GENOT x REP</td>
<td>20</td>
<td>55</td>
<td>32</td>
<td>87</td>
</tr>
<tr>
<td>GE x TR x RE</td>
<td>40</td>
<td>108</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.95</td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>64.6</td>
<td></td>
<td>68.7</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>16.1</td>
<td></td>
<td>12.3</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

Destacan los efectos significativos de tratamientos y genotipos, tanto para las producciones absolutas como para las relativas. En cuanto a la interacción del genotipo con el tratamiento se aprecia su mayor importancia para materiales híbridos que para las líneas puras.

En las Figuras 13 y 14 se representa la tolerancia de los genotipos a la salinidad, estimada por la CE₅₀ resultante de los análisis de regresión, por genotipos, de la producción frente a la CE del agua de riego.

En general, se observa una mayor producción de los materiales híbridos (números 13 al 30) frente a las líneas puras (números 1 al 12), en los dos ensayos.

Aunque los resultados de ambos años no son consistentes en conjunto, se han podido identificar genotipos que a nivel individual presentan un comportamiento estable, tolerante o susceptible, que se repite en ambos ensayos. Esto nos ha permitido seleccionar dos grupos de genotipos con tolerancia diferencial a la salinidad (Cuadro 30), para analizar con los mismos la posible relación de los restantes caracteres estudiados con la tolerancia o susceptibilidad, en base a su expresión en genotipos de tolerancia contrastada.

<table>
<thead>
<tr>
<th>TOLERANTES</th>
<th>SUSCEPTIBLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS-22 x KS-3 (13)</td>
<td>IA-17 (4)</td>
</tr>
<tr>
<td>N-4692 x IA-9 (21)</td>
<td>KS-33 (6)</td>
</tr>
<tr>
<td>G-68027 x N-4610 (26)</td>
<td>KS-24 x KS-3 (14)</td>
</tr>
</tbody>
</table>

Cuadro 30. Grupos de genotipos con tolerancia diferencial a la salinidad.

3.1.3. Análisis genético.

La comparación entre los valores conjuntos de líneas puras e híbridos, revela la existencia de un efecto heterótico para los valores absolutos, con una diferencia de 0.68 kg/parcela a favor de los híbridos, (significativa al 1%). Estos efectos heteróticos no se detectan al analizar valores relativos al control.
Figuras 13 y 14. Producción media por parcela frente a las CE_{50} de los análisis de regresión para cada genotipo y año.
En el Cuadro 31 se presentan los análisis de varianza para el conjunto de los híbridos, en el año 1989. Se puede observar que en el análisis con valores absolutos sólo son significativos los efectos maternos, mientras que con relativos lo es la interacción; los efectos paternos no parecen de interés en ningún caso.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>0.281 ns</td>
<td>5</td>
<td>2896.9 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>0.829 **</td>
<td>5</td>
<td>4424.8 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>0.093 ns</td>
<td>6</td>
<td>2520.5 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>0.112</td>
<td>120</td>
<td>119.9</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 31. Cuadrados medios de los análisis de varianza, según el modelo NCII. Producción absoluta y relativa.

En el Cuadro 32 se presenta la partición de la varianza correspondiente a los análisis anteriores. Destaca la mayor importancia del componente materno de ACG respecto al paterno en el primer caso, y el fuerte componente de ACE en el segundo, confirmando lo anterior.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>0.59</td>
<td>79.34</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>0.01</td>
<td>15.68</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>0.00</td>
<td>600.15</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>0.11</td>
<td>119.9</td>
</tr>
</tbody>
</table>

Cuadro 32. Componentes genéticos de la varianza, según el modelo NCII. Producción absoluta y relativa.
3.2. Peso hectolitrico

3.2.1 Comportamiento general del cultivo

En el Cuadro 33 se presentan los valores absolutos y relativos del peso hectolitrico, para cada tratamiento y año. Se observa que estos valores disminuyen progresivamente según aumenta la salinidad, en ambos ensayos; en el año 89 el peso hectolitrico en valores absolutos fue menor en todos los tratamientos, aunque en valores relativos esta disminución sólo se aprecia claramente en los tratamientos más salinos.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>PESO HECTOLITRICO ABSOLUTO</th>
<th>PESO HECTOLITRICO RELATIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>73.2 a</td>
<td>68.4 a</td>
</tr>
<tr>
<td>12</td>
<td>72.4 ab</td>
<td>68.6 a</td>
</tr>
<tr>
<td>13</td>
<td>71.5 abc</td>
<td>66.1 b</td>
</tr>
<tr>
<td>14</td>
<td>70.1 bcd</td>
<td>64.8 bc</td>
</tr>
<tr>
<td>15</td>
<td>69.4 cde</td>
<td>63.2 cd</td>
</tr>
<tr>
<td>16</td>
<td>68.0 de</td>
<td>63.1 cd</td>
</tr>
<tr>
<td>17</td>
<td>67.5 e</td>
<td>61.6 d</td>
</tr>
<tr>
<td>18</td>
<td>62.9 f</td>
<td>55.4 e</td>
</tr>
<tr>
<td>19</td>
<td>63.9 f</td>
<td>49.8 f</td>
</tr>
<tr>
<td>20</td>
<td>62.9 f</td>
<td>49.0 f</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 33. Peso hectolitrico, absoluto y relativo, para cada tratamiento y año. Media de los genotipos.

En el Cuadro 34 se presenta el análisis de varianza, en diseño split-split-plot, con empleo de los genotipos comunes en ambos años de experimentación, para peso hectolitrico absoluto.

Los resultados obtenidos indican diferencias significativas entre años, tratamientos, genotipos y en las interacciones genotipo x año y tratamiento x año, si bien en este último caso son de menor nivel de significación.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>133.9</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>5393.0 **</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>47.4</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>3083.0 **</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>416.6 *</td>
</tr>
<tr>
<td>ERROR B</td>
<td>6</td>
<td>75.2</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>18</td>
<td>181.0 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>18</td>
<td>45.2 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>54</td>
<td>15.4 **</td>
</tr>
<tr>
<td>ERROR C</td>
<td>272</td>
<td>7.6</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.91</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>64.6</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

Cuadro 34. Análisis de varianza. Peso hectolitrico absoluto, genotipos comunes en ambos años.

3.2.2. Variabilidad intergenotípica

Se presentan a continuación los resultados del análisis de varianza tipo split block, con las líneas e híbridos utilizados en el año 89, referidos a valores absolutos (Cuadro 35) y relativos (Cuadro 36).

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LÍNEAS</th>
<th>GL</th>
<th>CM HÍBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>111.6</td>
<td>2</td>
<td>139.3</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>2077.2 **</td>
<td>3</td>
<td>2040.4 **</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>59.8</td>
<td>4</td>
<td>102.9</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>147.3 **</td>
<td>16</td>
<td>68.7 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>26.1 *</td>
<td>48</td>
<td>21.5 **</td>
</tr>
<tr>
<td>GENOT x REP</td>
<td>20</td>
<td>19.6</td>
<td>32</td>
<td>8.9</td>
</tr>
<tr>
<td>GE x TR x RE</td>
<td>40</td>
<td>12.0</td>
<td>64</td>
<td>11.2</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.95</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>59.3</td>
<td></td>
<td>62.1</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>5.8</td>
<td></td>
<td>5.3</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

Cuadro 35. Análisis de varianza. Peso hectolitrico absoluto, genotipos comunes en ambos años.
Se aprecian diferencias altamente significativas entre genotipos y tratamientos, en los dos tipos de material vegetal utilizado, tanto en valores absolutos como en relativos; en la interacción genotipo x tratamiento se obtienen resultados similares. Es interesante destacar los altos valores de R² obtenidos, con unos CV bajos.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPE TICION</td>
<td>2</td>
<td>243.9</td>
<td>2</td>
<td>298.7</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>4679.7 **</td>
<td>3</td>
<td>4318.8 **</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>134.1</td>
<td>4</td>
<td>211.5</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>143.9 **</td>
<td>16</td>
<td>147.3 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>70.2 **</td>
<td>48</td>
<td>48.0 **</td>
</tr>
<tr>
<td>GENOT x REP</td>
<td>20</td>
<td>41.7</td>
<td>32</td>
<td>19.5</td>
</tr>
<tr>
<td>GE x TR x RE</td>
<td>40</td>
<td>26.1</td>
<td>64</td>
<td>23.4</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.94</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>87.9</td>
<td></td>
<td>90.0</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>5.8</td>
<td></td>
<td>5.3</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

3.2.3. Análisis genético

En el Cuadro 37 se presentan los análisis de varianza para el conjunto de los híbridos, en el año 1989.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>173.0 *</td>
<td>5</td>
<td>388.1 *</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>79.4 ns</td>
<td>5</td>
<td>153.0 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>29.8 ns</td>
<td>6</td>
<td>52.5 ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>16.4</td>
<td>120</td>
<td>34.4</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 37. Cuadrados medios de los análisis de varianza, según el modelo NCII. Peso hectolitrico.
Se comprueba que los efectos paternos son significativos en los dos análisis, mientras que tanto los maternos como la interacción entre ambos no lo son en ningún caso.

En cuanto a la partición de la varianza (Cuadro 38), se destaca, fundamentalmente, la mayor importancia del componente paterno de aptitud combinatoria general respecto al materno, en ambos análisis.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>2.1</td>
<td>4.2</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>6.0</td>
<td>14.0</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>3.4</td>
<td>4.5</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>16.4</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Cuadro 38. Componentes genéticos de la varianza, según el modelo NCII. Peso hectolitrico.

3.3. Componentes de la producción

En este apartado se presentan los resultados correspondientes a los caracteres: número de plantas por parcela, ahijamiento, porcentaje de tallos con panícula, número de panículas por parcela, número de granos por panícula, y peso de 1000 granos.

3.3.1. Comportamiento general del cultivo

En cuanto al número de plantas por parcela, en el Cuadro 39 se puede apreciar cómo los valores para este componente fueron inferiores en 1988 frente a 1989. Esto se debió a la mayor densidad de siembra empleada en este último año, y a la costra del suelo que se formó durante la nascencia, más profunda el primer año que el segundo.

Los valores a lo largo del gradiente de salinidad apenas variaron en 1988, aunque cabe resaltar que los cuatro tratamientos menos salinos son los que presentaron mayor densidad de plantas. Esta variación fue más clara en 1989, donde el número de plantas se reduce claramente en los dos tratamientos más salinos.
<table>
<thead>
<tr>
<th>TRAT</th>
<th>NO PLANTAS</th>
<th>TALLOS POR PLANTA</th>
<th>% TALLOS CON PANICULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>57.9 a</td>
<td>102.5 a</td>
<td>1.82 a</td>
</tr>
<tr>
<td>12</td>
<td>59.7 a</td>
<td>102.5 a</td>
<td>1.74 ab</td>
</tr>
<tr>
<td>13</td>
<td>59.2 a</td>
<td>1.72 abcd</td>
<td>91.0 a</td>
</tr>
<tr>
<td>14</td>
<td>58.8 a</td>
<td>102.0 a</td>
<td>1.73 abcd</td>
</tr>
<tr>
<td>15</td>
<td>56.4 ab</td>
<td>1.76 ab</td>
<td>89.8 a</td>
</tr>
<tr>
<td>16</td>
<td>52.5 ab</td>
<td>103.9 a</td>
<td>1.74 abc</td>
</tr>
<tr>
<td>17</td>
<td>50.5 b</td>
<td>1.67 abcd</td>
<td>90.8 a</td>
</tr>
<tr>
<td>18</td>
<td>55.6 ab</td>
<td>96.5 b</td>
<td>1.56 bcd</td>
</tr>
<tr>
<td>19</td>
<td>54.0 ab</td>
<td>1.54 cd</td>
<td>89.9 a</td>
</tr>
<tr>
<td>20</td>
<td>56.4 ab</td>
<td>82.1 c</td>
<td>1.53 d</td>
</tr>
</tbody>
</table>

| MEDIA | 56.1 | 97.4 | 1.68 | 1.13 | 90.5 | 82.6 |

| % CAMBIO | -2.6 | -19.9 | -15.9 | +1.8 | -1.0 | -4.4 |

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 39. Número de plantas por parcela, tallos por planta y porcentaje de tallos con panícula, para cada tratamiento y año. Media de los genotipos empleados.

El mayor efecto aparente de la salinidad sobre el establecimiento del cultivo en 1989 se puede explicar por la posible permanencia de sal residual en la superficie del suelo de la parcela, dado que se empleó la misma que el año anterior, repitiendo además la disposición de los ensayos. De hecho, y pese a que se aplicaron 10 riegos de lavado entre ambos ensayos, en 1989 se pudo apreciar visualmente una peor nascencia en las zonas donde se aplicó mayor cantidad de sal en 1988.

El carácter ahijamiento, expresado como número de tallos por planta, mostró un comportamiento contrario al anterior (Cuadro 39). Sus valores son mayores en 1988 que en 1989, lo que se puede interpretar como un efecto de compensación por el menor número de plantas del primer año. A lo largo del gradiente, se mostró muy constante en 1989, y disminuyó a medida que aumentaba la salinidad en 1988.

Los valores para el porcentaje de tallos que portan panícula con grano (Cuadro 39) son parecidos en los dos ensayos, con una pequeña diferencia a favor del primero. Dentro de cada ensayo, en 1988 estos valores apenas sufren variación, y en 1989 disminuyen ligeramente con el
aumento de salinidad, aunque las diferencias entre tratamientos no son estadísticamente significativas.

Como resultado de los patrones de comportamiento contrarios que siguen el número de plantas por parcela y el ahijamiento, el carácter número de tallos por parcela se aproximó bastante en los dos ensayos, pese a las distintas densidades de siembra y condiciones de nascencia iniciales; su comportamiento a lo largo del gradientes fue también parecido en los dos años, con una disminución apreciable en los tratamientos más salinos. Más adelante, la formación de paniculas igualó aún más los ensayos (Figura 15), puesto que el porcentaje de tallos con panicula fue superior en el ensayo con menor número de tallos por parcela (1988).

Figura 15. Número de paniculas por parcela, para cada tratamiento y año. Media de los genotipos empleados.

En cuanto al número de granos por panicula (Figura 16) se observa un comportamiento bastante parecido en ambos años, disminuyendo a lo largo de todo el gradiente de salinidad, de forma más acusada en los tratamientos más salinos del año 88.
El peso de 1000 granos (Figura 17) presentó un patrón de respuesta muy similar en ambos años, con un descenso constante conforme aumentaba la salinidad.

Figuras 16 y 17. Números de granos por panícula, y peso de 1000 granos para cada tratamiento y año. Media de los genotipos empleados.
Dada la comprobada capacidad de compensación de los componentes de la producción, y la demostrada ineficacia, en general, de los programas de mejora enfocados a actuaciones individuales sobre alguno de estos componentes, no se ha considerado oportuno realizar el estudio de variabilidad genética, ni por tanto, el análisis genético, en estos caracteres.

3.4. Caracteres fenológicos

Se presentan los resultados correspondientes a los caracteres de floración, maduración fisiológica y duración del período de llenado del grano.

3.4.1. Comportamiento general del cultivo

En la Figura 18 puede apreciarse cómo la fecha de floración no se ve afectada en absoluto por el incremento de salinidad, que sin embargo modifica la fecha de maduración, adelantándola conforme aumenta el nivel salino, y consecuentemente acorta el período de llenado de grano. Estos resultados se confirman en el análisis de varianza para cada uno de estos caracteres, que se presenta en los Cuadros 40, 41 y 42.

Figura 18. Respuesta de los caracteres fenológicos a la salinidad.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>69.1*</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>0.9 ns</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>2.2 ns</td>
</tr>
<tr>
<td>ERROR B</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>18</td>
<td>294.7 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>18</td>
<td>254.6 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>54</td>
<td>3.4 ns</td>
</tr>
<tr>
<td>ERROR C</td>
<td>272</td>
<td>3.2</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>82.6</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

Cuadro 40. Análisis de varianza. Días hasta floración, genotipos comunes en ambos años.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>6.3</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>30.7 ns</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>7.8</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>198.3 **</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>28.7 *</td>
</tr>
<tr>
<td>ERROR B</td>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>18</td>
<td>296.5 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>18</td>
<td>338.7 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>54</td>
<td>3.2 ns</td>
</tr>
<tr>
<td>ERROR C</td>
<td>272</td>
<td>2.1</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>114.0</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

Cuadro 41. Análisis de varianza. Días hasta maduración, genotipos comunes en ambos años.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>10.2</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>191.0 *</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>196.2 **</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>15.3 ns</td>
</tr>
<tr>
<td>ERROR B</td>
<td>6</td>
<td>6.4</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>18</td>
<td>66.1 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>18</td>
<td>84.5 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>54</td>
<td>4.0 **</td>
</tr>
<tr>
<td>ERROR C</td>
<td>272</td>
<td>1.6</td>
</tr>
<tr>
<td>R*</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>31.4</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

Cuadro 42. Análisis de varianza. Duración del periodo de llenado del grano, genotipos comunes en ambos años.

3.4.2. Variabilidad intergenotípica.

Para estos caracteres fenológicos, únicamente se trabaja con valores absolutos, ya que éstos describen perfectamente la evolución del cultivo, no aportando los relativos ninguna información suplementaria.

Asimismo se elimina el análisis sobre floración, ya que se ha comprobado anteriormente que no se ve afectada por la salinidad. En los Cuadros 43 y 44 se presentan los análisis de varianza para el año 1989, con la totalidad de los genotipos, para la fecha de maduración y la duración del periodo de llenado de grano.

Puede apreciarse que el efecto principal para ambos caracteres es el genotípico, especialmente en la fecha de maduración, manteniéndose asimismo importante el efecto de la salinidad. La interacción genotipo por tratamiento aparece significativa sólo en el caso de líneas y para fecha de maduración, lo que no parece indicar una gran importancia de la misma.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>6.96</td>
<td>2</td>
<td>3.9</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>119.78 **</td>
<td>3</td>
<td>140.4 **</td>
</tr>
<tr>
<td>ERROR A (Txr)</td>
<td>4</td>
<td>4.44</td>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>510.65 **</td>
<td>16</td>
<td>445.3 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>2.26 **</td>
<td>48</td>
<td>2.5 ns</td>
</tr>
<tr>
<td>ERROR B (GXR)</td>
<td>20</td>
<td>0.69</td>
<td>32</td>
<td>0.2</td>
</tr>
<tr>
<td>ERROR C (GxTxC)</td>
<td>40</td>
<td>0.45</td>
<td>64</td>
<td>5.3</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.997</td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>113.7</td>
<td></td>
<td>112.9</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>0.59</td>
<td></td>
<td>2.04</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 43. Análisis de varianza. Dias hasta maduración, 1989

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>9.18</td>
<td>2</td>
<td>6.0</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>146.12 **</td>
<td>3</td>
<td>126.8 **</td>
</tr>
<tr>
<td>ERROR A (Txr)</td>
<td>4</td>
<td>6.03</td>
<td>4</td>
<td>6.5</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>13.12 **</td>
<td>16</td>
<td>73.0 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>2.51 ns</td>
<td>48</td>
<td>3.6 ns</td>
</tr>
<tr>
<td>ERROR B (GXR)</td>
<td>20</td>
<td>1.08</td>
<td>32</td>
<td>0.6</td>
</tr>
<tr>
<td>ERROR C (GxTxC)</td>
<td>40</td>
<td>1.53</td>
<td>64</td>
<td>2.5</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.92</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>31.2</td>
<td></td>
<td>32.6</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 44. Análisis de varianza. Duración del periodo de llenado del grano, 1989

3.4.3. Análisis genético

En los Cuadros 45 y 46 se presenta el análisis de varianza para todos los genotipos en el año 1989, para la fecha de maduración y el periodo de llenado de grano. En ambos Cuadros puede apreciarse que estos caracteres fenológicos presentan efectos significativos en el componente de la interacción, y en el componente materno del carácter fecha de ma-
duración.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>123.1 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>667.0 **</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>73.0 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>96.9</td>
</tr>
</tbody>
</table>

**, *, significación al 1 y 5 %

Cuadro 45. Cuadrados medios de los análisis de varianza, según el modelo NCII. Días hasta maduración

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>23.7 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>128.1 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>47.0 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>1.8</td>
</tr>
</tbody>
</table>

**, *, significación al 1 y 5 %

Cuadro 46. Cuadrados medios de los análisis de varianza, según el modelo NCII. Duración del periodo de llenado del grano.

La partición de la varianza que se presenta en los Cuadros 47 y 48, muestra claramente la importancia primordial del componente materno, aún cuando las estimas presentan un error muy elevado.
Cuadro 47. Componentes genéticos de la varianza, según el modelo NCII. Días hasta maduración.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>24.7</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>2.1</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>96.9</td>
</tr>
</tbody>
</table>

Cuadro 48. Componentes genéticos de la varianza, según el modelo NCII. Duración del periodo de llenado del grano.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>3.4</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>96.9</td>
</tr>
</tbody>
</table>

3.5 Enrollado foliar

3.5.1. Comportamiento general del cultivo

En el Cuadro 49 se presentan los resultados de los valores de enrollamiento para cada tratamiento y año, como promedio de la totalidad de los genotipos empleados. Dado que se trata de una escala 0-5, puede apreciarse que la incidencia de enrollamiento es muy baja, con valores aún menores en los tratamientos más salinos.

3.5.2 Variabilidad intergenotípica

En el Cuadro 50 se presenta el análisis de varianza por separado para líneas e híbridos, durante el año 1989.

Puede apreciarse la existencia de efectos significativos para tratamientos de salinidad, genotipos y su interacción. Resulta de interés comprobar que la variabilidad en este carácter se ve amortiguada cuando se trata de materiales híbridos.
<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1.10 ab</td>
<td>0.75 a</td>
</tr>
<tr>
<td>12</td>
<td>1.10 ab</td>
<td>0.75 a</td>
</tr>
<tr>
<td>13</td>
<td>1.13 a</td>
<td>0.70 ab</td>
</tr>
<tr>
<td>14</td>
<td>1.13 a</td>
<td>0.70 ab</td>
</tr>
<tr>
<td>15</td>
<td>1.20 a</td>
<td>0.60 abc</td>
</tr>
<tr>
<td>16</td>
<td>1.10 ab</td>
<td>0.55 bcd</td>
</tr>
<tr>
<td>17</td>
<td>1.03 ab</td>
<td>0.50 dc</td>
</tr>
<tr>
<td>18</td>
<td>0.93 bc</td>
<td>0.50 dc</td>
</tr>
<tr>
<td>19</td>
<td>0.83 c</td>
<td>0.40 d</td>
</tr>
<tr>
<td>20</td>
<td>0.80 c</td>
<td>0.40 d</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 49. Enrollado foliar, para cada tratamiento y año. Media de los genotipos empleados.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>0.005</td>
<td>2</td>
<td>0.12</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>0.405 **</td>
<td>3</td>
<td>1.37 *</td>
</tr>
<tr>
<td>ERROR A (TxR)</td>
<td>4</td>
<td>0.008</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>4.864 **</td>
<td>16</td>
<td>4.93 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>0.149 **</td>
<td>48</td>
<td>0.32 **</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>20</td>
<td>0.014</td>
<td>32</td>
<td>0.10</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>0.037</td>
<td>64</td>
<td>0.14</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.97</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>1.15</td>
<td></td>
<td>0.89</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>16.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**, * significación al 1 y 5 %

3.5.3 Análisis genético

En el Cuadro 51 se presenta el análisis de varianza para determinación de los efectos paternos, maternos y de interacción derivado de los materiales híbridos.

Se observa que para este carácter sólo la interacción padre x madre resulta significativa.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>0.7 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>3.8 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>6.8 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>0.1</td>
</tr>
</tbody>
</table>

**, * significación al 1 y 5 %

Cuadro 51. Cuadrados medios de los análisis de varianza, según el modelo NCII. Enrollado foliar.

En el Cuadro 52 se presenta la partición de la varianza genética, apreciándose que toda ella es debida a un componente de aptitud combinatoria específica.

<table>
<thead>
<tr>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
</tr>
<tr>
<td>σ_{ACE}</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
</tr>
</tbody>
</table>

Cuadro 52. Componentes genéticos de la varianza, según modelo NCII. Enrollado foliar.

3.6. Daño foliar

3.6.1. Comportamiento general del cultivo

En el Cuadro 53 se presentan los resultados por tratamiento salino, como media de los genotipos empleados. Puede apreciarse claramente el efecto de la salinidad sobre este carácter apareciendo todos los tratamientos significativamente diferentes, con un aumento progresivo del daño.
<table>
<thead>
<tr>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

3.6.2. Variabilidad intergenotípica

En el Cuadro 54 se presentan los resultados del análisis de varianza para el daño foliar, pudiéndose apreciar claramente la gran importancia del efecto de la salinidad en ambos tipos de materiales. Las diferencias genotípicas, así como la interacción presentan valores también significativos, pero de menor entidad.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>4.02</td>
<td>2</td>
<td>9.01</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>70.14 **</td>
<td>3</td>
<td>135.52 **</td>
</tr>
<tr>
<td>ERROR A (T x R)</td>
<td>4</td>
<td>1.83</td>
<td>4</td>
<td>2.29</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>1.44 **</td>
<td>16</td>
<td>2.06 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>0.41 **</td>
<td>48</td>
<td>0.36 **</td>
</tr>
<tr>
<td>ERROR B (G x R)</td>
<td>20</td>
<td>0.15</td>
<td>32</td>
<td>0.08</td>
</tr>
<tr>
<td>ERROR C (G x T x R)</td>
<td>40</td>
<td>0.13</td>
<td>64</td>
<td>0.02</td>
</tr>
</tbody>
</table>

R*	0.97	0.994
MEDIA	4.2	4.1
CV	8.5	3.4

**, * significación al 1 y 5 %

3.6.3. Análisis genético

En el Cuadro 55 se presenta la estimación de varianzas para los efectos paternos y maternos, en base al análisis de los híbridos. De los tres factores sólo muestra significación la interacción.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>3.4 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>0.7 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>1.7 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>0.3</td>
</tr>
</tbody>
</table>

**, * significación al 1 y 5 %

Cuadro 55. Cuadrados medios de los análisis de varianza, según el modelo NCII. Daño foliar.

Los resultados de la partición de la varianza genética (Cuadro 56), corroboran lo anterior, indicando la existencia de un componente principal de aptitud combinatoria específica.

<table>
<thead>
<tr>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{ACG,M})</td>
</tr>
<tr>
<td>(\sigma_{ACG,P})</td>
</tr>
<tr>
<td>(\sigma_{ACE})</td>
</tr>
<tr>
<td>(\sigma_{ERROR})</td>
</tr>
</tbody>
</table>

Cuadro 56. Componentes genéticos de la varianza, según el modelo NCII. Daño foliar.

3.7. Altura de la planta

3.7.1. Comportamiento general del cultivo

En los Cuadros 57 y 58 se presentan los resultados de cada genotipo, en los distintos tratamientos estudiados, como media de cuatro plantas en cada uno.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>10</th>
<th>16(abs)</th>
<th>16 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84.2</td>
<td>78.2</td>
<td>92.8</td>
<td>77.5</td>
<td>91.9</td>
</tr>
<tr>
<td>2</td>
<td>122.2</td>
<td>108.7</td>
<td>88.9</td>
<td>102.5</td>
<td>83.8</td>
</tr>
<tr>
<td>3</td>
<td>92.7</td>
<td>84.6</td>
<td>90.2</td>
<td>88.7</td>
<td>94.6</td>
</tr>
<tr>
<td>4</td>
<td>96.5</td>
<td>93.7</td>
<td>97.1</td>
<td>92.5</td>
<td>95.8</td>
</tr>
<tr>
<td>5</td>
<td>92.2</td>
<td>89.2</td>
<td>96.6</td>
<td>84.2</td>
<td>91.2</td>
</tr>
<tr>
<td>6</td>
<td>105.5</td>
<td>98.2</td>
<td>93.1</td>
<td>93.0</td>
<td>88.1</td>
</tr>
<tr>
<td>7</td>
<td>86.2</td>
<td>86.0</td>
<td>99.6</td>
<td>81.0</td>
<td>93.8</td>
</tr>
<tr>
<td>8</td>
<td>112.0</td>
<td>102.2</td>
<td>91.3</td>
<td>92.2</td>
<td>82.3</td>
</tr>
<tr>
<td>9</td>
<td>91.2</td>
<td>90.5</td>
<td>99.1</td>
<td>101.7</td>
<td>111.4</td>
</tr>
<tr>
<td>10</td>
<td>79.0</td>
<td>74.7</td>
<td>94.6</td>
<td>72.2</td>
<td>91.4</td>
</tr>
<tr>
<td>11</td>
<td>134.0</td>
<td>115.5</td>
<td>86.2</td>
<td>114.0</td>
<td>85.0</td>
</tr>
<tr>
<td>12</td>
<td>109.6</td>
<td>102.2</td>
<td>93.8</td>
<td>98.2</td>
<td>90.1</td>
</tr>
<tr>
<td>13</td>
<td>96.2</td>
<td>95.5</td>
<td>99.1</td>
<td>94.0</td>
<td>97.6</td>
</tr>
<tr>
<td>14</td>
<td>92.0</td>
<td>84.7</td>
<td>92.1</td>
<td>83.7</td>
<td>91.0</td>
</tr>
<tr>
<td>15</td>
<td>145.0</td>
<td>116.7</td>
<td>80.5</td>
<td>119.2</td>
<td>82.2</td>
</tr>
<tr>
<td>16</td>
<td>149.7</td>
<td>122.7</td>
<td>81.9</td>
<td>121.5</td>
<td>81.1</td>
</tr>
<tr>
<td>17</td>
<td>107.7</td>
<td>98.2</td>
<td>91.1</td>
<td>93.0</td>
<td>86.2</td>
</tr>
<tr>
<td>18</td>
<td>147.0</td>
<td>120.2</td>
<td>81.8</td>
<td>113.7</td>
<td>77.3</td>
</tr>
<tr>
<td>19</td>
<td>97.0</td>
<td>93.2</td>
<td>96.1</td>
<td>91.5</td>
<td>94.3</td>
</tr>
<tr>
<td>20</td>
<td>116.5</td>
<td>101.2</td>
<td>86.9</td>
<td>103.0</td>
<td>88.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA</th>
<th>107.8 a</th>
<th>98.0 b</th>
<th>91.7</th>
<th>95.9 b</th>
<th>89.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>5.5</td>
<td>6.6</td>
<td>6.3</td>
<td>7.3</td>
<td>7.4</td>
</tr>
<tr>
<td>R²</td>
<td>0.95</td>
<td>0.85</td>
<td>0.56</td>
<td>0.83</td>
<td>0.61</td>
</tr>
<tr>
<td>MAX</td>
<td>149.7</td>
<td>122.7</td>
<td>99.6</td>
<td>121.5</td>
<td>111.4</td>
</tr>
<tr>
<td>MIN</td>
<td>79.0</td>
<td>74.7</td>
<td>80.5</td>
<td>72.2</td>
<td>77.4</td>
</tr>
<tr>
<td>mdsB</td>
<td>17.9</td>
<td>8.5</td>
<td>8.6</td>
<td>9.0</td>
<td>9.4</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

El análisis de las medias permite apreciar una disminución de la altura en el conjunto de los genotipos, que a partir del tratamiento 14 se estabiliza no diferenciándose los valores en los tratamientos más salinos, y situándose en los alrededores del 90 % de la altura del control.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>14(abs)</th>
<th>14 %</th>
<th>18(abs)</th>
<th>18 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84.6</td>
<td>72.5</td>
<td>85.5</td>
<td>73.6</td>
<td>86.9</td>
<td>72.0</td>
<td>84.9</td>
</tr>
<tr>
<td>2</td>
<td>98.3</td>
<td>104.1</td>
<td>105.8</td>
<td>111.6</td>
<td>113.4</td>
<td>91.6</td>
<td>93.1</td>
</tr>
<tr>
<td>3</td>
<td>77.1</td>
<td>65.5</td>
<td>84.9</td>
<td>76.5</td>
<td>99.2</td>
<td>75.7</td>
<td>98.2</td>
</tr>
<tr>
<td>4</td>
<td>86.5</td>
<td>83.5</td>
<td>96.5</td>
<td>78.8</td>
<td>91.1</td>
<td>61.5</td>
<td>71.1</td>
</tr>
<tr>
<td>5</td>
<td>95.6</td>
<td>102.7</td>
<td>107.3</td>
<td>88.2</td>
<td>92.2</td>
<td>93.0</td>
<td>97.1</td>
</tr>
<tr>
<td>6</td>
<td>79.5</td>
<td>91.8</td>
<td>115.5</td>
<td>70.8</td>
<td>89.1</td>
<td>88.8</td>
<td>111.7</td>
</tr>
<tr>
<td>7</td>
<td>82.1</td>
<td>77.6</td>
<td>94.6</td>
<td>79.1</td>
<td>96.3</td>
<td>74.0</td>
<td>90.1</td>
</tr>
<tr>
<td>8</td>
<td>85.1</td>
<td>84.1</td>
<td>98.8</td>
<td>85.2</td>
<td>100.1</td>
<td>71.0</td>
<td>83.4</td>
</tr>
<tr>
<td>9</td>
<td>97.0</td>
<td>79.8</td>
<td>82.3</td>
<td>84.8</td>
<td>87.5</td>
<td>76.8</td>
<td>79.2</td>
</tr>
<tr>
<td>10</td>
<td>65.8</td>
<td>67.3</td>
<td>102.3</td>
<td>66.2</td>
<td>100.7</td>
<td>62.0</td>
<td>94.2</td>
</tr>
<tr>
<td>11</td>
<td>107.3</td>
<td>101.2</td>
<td>94.2</td>
<td>106.0</td>
<td>98.7</td>
<td>94.6</td>
<td>88.1</td>
</tr>
<tr>
<td>12</td>
<td>99.2</td>
<td>86.8</td>
<td>87.5</td>
<td>97.3</td>
<td>98.1</td>
<td>96.8</td>
<td>97.6</td>
</tr>
<tr>
<td>13</td>
<td>113.5</td>
<td>87.5</td>
<td>77.1</td>
<td>83.5</td>
<td>73.5</td>
<td>99.6</td>
<td>87.8</td>
</tr>
<tr>
<td>14</td>
<td>77.5</td>
<td>79.8</td>
<td>103.0</td>
<td>76.0</td>
<td>98.1</td>
<td>71.1</td>
<td>91.7</td>
</tr>
<tr>
<td>15</td>
<td>99.5</td>
<td>97.1</td>
<td>97.6</td>
<td>82.6</td>
<td>83.0</td>
<td>120.6</td>
<td>121.2</td>
</tr>
<tr>
<td>16</td>
<td>92.0</td>
<td>94.8</td>
<td>103.0</td>
<td>104.0</td>
<td>113.0</td>
<td>103.2</td>
<td>112.2</td>
</tr>
<tr>
<td>17</td>
<td>102.5</td>
<td>98.8</td>
<td>96.4</td>
<td>110.0</td>
<td>107.3</td>
<td>111.3</td>
<td>108.6</td>
</tr>
<tr>
<td>18</td>
<td>117.5</td>
<td>114.7</td>
<td>97.6</td>
<td>100.5</td>
<td>85.5</td>
<td>103.2</td>
<td>87.8</td>
</tr>
<tr>
<td>19</td>
<td>71.3</td>
<td>83.7</td>
<td>117.2</td>
<td>78.8</td>
<td>110.4</td>
<td>83.0</td>
<td>116.2</td>
</tr>
<tr>
<td>20</td>
<td>99.3</td>
<td>80.6</td>
<td>81.1</td>
<td>73.5</td>
<td>73.9</td>
<td>74.8</td>
<td>75.3</td>
</tr>
<tr>
<td>21</td>
<td>101.0</td>
<td>96.7</td>
<td>95.8</td>
<td>100.3</td>
<td>99.3</td>
<td>110.3</td>
<td>109.2</td>
</tr>
<tr>
<td>22</td>
<td>78.7</td>
<td>82.8</td>
<td>105.1</td>
<td>77.8</td>
<td>98.8</td>
<td>71.8</td>
<td>91.2</td>
</tr>
<tr>
<td>23</td>
<td>85.0</td>
<td>68.5</td>
<td>80.6</td>
<td>60.8</td>
<td>71.5</td>
<td>68.6</td>
<td>80.7</td>
</tr>
<tr>
<td>24</td>
<td>92.8</td>
<td>88.6</td>
<td>95.5</td>
<td>89.1</td>
<td>96.0</td>
<td>84.3</td>
<td>90.9</td>
</tr>
<tr>
<td>25</td>
<td>98.3</td>
<td>93.5</td>
<td>95.0</td>
<td>84.1</td>
<td>85.4</td>
<td>106.5</td>
<td>108.2</td>
</tr>
<tr>
<td>26</td>
<td>100.6</td>
<td>90.2</td>
<td>89.7</td>
<td>101.0</td>
<td>100.4</td>
<td>107.1</td>
<td>106.4</td>
</tr>
<tr>
<td>27</td>
<td>95.3</td>
<td>92.1</td>
<td>96.5</td>
<td>88.3</td>
<td>92.6</td>
<td>95.5</td>
<td>100.1</td>
</tr>
<tr>
<td>28</td>
<td>99.7</td>
<td>80.5</td>
<td>80.6</td>
<td>90.0</td>
<td>90.2</td>
<td>88.5</td>
<td>88.7</td>
</tr>
<tr>
<td>29</td>
<td>93.6</td>
<td>72.5</td>
<td>77.4</td>
<td>87.1</td>
<td>93.0</td>
<td>88.7</td>
<td>94.8</td>
</tr>
<tr>
<td>30</td>
<td>109.8</td>
<td>94.2</td>
<td>85.7</td>
<td>91.0</td>
<td>82.8</td>
<td>87.1</td>
<td>79.2</td>
</tr>
</tbody>
</table>

MEDIA	93.4 a	87.8 b	94.5	87.4 b	93.6	88.0 b	94.7
CV	7.7	9.0	8.8	8.0	8.0	8.2	8.3
R*	0.79	0.73	0.67	0.80	0.72	0.85	0.76
MAX	117.5	114.7	117.2	111.6	113.4	120.6	121.2
MIN	65.8	65.5	77.1	60.8	71.5	61.5	71.1
mdsB	10.9	11.1	12.1	9.8	10.7	9.5	10.6

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

3.7.2. Variabilidad intergenotípica

En el Cuadro 59 de análisis de varianza, puede apreciarse la gran variabilidad intergenotípica existente, ya que en el caso de valores absolutos podemos achacarlo a la variabilidad en condiciones no salinas del material empleado, pero la aparición de significación en los valores relativos nos indica la existencia de respuestas distintas intergenotípicas ante la salinidad.

Estos resultados confirman los indicios de respuesta diferencial que ya se apreciaban en los resultados por genotipos, mostrados en los Cuadros 57 y 58.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>1988</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GL</td>
<td>CM(abs)</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>825.2 **</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>19</td>
<td>768.7 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
<td>34.1</td>
</tr>
<tr>
<td>R²</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>MEDIA</td>
<td>100.5</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>5.8</td>
<td></td>
</tr>
</tbody>
</table>

**, * significación al 1 y 5 % y no significativo

3.7.3. Análisis genético

En el análisis de varianza que se presenta en el Cuadro 60, puede apreciarse la mayor importancia del efecto materno en cuanto a los valores absolutos. Sin embargo cuando nos centramos en valores relativos, que como ya se ha comentado es un buen índice de la respuesta diferencial, encontramos que únicamente el componente de la interacción muestra un alto nivel de significación.

Cuando realizamos la partición de la varianza (Cuadro 61), encontramos que para valores absolutos, el componente genético de mayor importancia es la aptitud combinatoria general paterna, mientras que para valores relativos, la aptitud combinatoria específica parece la respon-
sable principal de la variación genética.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>149.5 ns</td>
<td>5</td>
<td>387.4 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>656.2 **</td>
<td>5</td>
<td>404.1 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>65.5 ns</td>
<td>7</td>
<td>335.6 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>61.7</td>
<td>34</td>
<td>55.3</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 60. Cuadrados medios de los análisis de varianza, según el modelo NCII. Altura de la planta.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>3.5</td>
<td>2.9</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>24.6</td>
<td>3.8</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>0.9</td>
<td>93.4</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>61.7</td>
<td>55.3</td>
</tr>
</tbody>
</table>

Cuadro 61. Componentes genéticos de la varianza, según el modelo NCII. Altura de la planta.

3.8. Longitud de la panicula

3.8.1. Comportamiento general del cultivo

En los Cuadros 62 y 63, se presentan los resultados por genotipos y tratamientos en cada uno de los años de experimentación.

Es claro que la aplicación de salinidad no afecta a este carácter, no presentándose diferencias entre los valores para cada tratamiento, deducidos del conjunto de los genotipos, y con consistencia en los dos años de experimentación.

Las diferencias significativas que se pueden apreciar para genotipos en el Cuadro 64 de análisis de varianza, se centran en las propias del material para condiciones no salinas, que no se ven afectadas por
los tratamientos del ensayo.

<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>10</th>
<th>16(abs)</th>
<th>16 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.2</td>
<td>17.2</td>
<td>94.2</td>
<td>15.2</td>
<td>83.3</td>
</tr>
<tr>
<td>2</td>
<td>18.2</td>
<td>16.2</td>
<td>88.8</td>
<td>17.7</td>
<td>97.0</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>19.0</td>
<td>93.6</td>
<td>18.5</td>
<td>91.1</td>
</tr>
<tr>
<td>4</td>
<td>19.2</td>
<td>18.5</td>
<td>95.8</td>
<td>18.2</td>
<td>94.5</td>
</tr>
<tr>
<td>5</td>
<td>21.2</td>
<td>19.5</td>
<td>91.5</td>
<td>20.5</td>
<td>96.2</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>19.2</td>
<td>77.0</td>
<td>20.0</td>
<td>80.0</td>
</tr>
<tr>
<td>7</td>
<td>19.2</td>
<td>21.2</td>
<td>110.1</td>
<td>20.2</td>
<td>104.9</td>
</tr>
<tr>
<td>8</td>
<td>20.5</td>
<td>19.7</td>
<td>96.3</td>
<td>15.7</td>
<td>76.8</td>
</tr>
<tr>
<td>9</td>
<td>23.2</td>
<td>24.5</td>
<td>105.1</td>
<td>25.2</td>
<td>108.3</td>
</tr>
<tr>
<td>10</td>
<td>22.2</td>
<td>16.7</td>
<td>106.0</td>
<td>17.0</td>
<td>107.6</td>
</tr>
<tr>
<td>11</td>
<td>24.5</td>
<td>24.5</td>
<td>109.8</td>
<td>23.0</td>
<td>103.1</td>
</tr>
<tr>
<td>12</td>
<td>21.0</td>
<td>17.2</td>
<td>82.1</td>
<td>19.5</td>
<td>92.8</td>
</tr>
<tr>
<td>13</td>
<td>25.5</td>
<td>24.0</td>
<td>94.1</td>
<td>25.2</td>
<td>99.0</td>
</tr>
<tr>
<td>14</td>
<td>22.5</td>
<td>18.5</td>
<td>82.2</td>
<td>19.2</td>
<td>85.5</td>
</tr>
<tr>
<td>17</td>
<td>24.0</td>
<td>23.5</td>
<td>97.9</td>
<td>24.5</td>
<td>102.0</td>
</tr>
<tr>
<td>18</td>
<td>21.7</td>
<td>23.2</td>
<td>106.6</td>
<td>26.0</td>
<td>119.3</td>
</tr>
<tr>
<td>19</td>
<td>24.5</td>
<td>23.5</td>
<td>95.9</td>
<td>23.2</td>
<td>94.9</td>
</tr>
<tr>
<td>21</td>
<td>24.0</td>
<td>24.2</td>
<td>101.0</td>
<td>23.5</td>
<td>97.9</td>
</tr>
<tr>
<td>25</td>
<td>22.2</td>
<td>22.7</td>
<td>102.0</td>
<td>23.0</td>
<td>103.1</td>
</tr>
<tr>
<td>26</td>
<td>22.2</td>
<td>19.2</td>
<td>86.3</td>
<td>22.0</td>
<td>98.6</td>
</tr>
</tbody>
</table>

MEDIA	21.6	20.6	95.8	20.8	96.8
CV	12.6	10.9	10.9	13.1	14.0
R²	0.53	0.67	0.50	0.63	0.41
MAX	25.5	24.1	110.1	26.0	119.3
MIN	15.7	16.2	77.0	15.2	76.8
mdsB	3.8	3.1	16.3	3.8	23.5

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

La no existencia de variación en cuanto a respuesta a la salinidad, no hace necesario profundizar sobre la variabilidad intergenotípica y el análisis genético de este carácter.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>14(abs)</th>
<th>14 %</th>
<th>18(abs)</th>
<th>18 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>19.1</td>
<td>16.8</td>
<td>87.8</td>
<td>18.2</td>
<td>95.0</td>
<td>16.0</td>
<td>83.3</td>
</tr>
<tr>
<td>2</td>
<td>15.2</td>
<td>17.5</td>
<td>115.1</td>
<td>18.2</td>
<td>120.0</td>
<td>18.1</td>
<td>119.2</td>
</tr>
<tr>
<td>3</td>
<td>17.8</td>
<td>11.7</td>
<td>65.6</td>
<td>20.3</td>
<td>113.8</td>
<td>17.8</td>
<td>99.8</td>
</tr>
<tr>
<td>4</td>
<td>15.8</td>
<td>17.6</td>
<td>111.8</td>
<td>16.6</td>
<td>105.2</td>
<td>11.8</td>
<td>75.3</td>
</tr>
<tr>
<td>5</td>
<td>18.5</td>
<td>23.2</td>
<td>125.6</td>
<td>18.8</td>
<td>102.0</td>
<td>20.0</td>
<td>108.1</td>
</tr>
<tr>
<td>6</td>
<td>19.6</td>
<td>20.8</td>
<td>106.4</td>
<td>18.0</td>
<td>91.8</td>
<td>21.1</td>
<td>108.0</td>
</tr>
<tr>
<td>7</td>
<td>13.1</td>
<td>17.5</td>
<td>133.6</td>
<td>16.6</td>
<td>126.9</td>
<td>10.7</td>
<td>82.0</td>
</tr>
<tr>
<td>8</td>
<td>14.1</td>
<td>14.7</td>
<td>104.6</td>
<td>14.8</td>
<td>105.4</td>
<td>12.3</td>
<td>87.7</td>
</tr>
<tr>
<td>9</td>
<td>23.2</td>
<td>17.6</td>
<td>76.0</td>
<td>20.3</td>
<td>87.8</td>
<td>16.8</td>
<td>72.5</td>
</tr>
<tr>
<td>10</td>
<td>13.6</td>
<td>18.6</td>
<td>137.3</td>
<td>18.0</td>
<td>132.3</td>
<td>14.8</td>
<td>109.0</td>
</tr>
<tr>
<td>11</td>
<td>26.0</td>
<td>21.1</td>
<td>81.2</td>
<td>26.7</td>
<td>102.9</td>
<td>20.1</td>
<td>77.4</td>
</tr>
<tr>
<td>12</td>
<td>14.2</td>
<td>14.8</td>
<td>104.7</td>
<td>14.0</td>
<td>98.6</td>
<td>12.8</td>
<td>90.6</td>
</tr>
<tr>
<td>13</td>
<td>24.5</td>
<td>17.7</td>
<td>72.4</td>
<td>17.7</td>
<td>72.4</td>
<td>23.5</td>
<td>95.9</td>
</tr>
<tr>
<td>14</td>
<td>20.0</td>
<td>20.1</td>
<td>100.6</td>
<td>20.0</td>
<td>100.0</td>
<td>17.2</td>
<td>86.2</td>
</tr>
<tr>
<td>15</td>
<td>20.8</td>
<td>21.2</td>
<td>101.6</td>
<td>17.5</td>
<td>83.7</td>
<td>25.0</td>
<td>119.6</td>
</tr>
<tr>
<td>16</td>
<td>18.2</td>
<td>19.1</td>
<td>105.3</td>
<td>19.7</td>
<td>108.5</td>
<td>20.5</td>
<td>112.6</td>
</tr>
<tr>
<td>17</td>
<td>19.0</td>
<td>15.3</td>
<td>80.9</td>
<td>18.1</td>
<td>95.4</td>
<td>14.8</td>
<td>78.2</td>
</tr>
<tr>
<td>18</td>
<td>21.5</td>
<td>23.8</td>
<td>111.0</td>
<td>20.5</td>
<td>95.3</td>
<td>18.2</td>
<td>84.8</td>
</tr>
<tr>
<td>19</td>
<td>19.3</td>
<td>22.8</td>
<td>117.9</td>
<td>19.5</td>
<td>100.5</td>
<td>20.5</td>
<td>105.6</td>
</tr>
<tr>
<td>20</td>
<td>21.6</td>
<td>18.1</td>
<td>83.9</td>
<td>18.0</td>
<td>83.3</td>
<td>17.2</td>
<td>79.8</td>
</tr>
<tr>
<td>21</td>
<td>16.1</td>
<td>19.3</td>
<td>120.3</td>
<td>21.3</td>
<td>132.7</td>
<td>23.2</td>
<td>144.4</td>
</tr>
<tr>
<td>22</td>
<td>17.7</td>
<td>19.5</td>
<td>109.5</td>
<td>17.7</td>
<td>99.7</td>
<td>18.8</td>
<td>106.0</td>
</tr>
<tr>
<td>23</td>
<td>15.0</td>
<td>14.1</td>
<td>94.4</td>
<td>15.5</td>
<td>103.3</td>
<td>17.0</td>
<td>113.3</td>
</tr>
<tr>
<td>24</td>
<td>16.8</td>
<td>16.8</td>
<td>100.1</td>
<td>18.1</td>
<td>107.9</td>
<td>16.2</td>
<td>96.7</td>
</tr>
<tr>
<td>25</td>
<td>21.2</td>
<td>21.5</td>
<td>101.4</td>
<td>17.1</td>
<td>80.7</td>
<td>23.2</td>
<td>109.6</td>
</tr>
<tr>
<td>26</td>
<td>17.6</td>
<td>16.8</td>
<td>95.8</td>
<td>20.2</td>
<td>115.0</td>
<td>20.7</td>
<td>117.9</td>
</tr>
<tr>
<td>27</td>
<td>18.1</td>
<td>15.8</td>
<td>87.7</td>
<td>18.7</td>
<td>103.5</td>
<td>17.8</td>
<td>98.7</td>
</tr>
<tr>
<td>28</td>
<td>19.0</td>
<td>17.3</td>
<td>91.4</td>
<td>17.8</td>
<td>93.8</td>
<td>18.5</td>
<td>97.3</td>
</tr>
<tr>
<td>29</td>
<td>22.1</td>
<td>17.0</td>
<td>76.9</td>
<td>21.1</td>
<td>95.5</td>
<td>21.5</td>
<td>97.2</td>
</tr>
<tr>
<td>30</td>
<td>19.7</td>
<td>19.1</td>
<td>96.5</td>
<td>16.7</td>
<td>84.6</td>
<td>17.3</td>
<td>87.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA</th>
<th>18.6 a</th>
<th>18.3 a</th>
<th>99.5</th>
<th>18.5 a</th>
<th>100.8</th>
<th>18.1 a</th>
<th>98.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>17.0</td>
<td>17.6</td>
<td>17.5</td>
<td>14.3</td>
<td>14.7</td>
<td>22.1</td>
<td>25.1</td>
</tr>
<tr>
<td>R:</td>
<td>0.57</td>
<td>0.50</td>
<td>0.56</td>
<td>0.51</td>
<td>0.54</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>MAX</td>
<td>26.0</td>
<td>23.8</td>
<td>137.3</td>
<td>26.7</td>
<td>132.7</td>
<td>25.0</td>
<td>144.4</td>
</tr>
<tr>
<td>MIN</td>
<td>13.1</td>
<td>11.7</td>
<td>65.6</td>
<td>14.0</td>
<td>72.4</td>
<td>10.7</td>
<td>72.5</td>
</tr>
<tr>
<td>másB</td>
<td>5.4</td>
<td>5.3</td>
<td>27.1</td>
<td>4.3</td>
<td>23.7</td>
<td>6.3</td>
<td>50.2</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 63. Longitud de la panícula, para cada tratamiento y genotipo en 1989.
<table>
<thead>
<tr>
<th>Pte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>4.4 ns</td>
<td>1</td>
<td>9.8 ns</td>
<td>3</td>
<td>1.5 ns</td>
<td>2</td>
<td>72.6 ns</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>19</td>
<td>21.3 **</td>
<td>19</td>
<td>162.0 **</td>
<td>29</td>
<td>21.6 **</td>
<td>29</td>
<td>487.9 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
<td>2.0</td>
<td>19</td>
<td>30.6</td>
<td>87</td>
<td>4.8</td>
<td>58</td>
<td>153.0</td>
</tr>
<tr>
<td>R²</td>
<td>0.85</td>
<td>0.84</td>
<td></td>
<td>0.60</td>
<td></td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIA</td>
<td>21.0</td>
<td>96.3</td>
<td>18.4</td>
<td>99.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>6.7</td>
<td>5.7</td>
<td>11.9</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 64. Análisis de varianza. Longitud de la panícula. Valores absolutos y relativos.

3.9. Longitud del pedúnculo

3.9.1. Comportamiento general del cultivo

En los Cuadros 65 y 66 se presentan los resultados por genotipos y tratamientos en ambos años de experimentación.

Puede apreciarse que la respuesta obtenida ha sido algo diferente en ambos años, así en 1988, se produce una disminución gradual significativa de la longitud del pedúnculo, a lo largo del gradiente de salinidad, sin embargo la respuesta en 1989 es más confusa, y los tratamientos salinos muestran una disminución significativa con relación al control, pero sin diferencias entre ellos.

3.9.2. Variación intergenotípica

Los datos por genotipo que se presentan en los Cuadros 65 y 66, nos muestran una respuesta muy confusa, que hace pensar en un fuerte componente de error para este carácter, con unos coeficientes de variación elevadísimos. Esto disminuye fuertemente la posible utilidad de este parámetro.

Los resultados obtenidos en el análisis de varianza, que se resumen en el Cuadro 67, muestran de nuevo unos elevados coeficientes de variación para este carácter. Las diferencias genotípicas son significativas
tanto en valores absolutos como relativos, mientras que el efecto tratamiento no parece presentar una respuesta significativa en general.

<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>10</th>
<th>16(abs)</th>
<th>16 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.5</td>
<td>4.7</td>
<td>55.9</td>
<td>4.7</td>
<td>55.8</td>
</tr>
<tr>
<td>2</td>
<td>6.2</td>
<td>2.2</td>
<td>35.7</td>
<td>0.7</td>
<td>11.9</td>
</tr>
<tr>
<td>3</td>
<td>11.5</td>
<td>7.0</td>
<td>60.9</td>
<td>6.2</td>
<td>54.3</td>
</tr>
<tr>
<td>4</td>
<td>8.7</td>
<td>10.0</td>
<td>113.6</td>
<td>10.2</td>
<td>116.4</td>
</tr>
<tr>
<td>5</td>
<td>15.5</td>
<td>16.0</td>
<td>103.2</td>
<td>14.7</td>
<td>95.1</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>3.0</td>
<td>150.0</td>
<td>0.7</td>
<td>37.5</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>3.0</td>
<td>85.7</td>
<td>5.0</td>
<td>142.8</td>
</tr>
<tr>
<td>8</td>
<td>4.0</td>
<td>3.5</td>
<td>87.5</td>
<td>3.2</td>
<td>81.2</td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
<td>2.2</td>
<td>75.0</td>
<td>0.5</td>
<td>16.6</td>
</tr>
<tr>
<td>10</td>
<td>7.2</td>
<td>7.2</td>
<td>99.3</td>
<td>9.2</td>
<td>126.7</td>
</tr>
<tr>
<td>11</td>
<td>12.2</td>
<td>11.2</td>
<td>91.4</td>
<td>10.5</td>
<td>103.6</td>
</tr>
<tr>
<td>12</td>
<td>10.2</td>
<td>7.0</td>
<td>67.9</td>
<td>4.7</td>
<td>83.3</td>
</tr>
<tr>
<td>13</td>
<td>7.0</td>
<td>4.0</td>
<td>57.1</td>
<td>7.2</td>
<td>107.7</td>
</tr>
<tr>
<td>14</td>
<td>5.7</td>
<td>7.5</td>
<td>129.3</td>
<td>6.2</td>
<td>103.6</td>
</tr>
<tr>
<td>15</td>
<td>11.7</td>
<td>11.7</td>
<td>156.6</td>
<td>11.7</td>
<td>156.6</td>
</tr>
<tr>
<td>16</td>
<td>15.0</td>
<td>17.5</td>
<td>116.6</td>
<td>12.7</td>
<td>85.0</td>
</tr>
<tr>
<td>17</td>
<td>10.7</td>
<td>3.0</td>
<td>27.8</td>
<td>2.5</td>
<td>23.1</td>
</tr>
</tbody>
</table>

MEDIA	8.6 a	7.4ab	89.0	6.6 b	77.8
CV	44.9	50.5	80.3	49.1	65.6
R²	0.60	0.69	0.22	0.67	0.44
MAX	16.0	17.5	156.6	14.7	156.6
MIN	2.0	2.2	27.8	0.5	11.9
mdsB	5.6	5.1	198.5	4.4	84.7

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

129
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>14(abs)</th>
<th>14 %</th>
<th>18(abs)</th>
<th>18 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.1</td>
<td>4.6</td>
<td>74.6</td>
<td>5.3</td>
<td>86.6</td>
<td>5.5</td>
<td>88.7</td>
</tr>
<tr>
<td>2</td>
<td>2.8</td>
<td>3.3</td>
<td>116.3</td>
<td>0.2</td>
<td>8.6</td>
<td>0.6</td>
<td>21.5</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.6</td>
<td>406.2</td>
<td>1.3</td>
<td>343.7</td>
<td>2.0</td>
<td>500.0</td>
</tr>
<tr>
<td>4</td>
<td>6.5</td>
<td>6.6</td>
<td>102.5</td>
<td>5.5</td>
<td>84.6</td>
<td>4.3</td>
<td>67.3</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>4.7</td>
<td>89.6</td>
<td>4.7</td>
<td>89.6</td>
<td>3.2</td>
<td>61.3</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>2.6</td>
<td>105.0</td>
<td>0.2</td>
<td>10.0</td>
<td>5.8</td>
<td>232.3</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>1.5</td>
<td>100.0</td>
<td>1.6</td>
<td>108.3</td>
<td>1.1</td>
<td>75.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>1.6</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>6.7</td>
<td>1.0</td>
<td>14.7</td>
<td>1.5</td>
<td>22.0</td>
<td>1.3</td>
<td>19.6</td>
</tr>
<tr>
<td>10</td>
<td>4.8</td>
<td>2.3</td>
<td>48.6</td>
<td>4.0</td>
<td>83.3</td>
<td>0.8</td>
<td>17.3</td>
</tr>
<tr>
<td>11</td>
<td>4.6</td>
<td>4.3</td>
<td>95.1</td>
<td>2.3</td>
<td>51.6</td>
<td>3.5</td>
<td>76.6</td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td>1.6</td>
<td>40.6</td>
<td>1.6</td>
<td>40.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>16.0</td>
<td>1.7</td>
<td>10.9</td>
<td>4.1</td>
<td>25.7</td>
<td>4.8</td>
<td>30.2</td>
</tr>
<tr>
<td>14</td>
<td>5.0</td>
<td>5.6</td>
<td>112.5</td>
<td>3.5</td>
<td>70.0</td>
<td>2.1</td>
<td>42.5</td>
</tr>
<tr>
<td>15</td>
<td>6.3</td>
<td>6.0</td>
<td>93.7</td>
<td>4.0</td>
<td>62.5</td>
<td>9.0</td>
<td>140.6</td>
</tr>
<tr>
<td>16</td>
<td>3.3</td>
<td>1.3</td>
<td>39.2</td>
<td>6.5</td>
<td>191.1</td>
<td>6.2</td>
<td>183.8</td>
</tr>
<tr>
<td>17</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>562.5</td>
<td>6.3</td>
<td>1593.7</td>
</tr>
<tr>
<td>18</td>
<td>3.1</td>
<td>4.3</td>
<td>141.1</td>
<td>2.5</td>
<td>80.6</td>
<td>5.5</td>
<td>177.4</td>
</tr>
<tr>
<td>19</td>
<td>6.1</td>
<td>1.8</td>
<td>30.7</td>
<td>6.0</td>
<td>98.3</td>
<td>7.3</td>
<td>120.9</td>
</tr>
<tr>
<td>20</td>
<td>12.3</td>
<td>7.5</td>
<td>60.5</td>
<td>4.8</td>
<td>39.3</td>
<td>7.3</td>
<td>59.5</td>
</tr>
<tr>
<td>21</td>
<td>15.1</td>
<td>9.0</td>
<td>59.5</td>
<td>9.5</td>
<td>62.9</td>
<td>12.8</td>
<td>85.2</td>
</tr>
<tr>
<td>22</td>
<td>5.7</td>
<td>5.1</td>
<td>89.1</td>
<td>3.8</td>
<td>66.8</td>
<td>2.6</td>
<td>45.2</td>
</tr>
<tr>
<td>23</td>
<td>3.5</td>
<td>3.8</td>
<td>109.5</td>
<td>3.1</td>
<td>90.5</td>
<td>2.2</td>
<td>64.2</td>
</tr>
<tr>
<td>24</td>
<td>7.8</td>
<td>6.1</td>
<td>79.0</td>
<td>6.6</td>
<td>84.9</td>
<td>7.1</td>
<td>91.3</td>
</tr>
<tr>
<td>25</td>
<td>12.2</td>
<td>8.5</td>
<td>69.7</td>
<td>6.6</td>
<td>54.3</td>
<td>6.8</td>
<td>56.3</td>
</tr>
<tr>
<td>26</td>
<td>3.8</td>
<td>4.6</td>
<td>118.5</td>
<td>7.5</td>
<td>192.3</td>
<td>8.3</td>
<td>214.7</td>
</tr>
<tr>
<td>27</td>
<td>4.1</td>
<td>3.1</td>
<td>76.2</td>
<td>4.2</td>
<td>103.6</td>
<td>9.5</td>
<td>231.7</td>
</tr>
<tr>
<td>28</td>
<td>6.0</td>
<td>4.3</td>
<td>72.9</td>
<td>6.3</td>
<td>105.5</td>
<td>3.2</td>
<td>54.1</td>
</tr>
<tr>
<td>29</td>
<td>5.8</td>
<td>0.7</td>
<td>12.7</td>
<td>1.0</td>
<td>16.9</td>
<td>0.8</td>
<td>14.8</td>
</tr>
<tr>
<td>30</td>
<td>3.5</td>
<td>5.2</td>
<td>150.0</td>
<td>2.8</td>
<td>82.1</td>
<td>1.2</td>
<td>35.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA</th>
<th>5.3 a</th>
<th>3.9 b</th>
<th>85.4</th>
<th>3.8 b</th>
<th>98.2</th>
<th>4.4 b</th>
<th>149.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>52.1</td>
<td>69.8</td>
<td>127.1</td>
<td>79.6</td>
<td>176.6</td>
<td>71.0</td>
<td>238.8</td>
</tr>
<tr>
<td>R²</td>
<td>0.73</td>
<td>0.49</td>
<td>0.38</td>
<td>0.43</td>
<td>0.36</td>
<td>0.58</td>
<td>0.47</td>
</tr>
<tr>
<td>MAX</td>
<td>16.0</td>
<td>9.0</td>
<td>406.2</td>
<td>9.5</td>
<td>562.5</td>
<td>12.8</td>
<td>1593.7</td>
</tr>
<tr>
<td>MIN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>39.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mdsB</td>
<td>4.2</td>
<td>4.5</td>
<td>224.5</td>
<td>5.7</td>
<td>389.0</td>
<td>4.6</td>
<td>584.3</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>17.6 *</td>
<td>1</td>
<td>1177.2 ns</td>
<td>3</td>
<td>18.6 **</td>
<td>2</td>
<td>32806 ns</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>19</td>
<td>52.4 **</td>
<td>19</td>
<td>2198.8 **</td>
<td>29</td>
<td>23.5 **</td>
<td>29</td>
<td>55883 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
<td>3.8</td>
<td>19</td>
<td>646.5</td>
<td>87</td>
<td>4.4</td>
<td>58</td>
<td>23291</td>
</tr>
</tbody>
</table>

R² | 0.88 | 0.78 | 0.65 | 0.55 |
MEDIA | 7.5 | 83.3 | 4.41 | 109.3 |
CV | 25.9 | 30.5 | 47.7 | 139.6 |

**, *, y ns significación al 1, 5 % y no significativo

3.9.3. Análisis genético

En el Cuadro 68 se aprecia la no significación de ninguno de los factores al trabajar con valores relativos, mientras que con valores absolutos los efectos paternos y maternos parecen de interés.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>52.7 **</td>
<td>5</td>
<td>92538 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>28.8 *</td>
<td>5</td>
<td>85362 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>4.4 ns</td>
<td>7</td>
<td>42149 ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>5.9</td>
<td>34</td>
<td>37082</td>
</tr>
</tbody>
</table>

**, *, y ns significación al 1, 5 % y no significativo

Cuadro 68. Cuadrados medios de los análisis de varianza, según el modelo NCII. Longitud del pedúnculo.

La partición de la varianza genética que se presenta en el Cuadro 69, muestra la gran magnitud del componente de error que elimina la posibilidad de interpretación de estos resultados.
\(\sigma_{ACG,M} \)	2.0	2799
\(\sigma_{ACG,P} \)	1.0	2400
\(\sigma_{ACE} \)	0.0	1688
\(\sigma_{ERROR} \)	5.9	37082

Cuadro 69. Componentes genéticos de la varianza, según el modelo NCII. Longitud del pedúnculo.

3.10. Peso seco de la planta (sin panicula)

3.10.1. Comportamiento general del cultivo

En los Cuadros 70 y 71 se presentan los resultados por genotipo y tratamiento en las campañas de 1988 y 1989.

La observación de los valores medios por tratamientos, tanto en valores absolutos como relativos, nos muestra una clara y significativa disminución del peso seco de la planta conforme se incrementó el contenido salino del agua de riego. Este hecho se presentó de forma más acusada en el primer año de experimentación.

3.10.2. Variabilidad intergenotípica

El análisis de varianza que se presenta en el Cuadro 72 muestra los efectos significativos tanto de tratamientos como de genotipos, con la única excepción del efecto tratamiento en valores relativos en 1989.

De la observación de los resultados individuales por genotipos, en los Cuadros 70 y 71, puede deducirse las grandes diferencias en cuanto a respuestas a la salinidad, que presentan para este carácter; así encontramos genotipos que en el tratamiento más salino no han reducido su peso seco, mientras que en otros disminuye hasta alcanzar valores por debajo del 50 % del tratamiento control. Esto confirma la variabilidad existente para este carácter, en el material vegetal utilizado.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>10</th>
<th>16(abs)</th>
<th>16 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.0</td>
<td>20.2</td>
<td>75.0</td>
<td>16.2</td>
<td>60.1</td>
</tr>
<tr>
<td>2</td>
<td>54.7</td>
<td>33.7</td>
<td>61.5</td>
<td>39.2</td>
<td><71.6</td>
</tr>
<tr>
<td>3</td>
<td>20.7</td>
<td>19.0</td>
<td>91.3</td>
<td>13.0</td>
<td>62.5</td>
</tr>
<tr>
<td>4</td>
<td>34.7</td>
<td>22.0</td>
<td>63.2</td>
<td>21.5</td>
<td><61.8</td>
</tr>
<tr>
<td>5</td>
<td>25.5</td>
<td>17.5</td>
<td>68.6</td>
<td>12.7</td>
<td><50.0</td>
</tr>
<tr>
<td>6</td>
<td>29.7</td>
<td>22.7</td>
<td>76.3</td>
<td>24.2</td>
<td><81.3</td>
</tr>
<tr>
<td>7</td>
<td>21.5</td>
<td>23.2</td>
<td>108.1</td>
<td>17.7</td>
<td>82.5</td>
</tr>
<tr>
<td>8</td>
<td>52.5</td>
<td>26.2</td>
<td>50.0</td>
<td>21.2</td>
<td>40.4</td>
</tr>
<tr>
<td>9</td>
<td>30.7</td>
<td>28.2</td>
<td>91.7</td>
<td>30.7</td>
<td>99.8</td>
</tr>
<tr>
<td>10</td>
<td>22.7</td>
<td>17.7</td>
<td>77.8</td>
<td>16.5</td>
<td>72.3</td>
</tr>
<tr>
<td>11</td>
<td>62.2</td>
<td>43.5</td>
<td>69.8</td>
<td>27.7</td>
<td><44.5</td>
</tr>
<tr>
<td>12</td>
<td>47.5</td>
<td>36.0</td>
<td>75.8</td>
<td>27.5</td>
<td><57.9</td>
</tr>
<tr>
<td>13</td>
<td>37.7</td>
<td>34.0</td>
<td>91.9</td>
<td>19.2</td>
<td>52.0</td>
</tr>
<tr>
<td>14</td>
<td>42.7</td>
<td>25.7</td>
<td>60.1</td>
<td>19.5</td>
<td>45.5</td>
</tr>
<tr>
<td>15</td>
<td>88.0</td>
<td>38.5</td>
<td>43.7</td>
<td>35.7</td>
<td>40.6</td>
</tr>
<tr>
<td>16</td>
<td>72.2</td>
<td>59.0</td>
<td>81.6</td>
<td>42.7</td>
<td>59.1</td>
</tr>
<tr>
<td>17</td>
<td>46.7</td>
<td>31.7</td>
<td>67.8</td>
<td>25.0</td>
<td>53.4</td>
</tr>
<tr>
<td>18</td>
<td>52.2</td>
<td>37.2</td>
<td>71.2</td>
<td>27.5</td>
<td>52.5</td>
</tr>
<tr>
<td>19</td>
<td>32.0</td>
<td>18.5</td>
<td>57.8</td>
<td>15.7</td>
<td>49.2</td>
</tr>
<tr>
<td>20</td>
<td>41.2</td>
<td>30.5</td>
<td>73.8</td>
<td>26.5</td>
<td>64.1</td>
</tr>
</tbody>
</table>

MEDIA	41.8 a	29.4 b	72.6	24.0 c	60.1
CV	31.0	27.8	26.4	35.3	33.5
R²	0.71	0.67	0.45	0.55	0.42
MAX	88.0	59.0	108.1	42.7	95.8
MIN	20.7	17.5	43.7	12.7	40.5
mdsB	17.9	15.1	32.3	12.5	34.6

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 70. Peso seco de planta, para cada tratamiento y genotipo en 1988.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>14(abs)</th>
<th>14 %</th>
<th>18(abs)</th>
<th>18 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.2</td>
<td>29.1</td>
<td>80.2</td>
<td>26.2</td>
<td>72.4</td>
<td>21.4</td>
<td>59.1</td>
</tr>
<tr>
<td>2</td>
<td>28.4</td>
<td>29.2</td>
<td>102.6</td>
<td>33.5</td>
<td>117.6</td>
<td>23.9</td>
<td>84.0</td>
</tr>
<tr>
<td>3</td>
<td>20.2</td>
<td>14.5</td>
<td>71.9</td>
<td>21.1</td>
<td>104.6</td>
<td>14.5</td>
<td>71.8</td>
</tr>
<tr>
<td>4</td>
<td>37.2</td>
<td>26.2</td>
<td>70.4</td>
<td>19.8</td>
<td>53.2</td>
<td>12.9</td>
<td>34.8</td>
</tr>
<tr>
<td>5</td>
<td>35.9</td>
<td>56.1</td>
<td>156.0</td>
<td>35.7</td>
<td>99.2</td>
<td>34.1</td>
<td>94.9</td>
</tr>
<tr>
<td>6</td>
<td>21.7</td>
<td>35.3</td>
<td>162.6</td>
<td>20.0</td>
<td>92.5</td>
<td>26.6</td>
<td>122.2</td>
</tr>
<tr>
<td>7</td>
<td>21.1</td>
<td>23.9</td>
<td>113.1</td>
<td>26.7</td>
<td>126.4</td>
<td>24.1</td>
<td>113.9</td>
</tr>
<tr>
<td>8</td>
<td>35.1</td>
<td>27.9</td>
<td>79.3</td>
<td>28.1</td>
<td>79.9</td>
<td>17.5</td>
<td>50.0</td>
</tr>
<tr>
<td>9</td>
<td>43.2</td>
<td>29.7</td>
<td>68.6</td>
<td>32.2</td>
<td>74.6</td>
<td>22.2</td>
<td>51.4</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>21.8</td>
<td>105.3</td>
<td>17.3</td>
<td>83.4</td>
<td>13.0</td>
<td>62.9</td>
</tr>
<tr>
<td>11</td>
<td>61.1</td>
<td>29.3</td>
<td>47.9</td>
<td>41.9</td>
<td>68.7</td>
<td>26.9</td>
<td>44.1</td>
</tr>
<tr>
<td>12</td>
<td>44.6</td>
<td>32.3</td>
<td>72.5</td>
<td>50.9</td>
<td>114.1</td>
<td>34.8</td>
<td>70.3</td>
</tr>
<tr>
<td>13</td>
<td>53.8</td>
<td>36.0</td>
<td>67.0</td>
<td>26.1</td>
<td>48.5</td>
<td>38.3</td>
<td>71.2</td>
</tr>
<tr>
<td>14</td>
<td>32.9</td>
<td>28.2</td>
<td>85.7</td>
<td>22.6</td>
<td>68.7</td>
<td>18.0</td>
<td>54.7</td>
</tr>
<tr>
<td>15</td>
<td>38.0</td>
<td>37.7</td>
<td>99.2</td>
<td>23.7</td>
<td>62.5</td>
<td>41.4</td>
<td>108.9</td>
</tr>
<tr>
<td>16</td>
<td>31.3</td>
<td>35.1</td>
<td>112.2</td>
<td>33.6</td>
<td>107.2</td>
<td>33.9</td>
<td>108.4</td>
</tr>
<tr>
<td>17</td>
<td>40.9</td>
<td>39.4</td>
<td>96.5</td>
<td>38.5</td>
<td>94.3</td>
<td>34.0</td>
<td>83.1</td>
</tr>
<tr>
<td>18</td>
<td>50.3</td>
<td>52.1</td>
<td>103.5</td>
<td>37.4</td>
<td>74.3</td>
<td>31.7</td>
<td>63.0</td>
</tr>
<tr>
<td>19</td>
<td>23.5</td>
<td>21.2</td>
<td>90.2</td>
<td>16.5</td>
<td>70.2</td>
<td>19.2</td>
<td>82.0</td>
</tr>
<tr>
<td>20</td>
<td>35.2</td>
<td>23.8</td>
<td>67.6</td>
<td>21.7</td>
<td>61.5</td>
<td>17.0</td>
<td>48.2</td>
</tr>
<tr>
<td>21</td>
<td>25.3</td>
<td>19.4</td>
<td>76.5</td>
<td>33.3</td>
<td>131.4</td>
<td>34.7</td>
<td>136.9</td>
</tr>
<tr>
<td>22</td>
<td>26.9</td>
<td>30.1</td>
<td>112.1</td>
<td>22.1</td>
<td>82.1</td>
<td>20.1</td>
<td>74.9</td>
</tr>
<tr>
<td>23</td>
<td>29.2</td>
<td>12.5</td>
<td>42.8</td>
<td>16.4</td>
<td>56.3</td>
<td>18.8</td>
<td>64.5</td>
</tr>
<tr>
<td>24</td>
<td>34.8</td>
<td>37.2</td>
<td>106.7</td>
<td>34.7</td>
<td>99.6</td>
<td>28.1</td>
<td>80.7</td>
</tr>
<tr>
<td>25</td>
<td>38.7</td>
<td>41.3</td>
<td>106.7</td>
<td>21.9</td>
<td>56.7</td>
<td>34.3</td>
<td>88.7</td>
</tr>
<tr>
<td>26</td>
<td>45.2</td>
<td>37.9</td>
<td>83.7</td>
<td>44.4</td>
<td>98.2</td>
<td>45.6</td>
<td>100.8</td>
</tr>
<tr>
<td>27</td>
<td>45.4</td>
<td>43.3</td>
<td>95.4</td>
<td>32.7</td>
<td>71.9</td>
<td>54.6</td>
<td>120.2</td>
</tr>
<tr>
<td>28</td>
<td>35.0</td>
<td>19.0</td>
<td>54.3</td>
<td>25.5</td>
<td>72.8</td>
<td>23.9</td>
<td>68.4</td>
</tr>
<tr>
<td>29</td>
<td>37.2</td>
<td>19.1</td>
<td>51.3</td>
<td>25.1</td>
<td>67.6</td>
<td>25.8</td>
<td>69.5</td>
</tr>
<tr>
<td>30</td>
<td>35.4</td>
<td>31.9</td>
<td>90.1</td>
<td>36.3</td>
<td>102.4</td>
<td>28.9</td>
<td>81.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA</th>
<th>35.2 a</th>
<th>31.1 b</th>
<th>89.4</th>
<th>29.4abc</th>
<th>84.5</th>
<th>27.4 c</th>
<th>79.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>31.3</td>
<td>33.0</td>
<td>31.2</td>
<td>33.2</td>
<td>34.0</td>
<td>31.5</td>
<td>30.3</td>
</tr>
<tr>
<td>R²</td>
<td>0.53</td>
<td>0.56</td>
<td>0.56</td>
<td>0.51</td>
<td>0.45</td>
<td>0.63</td>
<td>0.58</td>
</tr>
<tr>
<td>MAX</td>
<td>61.1</td>
<td>56.1</td>
<td>162.6</td>
<td>50.9</td>
<td>131.4</td>
<td>54.6</td>
<td>136.9</td>
</tr>
<tr>
<td>MIN</td>
<td>20.2</td>
<td>12.5</td>
<td>42.8</td>
<td>16.4</td>
<td>48.5</td>
<td>12.9</td>
<td>34.8</td>
</tr>
<tr>
<td>mdsB</td>
<td>19.8</td>
<td>16.0</td>
<td>43.5</td>
<td>16.2</td>
<td>52.1</td>
<td>12.3</td>
<td>35.1</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>1736.8 **</td>
<td>1</td>
<td>1634.3 **</td>
<td>3</td>
<td>374.1 **</td>
<td>2</td>
<td>744.7 ns</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>19</td>
<td>394.9 **</td>
<td>19</td>
<td>388.0 **</td>
<td>29</td>
<td>246.9 **</td>
<td>29</td>
<td>1250.9 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
<td>51.4</td>
<td>19</td>
<td>81.5</td>
<td>87</td>
<td>43.3</td>
<td>58</td>
<td>325.9</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.85</td>
<td></td>
<td>0.85</td>
<td></td>
<td>0.69</td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>31.8</td>
<td></td>
<td>66.5</td>
<td></td>
<td>30.6</td>
<td></td>
<td>84.0</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>22.5</td>
<td></td>
<td>13.6</td>
<td></td>
<td>21.4</td>
<td></td>
<td>21.4</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

3.10.3. Análisis genético

El análisis de varianza de North Carolina II, presentado en el Cuadro 73, nos muestra que el efecto de la interacción varía en su importancia según el tipo de valores empleados, no siendo significativos los efectos paternos y maternos, en ningún caso.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>224.3 ns</td>
<td>5</td>
<td>554.5 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>196.1 ns</td>
<td>5</td>
<td>1296.3 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>71.4 ns</td>
<td>7</td>
<td>790.0 *</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>36.2</td>
<td>34</td>
<td>288.4</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 73. Cuadrados medios de los análisis de varianza, según el modelo NGII. Peso seco de la planta.

La partición de la varianza genética, que se presenta en el Cuadro 74, muestra unos valores de error muy fuertes en la estima, en la que sin embargo destaca el componente de aptitud combinatoria específica.
Cuadro 74. Componentes genéticos de la varianza, según el modelo NCII. Peso seco de la planta.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>6.4</td>
<td>0.0</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>5.2</td>
<td>28.1</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>8.8</td>
<td>167.2</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>36.2</td>
<td>288.4</td>
</tr>
</tbody>
</table>

3.11. Índice de cosecha

3.11.1. Comportamiento general del cultivo

En los Cuadros 75 y 76 se presentan los resultados para cada tratamiento y genotipo, en los dos años de experimentación, en valores absolutos y relativos.

De la observación de los valores medios de cada tratamiento salino se desprende el claro efecto del mismo, con una disminución progresiva en el índice de cosecha conforme se incrementa la concentración salina en el agua de riego; produciéndose este fenómeno tanto para los valores absolutos como para los relativos al control.

3.11.2. Variabilidad intergenotípica

En el análisis de varianza del Cuadro 77 se puede observar cómo el efecto principal es el debido al tratamiento salino, con alta significación en ambos años y tipos de valores. El efecto genotipo es importante en el primer año de experimentación, disminuyendo en 1989, fundamentalmente en valores relativos, en los que no es significativo.

El comportamiento individual de los genotipos, (Cuadros 75 y 76), nos muestra una gran variabilidad de respuestas, con casos muy extremados como el de la línea 2 que presenta disminuciones en cuanto al índice de cosecha entre el 80 y el 95 % en ambos años; el híbrido 13 con valores estables del tipo del 75 %, y otros de comportamiento errático como la línea 8, que en el primer año no muestra pérdida, mientras que en el segundo sufre una reducción superior al 75 %.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>10</th>
<th>16(abs)</th>
<th>16 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.0</td>
<td>40.8</td>
<td>86.8</td>
<td>36.8</td>
<td>78.4</td>
</tr>
<tr>
<td>2</td>
<td>39.3</td>
<td>23.7</td>
<td>60.5</td>
<td>1.8</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>48.2</td>
<td>44.9</td>
<td>93.1</td>
<td>33.9</td>
<td>70.3</td>
</tr>
<tr>
<td>4</td>
<td>50.7</td>
<td>45.4</td>
<td>89.4</td>
<td>32.1</td>
<td>63.3</td>
</tr>
<tr>
<td>5</td>
<td>50.4</td>
<td>47.4</td>
<td>94.2</td>
<td>44.0</td>
<td>87.4</td>
</tr>
<tr>
<td>6</td>
<td>50.8</td>
<td>44.2</td>
<td>86.9</td>
<td>17.0</td>
<td>33.5</td>
</tr>
<tr>
<td>7</td>
<td>47.2</td>
<td>40.9</td>
<td>86.7</td>
<td>30.8</td>
<td>65.4</td>
</tr>
<tr>
<td>8</td>
<td>44.9</td>
<td>49.6</td>
<td>110.3</td>
<td>45.6</td>
<td>101.4</td>
</tr>
<tr>
<td>9</td>
<td>51.3</td>
<td>45.2</td>
<td>88.1</td>
<td>37.0</td>
<td>72.2</td>
</tr>
<tr>
<td>10</td>
<td>49.0</td>
<td>49.2</td>
<td>100.2</td>
<td>42.4</td>
<td>86.4</td>
</tr>
<tr>
<td>11</td>
<td>36.6</td>
<td>36.3</td>
<td>99.0</td>
<td>30.5</td>
<td>63.2</td>
</tr>
<tr>
<td>12</td>
<td>51.4</td>
<td>42.0</td>
<td>81.7</td>
<td>39.2</td>
<td>76.3</td>
</tr>
<tr>
<td>13</td>
<td>60.4</td>
<td>50.9</td>
<td>84.2</td>
<td>46.3</td>
<td>76.5</td>
</tr>
<tr>
<td>14</td>
<td>53.5</td>
<td>51.7</td>
<td>96.6</td>
<td>33.0</td>
<td>61.7</td>
</tr>
<tr>
<td>17</td>
<td>45.8</td>
<td>43.0</td>
<td>93.7</td>
<td>23.1</td>
<td>50.3</td>
</tr>
<tr>
<td>18</td>
<td>37.4</td>
<td>33.8</td>
<td>90.2</td>
<td>25.9</td>
<td>69.3</td>
</tr>
<tr>
<td>19</td>
<td>46.5</td>
<td>48.8</td>
<td>104.8</td>
<td>42.0</td>
<td>90.3</td>
</tr>
<tr>
<td>21</td>
<td>38.4</td>
<td>43.5</td>
<td>113.0</td>
<td>33.9</td>
<td>88.0</td>
</tr>
<tr>
<td>25</td>
<td>53.7</td>
<td>45.9</td>
<td>85.4</td>
<td>47.8</td>
<td>88.8</td>
</tr>
<tr>
<td>26</td>
<td>44.6</td>
<td>46.6</td>
<td>104.6</td>
<td>38.9</td>
<td>87.3</td>
</tr>
<tr>
<td>MEDIA</td>
<td>47.5 a</td>
<td>43.7 b</td>
<td>92.4</td>
<td>34.1 c</td>
<td>71.7</td>
</tr>
<tr>
<td>CV</td>
<td>10.9</td>
<td>9.1</td>
<td>9.0</td>
<td>19.1</td>
<td>18.9</td>
</tr>
<tr>
<td>R²</td>
<td>0.64</td>
<td>0.77</td>
<td>0.71</td>
<td>0.78</td>
<td>0.77</td>
</tr>
<tr>
<td>MAX</td>
<td>60.4</td>
<td>51.7</td>
<td>113.0</td>
<td>47.8</td>
<td>101.4</td>
</tr>
<tr>
<td>MIN</td>
<td>36.6</td>
<td>23.7</td>
<td>60.5</td>
<td>1.8</td>
<td>4.7</td>
</tr>
<tr>
<td>mdsB</td>
<td>7.4</td>
<td>5.3</td>
<td>11.3</td>
<td>8.6</td>
<td>17.8</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 75. Índice de cosecha, para cada tratamiento y genotipo en 1988.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>14(abs)</th>
<th>14 %</th>
<th>18(abs)</th>
<th>18 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.2</td>
<td>33.5</td>
<td>81.4</td>
<td>29.6</td>
<td>71.9</td>
<td>25.5</td>
<td>61.8</td>
</tr>
<tr>
<td>2</td>
<td>36.8</td>
<td>28.1</td>
<td>76.4</td>
<td>26.2</td>
<td>71.1</td>
<td>8.6</td>
<td>23.4</td>
</tr>
<tr>
<td>3</td>
<td>46.8</td>
<td>31.4</td>
<td>67.1</td>
<td>37.2</td>
<td>79.4</td>
<td>22.4</td>
<td>47.9</td>
</tr>
<tr>
<td>4</td>
<td>43.0</td>
<td>42.7</td>
<td>99.3</td>
<td>35.9</td>
<td>83.4</td>
<td>12.3</td>
<td>28.6</td>
</tr>
<tr>
<td>5</td>
<td>35.7</td>
<td>35.5</td>
<td>99.3</td>
<td>28.9</td>
<td>80.8</td>
<td>21.4</td>
<td>59.9</td>
</tr>
<tr>
<td>6</td>
<td>47.8</td>
<td>40.4</td>
<td>84.5</td>
<td>30.0</td>
<td>62.7</td>
<td>11.0</td>
<td>23.0</td>
</tr>
<tr>
<td>7</td>
<td>30.7</td>
<td>26.3</td>
<td>85.6</td>
<td>27.4</td>
<td>89.2</td>
<td>15.6</td>
<td>50.9</td>
</tr>
<tr>
<td>8</td>
<td>39.1</td>
<td>31.1</td>
<td>79.6</td>
<td>29.4</td>
<td>75.2</td>
<td>9.0</td>
<td>23.0</td>
</tr>
<tr>
<td>9</td>
<td>48.6</td>
<td>41.8</td>
<td>86.1</td>
<td>36.6</td>
<td>75.3</td>
<td>19.5</td>
<td>40.1</td>
</tr>
<tr>
<td>10</td>
<td>43.9</td>
<td>41.7</td>
<td>95.0</td>
<td>36.4</td>
<td>82.8</td>
<td>20.9</td>
<td>47.6</td>
</tr>
<tr>
<td>11</td>
<td>37.8</td>
<td>37.0</td>
<td>97.7</td>
<td>36.7</td>
<td>97.0</td>
<td>23.1</td>
<td>61.7</td>
</tr>
<tr>
<td>12</td>
<td>37.7</td>
<td>35.2</td>
<td>93.3</td>
<td>29.8</td>
<td>79.0</td>
<td>26.5</td>
<td>70.2</td>
</tr>
<tr>
<td>13</td>
<td>47.8</td>
<td>39.9</td>
<td>83.4</td>
<td>27.0</td>
<td>56.6</td>
<td>23.7</td>
<td>49.5</td>
</tr>
<tr>
<td>14</td>
<td>42.2</td>
<td>34.2</td>
<td>81.1</td>
<td>26.9</td>
<td>63.7</td>
<td>26.9</td>
<td>63.9</td>
</tr>
<tr>
<td>15</td>
<td>36.6</td>
<td>27.7</td>
<td>75.8</td>
<td>25.9</td>
<td>70.8</td>
<td>15.9</td>
<td>43.6</td>
</tr>
<tr>
<td>16</td>
<td>30.6</td>
<td>31.9</td>
<td>104.1</td>
<td>39.4</td>
<td>128.6</td>
<td>23.1</td>
<td>75.5</td>
</tr>
<tr>
<td>17</td>
<td>42.0</td>
<td>39.0</td>
<td>92.7</td>
<td>33.5</td>
<td>79.8</td>
<td>18.0</td>
<td>43.0</td>
</tr>
<tr>
<td>18</td>
<td>44.7</td>
<td>45.0</td>
<td>100.5</td>
<td>35.7</td>
<td>79.8</td>
<td>31.2</td>
<td>69.7</td>
</tr>
<tr>
<td>19</td>
<td>43.8</td>
<td>37.5</td>
<td>85.6</td>
<td>32.8</td>
<td>74.8</td>
<td>19.0</td>
<td>43.5</td>
</tr>
<tr>
<td>20</td>
<td>44.8</td>
<td>37.1</td>
<td>82.8</td>
<td>35.4</td>
<td>79.1</td>
<td>27.0</td>
<td>60.3</td>
</tr>
<tr>
<td>21</td>
<td>50.6</td>
<td>38.5</td>
<td>76.1</td>
<td>34.2</td>
<td>67.6</td>
<td>30.4</td>
<td>60.2</td>
</tr>
<tr>
<td>22</td>
<td>42.1</td>
<td>22.9</td>
<td>54.3</td>
<td>25.1</td>
<td>59.6</td>
<td>21.8</td>
<td>51.8</td>
</tr>
<tr>
<td>23</td>
<td>38.3</td>
<td>33.8</td>
<td>88.2</td>
<td>38.3</td>
<td>99.8</td>
<td>18.7</td>
<td>48.9</td>
</tr>
<tr>
<td>24</td>
<td>40.5</td>
<td>36.0</td>
<td>88.0</td>
<td>27.5</td>
<td>67.9</td>
<td>25.0</td>
<td>61.7</td>
</tr>
<tr>
<td>25</td>
<td>42.7</td>
<td>39.2</td>
<td>91.9</td>
<td>40.1</td>
<td>94.0</td>
<td>27.9</td>
<td>65.3</td>
</tr>
<tr>
<td>26</td>
<td>44.7</td>
<td>30.9</td>
<td>69.1</td>
<td>26.3</td>
<td>58.7</td>
<td>21.7</td>
<td>48.5</td>
</tr>
<tr>
<td>27</td>
<td>45.9</td>
<td>18.7</td>
<td>40.8</td>
<td>37.1</td>
<td>80.9</td>
<td>27.2</td>
<td>59.2</td>
</tr>
<tr>
<td>28</td>
<td>38.5</td>
<td>52.3</td>
<td>135.9</td>
<td>18.2</td>
<td>47.3</td>
<td>8.2</td>
<td>21.3</td>
</tr>
</tbody>
</table>

MEDIA
- 41.2 a
- 35.8 b
- 86.7
- 31.8 c
- 128.6
- 50.3

CV
- 10.8
- 23.4
- 24.3
- 16.2
- 0.58
- 31.7
- 32.8

R²
- 0.61
- 0.44
- 0.43
- 0.58
- 0.65
- 0.55
- 0.52

MAX
- 50.6
- 52.3
- 135.9
- 40.1
- 128.6
- 31.2
- 75.5

MIN
- 30.6
- 18.7
- 40.8
- 18.2
- 47.3
- 8.2
- 21.3

mdsB
- 7.3
- 16.1
- 39.5
- 8.0
- 19.3
- 9.9
- 25.6

valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 76. Índice de cosecha, para cada tratamiento y genotipo en 1989.
<table>
<thead>
<tr>
<th></th>
<th>1988</th>
<th></th>
<th>1989</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GL</td>
<td>CM(abs)</td>
<td>GL</td>
<td>CM(abs)</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>936.4 **</td>
<td>1</td>
<td>4296.2 **</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>19</td>
<td>142.8 **</td>
<td>19</td>
<td>502.1 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
<td>29.0</td>
<td>19</td>
<td>122.9</td>
</tr>
<tr>
<td>R²</td>
<td>0.81</td>
<td>0.85</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>MEDIA</td>
<td>41.8</td>
<td>82.1</td>
<td>30.6</td>
<td>84.0</td>
</tr>
<tr>
<td>CV</td>
<td>12.9</td>
<td>13.5</td>
<td>21.4</td>
<td>21.4</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 77. Análisis de varianza. Índice de cosecha.

3.11.3. Análisis genético

El análisis de varianza con los híbridos estudiados en el año 89, (Cuadro 78), nos indica que la importancia de los efectos paterno y materno varía según el tipo de valores que se analizan, no siendo significativa la interacción entre ellos, en ningún caso.

<table>
<thead>
<tr>
<th></th>
<th>1988</th>
<th></th>
<th>1989</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GL</td>
<td>CM(abs)</td>
<td>GL</td>
<td>CM(abs)</td>
</tr>
<tr>
<td>PADRE</td>
<td>5</td>
<td>70.7 *</td>
<td>5</td>
<td>703.3 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>72.5 *</td>
<td>5</td>
<td>691.5 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>17.5 ns</td>
<td>7</td>
<td>189.0 ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>35.5</td>
<td>34</td>
<td>279.8</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 78. Cuadrados medios de los análisis de varianza, según el modelo NCII. Índice de cosecha.

La partición de la varianza genética, que se muestra en el Cuadro 79, con un componente de error muy elevado, confirma la situación ya comentada.
Cuadro 79. Componentes genéticos de la varianza, según el modelo NCII. Índice de cosecha.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>aACG,M</td>
<td>2.2</td>
<td>28.6</td>
</tr>
<tr>
<td>aACG,P</td>
<td>2.3</td>
<td>27.9</td>
</tr>
<tr>
<td>aACE</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>aERROR</td>
<td>35.5</td>
<td>279.8</td>
</tr>
</tbody>
</table>

3.12. Caracteres de status hídrico

Dentro de este apartado nos vamos a referir a los siguientes caracteres: Contenido relativo de agua (CRA), Tasa de pérdida de agua en hojas cortadas (TPA), Peso específico foliar (PEF) y Relación peso turgente/peso seco (RP).

3.12.1. Contenido relativo de agua (CRA)

Los resultados de los valores de CRA, para cada tratamiento y año, como promedio de la totalidad de los genotipos empleados, se muestran en el Cuadro 80.

Se puede observar que no aparece variación para este carácter en cuanto a la salinidad, lo que se confirma, tanto en líneas como en híbridos, con los resultados del análisis de varianza que se presenta en el Cuadro 81.

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>95.36 a</td>
<td>98.70 a</td>
</tr>
<tr>
<td>16</td>
<td>94.98 a</td>
<td>98.56 a</td>
</tr>
<tr>
<td>20</td>
<td>94.00 b</td>
<td>98.23 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 80. Contenido relativo en agua, para cada tratamiento y año. Media de los genotipos empleados.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>121.3</td>
<td>1</td>
<td>44.2</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>11.9 ns</td>
<td>2</td>
<td>13.4 ns</td>
</tr>
<tr>
<td>ERROR A (TXR)</td>
<td>4</td>
<td>4.0</td>
<td>2</td>
<td>10.6</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>11</td>
<td>7.1 ns</td>
<td>17</td>
<td>8.6 ns</td>
</tr>
<tr>
<td>GENOT X TRAT</td>
<td>22</td>
<td>6.5 ns</td>
<td>34</td>
<td>8.2 ns</td>
</tr>
<tr>
<td>ERROR B (GXR)</td>
<td>22</td>
<td>4.0</td>
<td>17</td>
<td>8.3</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>44</td>
<td>4.0</td>
<td>34</td>
<td>6.7</td>
</tr>
</tbody>
</table>

R² 0.77 0.74
MEDIA 96.3 94.4
CV 2.0 2.7

**, * y ns significación al 1, 5 % y no significativo

3.12.2. Tasa de pérdida de agua en hoja cortada (TPA)

En el Cuadro 82 podemos observar cómo los valores medios para cada tratamiento presentan un comportamiento opuesto de un año a otro, con incremento de la TPA en 1989 y disminución en 1988, conforme aumentaba la concentración salina del agua de riego.

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.50 c</td>
<td>1.79 a</td>
</tr>
<tr>
<td>16</td>
<td>1.58 b</td>
<td>1.52 b</td>
</tr>
<tr>
<td>20</td>
<td>1.66 a</td>
<td>1.47 b</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 82. Tasa de pérdida de agua, para cada tratamiento y año. Media de los genotipos empleados.

El análisis de varianza para líneas e híbridos, que se presenta en el Cuadro 83, muestra la no existencia de significación para los tratamientos salinos, no relacionando, por tanto, este parámetro con la tolerancia a la salinidad.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>1.540</td>
<td>1</td>
<td>2.698</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>0.011 ns</td>
<td>2</td>
<td>0.143 ns</td>
</tr>
<tr>
<td>ERROR A (TxR)</td>
<td>4</td>
<td>0.357</td>
<td>2</td>
<td>0.048</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>11</td>
<td>0.217 *</td>
<td>17</td>
<td>0.054 ns</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>22</td>
<td>0.045 ns</td>
<td>34</td>
<td>0.040 *</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>22</td>
<td>0.077</td>
<td>17</td>
<td>0.051</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>44</td>
<td>0.036</td>
<td>34</td>
<td>0.017</td>
</tr>
</tbody>
</table>

R² = 0.085 0.91
MEDIA = 1.677 1.503
CV = 11.3 8.8

**, * y ns significación al 1, 5 % y no significativo

Cuadro 83. Análisis de varianza. Tasa de pérdida de agua, 1989

3.12.3. Peso específico foliar (PEF)

Los resultados para el PEF, que se muestran en el Cuadro 84, indican que no existen diferencias significativas en ninguno de los tres tratamientos en que se midió, siendo además estos resultados consistentes en los dos años de experimentación.

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.45 a</td>
<td>4.52 a</td>
</tr>
<tr>
<td>16</td>
<td>4.46 a</td>
<td>4.48 a</td>
</tr>
<tr>
<td>20</td>
<td>4.37 a</td>
<td>4.36 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 84. Peso específico foliar, para cada tratamiento y año. Media de los genotipos empleados.

El análisis de varianza, que se resume en el Cuadro 85, confirma esta apreciación, no existiendo tampoco diferencias significativas entre genotipos.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>1</td>
<td>0.039</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>0.231 ns</td>
</tr>
<tr>
<td>ERROR A (TxR)</td>
<td>2</td>
<td>0.062</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>11</td>
<td>0.710 ns</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>22</td>
<td>0.176 ns</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>11</td>
<td>0.414</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>22</td>
<td>0.097</td>
</tr>
</tbody>
</table>

R²		0.89
MEDIA		4.52
CV		6.9

**, * y ns significación al 1, 5 % y no significativo

Cuadro 85. Análisis de varianza. Peso específico follar, 1989

3.12.4. Relación peso turgente/peso seco (RP)

Los valores promedio de este carácter en cada tratamiento y año, mostrados en el Cuadro 86, indican un ligero incremento de la RP en los tratamientos más salinos.

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.17 b</td>
<td>4.47 a</td>
</tr>
<tr>
<td>16</td>
<td>4.15 b</td>
<td>4.25 b</td>
</tr>
<tr>
<td>20</td>
<td>4.34 a</td>
<td>4.51 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 86. Relación peso turgente/peso seco, para cada tratamiento y año. Media de los genotipos empleados.

Sin embargo, los resultados del análisis de varianza del Cuadro 87, no indican efectos significativos para los tratamientos, en ninguno de los dos tipo de material vegetal. Las diferencias entre genotipos, en relación a este carácter, no parecen tener relación con la tolerancia a la salinidad, al no presentar interacciones genotipo x tratamiento.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>6.320</td>
<td>1</td>
<td>13.033</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>0.496 ns</td>
<td>2</td>
<td>0.315 ns</td>
</tr>
<tr>
<td>ERROR A (TxR)</td>
<td>4</td>
<td>0.146</td>
<td>2</td>
<td>0.027</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>11</td>
<td>0.237 **</td>
<td>17</td>
<td>0.113 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>22</td>
<td>0.017 ns</td>
<td>34</td>
<td>0.034 ns</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>22</td>
<td>0.069</td>
<td>17</td>
<td>0.029</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>44</td>
<td>0.024</td>
<td>34</td>
<td>0.016</td>
</tr>
</tbody>
</table>

, * y ns significación al 1, 5 % y no significativo

Cuadro 87. Análisis de varianza. Relación peso turgente/peso seco, 1989

A la vista de estos resultados parece confirmarse que los caracteres de status hídrico, empleados en este trabajo, no presentan utilidad para estudios relacionados con respuestas a la salinidad.

3.13. Contenidos iónicos

En este apartado se comentan los resultados correspondientes a los contenidos foliares en los iones Cl\(^-\), Na\(^+\), Ca\(^{++}\), K\(^+\), iones totales (los cuatro anteriores junto con el Mg\(^{++}\)) y la relación K\(^+\)/Na\(^+\).

3.13.1. Comportamiento general del cultivo

En la Figura 19 se representan los valores de los contenidos iónicos foliares en cada tratamiento y ensayo, como promedio de los genotipos empleados.
Contenidos Iónicos Foliares. 1988
(porcentaje sobre la materia seca)

Figura 19. Contenidos iónicos foliares en cada tratamiento y año.
A nivel general, se puede observar un claro efecto de la salinidad sobre estos caracteres; así el ion K⁺, que es el de mayor proporción en el tratamiento control, disminuye significativamente conforme aumenta la salinidad del agua aplicada, pasando a ser el que aparece en menor proporción en el tratamiento más salino; su comportamiento se repite de forma consistente en ambos años.

El patrón de respuesta del ion Cl⁻ es similar pero de signo contrario, aumentando claramente a lo largo del gradiente de salinidad, hasta alcanzar el mayor valor proporcional en el tratamiento 20.

Este mismo comportamiento se presenta para el contenido en Na⁺, con incrementos muy altos en valores relativos, si bien de menor peso que en el caso anterior por presentar contenidos iniciales muy bajos.

El Ca⁺⁺ aumenta también con la salinidad, aunque con diferencias algo menores entre tratamientos. El aumento en contenido en iones totales es también significativo a lo largo del gradiente de salinidad, con cantidades absolutas muy similares en ambos años.

La relación K⁺/Na⁺ disminuye fuertemente, alcanzando valores del orden del 25% respecto al control, en el nivel de máxima salinidad.

Como ejemplo de los dos patrones de respuesta, se presentan los valores medios absolutos y relativos para los contenidos en Cl⁻ (Cuadros 88 y 89), y K⁺ (Cuadros 90 y 91), por tratamiento y genotipo en el ensayo 88, y como promedio de genotipos en el ensayo 89.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>16(abs)</th>
<th>16 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.113</td>
<td>2.141</td>
<td>192.4</td>
<td>2.578</td>
<td>231.7</td>
</tr>
<tr>
<td>2</td>
<td>0.654</td>
<td>1.393</td>
<td>213.1</td>
<td>1.604</td>
<td>245.3</td>
</tr>
<tr>
<td>3</td>
<td>0.929</td>
<td>1.450</td>
<td>156.1</td>
<td>2.427</td>
<td>261.3</td>
</tr>
<tr>
<td>4</td>
<td>0.513</td>
<td>1.156</td>
<td>225.4</td>
<td>1.683</td>
<td>328.3</td>
</tr>
<tr>
<td>5</td>
<td>0.809</td>
<td>1.576</td>
<td>194.9</td>
<td>2.260</td>
<td>279.4</td>
</tr>
<tr>
<td>6</td>
<td>0.633</td>
<td>1.375</td>
<td>216.9</td>
<td>1.676</td>
<td>264.3</td>
</tr>
<tr>
<td>7</td>
<td>0.913</td>
<td>1.236</td>
<td>135.4</td>
<td>2.184</td>
<td>239.2</td>
</tr>
<tr>
<td>8</td>
<td>1.017</td>
<td>1.627</td>
<td>160.0</td>
<td>1.778</td>
<td>174.8</td>
</tr>
<tr>
<td>9</td>
<td>1.285</td>
<td>1.496</td>
<td>116.4</td>
<td>2.105</td>
<td>163.7</td>
</tr>
<tr>
<td>10</td>
<td>1.013</td>
<td>1.592</td>
<td>157.2</td>
<td>2.208</td>
<td>218.0</td>
</tr>
<tr>
<td>11</td>
<td>0.941</td>
<td>1.431</td>
<td>151.9</td>
<td>2.227</td>
<td>236.4</td>
</tr>
<tr>
<td>12</td>
<td>0.839</td>
<td>1.431</td>
<td>170.3</td>
<td>1.653</td>
<td>196.8</td>
</tr>
<tr>
<td>13</td>
<td>0.977</td>
<td>1.550</td>
<td>158.7</td>
<td>2.104</td>
<td>215.4</td>
</tr>
<tr>
<td>14</td>
<td>1.233</td>
<td>1.391</td>
<td>112.8</td>
<td>1.795</td>
<td>145.6</td>
</tr>
<tr>
<td>15</td>
<td>0.825</td>
<td>1.275</td>
<td>154.6</td>
<td>1.628</td>
<td>197.3</td>
</tr>
<tr>
<td>16</td>
<td>0.840</td>
<td>1.210</td>
<td>144.1</td>
<td>1.645</td>
<td>195.8</td>
</tr>
<tr>
<td>17</td>
<td>0.844</td>
<td>1.501</td>
<td>177.8</td>
<td>1.769</td>
<td>209.6</td>
</tr>
<tr>
<td>18</td>
<td>1.072</td>
<td>1.363</td>
<td>127.1</td>
<td>1.798</td>
<td>167.6</td>
</tr>
<tr>
<td>19</td>
<td>0.822</td>
<td>1.348</td>
<td>164.0</td>
<td>2.209</td>
<td>268.8</td>
</tr>
<tr>
<td>20</td>
<td>0.691</td>
<td>1.560</td>
<td>225.5</td>
<td>1.524</td>
<td>220.3</td>
</tr>
</tbody>
</table>

MEDIA

<table>
<thead>
<tr>
<th>0.89 c</th>
<th>1.45 b</th>
<th>167.7</th>
<th>1.94 a</th>
<th>222.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>15.86</td>
<td>14.97</td>
<td>14.33</td>
<td>10.44</td>
</tr>
<tr>
<td>R:</td>
<td>0.72</td>
<td>0.56</td>
<td>0.74</td>
<td>0.77</td>
</tr>
<tr>
<td>MAX</td>
<td>1.28</td>
<td>2.14</td>
<td>225.5</td>
<td>2.57</td>
</tr>
<tr>
<td>MIN</td>
<td>0.51</td>
<td>1.15</td>
<td>112.8</td>
<td>1.52</td>
</tr>
<tr>
<td>mds</td>
<td>0.23</td>
<td>0.41</td>
<td>38.8</td>
<td>0.32</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

<table>
<thead>
<tr>
<th>ABSOLUTO</th>
<th>RELATIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.789 d</td>
</tr>
<tr>
<td>14</td>
<td>1.394 c</td>
</tr>
<tr>
<td>16</td>
<td>1.707 b</td>
</tr>
<tr>
<td>20</td>
<td>2.371 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 89. Contenido en Cl⁻, absoluto y relativo, para cada tratamiento. Media de los genotipos. 1989

147
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>16(abs)</th>
<th>16 %</th>
<th>20(abs)</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.933</td>
<td>1.813</td>
<td>93.9</td>
<td>1.603</td>
<td>83.0</td>
</tr>
<tr>
<td>2</td>
<td>1.243</td>
<td>1.090</td>
<td>87.9</td>
<td>0.986</td>
<td>79.5</td>
</tr>
<tr>
<td>3</td>
<td>1.766</td>
<td>1.346</td>
<td>76.0</td>
<td>1.476</td>
<td>83.4</td>
</tr>
<tr>
<td>4</td>
<td>1.680</td>
<td>1.160</td>
<td>69.0</td>
<td>1.036</td>
<td>61.7</td>
</tr>
<tr>
<td>5</td>
<td>2.133</td>
<td>1.780</td>
<td>83.5</td>
<td>1.686</td>
<td>79.2</td>
</tr>
<tr>
<td>6</td>
<td>2.136</td>
<td>1.530</td>
<td>71.5</td>
<td>1.296</td>
<td>60.5</td>
</tr>
<tr>
<td>7</td>
<td>1.876</td>
<td>1.410</td>
<td>75.0</td>
<td>1.173</td>
<td>62.4</td>
</tr>
<tr>
<td>8</td>
<td>1.810</td>
<td>1.740</td>
<td>96.1</td>
<td>1.586</td>
<td>87.6</td>
</tr>
<tr>
<td>9</td>
<td>2.063</td>
<td>1.326</td>
<td>64.4</td>
<td>1.426</td>
<td>69.2</td>
</tr>
<tr>
<td>10</td>
<td>2.183</td>
<td>1.693</td>
<td>77.6</td>
<td>1.486</td>
<td>68.1</td>
</tr>
<tr>
<td>11</td>
<td>1.660</td>
<td>1.313</td>
<td>79.1</td>
<td>1.306</td>
<td>78.7</td>
</tr>
<tr>
<td>12</td>
<td>1.936</td>
<td>1.843</td>
<td>95.0</td>
<td>1.763</td>
<td>90.9</td>
</tr>
<tr>
<td>13</td>
<td>1.760</td>
<td>1.686</td>
<td>95.8</td>
<td>1.366</td>
<td>77.6</td>
</tr>
<tr>
<td>14</td>
<td>2.223</td>
<td>1.730</td>
<td>76.9</td>
<td>1.490</td>
<td>66.2</td>
</tr>
<tr>
<td>15</td>
<td>1.524</td>
<td>1.200</td>
<td>76.9</td>
<td>1.153</td>
<td>73.9</td>
</tr>
<tr>
<td>16</td>
<td>1.426</td>
<td>1.093</td>
<td>74.8</td>
<td>1.100</td>
<td>75.3</td>
</tr>
<tr>
<td>17</td>
<td>1.532</td>
<td>1.283</td>
<td>80.7</td>
<td>1.183</td>
<td>74.4</td>
</tr>
<tr>
<td>18</td>
<td>1.827</td>
<td>1.453</td>
<td>79.8</td>
<td>1.440</td>
<td>79.1</td>
</tr>
<tr>
<td>19</td>
<td>2.026</td>
<td>1.580</td>
<td>77.8</td>
<td>1.456</td>
<td>71.8</td>
</tr>
<tr>
<td>20</td>
<td>1.823</td>
<td>1.676</td>
<td>92.6</td>
<td>1.460</td>
<td>80.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIANA</th>
<th>1.832 a</th>
<th>1.484 b</th>
<th>81.2</th>
<th>1.375 c</th>
<th>75.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>10.8</td>
<td>13.1</td>
<td>12.7</td>
<td>17.3</td>
<td>17.4</td>
</tr>
<tr>
<td>R²</td>
<td>0.70</td>
<td>0.70</td>
<td>0.53</td>
<td>0.53</td>
<td>0.37</td>
</tr>
<tr>
<td>MAX</td>
<td>2.223</td>
<td>1.843</td>
<td>96.1</td>
<td>1.763</td>
<td>90.9</td>
</tr>
<tr>
<td>MIN</td>
<td>1.243</td>
<td>1.093</td>
<td>64.4</td>
<td>0.986</td>
<td>60.5</td>
</tr>
<tr>
<td>madHB</td>
<td>0.33</td>
<td>0.32</td>
<td>20.7</td>
<td>0.46</td>
<td>35.7</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

<table>
<thead>
<tr>
<th>ABSOLUTO</th>
<th>RELATIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1.328 a</td>
</tr>
<tr>
<td>14</td>
<td>1.229 b</td>
</tr>
<tr>
<td>16</td>
<td>1.205 b</td>
</tr>
<tr>
<td>20</td>
<td>1.050 c</td>
</tr>
<tr>
<td>100</td>
<td>93.2 a</td>
</tr>
<tr>
<td>90.9 a</td>
<td>79.1 b</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 91. Contenido en K⁺, absoluto y relativo, para cada tratamiento. Media de los genotipos. 1989
3.13.2. Variabilidad intergenotípica

Es interesante destacar que análisis de varianza, tanto en valores absolutos como relativos, para los dos años de ensayos, muestran resultados muy similares en los seis caracteres estudiados; con diferencias altamente significativas en tratamientos y genotipos, valores de R^2 altos y CV en general aceptables.

Como resumen de estos resultados se presentan los análisis de varianza para el contenido en K^+ (Cuadro 92) y Na^+ (Cuadro 93).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>5.465 **</td>
<td>1</td>
<td>30507 **</td>
<td>3</td>
<td>13.01 **</td>
<td>2</td>
<td>134174 **</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>19</td>
<td>0.112 **</td>
<td>19</td>
<td>2642 **</td>
<td>29</td>
<td>0.38 **</td>
<td>29</td>
<td>6339 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
<td>0.033</td>
<td>19</td>
<td>519</td>
<td>87</td>
<td>0.10</td>
<td>58</td>
<td>2495</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.91</td>
<td></td>
<td>0.89</td>
<td></td>
<td>0.85</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>1.432</td>
<td></td>
<td>195.3</td>
<td></td>
<td>1.56</td>
<td></td>
<td>236.9</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>12.819</td>
<td></td>
<td>11.6</td>
<td></td>
<td>20.25</td>
<td></td>
<td>21.07</td>
</tr>
</tbody>
</table>

***, * y ns significación al 1, 5% y no significativo

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>1.152 **</td>
<td>1</td>
<td>366.6 **</td>
<td>3</td>
<td>0.395 **</td>
<td>2</td>
<td>1696.3 **</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>19</td>
<td>0.147 **</td>
<td>19</td>
<td>140.3 **</td>
<td>29</td>
<td>0.245 **</td>
<td>29</td>
<td>500.4 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
<td>0.014</td>
<td>19</td>
<td>19.4</td>
<td>87</td>
<td>0.022</td>
<td>58</td>
<td>111.3</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.90</td>
<td></td>
<td>0.89</td>
<td></td>
<td>0.80</td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>1.565</td>
<td></td>
<td>78.2</td>
<td></td>
<td>87.7</td>
<td></td>
<td>87.7</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>7.67</td>
<td></td>
<td>5.6</td>
<td></td>
<td>12.02</td>
<td></td>
<td>12.02</td>
</tr>
</tbody>
</table>

***, * y ns significación al 1, 5% y no significativo

3.13.3. Análisis genético

La estimación de los componentes genéticos paterno y materno, a través del análisis de los híbridos del año 89, presentó resultados análogos para todos los caracteres, tanto en valores absolutos como en relativos, con diferencias significativas tan sólo en la interacción entre los componentes paterno y materno.

Los resultados de la partición de la varianza, con una importancia casi exclusiva del componente de aptitud combinatoria específica en todos los caracteres estudiados, corroboran lo anterior.

Como ejemplo, se presentan los análisis correspondientes al contenido en Cl⁻ (Cuadros 94 y 95) y K⁺ (Cuadros 96 y 97).

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>0.437 ns</td>
<td>5</td>
<td>3025 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>0.249 ns</td>
<td>5</td>
<td>6361 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>0.339 **</td>
<td>7</td>
<td>4177 *</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>0.059</td>
<td>34</td>
<td>1447</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 94. Cuadrados medios de los análisis de varianza, según el modelo NCII. Contenido en Cl⁻.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>0</td>
<td>121.3</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>0.0041</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>0.07</td>
<td>910</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>0.059</td>
<td>1447</td>
</tr>
</tbody>
</table>

Cuadro 95. Componentes genéticos de la varianza, según el modelo NCII. Contenido en Cl⁻.
<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>0.420</td>
<td>5</td>
<td>472.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>0.107</td>
<td>5</td>
<td>388.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>0.044 *</td>
<td>7</td>
<td>241.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>0.015</td>
<td>34</td>
<td>108.4</td>
</tr>
</tbody>
</table>

, * y ns significación al 1, 5 % y no significativo

Cuadro 96. Cuadrados medios de los análisis de varianza, según el modelo NCII. Contenido en K⁺.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{ACG,M}</td>
<td>0.0026</td>
<td>8.2</td>
</tr>
<tr>
<td>σ_{ACG,P}</td>
<td>0.0157</td>
<td>12.8</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>0.0072</td>
<td>44.3</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>0.0150</td>
<td>108.4</td>
</tr>
</tbody>
</table>

Cuadro 97. Componentes genéticos de la varianza, según el modelo NCII. Contenido en K⁺.
4. ESTRES HIDRICO EN PLANTA ADULTA

A continuación se presentan los resultados obtenidos en el gradiente de sequía, en los ensayos de 1987 y 1989.

No se incluyen las observaciones del ensayo de 1988 porque las intensas precipitaciones durante los meses anteriores a la siembra, y en la fase del desarrollo inicial del cultivo, eliminaron las diferencias entre los tratamientos, al aumentar las reservas hídricas del suelo.

4.1. Producción

4.1.1. Comportamiento general del cultivo

En el Cuadro 98 se presentan los valores de la producción para cada tratamiento y año, en valores absolutos y relativos respecto al tratamiento de máximo riego (10). Se comprueba un fuerte efecto de la sequía sobre este carácter, especialmente en el año 87 con un descenso del 81% en el tratamiento de mínimo riego (1). El efecto más pequeño, que se observa en 1989, es resultado de la menor intensidad del gradiente de este ensayo, debido a las causas citadas en el apartado V.2.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>1987</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSOLUTO</td>
<td>RELATIVO</td>
</tr>
<tr>
<td>10</td>
<td>3.16 a</td>
<td>100.0 a</td>
</tr>
<tr>
<td>9</td>
<td>2.88 b</td>
<td>92.1 b</td>
</tr>
<tr>
<td>8</td>
<td>2.44 c</td>
<td>77.9 c</td>
</tr>
<tr>
<td>7</td>
<td>1.87 d</td>
<td>60.4 d</td>
</tr>
<tr>
<td>6</td>
<td>1.54 e</td>
<td>50.1 e</td>
</tr>
<tr>
<td>5</td>
<td>1.35 e</td>
<td>43.4 e</td>
</tr>
<tr>
<td>4</td>
<td>1.01 f</td>
<td>32.6 g</td>
</tr>
<tr>
<td>3</td>
<td>0.79 g</td>
<td>25.3 h</td>
</tr>
<tr>
<td>2</td>
<td>0.70 g</td>
<td>22.8 h1</td>
</tr>
<tr>
<td>1</td>
<td>0.57 g</td>
<td>18.6 l</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 98. Producción absoluta y relativa, para cada tratamiento y año. Media de los genotipos empleados.

152
En el Cuadro 99 se resume el análisis de varianza, en diseño split-split-plot, con empleo de los genotipos comunes en ambos ensayos, para producción absoluta.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>1.16 ns</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>0.51 ns</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>0.51</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>18.42 **</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>7.63 **</td>
</tr>
<tr>
<td>ERROR B</td>
<td>8</td>
<td>0.14</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>1.38 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>10</td>
<td>1.13 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>0.28 **</td>
</tr>
<tr>
<td>ERROR C</td>
<td>148</td>
<td>0.12</td>
</tr>
</tbody>
</table>

R*
MEDIA

** *, * y ns significación al 1, 5 % y no significativo

Se observa que aparecen diferencias significativas entre tratamientos, genotipos, y las interacciones de estos últimos con el efecto año y tratamiento. Es destacable, además, la existencia de interacción año x tratamiento, revelando patrones distintos en cada ensayo. Por tanto, los resultados anuales deberán ser tratados separadamente para este carácter.

4.1.2. Variabilidad intergenotípica

La variabilidad intergenotípica, ya detectada por el análisis del Cuadro 99, se refleja de nuevo en los Cuadros 100 y 101. El Cuadro 100 muestra el análisis de varianza correspondiente a un análisis de regresión entre la producción relativa de cada genotipo y la media del conjunto de los genotipos en cada tratamiento, para cada ensayo. Se ha elegido este enfoque para el estudio de la variabilidad intergenotípica por la imposibilidad de aplicar la fórmula de regresión no lineal, empleada para la salinidad, a estas variables.

153
En el Cuadro 101 se resumen los resultados del análisis de varianza tipo split block, con la totalidad de los materiales vegetales utilizados en el año 89. Se presentan análisis independientes para los dos tipos de material, con valores referidos a la producción absoluta.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>1987</th>
<th></th>
<th>1989</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GL</td>
<td>CM</td>
<td>R²</td>
<td>GL</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>1508 **</td>
<td>0.07</td>
<td>27</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>9</td>
<td>19007 **</td>
<td>0.79</td>
<td>9</td>
</tr>
<tr>
<td>HETEROGENEIDAD</td>
<td>10</td>
<td>461 **</td>
<td>0.02</td>
<td>27</td>
</tr>
<tr>
<td>REGRESIONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR</td>
<td>190</td>
<td>142</td>
<td>216</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIA</td>
<td>52.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** y * y ns significación al 1, 5 % y no significativo

Cuadro 100. Análisis de varianza. Producción relativa.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS-87</th>
<th>GL</th>
<th>CM LINEAS-89</th>
<th>GL</th>
<th>CM HIBRI-89</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>1.54</td>
<td>2</td>
<td>0.123</td>
<td>2</td>
<td>1.88</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>21.18 **</td>
<td>3</td>
<td>0.502 *</td>
<td>3</td>
<td>3.77 **</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>0.24</td>
<td>4</td>
<td>0.043</td>
<td>4</td>
<td>0.09</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>0.47 **</td>
<td>10</td>
<td>1.529 **</td>
<td>16</td>
<td>2.60 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>0.16 **</td>
<td>30</td>
<td>0.241 **</td>
<td>48</td>
<td>0.27 **</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>20</td>
<td>0.02</td>
<td>20</td>
<td>0.055</td>
<td>32</td>
<td>0.12</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>0.03</td>
<td>40</td>
<td>0.035</td>
<td>64</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.99</td>
<td></td>
<td>0.96</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>MEDIA</td>
<td>1.64</td>
<td></td>
<td>1.54</td>
<td></td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>11.0</td>
<td></td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** y * y ns significación al 1, 5 % y no significativo

En ambos Cuadros se observa que los efectos tratamiento, genotipo y genotipo x tratamiento (o heterogeneidad de las regresiones) han resultado significativos. Destaca también la mayor productividad de los hi-
bridos frente a las líneas puras.

En 1987, la producción relativa global fue muy inferior respecto a 1989, como consecuencia de un mayor peso del efecto tratamiento sobre el total de la varianza (Cuadro 101): 79%, frente al 14% que representa en 1989.

Las Figuras 20 y 21 representan la tolerancia de los genotipos a la sequía, estimada por las pendientes de la regresión conjunta. Según estos resultados, y de modo similar a lo realizado para la salinidad, se han podido seleccionar dos grupos de genotipos con tolerancia diferencial a la sequía (Cuadro 102), que servirán para la realización de análisis posteriores acerca de la relación de los restantes caracteres con la tolerancia al estrés hídrico.

<table>
<thead>
<tr>
<th>TOLERANTES</th>
<th>SUSCEPTIBLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA-9 (3)</td>
<td>G-68027 (8)</td>
</tr>
<tr>
<td>IA-17 (4)</td>
<td>KS-22 x KS-3 (13)</td>
</tr>
<tr>
<td>OK-24 (10)</td>
<td>N-4692 x MELOLAND (18)</td>
</tr>
</tbody>
</table>

Cuadro 102. Grupos de genotipos con tolerancia diferencial a la sequía.

4.1.3. Análisis genético

En el Cuadro 103 se presenta el análisis de varianza según el modelo NCII, para determinación de los efectos paternos, maternos y de interacción a partir de los materiales híbridos utilizados el año 89.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>0.398 ns</td>
<td>5</td>
<td>754.5 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>2.328 ns</td>
<td>5</td>
<td>1329.9 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>4.654 **</td>
<td>6</td>
<td>1776.2 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>0.105</td>
<td>120</td>
<td>169.6</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 103. Cuadrados medios de los análisis de varianza, según el modelo NCII. Producción absoluta y relativa.
Figuras 20 y 21. Producción media por parcela frente a las pendientes de las rectas de regresión para cada genotipo y año.
Se comprueba la importancia del efecto de la interacción padre x madre, con un alto nivel de significación, tanto en el análisis con valores absolutos como relativos.

En cuanto a la partición de la varianza correspondiente a los análisis anteriores, (Cuadro 104) se destaca de nuevo la mayor y exclusiva importancia del componente genético de aptitud combinatoria específica.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>1.137</td>
<td>401.7</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>0.105</td>
<td>169.6</td>
</tr>
</tbody>
</table>

Cuadro 104. Componentes genéticos de la varianza, según el modelo NCII. Producción absoluta y relativa.

4.2. Peso hectolítrico

4.2.1. Comportamiento general del cultivo

En el Cuadro 105 se presentan los valores absolutos y relativos del peso hectolítrico, promedio de los genotipos, en cada tratamiento y año.

Se comprueba que el peso hectolítrico, tanto en valor absoluto como relativo, disminuye muy poco conforme aumenta el gradiente de sequía, especialmente en el año 1989, en el que se obtuvieron lecturas de peso hectolítrico del 95.7 % respecto al control, en el tratamiento de máxima sequía. En ambos años, los valores obtenidos para este carácter fueron muy similares.

En el Cuadro 106 se presenta el análisis de varianza, en diseño split-split-plot, para el peso hectolítrico absoluto, con los genotipos utilizados en ambos años.

Pueden apreciarse diferencias significativas entre tratamientos y genotipos, y la interacción de estos últimos con el efecto año y el efecto tratamiento; interesa destacar también la no existencia de interacción año por tratamiento, que nos permite prescindir de los resultados de 1987, centrándonos en el análisis del año 1989, con la totalidad de
los materiales.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>ABSOLUTO</th>
<th>RELATIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1987</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>ABSOLUTO</td>
<td>RELATIVO</td>
</tr>
<tr>
<td>10</td>
<td>70.0 ab</td>
<td>100.0 a</td>
</tr>
<tr>
<td>9</td>
<td>70.2 a</td>
<td>100.3 a</td>
</tr>
<tr>
<td>8</td>
<td>70.3 a</td>
<td>100.4 a</td>
</tr>
<tr>
<td>7</td>
<td>69.1 b</td>
<td>98.7 a</td>
</tr>
<tr>
<td>6</td>
<td>67.7 c</td>
<td>96.7 b</td>
</tr>
<tr>
<td>5</td>
<td>67.3 cd</td>
<td>96.1 bc</td>
</tr>
<tr>
<td>4</td>
<td>66.6 de</td>
<td>95.1 bcd</td>
</tr>
<tr>
<td>3</td>
<td>66.3 de</td>
<td>94.7 cd</td>
</tr>
<tr>
<td>2</td>
<td>66.3 de</td>
<td>94.6 cd</td>
</tr>
<tr>
<td>1</td>
<td>65.6 e</td>
<td>93.7 d</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 105. Peso hectolítico absoluto y relativo, para cada tratamiento y año. Media de los genotipos empleados.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>16.64 ns</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>74.82 ns</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>5.23</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>122.62 **</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>29.67 ns</td>
</tr>
<tr>
<td>ERROR B</td>
<td>8</td>
<td>7.58</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>90.85 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>10</td>
<td>24.39 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>21.12 **</td>
</tr>
<tr>
<td>ERROR C</td>
<td>148</td>
<td>7.28</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>67.41</td>
</tr>
</tbody>
</table>

**, *, * y ns significación al 1, 5 % y no significativo

4.2.2. Variabilidad intergenotípica

Se presentan a continuación los análisis de varianza tipo split block, con las líneas puras e híbridos del año 89, tanto en valores absolutos como en relativos (Cuadro 107).

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPEICION</td>
<td>2</td>
<td>17.0</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>41.1 ns</td>
<td>3</td>
<td>7.7 ns</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>13.6</td>
<td>4</td>
<td>4.8</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>63.1 **</td>
<td>16</td>
<td>29.3 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>26.1 **</td>
<td>48</td>
<td>10.5 ns</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>20</td>
<td>3.7</td>
<td>32</td>
<td>8.4</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>8.9</td>
<td>64</td>
<td>10.7</td>
</tr>
</tbody>
</table>

| Valores absolutos |

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPEICION</td>
<td>2</td>
<td>36.4</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>87.8 ns</td>
<td>3</td>
<td>14.9 ns</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>27.2</td>
<td>4</td>
<td>10.2</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>140.2 **</td>
<td>16</td>
<td>155.2 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>55.0 **</td>
<td>48</td>
<td>22.3 ns</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>20</td>
<td>7.9</td>
<td>32</td>
<td>17.3</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>18.0</td>
<td>64</td>
<td>15.7</td>
</tr>
</tbody>
</table>

| Valores relativos |

***, * y ns significación al 1, 5 % y no significativo

Se aprecian diferencias altamente significativas entre genotipos, en los dos tipos de material vegetal, tanto en valores absolutos como relativos, interaccionando significativamente con los tratamientos las líneas puras, pero no así los híbridos.

4.2.3. Análisis genético

En el Cuadro 108 se presentan los análisis de varianza por el conjunto de los híbridos en el año 89, en valores absolutos y relativos. Se comprueba que únicamente el efecto de la interacción padre x madre resulta significativo en los dos análisis, no siendo importantes los efectos paterno y materno, en ningún caso.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>24.24 ns</td>
<td>5</td>
<td>18.7 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>9.48 ns</td>
<td>5</td>
<td>142.9 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>40.66 **</td>
<td>6</td>
<td>237.5 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>7.23</td>
<td>120</td>
<td>14.9</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 108. Cuadrados medios de los análisis de varianza, según el modelo NCII. Peso hectolitrico.

La partición de la varianza, que se resume en el Cuadro 109, muestra claramente la importancia primordial del componente de aptitud combinatoria específica, en ambos tipos de valores, aun cuando las estimaciones de estos componentes genéticos presentan un error elevado, especialmente en valores absolutos.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>8.36</td>
<td>55.7</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>7.23</td>
<td>14.9</td>
</tr>
</tbody>
</table>

Cuadro 109. Componentes genéticos de la varianza, según el modelo NCII. Peso hectolitrico.
4.3. Componentes de producción

Al igual que en el estudio de salinidad, en este apartado se presentan los resultados correspondientes al número de plantas por parcela, ahijamiento, porcentaje de tallos con panícula, número de panículas por parcela, número de granos por panícula y peso de 1000 granos.

4.3.1. Comportamiento general del cultivo

Los resultados de los tres primeros componentes se muestran en el Cuadro 110.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>NO PLANTAS</th>
<th>TALLOS POR PLANTA</th>
<th>% TALLOS CON PANICULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>62.8 bc 105.5 ab</td>
<td>1.68 a 1.16 b</td>
<td>92.0 a 83.1 a</td>
</tr>
<tr>
<td>9</td>
<td>60.9 c</td>
<td>1.65 a</td>
<td>93.4 a</td>
</tr>
<tr>
<td>8</td>
<td>63.8 abc 99.6 b</td>
<td>1.58 a 1.15 b</td>
<td>87.5 ab 81.5 a</td>
</tr>
<tr>
<td>7</td>
<td>66.8 abc 98.6 b</td>
<td>1.44 b</td>
<td>82.7 b</td>
</tr>
<tr>
<td>6</td>
<td>69.7 abc 98.6 b</td>
<td>1.41 bc 1.17 b</td>
<td>75.1 c 77.2 b</td>
</tr>
<tr>
<td>5</td>
<td>72.9 a</td>
<td>1.40 bc</td>
<td>67.1 c</td>
</tr>
<tr>
<td>4</td>
<td>67.5 abc 102.8 ab</td>
<td>1.34 bc 1.16 ab</td>
<td>60.5 d 72.4 c</td>
</tr>
<tr>
<td>3</td>
<td>66.4 abc 107.3 a</td>
<td>1.33 bc</td>
<td>53.5 e</td>
</tr>
<tr>
<td>2</td>
<td>68.1 abc 107.3 a</td>
<td>1.33 bc 1.16 a</td>
<td>47.6 ef 64.9 d</td>
</tr>
<tr>
<td>1</td>
<td>70.5 ab</td>
<td>1.30 c</td>
<td>42.2 f</td>
</tr>
<tr>
<td>MEDIA</td>
<td>67.0 102.0</td>
<td>1.45 1.16</td>
<td>70.2 75.8</td>
</tr>
<tr>
<td>% CAMBIO</td>
<td>+12.2 +5.7</td>
<td>-23.4 0</td>
<td>-54.1 -21.8</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 110. NO de plantas por parcela, tallos por planta y % de tallos con panícula, para cada tratamiento y año. Media de los genotipos empleados.

Las variaciones que presenta el número de plantas por parcela a lo largo del gradiente son poco significativas, y no parecen ir más allá de las fluctuaciones propias de la nascencia natural.

El ahijamiento (número de tallos por parcela) decrece fuertemente
en 1987, en sentido paralelo al del agua recibida, mientras que en 1989 no varió en absoluto.

El porcentaje de tallos con panicula mostró una respuesta muy sensible a la falta de agua, disminuyendo en ambos ensayos, aunque de modo más drástico en 1987.

Como ya se indicó en el estudio de la salinidad, la integración de los tres componentes comentados resulta en un nuevo carácter, el número total de paniculas por parcela, que se representa en la Figura 22. En ella se aprecia una disminución lineal de este componente, de manera consistente en ambos años, acentuándose el descenso en los tratamientos menos regados.

![Diagrama de Paniculas por Parcela](Image)

Figura 22. Número de paniculas por parcela, para cada tratamiento y año. Media de los genotipos empleados.

En cuanto al número de granos por panicula (Figura 23), en 1987 se comportó de manera análoga al carácter anterior, pero apenas sufrió alteración en 1989.
Figura 23. Número de granos por panícula, para cada tratamiento y año. Media de los genotipos empleados.

El peso de 1000 granos (Figura 24) varía poco en los dos ensayos. En 1987 presentó valores algo superiores, excepto en los tratamientos menos regados donde experimentó un apreciable descenso; en 1989 se mantuvo prácticamente constante a lo largo del gradiente.

Figura 24. Peso de 1000 granos, para cada tratamiento y año. Media de los genotipos empleados.
4.4. Caracteres fenológicos

4.4.1 Comportamiento general del cultivo

En las Figuras 25 y 26 se representan los promedios de los tres caracteres, con análisis individual por años, al no ser homogénea la respuesta en ambos ensayos. Este hecho se pone de manifiesto aún más claramente en los análisis de varianza conjuntos, (Cuadros 111, 112 y 113), donde la interacción tratamiento x año es significativa para la floración y maduración, aunque no lo es para la duración del periodo de llenado del grano.

En 1987 la floración se retrasó considerablemente conforme decrecía el riego, con 13.8 días de diferencia entre los dos extremos del gradiente. Este retraso repercutió lógicamente en la fecha de maduración, retrasándola a su vez 9.7 días, a pesar de que el periodo de llenado se acortara en 4.1 días.

En 1989, el comportamiento fue similar, en cuanto a la duración del periodo de llenado del grano, pero al no existir una respuesta de la fecha de floración a la falta de agua, la maduración se adelantó en la zona de mínimo máximo riego.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>38.5</td>
</tr>
<tr>
<td>ANO</td>
<td>1</td>
<td>8064.6 **</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>28.4</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>396.6 **</td>
</tr>
<tr>
<td>TRAT x ANO</td>
<td>3</td>
<td>298.6 **</td>
</tr>
<tr>
<td>ERROR B</td>
<td>8</td>
<td>2.1</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>1022.3 **</td>
</tr>
<tr>
<td>GENOT x ANO</td>
<td>10</td>
<td>129.2 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>8.8 ns</td>
</tr>
<tr>
<td>ERROR C</td>
<td>150</td>
<td>10.2</td>
</tr>
<tr>
<td>RAND.</td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>88.2</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 111. Análisis de varianza. Dias hasta floración, genotipos comunes en ambos años.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>4500.1 **</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>36.0</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>88.7 **</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>281.3 **</td>
</tr>
<tr>
<td>ERROR B</td>
<td>8</td>
<td>2.3</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>789.8 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>10</td>
<td>89.6 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>7.1 ns</td>
</tr>
<tr>
<td>ERROR C</td>
<td>150</td>
<td>17.3</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>118.1</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>14.0</td>
</tr>
<tr>
<td>AÑO</td>
<td>1</td>
<td>525.4 **</td>
</tr>
<tr>
<td>ERROR A (RxA)</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>106.1 **</td>
</tr>
<tr>
<td>TRAT x AÑO</td>
<td>3</td>
<td>1.2 ns</td>
</tr>
<tr>
<td>ERROR B</td>
<td>8</td>
<td>0.8</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>55.3 **</td>
</tr>
<tr>
<td>GENOT x AÑO</td>
<td>10</td>
<td>31.7 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>2.2 ns</td>
</tr>
<tr>
<td>ERROR C</td>
<td>150</td>
<td>2.1</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.85</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>29.9</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

4.4.2 Variabilidad intergenotípica

En los Cuadros 114, 115 y 116 se presentan los análisis de varianza para los tres caracteres fenológicos y los dos ensayos, excepto en la duración del periodo de llenado, para el que no se considera necesario incluir el año 87 por la falta de significación en la interacción tratamiento x año.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS-87</th>
<th>CM LINEAS-89</th>
<th>GL</th>
<th>CM HIBRI-89</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>64.7</td>
<td>2.2</td>
<td>2</td>
<td>1.08</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>584.7 **</td>
<td>3.3 ns</td>
<td>3</td>
<td>5.89 *</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>3.3</td>
<td>0.9</td>
<td>4</td>
<td>0.81</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>418.5 **</td>
<td>564.2 **</td>
<td>16</td>
<td>290.84 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>8.8 **</td>
<td>4.6 **</td>
<td>48</td>
<td>6.41 **</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>20</td>
<td>2.0</td>
<td>1.9</td>
<td>32</td>
<td>2.38</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>1.1</td>
<td>0.4</td>
<td>64</td>
<td>5.63</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.99</td>
<td>0.99</td>
<td></td>
<td>0.935</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>94.2</td>
<td>82.1</td>
<td></td>
<td>79.8</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>1.11</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 114. Análisis de varianza. Días a floración.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS-87</th>
<th>CM LINEAS-89</th>
<th>GL</th>
<th>CM HIBRI-89</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>39.0</td>
<td>3.18</td>
<td>2</td>
<td>1.95</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>310.6 **</td>
<td>4.48 ns</td>
<td>3</td>
<td>8.73 ns</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>4.4</td>
<td>1.40</td>
<td>4</td>
<td>1.29</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>280.4 **</td>
<td>31.89 **</td>
<td>16</td>
<td>30.34 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>6.6 **</td>
<td>5.95 **</td>
<td>48</td>
<td>9.67 **</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>20</td>
<td>1.3</td>
<td>2.59</td>
<td>32</td>
<td>3.60</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>0.9</td>
<td>0.70</td>
<td>64</td>
<td>2.33</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.99</td>
<td>0.96</td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>122.7</td>
<td>99.9</td>
<td></td>
<td>99.7</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPE TICION</td>
<td>2</td>
<td>9.37</td>
<td>2</td>
<td>38.91</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>36.78 **</td>
<td>3</td>
<td>65.33 **</td>
</tr>
<tr>
<td>REP x TRAT</td>
<td>4</td>
<td>0.94</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>39.65 **</td>
<td>16</td>
<td>56.06 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>2.86 **</td>
<td>48</td>
<td>3.85 **</td>
</tr>
<tr>
<td>ERROR B (GxX)</td>
<td>20</td>
<td>1.38</td>
<td>32</td>
<td>1.28</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>1.02</td>
<td>64</td>
<td>0.12</td>
</tr>
<tr>
<td>R²</td>
<td>0.95</td>
<td></td>
<td>0.995</td>
<td></td>
</tr>
<tr>
<td>MEDIA</td>
<td>31.5</td>
<td></td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

En estos análisis se aprecia que el efecto genotípico es el principal para las fechas de floración y maduración, tanto en los materiales híbridos como en las líneas puras, aunque igualado por el efecto tratamiento en 1987.

El período de llenado del grano se muestra como el carácter más sensible a la sequía, al resultar el efecto tratamiento tanto o más importante que el debido a los genotipos, en ambos años.

Destaca asimismo la existencia de interacción genotipo x tratamiento para los tres caracteres.

4.4.3. Análisis genético

Se presentan a continuación los resultados de los análisis de varianza NCII, con los híbridos del año 89, para los caracteres de floración (Cuadro 117), maduración (Cuadro 118) y duración del período de llenado (Cuadro 119).

En todos ellos se observa que la interacción padre x madre es significativa y que el componente paterno no lo es. El efecto materno sólo muestra significación para las fechas de floración y maduración.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>101.1 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>354.6 *</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>62.6 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>1.4</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 117. Cuadrados medios de los análisis de varianza, según el modelo NCII. Días a floración.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>174.6 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>683.9 *</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>81.6 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>1.4</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 118. Cuadrados medios de los análisis de varianza, según el modelo NCII. Días a maduración.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>46.55 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>88.46 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>28.96 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>1.26</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 119. Cuadrados medios de los análisis de varianza, según el modelo NCII. Duración del periodo de llenado.

La partición de la varianza (Cuadros 120, 121 y 122) confirma los resultados anteriores, mostrando el gran peso del componente materno de ACG y la importancia de la heterosis, en la determinación de los caracteres fenológicos.
Cuadro 120. Componentes genéticos de la varianza, según el modelo NCII. Días a floración.

<table>
<thead>
<tr>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
</tr>
<tr>
<td>σ_{ACE}</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
</tr>
</tbody>
</table>

Cuadro 121. Componentes genéticos de la varianza, según el modelo NCII. Días a maduración.

<table>
<thead>
<tr>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
</tr>
<tr>
<td>σ_{ACE}</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
</tr>
</tbody>
</table>

Cuadro 122. Componentes genéticos de la varianza, según el modelo NCII. Duración del periodo de llenado.

<table>
<thead>
<tr>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,P}$</td>
</tr>
<tr>
<td>$\sigma_{ACG,M}$</td>
</tr>
<tr>
<td>σ_{ACE}</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
</tr>
</tbody>
</table>

4.5 Enrollado foliar

4.5.1. Comportamiento general del cultivo

En el Cuadro 123 se presentan los valores de enrollamiento foliar en cada tratamiento, como media de la totalidad de los genotipos.

Como puede observarse, el efecto de la sequía sobre este carácter es muy acusado, aumentando linealmente el enrollado foliar a lo largo del gradiente de sequía, y presentando valores significativamente distintos en la práctica totalidad de los tratamientos.
<table>
<thead>
<tr>
<th>TRAT</th>
<th>VALOR ABS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.17 g</td>
</tr>
<tr>
<td>9</td>
<td>1.40 f</td>
</tr>
<tr>
<td>8</td>
<td>1.43 f</td>
</tr>
<tr>
<td>7</td>
<td>1.63 e</td>
</tr>
<tr>
<td>6</td>
<td>1.80 de</td>
</tr>
<tr>
<td>5</td>
<td>1.93 d</td>
</tr>
<tr>
<td>4</td>
<td>2.13 c</td>
</tr>
<tr>
<td>3</td>
<td>2.33 b</td>
</tr>
<tr>
<td>2</td>
<td>2.63 a</td>
</tr>
<tr>
<td>1</td>
<td>2.70 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 123. Enrollado foliar para cada tratamiento. Media de los genotipos empleados.

4.5.2. Variabilidad intergenotípica

En el Cuadro 124 se muestran los resultados de los análisis de varianza independientes para líneas e híbridos.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPECTIION</td>
<td>2</td>
<td>0.67</td>
<td>2</td>
<td>7.43</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>3.92 **</td>
<td>3</td>
<td>16.41 **</td>
</tr>
<tr>
<td>ERROR A (TxR)</td>
<td>4</td>
<td>0.02</td>
<td>4</td>
<td>0.10</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>10</td>
<td>8.75 **</td>
<td>16</td>
<td>5.12 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>30</td>
<td>0.19 *</td>
<td>48</td>
<td>0.21 **</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>20</td>
<td>0.07</td>
<td>32</td>
<td>0.09</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>40</td>
<td>0.09</td>
<td>64</td>
<td>0.01</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.97</td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>1.92</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>16.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Es destacable la variabilidad existente para este carácter con efectos significativos para genotipos, tratamientos y su interacción, tanto en materiales híbridos como en líneas.

4.5.3. Análisis genético

Los resultados del análisis de varianza NCII con los híbridos del año 89 (Cuadro 125), y la partición de la varianza genética derivada de los mismos (Cuadro 126), indican la exclusiva importancia de los efectos de heterosis en la regulación de este carácter.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>1.18 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>5.82 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>7.69 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>120</td>
<td>0.12</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 125. Cuadrados medios de los análisis de varianza, según el modelo NCII. Enrollado foliar.

<table>
<thead>
<tr>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
</tr>
<tr>
<td>σ_{ACE}</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
</tr>
</tbody>
</table>

Cuadro 126. Componentes genéticos de la varianza, según el modelo NCII. Enrollado foliar.

4.6. Altura de la planta

4.6.1. Comportamiento general del cultivo

En el Cuadro 127 se presentan los valores absolutos y relativos de la altura de la planta, en la totalidad de los genotipos y en los cuatro tratamientos en que se midió.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>8 (abs)</th>
<th>8 %</th>
<th>5 (abs)</th>
<th>5 %</th>
<th>1 (abs)</th>
<th>1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84.6</td>
<td>75.8</td>
<td>89.5</td>
<td>73.5</td>
<td>86.8</td>
<td>69.6</td>
<td>82.2</td>
</tr>
<tr>
<td>2</td>
<td>98.3</td>
<td>94.5</td>
<td>96.0</td>
<td>85.0</td>
<td>86.4</td>
<td>71.2</td>
<td>72.4</td>
</tr>
<tr>
<td>3</td>
<td>77.1</td>
<td>61.7</td>
<td>80.1</td>
<td>67.3</td>
<td>87.3</td>
<td>68.0</td>
<td>88.2</td>
</tr>
<tr>
<td>4</td>
<td>86.5</td>
<td>81.0</td>
<td>93.6</td>
<td>79.5</td>
<td>91.9</td>
<td>66.6</td>
<td>77.0</td>
</tr>
<tr>
<td>5</td>
<td>95.6</td>
<td>88.6</td>
<td>92.6</td>
<td>92.5</td>
<td>96.6</td>
<td>86.5</td>
<td>90.4</td>
</tr>
<tr>
<td>6</td>
<td>79.5</td>
<td>78.0</td>
<td>98.1</td>
<td>81.3</td>
<td>102.3</td>
<td>80.1</td>
<td>100.8</td>
</tr>
<tr>
<td>7</td>
<td>82.1</td>
<td>78.3</td>
<td>95.5</td>
<td>84.7</td>
<td>103.2</td>
<td>69.6</td>
<td>84.8</td>
</tr>
<tr>
<td>8</td>
<td>85.1</td>
<td>90.2</td>
<td>106.0</td>
<td>75.8</td>
<td>89.1</td>
<td>72.7</td>
<td>85.4</td>
</tr>
<tr>
<td>9</td>
<td>97.0</td>
<td>79.5</td>
<td>81.9</td>
<td>78.0</td>
<td>80.4</td>
<td>84.2</td>
<td>86.8</td>
</tr>
<tr>
<td>10</td>
<td>65.8</td>
<td>73.0</td>
<td>110.9</td>
<td>74.0</td>
<td>112.4</td>
<td>64.0</td>
<td>97.2</td>
</tr>
<tr>
<td>11</td>
<td>107.3</td>
<td>96.0</td>
<td>89.4</td>
<td>92.2</td>
<td>85.8</td>
<td>85.6</td>
<td>79.7</td>
</tr>
<tr>
<td>12</td>
<td>99.2</td>
<td>102.5</td>
<td>103.3</td>
<td>95.6</td>
<td>96.4</td>
<td>86.6</td>
<td>87.3</td>
</tr>
<tr>
<td>13</td>
<td>113.5</td>
<td>88.3</td>
<td>77.8</td>
<td>82.1</td>
<td>72.3</td>
<td>67.5</td>
<td>59.4</td>
</tr>
<tr>
<td>14</td>
<td>77.5</td>
<td>73.1</td>
<td>94.3</td>
<td>76.0</td>
<td>98.0</td>
<td>72.3</td>
<td>93.4</td>
</tr>
<tr>
<td>15</td>
<td>99.5</td>
<td>100.7</td>
<td>101.2</td>
<td>88.1</td>
<td>88.5</td>
<td>81.8</td>
<td>82.3</td>
</tr>
<tr>
<td>16</td>
<td>92.0</td>
<td>104.1</td>
<td>113.1</td>
<td>97.0</td>
<td>105.4</td>
<td>105.1</td>
<td>114.2</td>
</tr>
<tr>
<td>17</td>
<td>102.5</td>
<td>110.1</td>
<td>107.4</td>
<td>101.2</td>
<td>98.7</td>
<td>86.6</td>
<td>84.5</td>
</tr>
<tr>
<td>18</td>
<td>117.5</td>
<td>105.1</td>
<td>89.4</td>
<td>90.2</td>
<td>76.8</td>
<td>73.8</td>
<td>62.8</td>
</tr>
<tr>
<td>19</td>
<td>71.3</td>
<td>73.8</td>
<td>103.4</td>
<td>79.5</td>
<td>111.3</td>
<td>74.6</td>
<td>104.4</td>
</tr>
<tr>
<td>20</td>
<td>99.3</td>
<td>73.8</td>
<td>74.3</td>
<td>76.7</td>
<td>77.2</td>
<td>66.0</td>
<td>66.4</td>
</tr>
<tr>
<td>21</td>
<td>101.0</td>
<td>88.6</td>
<td>87.7</td>
<td>96.1</td>
<td>95.1</td>
<td>73.3</td>
<td>72.6</td>
</tr>
<tr>
<td>22</td>
<td>78.7</td>
<td>80.8</td>
<td>102.6</td>
<td>85.3</td>
<td>108.3</td>
<td>84.3</td>
<td>107.0</td>
</tr>
<tr>
<td>23</td>
<td>85.0</td>
<td>66.2</td>
<td>77.9</td>
<td>63.8</td>
<td>75.1</td>
<td>71.6</td>
<td>84.2</td>
</tr>
<tr>
<td>24</td>
<td>92.8</td>
<td>86.2</td>
<td>92.9</td>
<td>82.6</td>
<td>89.0</td>
<td>84.5</td>
<td>91.0</td>
</tr>
<tr>
<td>25</td>
<td>98.3</td>
<td>92.2</td>
<td>93.7</td>
<td>75.2</td>
<td>76.4</td>
<td>83.5</td>
<td>84.8</td>
</tr>
<tr>
<td>26</td>
<td>100.6</td>
<td>89.8</td>
<td>89.3</td>
<td>86.0</td>
<td>85.5</td>
<td>85.5</td>
<td>85.0</td>
</tr>
<tr>
<td>27</td>
<td>95.3</td>
<td>88.6</td>
<td>92.9</td>
<td>88.6</td>
<td>92.9</td>
<td>86.6</td>
<td>90.8</td>
</tr>
<tr>
<td>28</td>
<td>99.7</td>
<td>92.3</td>
<td>92.5</td>
<td>75.1</td>
<td>75.3</td>
<td>71.5</td>
<td>71.6</td>
</tr>
<tr>
<td>29</td>
<td>93.6</td>
<td>88.0</td>
<td>94.0</td>
<td>88.6</td>
<td>94.7</td>
<td>71.0</td>
<td>75.8</td>
</tr>
<tr>
<td>30</td>
<td>109.8</td>
<td>98.6</td>
<td>89.7</td>
<td>79.8</td>
<td>72.6</td>
<td>77.5</td>
<td>70.5</td>
</tr>
</tbody>
</table>

Cuadro 127. Altura de la planta para cada tratamiento y genotipo, en 1989.

Se puede observar como, a nivel del conjunto de genotipos, la altura de la planta disminuye conforme aumenta el grado de estrés hídrico, con diferencias significativas en todos los tratamientos. Se comprueba,
además, la variabilidad existente dentro del material vegetal, con casos extremos como el híbrido 16, que aumenta su talla en un 14% respecto al nivel de mínima sequía, y el híbrido 18 que disminuye casi en un 40%, para el mismo tratamiento.

4.6.2. Variabilidad intergenotípica

En el análisis de varianza del Cuadro 128 se comprueba de nuevo la gran variabilidad intergenotípica del material con diferencias altamente significativas en los dos tipos de análisis.

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fte. variación</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>29</td>
</tr>
<tr>
<td>ERROR</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>R²</td>
</tr>
<tr>
<td>MEDIA</td>
<td>85.0</td>
</tr>
<tr>
<td>CV</td>
<td>8.4</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

4.6.3. Análisis genético

En el análisis de varianza del Cuadro 129 se aprecia que en valores absolutos ningún factor aparece significativo. Sin embargo, cuando se trabaja con valores relativos queda de manifiesto que únicamente el componente de la interacción presenta un alto nivel de significación.

En la partición de la varianza, que se muestra en el Cuadro 130, destaca para valores absolutos el componente de ACG materno, pero con un error muy alto en su estimación; sin embargo en valores relativos aparece de nuevo la gran importancia del componente genético de ACE.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>175.0 ns</td>
<td>5</td>
<td>385.4 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>261.5 ns</td>
<td>5</td>
<td>549.1 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>68.6 ns</td>
<td>7</td>
<td>467.4 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>67.2</td>
<td>34</td>
<td>44.1</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 129. Cuadrados medios de los análisis de varianza, según el modelo NCII. Altura de la planta.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,H}$</td>
<td>8.0</td>
<td>4.5</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>4.4</td>
<td>0</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>0.3</td>
<td>141.1</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>67.2</td>
<td>44.1</td>
</tr>
</tbody>
</table>

Cuadro 130. Componentes genéticos de la varianza, según el modelo NCII. Altura de la planta.

4.7. Longitud de la panícula

4.7.1. Comportamiento general del cultivo

El conjunto de los valores medios por genotipos y tratamientos, que se presenta en el Cuadro 131, permite apreciar que el aumento de sequía acorta la longitud de la panícula, con un valor medio relativo del 65% en el tratamiento de mínimo riego.

4.7.2. Variabilidad intergenotípica

Al igual que en el carácter anterior, en el Cuadro 132 de análisis de varianza queda patente la variabilidad intergenotípica del material, especialmente en valores relativos, lo que como ya se ha comentado, es un buen indicativo de la existencia de respuestas diferenciales a la sequía.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>8 (abs)</th>
<th>8 %</th>
<th>5 (abs)</th>
<th>5 %</th>
<th>1 (abs)</th>
<th>1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.1</td>
<td>15.0</td>
<td>78.1</td>
<td>17.1</td>
<td>89.2</td>
<td>13.5</td>
<td>70.3</td>
</tr>
<tr>
<td>2</td>
<td>15.2</td>
<td>17.0</td>
<td>111.8</td>
<td>15.3</td>
<td>101.1</td>
<td>13.8</td>
<td>91.2</td>
</tr>
<tr>
<td>3</td>
<td>17.8</td>
<td>10.5</td>
<td>58.6</td>
<td>15.1</td>
<td>84.5</td>
<td>15.3</td>
<td>85.9</td>
</tr>
<tr>
<td>4</td>
<td>15.8</td>
<td>15.3</td>
<td>97.0</td>
<td>14.8</td>
<td>94.1</td>
<td>10.0</td>
<td>63.2</td>
</tr>
<tr>
<td>5</td>
<td>18.5</td>
<td>18.5</td>
<td>100.0</td>
<td>17.2</td>
<td>93.2</td>
<td>12.6</td>
<td>68.2</td>
</tr>
<tr>
<td>6</td>
<td>19.6</td>
<td>20.3</td>
<td>103.7</td>
<td>19.3</td>
<td>98.6</td>
<td>17.0</td>
<td>86.7</td>
</tr>
<tr>
<td>7</td>
<td>13.1</td>
<td>18.7</td>
<td>143.1</td>
<td>17.5</td>
<td>133.6</td>
<td>8.0</td>
<td>61.0</td>
</tr>
<tr>
<td>8</td>
<td>14.1</td>
<td>15.1</td>
<td>107.2</td>
<td>12.5</td>
<td>88.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>23.2</td>
<td>13.1</td>
<td>56.7</td>
<td>13.7</td>
<td>59.2</td>
<td>19.2</td>
<td>82.9</td>
</tr>
<tr>
<td>10</td>
<td>13.6</td>
<td>20.3</td>
<td>149.5</td>
<td>17.7</td>
<td>130.5</td>
<td>13.5</td>
<td>99.2</td>
</tr>
<tr>
<td>11</td>
<td>26.0</td>
<td>20.8</td>
<td>80.2</td>
<td>21.2</td>
<td>81.7</td>
<td>18.6</td>
<td>71.6</td>
</tr>
<tr>
<td>12</td>
<td>14.2</td>
<td>14.5</td>
<td>102.1</td>
<td>12.6</td>
<td>89.2</td>
<td>8.5</td>
<td>59.8</td>
</tr>
<tr>
<td>13</td>
<td>24.5</td>
<td>18.8</td>
<td>77.0</td>
<td>19.0</td>
<td>77.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>20.0</td>
<td>17.8</td>
<td>89.3</td>
<td>18.0</td>
<td>90.0</td>
<td>15.5</td>
<td>77.5</td>
</tr>
<tr>
<td>15</td>
<td>20.8</td>
<td>20.6</td>
<td>98.6</td>
<td>17.1</td>
<td>81.9</td>
<td>11.5</td>
<td>55.0</td>
</tr>
<tr>
<td>16</td>
<td>18.2</td>
<td>21.2</td>
<td>116.7</td>
<td>18.2</td>
<td>100.2</td>
<td>22.6</td>
<td>124.3</td>
</tr>
<tr>
<td>17</td>
<td>19.0</td>
<td>20.0</td>
<td>105.2</td>
<td>17.6</td>
<td>92.7</td>
<td>10.7</td>
<td>56.5</td>
</tr>
<tr>
<td>18</td>
<td>21.5</td>
<td>19.8</td>
<td>92.4</td>
<td>15.6</td>
<td>72.6</td>
<td>6.2</td>
<td>29.0</td>
</tr>
<tr>
<td>19</td>
<td>19.3</td>
<td>15.5</td>
<td>79.9</td>
<td>20.0</td>
<td>103.1</td>
<td>16.7</td>
<td>86.3</td>
</tr>
<tr>
<td>20</td>
<td>21.6</td>
<td>17.2</td>
<td>79.8</td>
<td>19.0</td>
<td>87.9</td>
<td>13.0</td>
<td>60.1</td>
</tr>
<tr>
<td>21</td>
<td>16.1</td>
<td>17.2</td>
<td>107.1</td>
<td>18.8</td>
<td>117.2</td>
<td>5.1</td>
<td>32.1</td>
</tr>
<tr>
<td>22</td>
<td>17.7</td>
<td>17.5</td>
<td>98.3</td>
<td>18.0</td>
<td>101.1</td>
<td>20.2</td>
<td>113.7</td>
</tr>
<tr>
<td>23</td>
<td>15.0</td>
<td>15.0</td>
<td>100.0</td>
<td>10.5</td>
<td>70.0</td>
<td>15.0</td>
<td>99.9</td>
</tr>
<tr>
<td>24</td>
<td>16.8</td>
<td>14.2</td>
<td>84.8</td>
<td>16.5</td>
<td>98.2</td>
<td>13.6</td>
<td>81.3</td>
</tr>
<tr>
<td>25</td>
<td>21.2</td>
<td>20.2</td>
<td>95.5</td>
<td>16.1</td>
<td>76.1</td>
<td>16.1</td>
<td>76.0</td>
</tr>
<tr>
<td>26</td>
<td>17.6</td>
<td>20.0</td>
<td>113.6</td>
<td>17.8</td>
<td>101.5</td>
<td>14.6</td>
<td>83.1</td>
</tr>
<tr>
<td>27</td>
<td>18.1</td>
<td>12.8</td>
<td>70.9</td>
<td>12.2</td>
<td>67.6</td>
<td>8.8</td>
<td>49.0</td>
</tr>
<tr>
<td>28</td>
<td>19.0</td>
<td>19.2</td>
<td>101.3</td>
<td>11.7</td>
<td>61.8</td>
<td>2.1</td>
<td>11.1</td>
</tr>
<tr>
<td>29</td>
<td>22.1</td>
<td>18.5</td>
<td>83.7</td>
<td>21.1</td>
<td>95.7</td>
<td>5.1</td>
<td>23.1</td>
</tr>
<tr>
<td>30</td>
<td>19.7</td>
<td>19.1</td>
<td>96.6</td>
<td>11.2</td>
<td>56.8</td>
<td>12.7</td>
<td>64.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MÉDIA</th>
<th>18.6 a</th>
<th>17.6 ab</th>
<th>96.1</th>
<th>16.2 b</th>
<th>87.8</th>
<th>11.9 c</th>
<th>65.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>17.0</td>
<td>22.2</td>
<td>20.3</td>
<td>26.0</td>
<td>25.3</td>
<td>41.5</td>
<td>42.5</td>
</tr>
<tr>
<td>R²</td>
<td>0.57</td>
<td>0.39</td>
<td>0.58</td>
<td>0.39</td>
<td>0.44</td>
<td>0.63</td>
<td>0.62</td>
</tr>
<tr>
<td>MAX</td>
<td>26.0</td>
<td>21.2</td>
<td>149.5</td>
<td>21.2</td>
<td>133.6</td>
<td>22.6</td>
<td>124.3</td>
</tr>
<tr>
<td>MIN</td>
<td>13.1</td>
<td>10.5</td>
<td>56.7</td>
<td>10.5</td>
<td>56.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mdesB</td>
<td>5.4</td>
<td>8.0</td>
<td>30.5</td>
<td>9.1</td>
<td>42.8</td>
<td>7.1</td>
<td>40.2</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

** **, * y ns significación al 1, 5 % y no significativo

4.7.3. Análisis genético

Al estudiar los componentes genéticos de la varianza, cuyos resultados se presentan en el Cuadro 133, se aprecia la importancia de la interacción padre x madre en el análisis con valores relativos, aunque en absolutos ninguno de los efectos presenta significación.

** **, * y ns significación al 1, 5 % y no significativo

Cuadro 133. Cuadros medios de los análisis de varianza, según el modelo NCII. Longitud de la panicula.

Al efectuar la partición de la varianza (Cuadro 134) se comprueba lo anterior, en el sentido de la exclusiva importancia del componente de heterosis, en los dos tipos de valores.
Cuadro 134. Componentes genéticos de la varianza, según el modelo NCII. Longitud de la panícula.

4.8. Longitud del pedúnculo

4.8.1. Comportamiento general del cultivo

En el Cuadro 135 se presentan los resultados por genotipos y tratamientos para la longitud del pedúnculo, en valores absolutos y relativos.

Aunque a nivel conjunto este carácter disminuye conforme va aumentando el estrés hídrico, los resultados son muy confusos, especialmente en los valores relativos de los tratamientos 8 y 5, con unos coeficientes de variación elevadísimos.

4.8.2. Variabilidad intergenotípica

Al igual que ocurriría en el gradiente de salinidad, los datos por genotipo, que se presentan en el Cuadro 135, indican que la respuesta de este carácter es confusa, posiblemente con un alto componente de error experimental, lo que disminuye en gran medida la posibilidad de utilización de este parámetro.

Los resultados del análisis de varianza (Cuadro 136) nos muestra diferencias altamente significativas entre genotipos y tratamientos, obteniendo de nuevo coeficientes de variación muy altos.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>8 (abs)</th>
<th>8 %</th>
<th>5 (abs)</th>
<th>5 %</th>
<th>1 (abs)</th>
<th>1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.1</td>
<td>9.8</td>
<td>158.5</td>
<td>3.5</td>
<td>57.2</td>
<td>3.2</td>
<td>52.4</td>
</tr>
<tr>
<td>2</td>
<td>2.8</td>
<td>0.1</td>
<td>4.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.0</td>
<td>250.0</td>
<td>1.8</td>
<td>468.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>6.5</td>
<td>10.0</td>
<td>153.8</td>
<td>7.3</td>
<td>113.4</td>
<td>2.6</td>
<td>40.3</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>8.8</td>
<td>166.6</td>
<td>10.0</td>
<td>188.6</td>
<td>2.6</td>
<td>49.5</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>0.8</td>
<td>33.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>20.0</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>2.2</td>
<td>150.0</td>
<td>0.7</td>
<td>50.0</td>
<td>1.2</td>
<td>83.3</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>3.3</td>
<td>-1.0</td>
<td>1.6</td>
<td>-1.0</td>
<td>0.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>9</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>4.8</td>
<td>3.1</td>
<td>66.0</td>
<td>4.0</td>
<td>83.3</td>
<td>4.1</td>
<td>86.8</td>
</tr>
<tr>
<td>11</td>
<td>4.6</td>
<td>4.0</td>
<td>86.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>16.3</td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td>0.8</td>
<td>20.8</td>
<td>1.3</td>
<td>33.3</td>
<td>1.6</td>
<td>41.6</td>
</tr>
<tr>
<td>13</td>
<td>16.0</td>
<td>8.6</td>
<td>53.9</td>
<td>3.0</td>
<td>18.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>5.0</td>
<td>7.6</td>
<td>152.5</td>
<td>6.0</td>
<td>120.0</td>
<td>6.0</td>
<td>120.0</td>
</tr>
<tr>
<td>15</td>
<td>6.3</td>
<td>9.0</td>
<td>140.6</td>
<td>3.8</td>
<td>60.5</td>
<td>4.0</td>
<td>62.5</td>
</tr>
<tr>
<td>16</td>
<td>3.3</td>
<td>8.1</td>
<td>238.9</td>
<td>5.1</td>
<td>150.7</td>
<td>4.0</td>
<td>117.6</td>
</tr>
<tr>
<td>17</td>
<td>0.3</td>
<td>2.2</td>
<td>562.5</td>
<td>0.3</td>
<td>93.7</td>
<td>0.2</td>
<td>62.5</td>
</tr>
<tr>
<td>18</td>
<td>3.1</td>
<td>1.2</td>
<td>40.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>6.1</td>
<td>3.5</td>
<td>57.4</td>
<td>9.1</td>
<td>150.2</td>
<td>1.1</td>
<td>18.4</td>
</tr>
<tr>
<td>20</td>
<td>12.3</td>
<td>5.1</td>
<td>41.3</td>
<td>6.6</td>
<td>53.4</td>
<td>0.8</td>
<td>7.0</td>
</tr>
<tr>
<td>21</td>
<td>15.1</td>
<td>5.1</td>
<td>33.9</td>
<td>7.8</td>
<td>52.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>5.7</td>
<td>10.1</td>
<td>174.5</td>
<td>8.1</td>
<td>140.8</td>
<td>3.7</td>
<td>64.6</td>
</tr>
<tr>
<td>23</td>
<td>3.5</td>
<td>4.5</td>
<td>128.6</td>
<td>2.3</td>
<td>67.8</td>
<td>3.0</td>
<td>85.7</td>
</tr>
<tr>
<td>24</td>
<td>7.8</td>
<td>5.8</td>
<td>75.3</td>
<td>2.5</td>
<td>32.0</td>
<td>1.8</td>
<td>23.5</td>
</tr>
<tr>
<td>25</td>
<td>12.2</td>
<td>12.7</td>
<td>104.5</td>
<td>6.8</td>
<td>56.3</td>
<td>2.1</td>
<td>17.4</td>
</tr>
<tr>
<td>26</td>
<td>3.8</td>
<td>3.1</td>
<td>80.1</td>
<td>1.7</td>
<td>44.8</td>
<td>2.8</td>
<td>73.7</td>
</tr>
<tr>
<td>27</td>
<td>4.1</td>
<td>4.5</td>
<td>109.7</td>
<td>0.6</td>
<td>15.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>6.0</td>
<td>7.8</td>
<td>131.2</td>
<td>3.8</td>
<td>64.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>5.8</td>
<td>1.1</td>
<td>19.7</td>
<td>1.1</td>
<td>19.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>3.5</td>
<td>5.0</td>
<td>142.8</td>
<td>3.6</td>
<td>103.5</td>
<td>0.3</td>
<td>10.7</td>
</tr>
<tr>
<td>MEDIA</td>
<td>5.3 a</td>
<td>5.0 a</td>
<td>114.9</td>
<td>3.3 b</td>
<td>73.0</td>
<td>1.5 c</td>
<td>35.6</td>
</tr>
<tr>
<td>CV</td>
<td>52.1</td>
<td>62.2</td>
<td>181.2</td>
<td>82.5</td>
<td>137.5</td>
<td>132.9</td>
<td>161.2</td>
</tr>
<tr>
<td>R+</td>
<td>0.73</td>
<td>0.62</td>
<td>0.27</td>
<td>0.60</td>
<td>0.53</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>MAX</td>
<td>16.0</td>
<td>12.7</td>
<td>562.5</td>
<td>10.0</td>
<td>468.7</td>
<td>6.0</td>
<td>120.0</td>
</tr>
<tr>
<td>MIN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mdsB</td>
<td>4.2</td>
<td>4.7</td>
<td>621.0</td>
<td>4.3</td>
<td>167.6</td>
<td>3.6</td>
<td>122.6</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

1989

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>95.0 **</td>
<td>2</td>
<td>45032.3**</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>29</td>
<td>22.4 **</td>
<td>29</td>
<td>11846.0**</td>
</tr>
<tr>
<td>ERROR</td>
<td>87</td>
<td>5.8</td>
<td>58</td>
<td>4808.6</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.64</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>3.8</td>
<td></td>
<td>74.1</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>62.1</td>
<td></td>
<td>93.5</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

4.8.3. Análisis genético

Los resultados del análisis de varianza, que se presentan en el Cuadro 137, indican la no significación de ninguno de los efectos al utilizar valores absolutos; con valores relativos la interacción de los efectos paternos y maternos parece de interés.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>27.3 ns</td>
<td>5</td>
<td>13103.7 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>23.7 ns</td>
<td>5</td>
<td>9095.8 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>10.1 ns</td>
<td>7</td>
<td>10844.6 *</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>7.0</td>
<td>34</td>
<td>4358.0</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 137. Cuadrados medios de los análisis de varianza, según el modelo NCII. Longitud del pedúnculo.

Los resultados de la partición de la varianza genética (Cuadro 138) muestran una importancia similar de los tres componentes de aptitud combinatoria, cuando se trabaja con valores absolutos, destacando en valores relativos el componente de aptitud combinatoria específica; sin embargo, el elevado componente de error que aparece en los dos análisis impide la posible interpretación de estos resultados.
<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN,M</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>ACN,P</td>
<td>0.7</td>
<td>125.5</td>
</tr>
<tr>
<td>ACN</td>
<td>0.7</td>
<td>2162.2</td>
</tr>
<tr>
<td>ERROR</td>
<td>5.9</td>
<td>4350</td>
</tr>
</tbody>
</table>

Cuadro 138. Componentes genéticos de la varianza, según el modelo NCII. Longitud del pedúnculo.

4.9. Peso seco de la planta (sin panícula)

4.9.1. Comportamiento general del cultivo

En el Cuadro 139 se presentan los resultados del peso seco de la planta, en valores absolutos y relativos para cada genotipo y tratamiento en el ensayo de 1989.

Los valores medios por tratamiento, tanto en absolutos como en relativos, muestran una clara disminución del peso seco de la planta al ir aumentando el gradiente de estrés hídrico.

4.9.2. Variabilidad intergenotípica

Los resultados individuales de cada genotipo, presentados en el Cuadro 139, nos permiten comprobar la gran variabilidad existente para este carácter, observando un amplio rango de respuestas al efecto del gradiente hídrico; así, encontramos genotipos que en el tratamiento de mínimo riego reducen su peso seco en casi un 70% respecto al control, frente a otros en los que aumenta más del 40%.

En el Cuadro 140 de análisis de varianza, se puede observar que aparecen diferencias altamente significativas tanto en tratamientos como en genotipos, en los dos tipos de valores con que se trabaja.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11</th>
<th>8 (abs)</th>
<th>8 %</th>
<th>5 (abs)</th>
<th>5 %</th>
<th>1 (abs)</th>
<th>1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.2</td>
<td>23.5</td>
<td>64.7</td>
<td>35.1</td>
<td>96.7</td>
<td>28.0</td>
<td>77.2</td>
</tr>
<tr>
<td>2</td>
<td>28.4</td>
<td>30.7</td>
<td>107.9</td>
<td>22.0</td>
<td>77.2</td>
<td>14.1</td>
<td>49.7</td>
</tr>
<tr>
<td>3</td>
<td>20.2</td>
<td>18.2</td>
<td>90.2</td>
<td>18.3</td>
<td>90.9</td>
<td>16.5</td>
<td>81.8</td>
</tr>
<tr>
<td>4</td>
<td>37.2</td>
<td>22.4</td>
<td>60.3</td>
<td>26.1</td>
<td>70.1</td>
<td>12.7</td>
<td>34.1</td>
</tr>
<tr>
<td>5</td>
<td>35.9</td>
<td>30.3</td>
<td>84.4</td>
<td>46.8</td>
<td>130.1</td>
<td>31.2</td>
<td>86.8</td>
</tr>
<tr>
<td>6</td>
<td>21.7</td>
<td>27.3</td>
<td>125.8</td>
<td>28.7</td>
<td>132.5</td>
<td>28.9</td>
<td>133.2</td>
</tr>
<tr>
<td>7</td>
<td>21.1</td>
<td>31.6</td>
<td>149.4</td>
<td>34.0</td>
<td>160.7</td>
<td>22.6</td>
<td>106.8</td>
</tr>
<tr>
<td>8</td>
<td>35.1</td>
<td>31.3</td>
<td>89.1</td>
<td>20.1</td>
<td>57.2</td>
<td>19.8</td>
<td>56.4</td>
</tr>
<tr>
<td>9</td>
<td>43.2</td>
<td>26.1</td>
<td>60.5</td>
<td>24.8</td>
<td>57.4</td>
<td>61.9</td>
<td>143.1</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>28.1</td>
<td>135.9</td>
<td>32.4</td>
<td>156.3</td>
<td>15.3</td>
<td>74.1</td>
</tr>
<tr>
<td>11</td>
<td>61.1</td>
<td>43.6</td>
<td>71.4</td>
<td>43.0</td>
<td>70.4</td>
<td>29.6</td>
<td>48.5</td>
</tr>
<tr>
<td>12</td>
<td>44.6</td>
<td>44.3</td>
<td>99.3</td>
<td>33.5</td>
<td>75.1</td>
<td>31.3</td>
<td>70.3</td>
</tr>
<tr>
<td>13</td>
<td>53.8</td>
<td>32.9</td>
<td>61.1</td>
<td>29.0</td>
<td>53.9</td>
<td>22.6</td>
<td>41.9</td>
</tr>
<tr>
<td>14</td>
<td>32.9</td>
<td>23.1</td>
<td>70.3</td>
<td>30.1</td>
<td>91.7</td>
<td>21.5</td>
<td>65.4</td>
</tr>
<tr>
<td>15</td>
<td>38.0</td>
<td>32.3</td>
<td>85.1</td>
<td>20.5</td>
<td>54.0</td>
<td>13.1</td>
<td>34.4</td>
</tr>
<tr>
<td>16</td>
<td>31.3</td>
<td>34.7</td>
<td>111.0</td>
<td>28.7</td>
<td>91.6</td>
<td>38.9</td>
<td>124.3</td>
</tr>
<tr>
<td>17</td>
<td>40.9</td>
<td>56.9</td>
<td>139.3</td>
<td>37.3</td>
<td>91.4</td>
<td>34.1</td>
<td>83.5</td>
</tr>
<tr>
<td>18</td>
<td>50.3</td>
<td>33.6</td>
<td>66.8</td>
<td>26.8</td>
<td>53.2</td>
<td>26.6</td>
<td>52.9</td>
</tr>
<tr>
<td>19</td>
<td>23.5</td>
<td>19.1</td>
<td>81.2</td>
<td>24.4</td>
<td>103.8</td>
<td>19.0</td>
<td>80.8</td>
</tr>
<tr>
<td>20</td>
<td>35.2</td>
<td>26.3</td>
<td>74.6</td>
<td>24.5</td>
<td>69.5</td>
<td>15.5</td>
<td>44.0</td>
</tr>
<tr>
<td>21</td>
<td>25.3</td>
<td>18.2</td>
<td>72.0</td>
<td>23.2</td>
<td>91.8</td>
<td>14.2</td>
<td>56.1</td>
</tr>
<tr>
<td>22</td>
<td>26.9</td>
<td>21.8</td>
<td>81.1</td>
<td>27.2</td>
<td>101.1</td>
<td>31.9</td>
<td>118.8</td>
</tr>
<tr>
<td>23</td>
<td>29.2</td>
<td>19.3</td>
<td>66.2</td>
<td>18.1</td>
<td>62.0</td>
<td>20.6</td>
<td>70.6</td>
</tr>
<tr>
<td>24</td>
<td>34.8</td>
<td>32.4</td>
<td>92.9</td>
<td>37.0</td>
<td>106.1</td>
<td>23.0</td>
<td>66.0</td>
</tr>
<tr>
<td>25</td>
<td>38.7</td>
<td>31.1</td>
<td>80.3</td>
<td>19.3</td>
<td>49.9</td>
<td>23.9</td>
<td>61.8</td>
</tr>
<tr>
<td>26</td>
<td>45.2</td>
<td>36.4</td>
<td>80.5</td>
<td>29.4</td>
<td>65.0</td>
<td>25.2</td>
<td>55.6</td>
</tr>
<tr>
<td>27</td>
<td>45.4</td>
<td>25.6</td>
<td>56.4</td>
<td>28.5</td>
<td>62.8</td>
<td>31.2</td>
<td>68.7</td>
</tr>
<tr>
<td>28</td>
<td>35.0</td>
<td>29.5</td>
<td>84.3</td>
<td>15.3</td>
<td>43.7</td>
<td>18.9</td>
<td>54.1</td>
</tr>
<tr>
<td>29</td>
<td>37.2</td>
<td>23.3</td>
<td>62.8</td>
<td>32.2</td>
<td>86.7</td>
<td>17.7</td>
<td>47.8</td>
</tr>
<tr>
<td>30</td>
<td>35.4</td>
<td>36.1</td>
<td>102.0</td>
<td>16.4</td>
<td>46.2</td>
<td>19.0</td>
<td>53.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA</th>
<th>35.2 a</th>
<th>30.0 b</th>
<th>87.6</th>
<th>27.0 b</th>
<th>78.5</th>
<th>23.7 c</th>
<th>70.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>31.3</td>
<td>30.2</td>
<td>30.7</td>
<td>28.8</td>
<td>28.6</td>
<td>35.0</td>
<td>37.7</td>
</tr>
<tr>
<td>R²</td>
<td>0.53</td>
<td>0.54</td>
<td>0.52</td>
<td>0.54</td>
<td>0.66</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>MAX</td>
<td>61.1</td>
<td>56.9</td>
<td>149.4</td>
<td>46.8</td>
<td>160.7</td>
<td>61.9</td>
<td>143.1</td>
</tr>
<tr>
<td>MIN</td>
<td>20.2</td>
<td>18.2</td>
<td>56.4</td>
<td>15.3</td>
<td>43.7</td>
<td>12.7</td>
<td>34.1</td>
</tr>
<tr>
<td>mdsB</td>
<td>19.8</td>
<td>14.5</td>
<td>44.2</td>
<td>12.8</td>
<td>33.9</td>
<td>12.4</td>
<td>39.6</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 139. Peso seco de la planta, para cada tratamiento y genotipo en 1989.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>657.9 **</td>
<td>2</td>
<td>1969.4 *</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>29</td>
<td>168.0 **</td>
<td>29</td>
<td>1567.8 **</td>
</tr>
<tr>
<td>ERROR</td>
<td>87</td>
<td>53.3</td>
<td>58</td>
<td>325.9</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.59</td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>29.3</td>
<td></td>
<td>80.5</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>24.8</td>
<td></td>
<td>25.1</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

4.9.3. Análisis genético

El análisis de varianza, que se resume en el Cuadro 141, muestra que el efecto paterno es significativo en valores absolutos pero no en relativos, no siendo de importancia los efectos materno y de interacción, en ningún caso.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>200.6 *</td>
<td>5</td>
<td>1606.4 ns</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>75.7 ns</td>
<td>5</td>
<td>842.1 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>7</td>
<td>48.6 ns</td>
<td>7</td>
<td>638.2 ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>51</td>
<td>38.4</td>
<td>34</td>
<td>280.6</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 141. Cuadrados medios de los análisis de varianza, según el modelo NCII. Peso seco de la planta.

En cuanto a la partición de la varianza genética (Cuadro 142), los resultados varían según el tipo de valores que se manejan; así en valores absolutos destaca el componente de aptitud combinatoria general paterna, mientras que en relativos el más importante es el de aptitud combinatoria específica, aunque con un alto error en la estimación de estos componentes, en los dos tipos de análisis.
Cuadro 142. Componentes genéticos de la varianza, según el modelo NCII. Peso seco de la planta.

<table>
<thead>
<tr>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{ACG,M}$</td>
<td>1.1</td>
</tr>
<tr>
<td>$\sigma_{ACG,P}$</td>
<td>6.3</td>
</tr>
<tr>
<td>σ_{ACE}</td>
<td>2.5</td>
</tr>
<tr>
<td>σ_{ERROR}</td>
<td>38.4</td>
</tr>
</tbody>
</table>

4.10. Índice de cosecha

4.10.1. Comportamiento general del cultivo

En el Cuadro 143 se presentan los resultados del índice de cosecha, en valores absolutos y relativos para cada genotipo y tratamiento en el ensayo de 1989.

De la observación de los valores medios de cada tratamiento se destaca el efecto del estrés hídrico sobre este carácter, con una disminución progresiva del índice de cosecha en los tratamientos de menos riego, tanto en valores absolutos como en relativos.

4.10.2 Variabilidad intergenotípica

En el análisis de varianza del Cuadro 144 se puede observar que en valores relativos el efecto principal es el debido a tratamientos, aunque al trabajar con valores absolutos ambos efectos aparecen con alta significación.

A partir de la observación de los valores individuales por genotipos, (Cuadro 143), se confirma la variabilidad de respuestas que presenta este material, tanto en líneas puras como híbridos, con casos extremos como la línea 8 y el híbrido 13, que reducen su índice de cosecha en un 100%, y el híbrido 16 que aumenta en un 14%.
<table>
<thead>
<tr>
<th>GENOTIPO</th>
<th>11 (abs)</th>
<th>8 (%)</th>
<th>5 (abs)</th>
<th>5 %</th>
<th>1 (abs)</th>
<th>1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.2</td>
<td>34.9</td>
<td>84.7</td>
<td>37.5</td>
<td>90.9</td>
<td>30.6</td>
</tr>
<tr>
<td>2</td>
<td>36.8</td>
<td>43.3</td>
<td>117.6</td>
<td>43.3</td>
<td>117.6</td>
<td>35.4</td>
</tr>
<tr>
<td>3</td>
<td>46.8</td>
<td>29.2</td>
<td>62.4</td>
<td>41.1</td>
<td>87.7</td>
<td>32.1</td>
</tr>
<tr>
<td>4</td>
<td>43.0</td>
<td>44.7</td>
<td>104.0</td>
<td>39.3</td>
<td>91.4</td>
<td>24.9</td>
</tr>
<tr>
<td>5</td>
<td>35.7</td>
<td>35.9</td>
<td>100.4</td>
<td>35.6</td>
<td>99.7</td>
<td>27.5</td>
</tr>
<tr>
<td>6</td>
<td>47.8</td>
<td>48.0</td>
<td>100.4</td>
<td>49.0</td>
<td>102.4</td>
<td>42.9</td>
</tr>
<tr>
<td>7</td>
<td>30.7</td>
<td>39.7</td>
<td>129.0</td>
<td>22.7</td>
<td>73.7</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>39.1</td>
<td>41.9</td>
<td>107.2</td>
<td>30.0</td>
<td>76.9</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>48.6</td>
<td>40.2</td>
<td>82.7</td>
<td>32.2</td>
<td>66.3</td>
<td>15.7</td>
</tr>
<tr>
<td>10</td>
<td>43.9</td>
<td>43.8</td>
<td>99.7</td>
<td>44.2</td>
<td>100.6</td>
<td>40.3</td>
</tr>
<tr>
<td>11</td>
<td>37.8</td>
<td>33.7</td>
<td>89.1</td>
<td>32.2</td>
<td>85.0</td>
<td>21.0</td>
</tr>
<tr>
<td>12</td>
<td>37.7</td>
<td>40.7</td>
<td>107.9</td>
<td>36.0</td>
<td>95.5</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>47.8</td>
<td>43.9</td>
<td>92.0</td>
<td>42.7</td>
<td>89.3</td>
<td>36.9</td>
</tr>
<tr>
<td>14</td>
<td>42.2</td>
<td>44.2</td>
<td>104.7</td>
<td>32.3</td>
<td>76.7</td>
<td>20.3</td>
</tr>
<tr>
<td>15</td>
<td>36.6</td>
<td>42.5</td>
<td>116.1</td>
<td>32.8</td>
<td>89.7</td>
<td>42.0</td>
</tr>
<tr>
<td>16</td>
<td>30.6</td>
<td>42.0</td>
<td>136.9</td>
<td>41.9</td>
<td>136.8</td>
<td>21.6</td>
</tr>
<tr>
<td>17</td>
<td>42.0</td>
<td>45.7</td>
<td>108.6</td>
<td>37.3</td>
<td>88.7</td>
<td>12.5</td>
</tr>
<tr>
<td>18</td>
<td>44.7</td>
<td>46.8</td>
<td>104.5</td>
<td>49.6</td>
<td>110.7</td>
<td>47.2</td>
</tr>
<tr>
<td>19</td>
<td>43.8</td>
<td>39.2</td>
<td>89.4</td>
<td>37.5</td>
<td>85.5</td>
<td>31.6</td>
</tr>
<tr>
<td>20</td>
<td>44.8</td>
<td>34.7</td>
<td>77.5</td>
<td>39.4</td>
<td>87.9</td>
<td>11.3</td>
</tr>
<tr>
<td>21</td>
<td>50.6</td>
<td>46.9</td>
<td>92.7</td>
<td>45.1</td>
<td>89.2</td>
<td>41.8</td>
</tr>
<tr>
<td>22</td>
<td>42.1</td>
<td>36.6</td>
<td>87.0</td>
<td>22.3</td>
<td>53.0</td>
<td>38.4</td>
</tr>
<tr>
<td>23</td>
<td>38.3</td>
<td>35.5</td>
<td>92.7</td>
<td>30.3</td>
<td>79.1</td>
<td>31.8</td>
</tr>
<tr>
<td>24</td>
<td>40.5</td>
<td>42.1</td>
<td>104.0</td>
<td>28.9</td>
<td>71.3</td>
<td>33.9</td>
</tr>
<tr>
<td>25</td>
<td>42.7</td>
<td>40.5</td>
<td>94.9</td>
<td>37.0</td>
<td>86.8</td>
<td>37.0</td>
</tr>
<tr>
<td>26</td>
<td>44.7</td>
<td>41.7</td>
<td>93.1</td>
<td>28.5</td>
<td>63.7</td>
<td>2.2</td>
</tr>
<tr>
<td>27</td>
<td>45.9</td>
<td>34.9</td>
<td>76.0</td>
<td>47.4</td>
<td>103.4</td>
<td>12.2</td>
</tr>
<tr>
<td>28</td>
<td>38.5</td>
<td>41.5</td>
<td>108.0</td>
<td>24.3</td>
<td>63.1</td>
<td>19.5</td>
</tr>
</tbody>
</table>

MEDIA	41.2 a	40.6 a	99.3	36.1 b	87.3	25.5 c	61.1
CV	10.8	15.1	14.4	33.6	33.7	49.5	50.9
R*	0.61	0.42	0.62	0.32	0.33	0.62	0.60
MAX	50.6	48.0	136.9	49.6	136.8	47.2	114.7
MIN	30.6	29.2	62.4	22.3	53.0	0.0	0.0
mdsB	7.3	11.8	21.6	32.3	75.8	18.4	45.8

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Cuadro 143. Índice de cosecha, para cada tratamiento y genotipo en 1989.

185
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO</td>
<td>3</td>
<td>1530.4 **</td>
<td>2</td>
<td>10713.6 **</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>27</td>
<td>131.0 **</td>
<td>27</td>
<td>741.9 ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>81</td>
<td>57.9</td>
<td>54</td>
<td>466.2</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.63</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>36.0</td>
<td></td>
<td>82.4</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>21.1</td>
<td></td>
<td>26.1</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 144. Análisis de varianza. Índice de cosecha. Valores absolutos y relativos.

4.10.3 Análisis genético

El análisis de varianza, a partir de los híbridos estudiados en el año 89, se resume en el Cuadro 145.

Los resultados del análisis no ofrecen una clara información sobre este carácter, variando la importancia del efecto paterno según el tipo de valores empleados y no siendo significativos los efecto maternos y de interacción, en ningún caso.

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM(abs)</th>
<th>GL</th>
<th>CM(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADRE</td>
<td>5</td>
<td>119.2 ns</td>
<td>5</td>
<td>1815.7 *</td>
</tr>
<tr>
<td>MADRE</td>
<td>5</td>
<td>201.3 ns</td>
<td>5</td>
<td>1025.2 ns</td>
</tr>
<tr>
<td>PADRE x MADRE</td>
<td>6</td>
<td>55.2 ns</td>
<td>6</td>
<td>272.1 ns</td>
</tr>
<tr>
<td>ERROR</td>
<td>48</td>
<td>66.8</td>
<td>32</td>
<td>504.6</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

Cuadro 145. Cuadrados medios de los análisis de varianza, según el modelo NCII. Índice de cosecha.

La partición de la varianza genética, que se muestra en el Cuadro 146, confirma lo anterior, mostrando la relativa importancia del componente de aptitud combinatoria general paterna en valores relativos, con un error muy elevado en su estimación.
Cuadro 146. Componentes genéticos de la varianza, según el modelo NCII. Índice de cosecha.

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sigma_{ACG,M}</td>
<td>6.0</td>
<td>41.8</td>
</tr>
<tr>
<td>\sigma_{ACG,P}</td>
<td>2.6</td>
<td>85.7</td>
</tr>
<tr>
<td>\sigma_{ACE}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>\sigma_{ERROR}</td>
<td>66.8</td>
<td>504.6</td>
</tr>
</tbody>
</table>

4.11. Caracteres de status hídrico

4.11.1 Contenido relativo de agua (CRA)

Los resultados de los valores absolutos y relativos del CRA para cada tratamiento, como promedio de la totalidad de los genotipos empleados, se presentan en el Cuadro 146.

Se observa que apenas existe variación para este carácter en el gradiente de estrés hídrico, lo que se confirma, tanto en líneas como en híbridos, con los resultados de los análisis de varianza que se muestran en el Cuadro 147.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>95.3 a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>95.1 a</td>
<td>99.9 b</td>
</tr>
<tr>
<td>1</td>
<td>95.6 a</td>
<td>100.4 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>2</td>
<td>1.10 ns</td>
<td>2</td>
<td>1.94 ns</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>0.35</td>
<td>2</td>
<td>29.40</td>
</tr>
<tr>
<td>ERROR A (RxT)</td>
<td>11</td>
<td>14.16 ns</td>
<td>17</td>
<td>4.38 ns</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>22</td>
<td>2.92 ns</td>
<td>34</td>
<td>6.92 ns</td>
</tr>
<tr>
<td>GENOT X TRAT</td>
<td>11</td>
<td>6.18</td>
<td>17</td>
<td>8.91</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>22</td>
<td>4.11</td>
<td>34</td>
<td>6.28</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>2</td>
<td>0.76</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.96</td>
<td></td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.11</td>
<td></td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

4.11.2 Tasa de pérdida de agua en hoja cortada (TPA)

Los valores de TPA promedio para cada tratamiento se presentan en el Cuadro 148.

Se comprueba que sólo el tratamiento de mínimo riego aparece significativamente distinto, tanto en valores absolutos como relativos.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.50 a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.47 a</td>
<td>98.5 a</td>
</tr>
<tr>
<td>1</td>
<td>1.35 b</td>
<td>91.1 b</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Los resultados de los análisis de varianza para líneas e híbridos, que se presentan en el Cuadro 149, indican la no significación de los efectos genotípicos y de tratamientos en ambos tipos de material vegetal, siendo únicamente de interés el efecto de la interacción genotipo x tratamiento en el material híbrido.
<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>1</td>
<td>2.121</td>
<td>1</td>
<td>0.980</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>0.199 ns</td>
<td>2</td>
<td>0.190 ns</td>
</tr>
<tr>
<td>ERROR A (RxT)</td>
<td>2</td>
<td>0.030</td>
<td>2</td>
<td>0.032</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>11</td>
<td>0.180 ns</td>
<td>17</td>
<td>0.050 ns</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>22</td>
<td>0.037 ns</td>
<td>34</td>
<td>0.049 *</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>11</td>
<td>0.074</td>
<td>17</td>
<td>0.043</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>22</td>
<td>0.023</td>
<td>34</td>
<td>0.026</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.92</td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>1.52</td>
<td></td>
<td>1.39</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>10.0</td>
<td></td>
<td>11.6</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

4.11.3. Peso específico foliar (PEF)

Los resultados del PEF, que se muestran en el Cuadro 150, indican un ligero incremento de este carácter a lo largo del gradiente de estrés hídrico, que sólo resulta significativo en valores relativos, en el tratamiento de mínimo riego.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.4 a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.5 a</td>
<td>102.0 b</td>
</tr>
<tr>
<td>1</td>
<td>4.6 a</td>
<td>103.2 a</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

Dado el tipo de muestreo que se realizó para este carácter no se pudo realizar un análisis de varianza general, que a la vista de los resultados obtenidos para los tratamientos, tampoco se considera de interés.
4.11.4. Relación peso turgente/peso seco (RP)

Los valores promedio para cada tratamiento, que se presentan en el Cuadro 151, muestra que la RP disminuye con la intensidad del estrés hídrico, alcanzando magnitudes significativamente distintas en el tratamiento de máximo estrés, tanto en valor absoluto como relativo.

Esto se confirma con los resultados del análisis de varianza, mostrados en el Cuadro 152, por las diferencias altamente significativas entre tratamientos que aparecen en ambos tipos de material. En los híbridos experimentales las diferencias genotípicas, y especialmente la interacción significativa genotipo x tratamiento, en este carácter, puede ser indicio de una cierta relación con la tolerancia a la sequía.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>ABS</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.17 a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.13 a</td>
<td>99.2 a</td>
</tr>
<tr>
<td>1</td>
<td>4.02 b</td>
<td>96.7 b</td>
</tr>
</tbody>
</table>

* valores seguidos por la misma letra no son distintos para un nivel de significación de 0.05

<table>
<thead>
<tr>
<th>Fte. variación</th>
<th>GL</th>
<th>CM LINEAS</th>
<th>GL</th>
<th>CM HIBRIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPETICION</td>
<td>1</td>
<td>9.339</td>
<td>1</td>
<td>12.574</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>2</td>
<td>0.202 **</td>
<td>2</td>
<td>0.181 **</td>
</tr>
<tr>
<td>ERROR A (RxC)</td>
<td>2</td>
<td>0.006</td>
<td>2</td>
<td>0.004</td>
</tr>
<tr>
<td>GENOTIPO</td>
<td>11</td>
<td>0.104 ns</td>
<td>17</td>
<td>0.101 **</td>
</tr>
<tr>
<td>GENOT x TRAT</td>
<td>22</td>
<td>0.020 ns</td>
<td>34</td>
<td>0.029 *</td>
</tr>
<tr>
<td>ERROR B (GxR)</td>
<td>11</td>
<td>0.060</td>
<td>17</td>
<td>0.024</td>
</tr>
<tr>
<td>ERROR C (GxTxR)</td>
<td>22</td>
<td>0.022</td>
<td>34</td>
<td>0.013</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.96</td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
<td>4.17</td>
<td></td>
<td>4.07</td>
</tr>
<tr>
<td>CV</td>
<td></td>
<td>3.60</td>
<td></td>
<td>2.9</td>
</tr>
</tbody>
</table>

**, * y ns significación al 1, 5 % y no significativo

VI. DISCUSION
1. SALINIDAD EN FASE DE GERMINACION - EMERGENCIA

1.1 Cribado inicial

Los resultados del análisis conjunto de los 88 genotipos (Cuadro 9) permiten apreciar un mayor efecto de la salinidad sobre la capacidad de emergencia que sobre el poder de germinación, debido probablemente a la ralentización del proceso provocada por la salinidad, ya descrita por otros autores (Ayers, 1952; Lyles y Fanning, 1964, y Francois et al., 1984, entre otros).

Además, la variable PPHR presenta mayor capacidad discriminatoria que la GERTOGR, en las dos concentraciones (Figura 7), observando que una cierta salinidad en el sustrato aumenta la capacidad germinativa de algunas líneas.

De los coeficientes de correlación entre algunas de las variables estudiadas presentados en el Cuadro 10, se comprueba que ni la capacidad de germinación en condiciones no salinas, ni la germinación relativa al control en los dos niveles salinos, son buenos predictores de la "emergencia". En consecuencia, los caracteres de germinación no deberían utilizarse como criterios de selección para tolerancia a la salinidad. Estos deberían basarse en caracteres ligados a la evolución posterior de las plántulas, como la capacidad de llegar al estado de primera hoja, por ejemplo.

1.2. Germinación - emergencia en 10 niveles salinos

De la observación de las Figuras 7 y 8 se pueden destacar tres fenómenos:

a) El efecto de las sales sobre la germinación total es escaso hasta el nivel de 20 dS/m. Más allá de ese nivel, la disminución podría ser causada por un retraso en la puesta en marcha de la germinación, debido a una imbibición más lenta. Sin embargo el comportamiento individual de los genotipos a este respecto es bastante diverso; este hecho tiene su explicación en la menor disponibilidad de agua causada por la disminución del potencial osmótico en el sustrato. De acuerdo con las hipótesis de Thomson (1986), las semillas deben alcanzar un umbral crítico de hidratación para que comience la germinación. Además, la sal no ejercería un efecto tóxico hasta que ese umbral es sobrepasado. En apoyo de esta hipótesis, podemos añadir que, 400 de las semillas no germinadas, repre-
sentando todos los genotipos, después de 4 semanas en la máxima concentración empleada fueron transferidas a un sustrato con agua destilada, germinando normalmente el 64% en el plazo de una semana.

b) El desarrollo de las plántulas se ve frenado por la sal. Este hecho se manifiesta por el incremento de las PV ya en el nivel de 8 ds/m, y está causado por la suma de los efectos osmóticos sobre la imbibición y la germinación en sí, y de un efecto tóxico no letal.

c) En las concentraciones más altas se produce un marcado incremento de la proporción de PNV (Figura 8), probablemente originado por un efecto tóxico letal de los iones sobre las semillas que comienzan a germinar. Con una concentración de 36 ds/m en el sustrato, sólo el 8% de las semillas germinadas no han sido destruidas por la sal u otras causas (menores, en todo caso), y escasamente la mitad de ellas presentan la primera hoja emergida. Por tanto, se desprende que se ha alcanzado prácticamente el límite de salinidad que estos materiales pueden soportar para llegar a dar plantas viables, en las condiciones de experimentación utilizadas.

Los dos primeros fenómenos citados ocurren indudablemente, pero su detección depende del tiempo de incubación. Sin límite de tiempo, y considerando siempre las condiciones experimentales presentes, todas las PV llegarían a PPH, pues se ha observado que la muerte de las plántulas ocurre cuando la germinación es todavía incipiente, y en la categoría de PV se incluían solamente las plántulas que ya habían sobrepasado esa fase (en este caso no se tiene en cuenta el posible efecto tóxico de la sal en contacto con los hipocótilos de las semillas en germinación, descrito por Waissman y Miyamoto, 1987).

Del mismo modo, todas las semillas viables no germinadas llegarían a germinar, acercándose asintóticamente a los valores de un control no salino, al menos mientras se pudiera alcanzar un potencial osmótico en el interior de la semilla, inferior al existente en el exterior.

El porcentaje de PNV respecto al total de semillas germinadas, en cambio, es independiente del factor "tiempo de incubación", a partir de un mínimo indispensable para la puesta en marcha del proceso. El número total de semillas germinadas viables (100-PNV) supone el límite máximo de producción de plántulas viables, y viene impuesto por el efecto tóxico de los iones sobre las semillas que comienzan a germinar.

En todo caso, el período de cuatro semanas de incubación puede considerarse como representativo a efectos agronómicos, ya que es dudoso
que la semilla del sorgo pudiera aguantar periodos más largos hasta la nascencia, siempre que se sembrara con humedad suficiente en el lecho de siembra.

De todo lo expuesto hasta ahora se deduce que, al menos en teoría, hay tres efectos distintos actuando en el proceso de germinación en condiciones salinas: un efecto osmótico en fase de imbibición (EOI), un efecto de retraso de la germinación debido a efectos osmóticos y/o tóxicos (ERG), y un efecto tóxico letal (ETL).

1.3. Elección de parámetros para las comparaciones genotípicas

Del Cuadro 13 destaca el hecho de que los parámetros CE₅₀ se comportan con mayor consistencia que los umbrales, ya que el coeficiente de variación es mucho menor en los cuatro casos, y las diferencias genotípicas explican mayor porcentaje de la varianza en tres de las variables; para PPHPVRGTC, los bajos coeficientes de determinación se explican por una varianza total muy baja, no existiendo diferencias genotípicas para este carácter. Como consecuencia, la MDSB es menor para los CE₅₀, siendo mejor su capacidad discriminatoria.

Además, la CE₅₀ es el parámetro que mejor integra el patrón de respuesta a la salinidad. Como se muestra en el Cuadro 14, la correlación positiva observada en todos los casos entre CEIMITERAL y el parámetro p, que determina la forma de la curva, indica una tendencia a una caída más abrupta de la curva (valores de p altos) cuanto mayor sea el umbral. En consecuencia, cuanto más tolerante parezca un genotipo desde el punto de vista de su CEIMITERAL, más susceptible será por encima de ese valor. La CE₅₀ resuelve esta paradoja, integrando la respuesta de las dos fases, antes y después del umbral, en un sólo valor.

1.4 Contribución relativa de los efectos tóxicos y osmóticos

En el Cuadro 13, y atendiendo a las medias de los ocho parámetros, se observa que para el sorgo en conjunto el ETL no comienza a actuar hasta los 26 ds/m, creciendo después notablemente su importancia. La producción de plántulas "emergidas", en cambio, presenta un umbral relativamente bajo, debido a todos los factores que actúan sobre ella. La pequeña diferencia entre los CE₅₀ para PPHR y PPHRGTC, sugiere un escaso efecto del EOI sobre la producción de plántulas "emergidas". Por contra, la gran distancia entre los mismos parámetros de PPHRGTC y PPHPVRGTC hace pensar en un fuerte componente de ERG.
Estos indicios se ven corroborados por los coeficientes de correlación de Pearson y parciales entre los CE$_{50}$ (Cuadro 15). Para los primeros, el mayor coeficiente con el CE$_{50}$PPHR es el de PPHRGTGTC, seguido del de GERTOTR, reflejando el mayor peso de los efectos EOI y ERG. La baja correlación de CE$_{50}$PPHPVTRGTC con CE$_{50}$PPHR, indican el escaso peso del ETL a la hora de determinar diferencias en la "emergencia" de plántulas. En consecuencia, estas diferencias genotípicas para el parámetro CE$_{50}$PPHRGTC, (Cuadros 16 y 17), deben adscribirse esencialmente a diferencias entre el EOI y el ERG.

Los coeficientes de correlación parciales eliminan el efecto de las demás variables de las dos que se están correlacionando. Su observación ratifica la importancia crucial del ERG (correlación CE$_{50}^3$-CE$_{50}^1$), y no descarta una contribución del EOI (correlación CE$_{50}^2$-CE$_{50}^1$), a las diferencias en la producción de PPH. Cabe destacar también, por inesperado, el signo negativo de la correlación parcial CE$_{50}^2$-CE$_{50}^3$, pues, como ya se ha reseñado antes, lo esperable sería que los genotipos que más tarden en poner en marcha la germinación dispusieran de menos tiempo que los restantes para alcanzar la "emergencia", por lo que en ellos el ERG parecería más acusado de lo que realmente es. Sin embargo, este efecto de "arrastre" no ha sido detectado en este análisis de correlación.

1.5 Comparación entre genotipos

Atendiendo a los CE$_{50}$PPHR, se confirma la bondad de la selección realizada el año anterior con dos concentraciones salinas. Tres de las líneas calificadas como tolerantes (KS-22, IA-17 y KS-3) y tres de las intermedias (MELOLAND, N-4610 y OK-24) repiten su comportamiento. Por otro lado, las tolerancias de KS-24 y G-68027 estaban sobreestimadas, y la de IA-33 subestimada. La observación de los umbrales lleva a parecidas conclusiones, pero con menor consistencia, habida cuenta de la peor calidad discriminatoria de este parámetro.

En general, el comportamiento de los híbridos se acerca más al de los parentales femeninos que al de los masculinos. Sin embargo, se puede apreciar cómo los dos padres más tolerantes, IA-17 y KS-3, confieren a sus descendientes una tolerancia mayor que la que podrían esperar de sus madres.

Por otra parte, en los Cuadros 16 y 17 se ponen de manifiesto las notables diferencias genotípicas para desarrollar plántulas en condiciones salinas (PPHR); al igual que el diferente comportamiento frente al EOI (GERTOTR) y al ERG (PPHRGTGTC). No obstante, las valores medios
para el parámetro CE_{50}PFHPVRGTC apenas se distinguen entre sí.

En la Figura 9 hemos presentado los patrones de respuesta mostrados por algunos de los genotipos más característicos: IA-17, que es uno de los genotipos más tolerantes, IA-9, uno de los más susceptibles, y N-4692 que presenta un patrón de respuesta distinto a los demás.

Hay que resaltar el comportamiento de esta línea N-4692 y, en menor grado, de sus híbridos. Mientras que los demás genotipos mantienen una respuesta "clásica" de umbral y caída, N-4692, tras germinar y desarrollar PPH en el tratamiento control en cantidades normales, sufre un brusco descenso para ambos caracteres en la concentración de 4 dS/m, disminuyendo luego paulatinamente según aumenta la salinidad. Este comportamiento se reveló incompatible con un ajuste mediante regresión a la fórmula propuesta por van Genuchten, por lo que hubo de eliminarse el tratamiento control de este genotipo del análisis de regresión para PPHR.

1.6. Regulación genética de los caracteres estudiados

Las diferencias entre los dos tipos de materiales, líneas e híbridos, no son significativas (Cuadro 18), descartando un efecto heterótico general para estos caracteres, excepto en el caso de CE_{50}GERTOTR. El valor más bajo que presentan los híbridos hace pensar que éstos son más susceptibles al EOI. Sin embargo, también puede deberse a la peor calidad de la semilla de los híbridos, motivada por las condiciones de su obtención.

En los Cuadros 19 y 20 se resumen los resultados de los análisis de varianza de los híbridos, según el diseño II de North Carolina. Las varianzas debidas al factor repetición y a sus interacciones con otros factores, no han sido significativas en ninguno de los casos, por lo que se han sumado al error. Los demás efectos principales, padres y madres, se han considerado como aleatorios, ya que la elección de los dos conjuntos de parentales se realizó de tal modo que representaran el mayor rango de variabilidad posible para la tolerancia a la salinidad en fase de germinación-emergencia.

La varianza debida a las madres es responsable de la mayor parte de la variabilidad total, apareciendo siempre como significativa (Cuadro 19). Por contra, en ningún caso es significativo el efecto atribuible a los padres, aunque sí lo es el de la interacción, excepto para el CE_{50}PFHPVRGTC. En este último caso, la varianza total del experimento es muy baja y las diferencias entre genotipos casi despreciables, como ya
se ha señalado, por lo que llama la atención que alguno de los efectos tenga significación.

La información que dan los componentes genéticos de la varianza (Cuadro 20), derivados de los análisis anteriores, redunda sobre lo mismo; en general, las magnitudes del componente materno de aptitud combinatoria general y del de la interacción, reflejo de la aptitud combinatoria específica, son bastante parecidas, y ambas mucho mayores que el componente debido a la aptitud combinatoria general de los padres. El mayor desequilibrio entre los componentes maternos y los demás se produce en el parámetro CE\text{50}\text{GERTOTR}, sobre el que opera tan sólo el EOI. Al ser la imbibición un proceso meramente físico, parece lógico que sean las características físicas de la semilla, determinadas principalmente por la madre, las primeras responsables de la variabilidad encontrada.

También destaca el casi nulo componente genético, en general, de la varianza en el parámetro CE\text{50}\text{PFPVRGTC}, corroborando lo expuesto en apartados anteriores.

1.7. Utilización en mejora

Según Ramage (1980), la selección recurrente es el mejor método para conseguir una ganancia genética efectiva para el carácter "tolerancia a la salinidad". De todo lo expuesto hasta ahora, se pueden derivar algunas recomendaciones para la utilización de los caracteres de germinación-emergencia en un programa de mejora de este tipo:

a) El mayor esfuerzo de selección se debería centrar en los materiales de los que se deriven los parentales femeninos de los futuros híbridos. Los polinizadores, en conjunto, aportan bastante menos "tolerancia a la salinidad" en fase de germinación-emergencia. Se podrían cribar las familias seleccionadas que fueran a reconstructir la población en el ciclo siguiente, con una presión baja de selección, con objeto de mejorarla en los sucesivos ciclos sin perder variabilidad. Las líneas que se extrajeren de ella se volverían a cribar en una fase más avanzada, repitiendo el cribado o aumentando la presión de selección, según el interés que se tuviera en estos caracteres. Una vez conseguidas madres tolerantes, se deberían buscar combinaciones óptimas A x R.

b) La selección en materiales R no se debería realizar sobre poblaciones, sino sobre líneas bastante avanzadas, derivadas de ellas.

c) Las nuevas incorporaciones deberían ensayarse previamente para esta
tolerancia, únicamente si fueran a introducirse en poblaciones de tipo B.

d) El EOI y la ralentización de la germinación parecen ser los responsables de la variabilidad de respuestas obtenidas en los genotipos estudiados ante esta la mezcla de sales empleada. La muestra de los genotipos estudiados se puede considerar representativa del sorgo para grano cultivado en zonas templadas. Un cribado de genotipos de sorgo se podría llevar a cabo poniendo a germinar las semillas, bien en papel o mejor en arena salinizada artificialmente, con una concentración en la solución del sustrato de alrededor de 20 ds/m, durante tres semanas. Los genotipos más tolerantes serían aquellos con un valor de PPH más alto. Si la germinación es en papel, no sería necesario ir más allá de las dos repeticiones, pues éstas se han mostrado consistentes en el presente trabajo.

e) La escasa variabilidad encontrada en las respuestas frente al efecto tóxico letal, sugiere que la búsqueda de una mayor tolerancia al mismo se debería centrar en materiales exóticos o en especies afines.
2. ESTRES SALINO EN PLANTA ADULTA

2.1. Comportamiento general del cultivo

En el Cuadro 153 se resumen las variaciones provocadas por el gradiente de salinidad en la totalidad de los caracteres estudiados, expresadas como porcentaje de cambio de cada carácter entre el control (tratamientos 11 o 10) y el tratamiento más salino (20).

En cuanto a la producción, cabe destacar que 1988 se mostró como un año más favorable, en términos generales, que 1989 como se observa en el Cuadro 26. Sin embargo, la disminución relativa entre los dos extremos del gradiente fue similar en los dos ensayos, y el comportamiento de los tratamientos intermedios fue, siempre en valores relativos, bastante paralelo.

El análisis conjunto de los resultados globales de ambos años, no detectó con claridad un modelo de respuesta tipo umbral-pendiente o curvilíneo, como los descritos en la bibliografía (Maas y Hofmann, 1977; van Genuchten, 1983). El ajuste de los modelos de regresión lineal y curvilíneo (Figura 12), se reveló prácticamente idéntico, con una R^2 de alrededor de 0.67. El umbral de salinidad a partir del cual decrece la producción ha sido de 3 dS/m, bastante inferior a los 6.8 dS/m, observados por Francois et al. (1984) para dos híbridos comerciales.

Las causas de la disminución de la producción hay que buscarlas, en parte, en la respuesta de sus componentes. Como ya se adelantó en el Capítulo V.3, el número de plantas por parcela, tallos por planta y porcentaje de tallos con panícula, respondiendo a distintas densidades de siembra en los dos ensayos, se compensaron entre sí para dar un número total de panículas por parcela bastante parecido los dos años. Parece que, a menos que la densidad de siembra sea realmente baja, la plasticidad que muestran los tres componentes citados acabará amortiguando las diferencias de partida. En cuanto al número de tallos por parcela, se ha detectado un efecto de la salinidad sobre el mismo, aunque en 1988 éste se manifestara a través de una reducción del ahijamiento (número de tallos por planta), y en 1989 lo hiciera en cuanto al número de plantas establecidas. Como consecuencia de estos fenómenos, el número de panículas por parcela decreció con la salinidad, alrededor de un 20% los dos años.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCCION</td>
<td>-69.3 **</td>
<td>-69.3 **</td>
</tr>
<tr>
<td>PESO HECTOLITRICO</td>
<td>-14.1 **</td>
<td>-28.6 **</td>
</tr>
<tr>
<td>NUMERO DE PLANTAS</td>
<td>-2.6 ns</td>
<td>-19.9 **</td>
</tr>
<tr>
<td>TALLOS POR PLANTA</td>
<td>-15.9 **</td>
<td>1.8 ns</td>
</tr>
<tr>
<td>% TALLOS CON PANICULA</td>
<td>-1.0 ns</td>
<td>-4.4 ns</td>
</tr>
<tr>
<td>PANICULAS POR PARCELA</td>
<td>-16.1 **</td>
<td>-23.5 **</td>
</tr>
<tr>
<td>GRANOS POR PANICULA</td>
<td>-45.3 **</td>
<td>-34.5 **</td>
</tr>
<tr>
<td>PESO DE 1000 GRANOS</td>
<td>-36.2 **</td>
<td>-33.9 **</td>
</tr>
<tr>
<td>FLORACION</td>
<td>-0.1 ns</td>
<td>0.3 ns</td>
</tr>
<tr>
<td>MADURACION</td>
<td>-2.6 **</td>
<td>-4.1 **</td>
</tr>
<tr>
<td>PERIODO LLENADO GRANO</td>
<td>-9.4 **</td>
<td>-14.5 **</td>
</tr>
<tr>
<td>ENROLLADO</td>
<td>-27.0 **</td>
<td>-46.7 **</td>
</tr>
<tr>
<td>DAÑO POLIAR</td>
<td>---</td>
<td>216.0 **</td>
</tr>
<tr>
<td>ALTURA</td>
<td>-11.3 **</td>
<td>-5.3 **</td>
</tr>
<tr>
<td>LONGITUD PANICULA</td>
<td>-3.2 ns</td>
<td>-2.8 ns</td>
</tr>
<tr>
<td>LONGITUD PEDUNCULO</td>
<td>-22.2 **</td>
<td>49.1 ** μ</td>
</tr>
<tr>
<td>PESO SECO PLANTA</td>
<td>-39.9 **</td>
<td>-20.8 **</td>
</tr>
<tr>
<td>INDICE DE COSECHA</td>
<td>-28.3 **</td>
<td>-47.8 **</td>
</tr>
<tr>
<td>CRA</td>
<td>-1.4 ns</td>
<td>-0.5 ns</td>
</tr>
<tr>
<td>TPA</td>
<td>10.7 ns</td>
<td>-17.9 ns</td>
</tr>
<tr>
<td>PEF</td>
<td>-1.8 ns</td>
<td>-3.5 ns</td>
</tr>
<tr>
<td>PESO TURGENTE/SECO</td>
<td>4.1 ns</td>
<td>0.9 ns</td>
</tr>
<tr>
<td>CLORO</td>
<td>122.9 **</td>
<td>210.0 **</td>
</tr>
<tr>
<td>SODIO</td>
<td>318.4 **</td>
<td>354.3 **</td>
</tr>
<tr>
<td>CALCIO</td>
<td>73.9 **</td>
<td>75.5 **</td>
</tr>
<tr>
<td>POTASIO</td>
<td>-24.9 **</td>
<td>-20.9 **</td>
</tr>
<tr>
<td>IONES TOTALES</td>
<td>33.4 **</td>
<td>63.7 **</td>
</tr>
<tr>
<td>RELACION K⁺/Na⁺</td>
<td>-73.8 **</td>
<td>-74.4 **</td>
</tr>
</tbody>
</table>

µ Eliminando dos valores extremos en el tratamiento más salino (debidos a un valor control próximo a 0), se convierte en -15.0.

Sin embargo, los componentes que muestran una respuesta más drástica a la salinidad son el número de granos por panícula y el peso de 1000 granos. El primero sufre los mayores descensos conforme aumenta la salinidad (en torno a un 40%), aunque, como se aprecia en la Figura 16, no ocurren de forma gradual, sino que son más atenuados al principio, para acentuarse en las salinidades más altas. El peso de 1000 granos, en cambio, disminuye de manera perfectamente lineal en los dos ensayos (Figura 17); esta variación puede ser el resultado directo de la falta de recursos de la planta para responder a la demanda de asimilados fotosintéticos del grano en formación.

Con el aumento de la salinidad disminuye la biomasa total de las plantas, reflejada por la reducción del peso de la planta sin panícula; esto reduce el área foliar, y también las reservas de asimilados anteriores a la floración, cuya retranslocación supone una fuente importante de asimilados para el grano. Sin embargo al existir una disminución paralela del número de granos por panícula, incluso algo superior a la del peso de la planta (un 40 frente a un 30% en la media de los dos años), cabría esperar que las plantas dispusieran de recursos suficientes para desarrollar granos con un peso normal. Francois et al. (1984) encontraron este tipo de respuesta a la salinidad, con una fuerte reducción de la biomasa de la planta, acompañada de un disminución en el peso de las panículas (causada por la disminución en el número de granos), pero sin efecto sobre el peso individual del grano.

Sin embargo, la sal puede producir otro efecto que limita aún más el área fotosintéticamente útil: la aparición de lesiones necróticas en las puntas y márgenes de las hojas ("daño foliar"). Estas lesiones aparecen cuando se somete a las plantas al estrés salino en fase reproductiva o de maduración (Maas et al., 1986). En el presente trabajo se observó que afectan primero a las hojas más viejas, y luego progresivamente a las más jóvenes, alcanzando proporciones importantes precisamente durante la época de llenado del grano, por lo que suponen, sin duda, una restricción importante del suministro de asimilados fotosintéticos de nueva formación para el grano.

El daño foliar debido a la salinidad podría agravarse por la salinización directa de las hojas que conlleva el riego por aspersión, empleado en el presente trabajo. Maas (1985) observó un importante daño foliar en hojas de un cultivo de sorgo regado de esta manera, si bien es verdad que este fenómeno parece independiente de la absorción foliar de iones de cloro y sodio, muy reducida esta especie.

Hemos visto como la salinidad afecta a la producción de biomasa,
tanto al peso del grano como al del resto de la planta (caracter "peso seco de la planta", que no incluye la panicula). Sin embargo, la reducción de los valores de ambos caracteres no ocurre de forma armónica; ya que mientras la producción disminuye un 69.3% en el tratamiento más salino, el peso de la planta se reduce unicamente en el 30%. Este resultado se explica por el cambio que sufre el índice de cosecha a lo largo del gradiente de sal, disminuyendo alrededor de un 38%, en promedio para los dos ensayos. Francois et al. (1984) encontraron disminuciones del índice de cosecha aún mayores, con aguas de riego de salinidad similar.

Se puede concluir, por tanto, que la disminución de la producción, en las condiciones del presente trabajo, viene determinada por los siguientes factores:

a) Disminución del crecimiento general, probablemente debida a la reorientación de recursos hacia la potenciación de los mecanismos necesarios para hacer frente a los estreses tóxico y osmótico, inducidos por la sal. Dicha disminución parece incluir una cierta pérdida de potencial de producción de tallos, y, sobre todo, una limitación del crecimiento de las tallos producidos.

b) En segundo lugar, en términos de tiempo, aparece el efecto sobre los componentes de la producción; granos por panicula y peso individual del grano. El primero de ellos se reduce de forma aparentemente paralela a la reducción del crecimiento, por lo que se trata del mismo fenómeno, expresado de dos maneras distintas. El segundo, sin embargo, puede verse afectado seriamente por la reducción del área fotosintética útil, consecuencia de la aparición de lesiones necróticas foliares. Este último efecto puede intervenir también en la reducción observada para el índice de cosecha, pues se recorta la capacidad fotosintética durante el periodo de llenado del grano.

c) Por último, y a un nivel puramente hipotético, en la disminución del índice de cosecha podrían estar involucrados daños al proceso de retranslocación de asimilados hacia la panicula.

Como consecuencia de todo ello, se puede decir que la salinidad afecta en mayor medida al rendimiento en grano que a la mera producción de biomasa.

El indicador de calidad de la cosecha que supone el peso hectolitrico, se ve afectado negativamente por la sal, con una pérdida cercana al 21%, en promedio para los dos ensayos. Sin duda, este hecho guarda relación con el pobre llenado del grano que ocurre en los niveles altos
de salinidad (Figura 17).

En cuanto a los caracteres fenológicos (Figura 18), es llamativa la ausencia de efecto de la salinidad sobre la fecha de floración. Según Faci (1986), la floración se ve afectada en el sorgo en respuesta a un déficit hídrico. Por consiguiente, la no variación de este carácter supone un apoyo, aunque indirecto, al argumento de existencia de estrés salino sin coincidir con la presencia de un estrés hídrico interno en las plantas del presente trabajo. Las fechas de maduración, en cambio, sufren un ligero, pero significativo, adelanto; puede que no sea ajeno a este fenómeno el agotamiento de las reservas de la planta para sustentar el crecimiento del grano, por las causas expuestas en párrafos anteriores. Como consecuencia inevitable de dicho adelanto, el periodo de llenado de grano se acorta significativamente, en un 12%, considerando el promedio de los dos años.

El enrollado foliar es un síntoma de sufrimiento de las plantas por estrés hídrico, al menos en el sorgo (Rosenow y Clark, 1981). A lo largo del gradiente de salinidad, apenas se ha detectado este fenómeno, manteniendo todos los tratamientos promedios inferiores a 1 (Cuadro 49), lo que supone práctica ausencia de enrollamiento, indicando una buena condición hídrica de las plantas. No obstante, no deja de ser curioso que, dentro de esos valores tan bajos, el enrollamiento disminuya con la salinidad, sugiriendo un mejor status hídrico de las plantas en condiciones más salinas. En cualquier caso, sería aventurado extraer conclusiones definitivas a este respecto, dada la baja incidencia de enrollado que ha estado presente.

La disminución del desarrollo y la producción no van acompañadas por una merma proporcional en la altura de las plantas con la salinidad. Aunque este carácter se reduce significativamente en los dos ensayos, las pérdidas porcentuales de 11.3 y 5.3, son mucho menores que las que cabría esperar. La explicación es que la reducción del desarrollo se debe en mayor medida a una disminución de la masa foliar, probablemente causada por hojas de menor tamaño, que a una disminución en el crecimiento longitudinal de los entrenudos. De modo similar, la longitud de las paniculas no sufre disminución alguna con la salinidad, pese a la reducción ya comentada del número de granos por panícula.

La longitud del pedúnculo, en cambio, decrece en los niveles más salinos (si se descartan dos valores anormalmente grandes del ensayo de 1989, por las causas comentadas en el Cuadro 153). Este hecho, contradiciendo lo expuesto en párrafos anteriores sobre la ausencia de estrés hídrico de las plantas del gradiente de salinidad, ha sido identificado
en diversas ocasiones como un síntoma de padecimiento de estrés hídrico (Rosenow y Clark, 1981; Momyo, 1988).

Los caracteres de status hídrico, CRA, TPA, PEF y RP, que podrían estar relacionados con la respuesta de las plantas al estrés hídrico, no han mostrado diferencias notables entre condiciones salinas y no salinas. Más aún, la TPA presentó patrones contradictorios en los dos ensayos, aumentando con la salinidad en 1989, y disminuyendo en 1988 (Cuadro 82). Cabría, en todo caso, destacar la consistencia de los valores del PEF ambos años, disminuyendo ligeramente en el tratamiento más salino (Cuadro 84), y coincidiendo con un ligero aumento de la relación peso turgente/peso seco (Cuadro 86). A nivel meramente hipotético, se podría buscar una explicación común a estos hechos, en el sentido de que, a mayor salinidad, es necesario menos peso seco para mantener el status hídrico del tejido, ya que la mayor concentración de iones permitiría prescindir de hipotéticos agentes osmóticos de mayor peso molecular, para realizar el trabajo de retención del agua. Sin embargo, como ya se ha indicado, la falta de significación de las diferencias entre tratamientos, haría necesarias nuevas pruebas para verificar esta explicación.

En cuanto a los contenidos iónicos foliares (Figura 19), las respuestas son cualitativamente consistentes en los dos años, aunque cuantitativamente difieren en algunos casos. La razón principal de estas diferencias cuantitativas puede estar en las diferencias del estado de partida del suelo de la parcela empleada en los dos años. El segundo ensayo se realizó sobre la parcela "lavada" mediante 10 riegos para arrastrar la sal residual del ensayo anterior. Asimismo, ese segundo año se complementó el abonado químico con un aporte de materia orgánica para enriquecer el suelo, desprovisto de ella por los citados riegos.

En cualquier caso, se observan varias características comunes. En primer lugar, los iones cloro, sodio y calcio aumentan lógicamente con los tratamientos salinos, pues se trata de los iones suministrados en el riego. Los dos primeros aumentan en una proporción mucho mayor que el tercero. La explicación en el caso del cloro sería obvia, pues está presente en las dos sales incorporadas (cloruros sódico y cálcico), pero no así para el sodio, puesto que aumenta proporcionalmente más que el cloro, pese a estar presente en menor cantidad en el agua de riego. Hay que hacer la salvedad, no obstante, de que la concentración de sodio en valores absolutos es menor, al menos en un orden de magnitud, que las de los otros tres iones estudiados (Cuadros 89 a 95). Por tanto, y pese a su fuerte aumento porcentual, se confirma el comportamiento de exclusión del sorgo para con el sodio, ya descrito anteriormente.
En segundo lugar, la concentración de potasio disminuye con la salinidad, aunque en porcentajes menores de los que cabría esperar, dada la presencia de los iones competidores que se aplican con el riego. Sin que se hayan efectuado mediciones de la concentración de estos iones en el suelo, cabe suponer que, en los tratamientos más salinos, el sodio estará presente en el suelo en cantidad suficiente para dificultar la absorción de potasio por la planta. Las concentraciones relativamente altas de potasio y bajas de sodio que se observan, aún en los niveles más altos de salinidad, hacen pensar en la existencia de un mecanismo o mecanismos de absorción selectiva de potasio, y restricción de la entrada de sodio a la parte aérea.

Las diferencias entre los extremos del gradiente, para los caracteres, suma total de iones y relación potasio/sodio, han resultado también significativas, como consecuencia de las variaciones comentadas en el párrafo anterior.

En los Cuadros 154 y 155, se presentan las correlaciones existentes entre las variables de contenidos iónicos, para los dos extremos del gradiente de salinidad. En el Cuadro 154 se pueden apreciar las correlaciones positivas, algunas significativas, otras no, de todos los iones entre sí, excepto las que contienen al calcio, con especial mención para la correlación negativa calcio-sodio, que resulta altamente significativa. La explicación podría tener que ver con lo comentado en el capítulo de Estado Actual de Conocimientos, acerca del efecto de desestabilización y permeabilización de las membranas, causados por el desplazamiento del calcio presente en ellas en presencia de cantidades importantes de otros iones.

<table>
<thead>
<tr>
<th></th>
<th>CL</th>
<th>NA</th>
<th>CA</th>
<th>K</th>
<th>IONES TOTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>0.285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>-0.185</td>
<td>-0.509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.448</td>
<td>0.156</td>
<td>-0.244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IONES TOT</td>
<td>0.658</td>
<td>0.054</td>
<td>0.163</td>
<td>0.847</td>
<td></td>
</tr>
<tr>
<td>K/NA</td>
<td>0.083</td>
<td>-0.619</td>
<td>0.291</td>
<td>0.581</td>
<td>0.585</td>
</tr>
</tbody>
</table>

r ≥ 0.273 y 0.354 significativo al 5 y 1% resp.

Cuadro 154. Correlaciones entre las variables de los contenidos iónicos (valores absolutos) absolutas para el tratamiento 11.
Cuadro 155. Correlaciones entre las variables de contenidos iónicos, absolutas y relativas al control, por debajo y por encima de la diagonal, respectivamente, para el tratamiento 20.

<table>
<thead>
<tr>
<th></th>
<th>CL</th>
<th>NA</th>
<th>CA</th>
<th>K</th>
<th>IONES TOTALES</th>
<th>K/NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>----</td>
<td>0.211</td>
<td>-0.202</td>
<td>-0.146</td>
<td>0.699</td>
<td>-0.357</td>
</tr>
<tr>
<td>NA</td>
<td>0.578</td>
<td>----</td>
<td>0.367</td>
<td>-0.135</td>
<td>0.054</td>
<td>-0.761</td>
</tr>
<tr>
<td>CA</td>
<td>0.315</td>
<td>0.393</td>
<td>----</td>
<td>0.037</td>
<td>0.272</td>
<td>0.405</td>
</tr>
<tr>
<td>K</td>
<td>-0.141</td>
<td>0.079</td>
<td>-0.188</td>
<td>----</td>
<td>0.261</td>
<td>0.426</td>
</tr>
<tr>
<td>IONES TOTALES</td>
<td>0.803</td>
<td>0.689</td>
<td>0.594</td>
<td>0.289</td>
<td>----</td>
<td>-0.090</td>
</tr>
<tr>
<td>K/NA</td>
<td>-0.461</td>
<td>-0.620</td>
<td>-0.456</td>
<td>0.602</td>
<td>-0.290</td>
<td>----</td>
</tr>
</tbody>
</table>

r = 0.273 y 0.354 significativo al 5 y 1% resp.

En el tratamiento de máxima salinidad (Cuadro 155), se aprecia un cambio de signo en la correlación calcio-sodio, que podría estar causado por la importante oferta de ambos iones en el agua de riego. Asimismo, es destacable la práctica ausencia de correlación entre la concentración de potasio y las de los demás iones, indicando una cierta independencia de los mecanismos que las regulan a nivel foliar. Las correlaciones más consistentes son las del carácter "relación potasio/sodio" con los cuatro iones, señalando un aumento de esta relación cuanto menor sea la concentración de cloro, calcio o sodio. Por otra parte, se observa que el ion cloro es de mayor peso en la determinación de la suma de los iones estudiados, pues presenta las mayores correlaciones con este carácter.

De todo lo anterior podría concluirse que el gradiente salino afecta al cultivo del sorgo en su producción, y alguno de sus componentes, como el número de granos por panícula y peso de 1000 granos; peso hectolitrico del grano; peso seco de la planta, como estimador del desarrollo vegetativo; índices de cosecha, que se ve fuertemente disminuido; y en sus aspectos fenológicos, la fecha de maduración se adelanta, acortándose por tanto, el periodo de llenado.

En cuanto a posible utilización de criterios indirectos de selección, el daño foliar es un indicador de respuesta muy diferencial, que puede ser de buena utilidad; y los contenidos iónicos, en algunos casos, responden de forma acusada.
2.2. Variabilidad intergenotípica

Centrándonos ya sobre aquellos caracteres y parámetros que pueden presentar utilidad para la mejora vegetal en cuanto a tolerancia a salinidad, se presenta en el Cuadro 156 un resumen de la importancia de los efectos genotipo y genotipo x tratamiento para dichos caracteres, estudiados, en condiciones de estrés.

Así como para estudiar el comportamiento general del cultivo a la salinidad se han empleado los valores absolutos de los caracteres, considerando a los genotipos como repeticiones dentro de cada tratamiento, en este apartado se ha optado por manejar los valores relativos al control, con objeto de colocar a todos los genotipos en condiciones de par-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCCION α</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>PESO HECTOLITRICO α</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>MADURACION α</td>
<td>**</td>
<td>ns</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>PERIODO LLENADO GRANO α</td>
<td>**</td>
<td>**</td>
<td>ns</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>DAÑO FOLIAR α</td>
<td>--</td>
<td>--</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>PESO SECO PLANTA β</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>INDICE DE COSECHA β</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>CLORO δ</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>SODIO δ</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>CALCIO δ</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>POTASIO δ</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>IONES TOTALES δ</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>RELACION K⁺/Na⁺ δ</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

α Diferencia entre genotipos y genotipo x tratamiento, con 10 tratamientos reagrupados en 4
β Diferencias entre genotipos en el tratamiento 16
δ Diferencias entre genotipos en el tratamiento 16 (1988), y en los tratamientos 14, 18 y 20 (1989).

tida similares, evitando que las diferencias en la expresión potencial de los caracteres entre los genotipos enmascaren la verdadera tolerancia.

Los análisis de varianza contemplan distintos tratamientos, dependiendo de los puntos de medición y de las repeticiones disponibles para cada carácter. Cuando ha sido posible, los análisis se han efectuado en un tratamiento salino intermedio, buscando el nivel que mejor pueda discriminar las diferencias existentes.

Observando el Cuadro 156, se aprecia que todos los caracteres que mostraban respuesta a la salinidad, presentan una variabilidad genotípica notable, bien sea a través de efectos genotipo y genotipo x tratamiento significativos (producción, peso hectolitrico, maduración, periodo de llenado del grano, y daño foliar), bien de diferencias genotípicas en un nivel intermedio de estrés (peso seco de la planta, índice de cosecha y contenidos iónicos foliares, en 1988), o bien de diferencias entre genotipos considerando el conjunto de los tratamientos salinizados (contenidos iónicos en 1989).

Puede en resumen afirmarse, que para estos caracteres que se ven influenciados por la aplicación del gradiente salino, la muestra genética empleada ha presentado variabilidad aceptable.

2.3. Análisis genético

El siguiente paso en la evaluación del interés de un carácter para su utilización en mejora, es comprobar si la variabilidad genotípica observada es de tipo manejable por el mejorador. En el Cuadro 157 se resumen las significaciones de los factores analizados en los análisis de varianza, según el modelo North Carolina II, tanto en valores absolutos como en relativos al control.

Centrándonos en los resultados obtenidos para valores relativos, por las razones comentadas anteriormente, puede afirmarse que la variabilidad encontrada es fundamentalmente debida al efecto Padre x Madre, con la única excepción de un ligero efecto materno para el peso hectolítico, hecho por otra parte totalmente normal dada la importancia de la madre en la conformación del grano.

De la partición de la varianza presentada en el apartado de resultados, se confirma que la práctica totalidad de la varianza estimada ha sido de tipo ACE, confirmando la importancia de los efectos heteróticos
y la aplicación de técnicas de selección recurrente recíproca en la mejora de la tolerancia a la salinidad.

En cuanto a caracteres indirectos, se confirma la utilidad de la estimación de "daño foliar" con fuerte componente, así mismo, de ACE; los contenidos iónicos sin embargo, han presentada unas estimas de componentes de varianza con un gran error, lo que inicialmente no permite definirse sobre su posible aplicación.

<table>
<thead>
<tr>
<th>CARACTER</th>
<th>VALORES ABSolutOS</th>
<th>VALORES RELATIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA</td>
<td>MA</td>
</tr>
<tr>
<td>PRODUCCION α</td>
<td>ns</td>
<td>**</td>
</tr>
<tr>
<td>PESO HECTOLITRICO α</td>
<td>*</td>
<td>ns</td>
</tr>
<tr>
<td>MADURACION α</td>
<td>ns</td>
<td>**</td>
</tr>
<tr>
<td>PERIODO LLENADO GRANO α</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>DAÑO FOLIAR α</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>PESO SECO PLANTA β</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>INDICE DE COSECHA β</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>CLORO δ</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>SODIO δ</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>CALCIO δ</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>POTASIO δ</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>IONES TOTALES δ</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>RELACION K⁺/Na⁺ δ</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

α Diferencia entre genotipos y genotipo x tratamiento, con los 10 tratamientos reagrupados en 4
β Diferencias entre genotipos en el tratamiento 16
δ Diferencias entre genotipos en los tratamientos 14, 18 y 20

Cuadro 157. Significación de los efectos paterno, materno y de la interacción, de los análisis de varianza de los caracteres en valores absolutos y relativos. 1989.
3. ESTRES HIDRICO EN PLANTA ADULTA

3.1. Comportamiento general del cultivo

El Cuadro 158 resume las diferencias existentes entre los dos extremos del gradiente de agua aplicada en los años 1987 y 1989. Se puede apreciar que el estrés presente en 1987 fue de mayor magnitud que el de 1989, presentando por tanto, una mayor capacidad diferenciadora.

En cuanto a la producción, se pudo apreciar (Cuadro 98) que el ensayo de 1987 fue mucho más productivo, en el tratamiento control (10), aunque sufrió también una disminución más drástica a medida que aumentaba el estrés hídrico, llegando a perder hasta un 81.4% del peso de grano entre los dos extremos del gradiente. En 1989, el menor aporte de agua de riego provocó una disminución muy suave al incrementarse paulatinamente el estrés hídrico, alcanzando el 71.7% del control, en el tratamiento de máxima sequía.

El patrón de comportamiento de los componentes de la producción también varía en ambos ensayos. En 1987, salvando un aumento anecdotico del número de plantas por parcela, todos los demás componentes se ven reducidos por la sequía. El carácter más afectado es el número de panículas por parcela, que suma los efectos de un menor ahijamiento y de la limitación en la capacidad de producción de panículas. O'Neill et al. (1983), propusieron que la distancia desde la línea central de riego a la que es capaz de formar panículas un genotipo, es un buen índice de su tolerancia a la sequía. Rosenow y Clark (1981), hablan de este mismo carácter cuando citan al "saddle effect" (formación de panículas sólo en las zonas de las parcelas contiguas a los pasillos) como un carácter negativo para la tolerancia a la sequía.

El número de granos por panícula fue el segundo componente más afectado por el estrés hídrico en 1987, con un descenso del 44% en el tratamiento menos regado. Sin embargo, el peso de 1000 granos experimentó un descenso más moderado, del 8%, lo que quiere decir que la pérdida en el número de granos por panícula supone en realidad un ajuste de la planta a la disminución del crecimiento que produce el estrés hídrico.

En 1989, los únicos componentes afectados por el estrés fueron el número de panículas por parcela (fruto de la disminución del número de tallos capaces de formar panícula, y no de la formación de tallos en sí), y, en menor medida, el número de granos por panícula. El peso individual del grano apenas se resintió.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCCION</td>
<td>-81.4 **</td>
<td>-28.3 **</td>
</tr>
<tr>
<td>PESO HECTOLITRICO</td>
<td>-6.3 **</td>
<td>-4.3 ns</td>
</tr>
<tr>
<td>NUMERO DE PLANTAS</td>
<td>12.2 *</td>
<td>5.7 ns</td>
</tr>
<tr>
<td>TALLOS POR PLANTA</td>
<td>-23.4 **</td>
<td>0.0 ns</td>
</tr>
<tr>
<td>% TALLOS CON PANICULA</td>
<td>-54.1 **</td>
<td>-21.9 **</td>
</tr>
<tr>
<td>PANICULAS POR PARCELA</td>
<td>-57.7 **</td>
<td>-21.6 **</td>
</tr>
<tr>
<td>GRANOS POR PANICULA</td>
<td>-44.1 **</td>
<td>-9.1 **</td>
</tr>
<tr>
<td>PESO DE 1000 GRANOS</td>
<td>-8.0 **</td>
<td>-1.0 ns</td>
</tr>
<tr>
<td>FLORACION</td>
<td>15.7 **</td>
<td>0.7 ns</td>
</tr>
<tr>
<td>MADURACION</td>
<td>8.2 **</td>
<td>-3.0 **</td>
</tr>
<tr>
<td>PERIODO LLENADO GRANO</td>
<td>-13.3 **</td>
<td>-11.6 **</td>
</tr>
<tr>
<td>ENROLLADO</td>
<td>---</td>
<td>130.0 **</td>
</tr>
<tr>
<td>ALTURA</td>
<td>---</td>
<td>-15.7 **</td>
</tr>
<tr>
<td>LONGITUD PANICULA</td>
<td>---</td>
<td>-35.0 **</td>
</tr>
<tr>
<td>LONGITUD PEDUNCULO</td>
<td>---</td>
<td>-64.4 **</td>
</tr>
<tr>
<td>PESO SECO PLANTA</td>
<td>---</td>
<td>-29.7 **</td>
</tr>
<tr>
<td>INDICE DE COSECHA</td>
<td>---</td>
<td>-38.9 **</td>
</tr>
<tr>
<td>CRA</td>
<td>---</td>
<td>0.3 ns</td>
</tr>
<tr>
<td>TPA</td>
<td>---</td>
<td>-10.0 ns</td>
</tr>
<tr>
<td>PEF</td>
<td>---</td>
<td>4.5 ns</td>
</tr>
<tr>
<td>PESO TURGENTE/SECO</td>
<td>---</td>
<td>-4.0 ns</td>
</tr>
</tbody>
</table>

En consecuencia el análisis conjunto de ambos años nos indica que el componente más sensible a la sequía es el número de paniculas por parcela, seguido de la producción de granos por panícula, y sólo con estreses hídricos severos se llegan a ver afectados el ahijamiento por planta, y el peso individual del grano, que parece el menos sensible de todos.

Hay que recordar que en los presentes ensayos, el estrés se impuso desde el principio del desarrollo vegetativo, incrementándose desde entonces de manera gradual, y abarcando hasta el final del ciclo de desarrollo. De este modo, las condiciones de estrés afectan, aunque no necesariamente por igual, a casi todos los procesos implicados en la deter-
minación de los componentes del rendimiento.

El peso hectolitrico sólo disminuye significativamente en 1987, y comparativamente menos que en los ensayos de salinidad. El mantenimiento de los valores de este carácter confirma el ya mencionado escaso efecto de la sequía sobre el tamaño del grano.

El estrés hídrico más severo de 1987 retrasó claramente la floración, mientras que en 1989 el retraso fue casi imperceptible. El fenómeno que sí se repitió en los dos ensayos fue el acortamiento del periodo de llenado del grano. Sería lógico pensar que la reducción en el peso de 1000 granos fuera una consecuencia del periodo de llenado más corto; sin embargo, el porcentaje de acortamiento del periodo de llenado superó con creces al de la disminución de este componente de la producción. Por lo tanto, podría desprenderse que la tasa de llenado del grano no se ve afectada fuertemente por la sequía, lo que permitiría la aplicación de estrategias de escape.

Ya se ha mencionado en el apartado de salinidad, que el enrollado foliar es un reconocido síntoma de estrés hídrico en el sorgo, pero que sin embargo prácticamente no se apreciaba en el estrés salino. Nuestros datos confirman lo ya mencionado por Rosenow y Clark (1981), al pasar de una evaluación promedio de 1.17, en condiciones de máximo riego, a un promedio cercano a 3 en el otro extremo del gradiente. La Figura 27 puede ilustrar sobre la variabilidad de respuestas observadas.

La disminución de la producción se debe, en parte, al menor desarrollo de la planta durante el periodo vegetativo. El peso de la planta (sin panícula), y la altura reflejan esta disminución, con unas pérdidas porcentuales de 29.7 y 15.7, respectivamente.

El índice de cosecha experimenta también una caída notable en la zona de mínimo riego. Sin embargo hay que distinguir este efecto del observado para el estrés salino, pues en aquel casi todas las plantas producían panícula, y la merma del índice de cosecha se debía al menor llenado del grano. En el caso del estrés hídrico, junto a plantas con panículas relativamente pequeñas, se encuentran otras, que no han llegado a producirla; las primeras presentan unos índices de cosecha bastante aceptables, pero que al promediarse con las plantas sin panícula, se traducen en los descensos presentados en el Cuadro 158.
Figura 27. Gradiente de agua aplicada de 1987. Respuestas extremas, en cuanto a enrollamiento foliar, en dos genotipos que ocupaban parcelas contiguas en la zona de mínimo riego.
Los caracteres de status hídrico, no presentan una variación significativa con la sequía en nuestros resultados, quizás influídos por el bajo grado de estrés hídrico alcanzado en el ensayo de 1989, insuficiente para provocar cambios detectables con los métodos empleados. Sin embargo, se puede destacar que, salvo el CRA, que no varía prácticamente nada a lo largo del gradiente, los demás caracteres siguen una tendencia lógica en sus cambios. Así, la TPA disminuye al aumentar la sequía, como respuesta a un proceso de aclimatación; el PEF y la relación peso turgente/peso seco, varían en sentido ascendente conforme se incrementa la sequía. Estos indicios apuntan a una incipiente osmorregulación en los tratamientos más estresados. Los resultados obtenidos pueden parecer contradictorios con la bibliografía existente, sin embargo esta contradicción puede explicarse fácilmente en el hecho de que los trabajos publicados, en su gran mayoría, han definido diferencias en situaciones extremas y con pocos genotipos y terriblemente diferentes. Nuestros resultados, al coincidir con un año de estrés moderado, y en base a una muestra genotípica amplia, parecen inducir la idea de la escasa utilidad de estos parámetros para la identificación de diferencias no muy acusadas en cuanto a tolerancia a la sequía.

De todo lo anterior podría concluirse que el gradiente de estrés hídrico afecta al cultivo del sorgo en su producción, y alguno de sus componentes, como el número de paniculas por parcela; longitud de la panicula y del pedúnculo; peso seco de la planta, como estimator del desarrollo vegetativo, y unido a la clara disminución de altura; índice de cosecha, que se ve fuertemente disminuido; y en sus aspectos fenológicos, la fecha de maduración se adelanta, acortándose por tanto, el período de llenado.

En cuanto a posible utilización de criterios indirectos de selección, el enrollamiento puede ofrecer utilidad; y los componentes de status hídrico no parecen ser eficientes para diferenciar genotipos próximos.

3.2. Variabilidad intergenotípica

Refiriéndonos a aquellos caracteres y parámetros que han mostrado una respuesta diferencial al estrés hídrico, se presenta en el Cuadro 159 un resumen de la significación de los efectos genotipo y genotipo x tratamiento para estos caracteres, en condiciones de estrés, excepto los componentes de la producción, por las razones de compensación ya citadas.
<table>
<thead>
<tr>
<th>CARACTER</th>
<th>1987</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GE</td>
<td>GExTR</td>
</tr>
<tr>
<td>PRODUCCION α</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>MADURACION α</td>
<td>**</td>
<td>ns</td>
</tr>
<tr>
<td>PERIODO LLENADO GRANO α</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>ENROLLADO α</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>ALTURA β</td>
<td>--</td>
<td>**</td>
</tr>
<tr>
<td>PESO SECO PLANTA β</td>
<td>--</td>
<td>**</td>
</tr>
<tr>
<td>INDICE DE COSECHA β</td>
<td>--</td>
<td>**</td>
</tr>
<tr>
<td>TPA δ</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>PESO TURJENTE/SECO δ</td>
<td>--</td>
<td>ns</td>
</tr>
</tbody>
</table>

α Diferencia entre genotipos y genotipo x tratamiento, con los 10 tratamientos reagrupados en 4.
β Diferencias entre genotipos en el tratamiento 1
δ Diferencias entre genotipos y genotipo x tratamiento, considerando los tratamientos 1 y 6

Al igual que en el apartado de salinidad, los análisis de varianza contemplan distintos tratamientos, dependiendo de los puntos de medición y de las repeticiones disponibles para cada caracter. Para el ensayo de 1989 los análisis para el tratamiento de máximo estrés, pues incluso en esa zona, el estrés impuesto fue bastante moderado.

Todos los caracteres considerados presentan variación intergenotípica, excepto los de status hídrico, lo que confirma comentarios anteriores.

3.3. Análisis genético

En el Cuadro 160 se presenta un resumen de la significaciones de los factores analizados, tanto para valores absolutos como relativos. Centrándonos en estos últimos por su mayor valor ya comentado, puede ob-
<table>
<thead>
<tr>
<th>CARACTER</th>
<th>VALORES ABSOLUTOS</th>
<th>VALORES RELATIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA</td>
<td>MA</td>
</tr>
<tr>
<td>PRODUCCION</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>MADURACION</td>
<td>ns</td>
<td>*</td>
</tr>
<tr>
<td>PERIODO LLENADO GRANO</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>ENROLLADO</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>ALTURA</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>PESO SECO PLANTA</td>
<td>*</td>
<td>ns</td>
</tr>
<tr>
<td>INDICE DE COSECHA</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Cuadro 160. Significación de los efectos paterno, materno y de la interacción, de los análisis de varianza de los caracteres en valores absolutos y relativos. 1989.

Servarse que los efectos Padre x Madre son los responsables de la variabilidad encontrada, con una única excepción de un ligero efecto paterno en el índice de cosecha, de difícil explicación.

La partición de la varianza genética reafirma estas conclusiones al centrarla totalmente en ACE, tanto para los caracteres directos, como para el enrollado.
4. COMPARACION DE TOLERANCIA A SALINIDAD EN GERMINACION-EMERGENCIA CON PLANTA ADULTA

Para verificar la posible existencia de relaciones entre la tolerancia en fase de germinación-emergencia, y la referida a planta adulta, que como ya se ha comentado, ha realizado su emergencia sin presencia de sal, de esta forma se ha elegido el parámetro CE$_{50}$ como módulo de comparación, y su estimación sobre aparición de primera hoja (PPHR), en germinación-emergencia, y la del rendimiento relativo al control, en planta adulta.

Los valores medios para la totalidad de los genotipos, obtenidos para estos parámetros, han sido:

\[
\begin{align*}
\text{CE$_{50}$ PPHR} & \quad 19.66 \\
\text{CE$_{50}$ Prod. 1988} & \quad 8.99 \\
\text{CE$_{50}$ Prod. 1989} & \quad 9.97
\end{align*}
\]

lo que nos indica la existencia de mayor tolerancia en general en la fase de germinación-emergencia que en el estado adulto.

Cuando realizamos el cálculo de la correlación, en base a todos los genotipos estudiados, nos encontramos con valores no significativos, como puede apreciarse a continuación.

<table>
<thead>
<tr>
<th>GERMINACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALINIDAD-89</td>
</tr>
<tr>
<td>SALINIDAD-88</td>
</tr>
</tbody>
</table>

Estos datos parecen confirmar la mayoría de las opiniones encontradas en la bibliografía, en el sentido de la existencia de dos "tolerancias" distintas, según se trate de las primeras fases de desarrollo, es decir, la germinación-emergencia, o bien de planta adulta.

Este hecho no permite utilizar una táctica única para tolerancia a salinidad en los programas de mejora, ya que al ser necesaria la existencia de dicha tolerancia tanto para estados tempranos como para planta adulta, obligaría al empleo de esquemas de mejora que contemplan ambos aspectos de forma escalonada.

De esta forma parecería recomendable la aplicación de trabajos poblacionales, fundamentalmente en las poblaciones "hembras", para incrementar la tolerancia durante la germinación-emergencia, y posteriormente
establish esquemas de selección recurrente recíproca con estas poblaciones y sus contrapuestas R, para de esta forma intentar captar avances de tipo heterótico y potenciar al máximo la ACE en los híbridos tolerantes en planta adulta.
5. COMPARACIÓN ENTRE TOLERANCIAS A SALINIDAD Y SEQUÍA

Una comparación inicial entre la respuesta a ambos estreses se puede plantear a través del estudio de correlación entre las pendientes de las regresiones de producción relativa, en sequía, y las CE50, también de producción relativa, en salinidad.

Los resultados de las correlaciones que se obtienen con la totalidad de los genotipos empleados, mostraron la no significación de las mismas, como se presenta a continuación

<table>
<thead>
<tr>
<th>SALINIDAD-89</th>
<th>SEQUÍA-87</th>
<th>SEQUÍA-89</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2563 ns</td>
<td>0.0486 ns</td>
<td></td>
</tr>
<tr>
<td>0.0202 ns</td>
<td>-0.0548 ns</td>
<td></td>
</tr>
</tbody>
</table>

Como complemento a este análisis se realizó la comparación de comportamientos, restringida a los genotipos que habían sido definidos como tolerantes y susceptibles en salinidad (Cuadro 30), y a los de iguales características en sequía (Cuadro 102). El resultado de esta comparación se resume a continuación

tolerantes vs sensibles de salinidad, en sequía no se diferencian

tolerantes vs sensibles de sequía, en salinidad no se diferencian

lo que corroboró las primeras indicaciones de la falta de respuesta similar a salinidad y sequía.

De forma gráfica se puede ilustrar esta respuesta distinta ante ambos estreses, con la observación de la Figura 28, en la que se presenta el comportamiento del híbrido G-68027 x KS-33 (28) en tres situaciones; no salinidad, máxima salinidad, y stress hídrico máximo, empleados.
Figura 28. Diferente respuesta del híbrido G-68027 x KS-33 a la máxima salinidad (arriba), condiciones óptimas (centro), y mínimo riego (abajo).
6. ELECCION DE CARACTERES PARA SELECCION

6.1. En fase de germinación - emergencia, para salinidad

El carácter que mejor ha permitido diferenciar genotipos ha sido el porcentaje de semillas que producen plántulas con primera hoja al cabo de un mes de incubación.

Dentro de este carácter, el parámetro que mejor ha permitido su evaluación ha sido el CE$_{50}$, pero dado el elevado número de concentraciones salinas que exige su determinación, podría elegirse el nivel salino de 20 dS/m, y tres semanas de incubación, para la realización de cribados poblacionales.

6.2. Estres salino en planta adulta

En el Cuadro 161 se presenta la comparación entre el grupo de genotipos tolerantes y el de susceptibles (Cuadro 30), para los principales caracteres que han mostrado variabilidad utilizable.

| CARACTER | DIFERENCIA | Prob>|T| |
|-----------------------|------------|-----|
| PRODUCCION | 34.61 | 0.0002|
| PESO HECTOLITRICO | 1.60 | 0.7464|
| MADURACION | -0.61 | 0.4831|
| PERIODO LLENADO GRANO | 2.56 | 0.4165|
| DAÑO FOLIAR | 1.00 | 0.0443|
| PESO SECO PLANTA | 12.42 | 0.1114|
| INDICE DE COSECHA | 9.62 | 0.0689|
| POTASIO | 16.94 | 0.0054|
| IONES TOTALES | 13.75 | 0.0769|
| RELACION K$^+$/Na$^+$ | 29.42 | 0.0223|

Cuadro 161. Diferencias entre las medias de los grupos de genotipos tolerantes y sensibles, seleccionados bajo salinidad.
El comportamiento de ambos grupos diferenciales, nos puede hacer recapacitar sobre la utilidad de trabajar en los parámetros fenológicos, ya que vemos como grupos claramente diferenciados en tolerancia pueden no presentar variación para estos caracteres. Un caso similar podría mencionarse para el peso hec tolítico.

En resumen, los caracteres sobre los que podría actuarse más fuertemente en la selección recurrente recíproca, se centrarían en primer lugar en la producción "per se" y el índice de cosecha; y como criterios indirectos, el daño foliar, y el peso seco de planta a través de estimación visual de biomasa. Estas estimaciones deberían realizarse en condiciones de estrés salino "medio", del orden de unos 9 dS/m, coincidente en general con el CE50 medio. En todo caso los resultados deben referirse a un tratamiento control no salino.

6.3. Estrés hídrico en planta adulta

Al igual que en el caso de estrés salino, se presenta en el Cuadro 162 la comparación de comportamientos entre los grupos tolerantes y susceptibles a sequía (Cuadro 102), para los caracteres que han mostrado variabilidad utilizable.

| CARACTER | DIFERENCIA | Prob>|T| |
|---------------------|------------|-----|-----|
| PRODUCCION | 53.09 | 0.0000 |
| FLORACION | -6.44 | 0.0002 |
| MADURACION | -3.42 | 0.0659 |
| LLENADO GRANO | 4.83 | 0.2648 |
| ENROLLADO | -1.78 | 0.0002 |
| ALTURA | 17.33 | 0.0035 |
| LONGITUD PANICULA | 71.63 | 0.0000 |
| LONGITUD PEDUNCULO | 38.35 | 0.0414 |
| PESO SECO PLANTA | 11.94 | 0.2089 |
| INDICE DE COSECHA | 61.11 | 0.0002 |

Cuadro 162. Diferencias entre las medias de los grupos de genotipos tolerantes y sensibles, seleccionados por su producción bajo sequía.
En este caso encontramos que la estimación de biomasa, como índice visual del peso seco de la planta, podría inducir a error por el hecho ya comentado de la existencia de plantas que no llegan a producir panícula bajo estrés hídrico. Esto llevaría a recomendar únicamente esta estimación visual en periodos finales del cultivo, en los que, junto al desarrollo vegetativo general de la planta, podría evaluarse visualmente la existencia de panícula, que también aseguraría un buen índice de cosecha. Junto a este criterio indirecto, el enrollado parece ser un buen estimador de la susceptibilidad al estrés hídrico.

En resumen, los caracteres sobre los que podría actuar más fuertemente en la selección recurrente recíproca, se centrarían en primer lugar en la producción "per se"; y como criterios indirectos, el enrollado y el peso seco de planta con panícula a través de estimación visual tardía de biomasa. Estas estimaciones deberían realizarse en condiciones de estrés hídrico diferenciador, ya que como se ha podido apreciar en los ensayos realizados en 1987, con incidencia mayor de estrés, la capacidad diferenciadora de estos parámetros ha resultado superior.

A diferencia del caso de estrés salino en el que las condiciones de selección deben controlarse adecuadamente, cuando se trata de tolerancia a la sequía es obligado un planteamiento más basado en condiciones meteorológicas naturales, y que incluya una cuidada elección de la localización de los ensayos, series temporales de los mismos, y una aplicación de factores correctores probabilísticos a los resultados.
VII. CONCLUSIONES
Con el objetivo general de conocer el comportamiento del sorgo bajo condiciones diferenciales de estreses hídrico y salino, y analizar las posibilidades de mejora genética ante estas situaciones, se ha realizado el presente trabajo, de cuyos resultados y discusión parecen desprenderse las siguientes conclusiones:

En cuanto a la tolerancia a salinidad en fase de germinación-emergencia:

1. La salinidad afecta al proceso a través de, al menos, tres efectos distintos: uno osmótico, en fase de imbibición; otro de retraso de la germinación de tipo osmótico-tóxico; y un tercero de tipo tóxico letal.

2. La CE$_{50}$ del modelo de van Genuchten, sobre el porcentaje de semillas que producen la primera hoja, parece ser el parámetro que mejor integra la respuesta de todos los genotipos a la salinidad y presenta mayor capacidad discriminadora.

3. Se ha encontrado suficiente variabilidad intergenotípica para esta tolerancia, cuyas estímulas muestran un componente principal de tipo de ACG materna.

En cuanto a tolerancia a la salinidad en planta adulta:

4. El umbral de conductividad eléctrica del agua de riego a partir del cual decrece la producción ha sido estimado en 3 dS/m, y la CE$_{50}$ se sitúa en 9.9 dS/m.

5. Junto a la producción, los caracteres que parecen mostrar una respuesta más drástica al estrés han sido: número de granos por panícula y peso del grano; peso hectolitrico; peso seco de la planta; índice de cosecha y acortamiento del periodo de llenado.
6. Como criterio de selección indirecta, la estimación visual del daño foliar parece ser efectiva, así como el contenido de potasio en hoja.

7. La muestra genética empleada ha presentado variabilidad aceptable. El análisis genético de los caracteres elegidos ha mostrado un componente principal de ACE.

En cuanto a tolerancia al estrés hídrico en planta adulta:

8. El gradiente de riego utilizado ha afectado al cultivo de sorgo en su producción y alguno de sus componentes, como número de panículas por parcela; longitud del pedúnculo; peso seco de planta con panícula; y acortamiento del periodo de llenado.

9. En cuanto a la posible utilización de criterios indirectos de selección, la estima visual de enrollamiento parece eficaz, no así los caracteres de status hídrico que no parecen eficientes para diferenciar genotipos.

10. Al igual que en la tolerancia a salinidad, la muestra genética empleada ha presentado una buena variabilidad, y el análisis genético de los caracteres elegidos ha mostrado también la importancia principal de la ACE.

Las comparaciones realizadas entre las respuestas a los diferentes tipos de estrés y fases del desarrollo en que se ha aplicado, nos muestran:

11. La tolerancia a salinidad en fase de germinación – emergencia es independiente de la presentada en planta adulta.

12. En planta adulta, no se ha encontrado relación entre tolerancia al estrés hídrico y al salino.
Como conclusión final de los resultados obtenidos, y para su aplicación en un plan de mejora vegetal para obtención de variedades tolerantes a los estreses estudiados:

13. Se hacen necesarias actuaciones independientes para el estrés hídrico y para el salino.

14. Para el estrés salino será necesario incorporar tanto la tolerancia en fase de germinación-emergencia, como en planta adulta; por lo que se propone la selección recurrente sobre poblaciones "hembras" con cribado por producción de primera hoja, y posteriormente la selección recurrente recíproca entre estas poblaciones mejoradas y sus contrapuestas R.

15. Para el estrés hídrico, y dado que su tolerancia es fundamentalmente de tipo de ACE, se propone desde un principio un esquema de selección recurrente recíproca entre poblaciones B y R, con elección muy cuidadosa de localidades de ensayo, series temporales de los mismos y aplicación de factores correctores probabilísticos a los resultados.
VIII. REFERENCIAS

ACEVEDO E, FERERES E, HSIAO TC, HENDERSON DW. 1979. Diurnal growth trends, water potential and osmotic adjustment of maize and sorghum leaves in the field. Plant Physiol 64:476-80

LERNER HR. 1985. Adaptation to salinity at the plant cell level. Plant and Soil 89:3-14.

MARTINEZ-COB A. 1985. Cribado de cultivares de cebada (Hordeum vulgare L.) por su tolerancia a la salinidad. Tesis de Master, CIHEAM.

240

