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Animal models are invaluable for biomedical research, especially in the context of
rare diseases, which have a very low prevalence and are often complex. Concretely
mouse models provide key information on rare disease mechanisms and therapeutic
strategies that cannot be obtained by using only alternative methods, and greatly
contribute to accelerate the development of new therapeutic options for rare
diseases. Despite this, the use of experimental animals remains controversial. The
combination of respectful management, ethical laws and transparency regarding animal
experimentation contributes to improve society’s opinion about biomedical research and
positively impacts on research quality, which eventually also benefits patients. Here we
present examples of current advances in preclinical research in rare diseases using
mouse models, together with our perspective on future directions and challenges.

Keywords: orphan diseases, animal models, preclinical research, novel therapies, ethics, transparency

INTRODUCTION

Animal research has contributed greatly to advance human health and quality of life. The
use of laboratory animals increased exponentially in the 20th century and they are currently
employed in almost every field of biomedical research. Animal models reproduce many aspects
of human biological and pathological processes, and provide key information on the molecular
pathophysiology of human diseases. Non-animal approaches based mainly on cell or tissue/organ
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culture, and computational methods like data mining/generation,
may help to predict clinical outcomes and reduce animal
use (Cronin, 2016), but they cannot mimic the complexity
of human biology. Animals remain the best model–however
imperfect–to predict and characterize disease activity in patients
(Garattini and Grignaschi, 2017).

Choosing a suitable animal model is a critical step in
basic and preclinical research, and is usually based on a
number of criteria, including species similarities to humans
(the greater the phylogenetic closeness, the more similar is
the genetic composition, anatomy, and physiology), genetic
homogeneity, previous knowledge of the model, cost, availability,
translatability of the results, ease of manipulation, and ethical
implications, among others (National Research Council,
1998). Thus, the laboratory mouse is the most widely used
mammalian animal in biomedical research, representing more
than 60% of the total number of animals used in the EU
(European Commission, 2019).

Genome manipulation and phenotype characterization is a
common strategy for studying human pathology in animals,
and particularly, in mice. In the last few years, CRISPR-Cas9-
based genome editing has transformed the field and greatly
expanded the repertoire of animal/cell systems available for
disease modeling (Ahmad and Amiji, 2018). Gene homology
between mouse and man is an essential prerequisite for pursuing
this genotype-to-phenotype approach. Homogenization of the
genetic background by inbreeding is also an important factor to
reduce experimental variability. In this context, the International
Mouse Phenotyping Consortium has generated, phenotyped
and archived more than 6000 knockout mice on the C57BL/6
background, the most well-known and widely used inbred mouse
strain (Cacheiro et al., 2019). Complete catalogs of genetically
modified mouse models are available online at the International
Phenotype Mouse Consortium and The Jackson Laboratory
webpages (Table 1).

ANIMAL MODELS FOR RARE DISEASE
RESEARCH

The definition of a rare disease (RD) in Europe is a disease
with a prevalence of <1 in 2000, whereas ultra-RDs affect <1
in 50,000. RDs comprise more than 7000 different conditions
(Orphadata, Table 1), usually severe, clinically complex and
chronic, affecting 3.5–5.9% of the world’s population (Nguengang
Wakap et al., 2020), most of whom are children. The fact
that each RD affects a relatively small number of patients
has resulted in limited knowledge of RDs at the clinical
level, which often delays an early and accurate diagnosis–
patients can wait 8 years before receiving a diagnosis–and a
potential therapy. Alarmingly, 95% of RDs have no approved
or effective treatments, in part because RDs are underserved
by pharmaceutical companies. Accordingly, RDs are considered
a public health priority and specific research programs as the
International Rare Diseases Research Consortium (IRDiRC)
(Table 1) have been established to foster knowledge development
(Gahl et al., 2016; European Commission, 2017).

Animal models are indispensable to identify the genetic bases
and molecular mechanisms of RDs, as well as to understand
their physiopathology, clinical heterogeneity and genotype-
phenotype correlations. Indeed, RDs are excellent candidates
for animal models, particularly in the context of genetically
modified mice, as most RDs involve mutations in a single
gene (Institute of Medicine, 2010). Due to the scarcity of
available information on RD models, however, one of the
major issues hindering translational research is the (incorrect)
choice of model in preclinical studies. To address this and
other issues some initiatives have been recently launched to
generate and register RD mouse models. For instance, the Jackson
Laboratory Rare and Orphan Disease Center (Table 1) has
generated animal models for Friedreich’s ataxia, Rett syndrome
and spinal muscular atrophy. Likewise, the Infrafrontier platform
provides access to 670 mouse strains that are related to nearly
1200 distinct RDs. Information about RD mouse models can
also be obtained from the governmental agencies responsible
for the evaluation of orphan medicinal product designation
applications from pharmaceutical companies. In this context,
Vaquer et al. (2013) compiled a list of 57 mammalian animal
models for metabolic, neuromuscular, and ophthalmological
orphan-designated conditions, based on information gathered
by the European Medicines Agency (EMA). Additionally, some
countries have developed specific national plans to prioritize
RD research. For example, in Spain, the Biomedical Research
Center Network for RDs (CIBERER) of the Carlos III Health
Institute has contributed to the advancement of RD research by
(i) developing new animal models, (ii) performing preclinical
assays of novel therapeutics, and (iii) creating a mouse
model phenotyping unit and a working group to register
model information.

Here, we discuss some representative examples of RD mouse
models under investigation at CIBERER (Table 2), which serve
to illustrate the phenotypic variability of RDs and the possibilities
offered by animal modeling to fill the knowledge gaps regarding
in this area, and to contribute to the IRDiRC’s goal of accelerating
diagnosis and approving 1000 new therapies for RDs by 2027.

Metabolic RDs
They encompass a large and heterogeneous group of RDs
caused by mutations affecting the function of enzymes,
transporters, receptors, or hormones involved in metabolizing
and transporting small (e.g., amino acids or neurotransmitters)
or complex (i.e., glycogens or lipids) molecules, and defects in
mitochondrial energy metabolism. One of the most extensively
investigated is phenylketonuria, which severely affects the brain
by interfering with dopamine and serotonin metabolism (Winn
et al., 2018). Pahenu2/enu2 and Pahenu3/enu3 mice mimic human
phenylketonuria pathophysiology and have aided in discovering
mechanisms and therapies based on phenylalanine-restricted
diets (Winn et al., 2018). Similarly, aromatic amino acid
decarboxylase deficiency is a defect in dopamine and serotonin
synthesis that also causes devastating central nervous system
degeneration. DdcTM1.1Nwlh mutant mice have been used to study
the disease (Lee et al., 2013) and to evaluate adeno-associated
viral gene therapy, which improved both survival and brain
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TABLE 1 | Reference online resources on RDs, mouse models, legislation, and recommendations on animal experimentation.

Online resource Description URL

International Rare Diseases Research Consortium
(IRDiRC)

International consortium of national and international governmental and non-profit funding
bodies, companies, umbrella patient advocacy organizations, and scientific researchers to
accelerate diagnosis and contribute to the development of new therapies for RDs

https://irdirc.org/

Orphanet European website providing information about orphan drugs and rare diseases. It contains
content both for physicians and for patients

https://www.orpha.net

Orphadata Comprehensive, quality data sets related to RDs and orphan drugs from the Orphanet
knowledge base, in reusable formats.

http://www.orphadata.org

Biomedical Research Center Network for RDs
(CIBERER)

Spanish network cooperative structure of basic and clinical research groups with the
purpose of (1) generating new scientific knowledge on the causes and mechanisms of RDs,
and (2) developing new treatments and diagnostic procedures for these illnesses.

https://www.ciberer.es/en

Committee for Orphan Medicinal Products (COMP) Committee of the European Medicines Agency (EMA) responsible for recommending
orphan designation of medicines for rare diseases.

https://www.ema.europa.eu/en/committees/
committee-orphan-medicinal-products-comp

The Jackson Laboratory Independent, non-profit organization focusing on mammalian genetics research to advance
human health

https://www.jax.org

Jackson Laboratory Rare and Orphan Disease
Center

Jackson Lab center focused in the generation of mouse models for rare disease research. https://www.jax.org/research-and-faculty/
research-centers/rare-and-orphan-disease-center

International Phenotype Mouse Consortium International consortium of research institutions to identify the function of every
protein-coding gene in the mouse genome.

https://www.mousephenotype.org

International Mouse Phenotyping Resource of
Standardized Screens (IMPReSS)

Standardized phenotyping protocols which are essential for the characterization of mouse
phenotypes.

https://www.mousephenotype.org/impress/

European Commission European legislation for the protection of animals used for scientific purpose 2010/63/EU
directive

https://ec.europa.eu/environment/chemicals/lab_
animals/legislation_en.htm
http://data.europa.eu/eli/dir/2010/63/oj

Animal Research Reporting of In Vivo Experiments
(ARRIVE) guidelines

Gold Standard publication Checklist reporting Guidelines https://arriveguidelines.org/

European Quality in Preclinical Data (EQIPD)
Consortium

https://quality-preclinical-data.eu/
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TABLE 2 | Rare disease mouse models.

ORPHA number Allelic symbol Allele name Genotype MGI number References

Adrenoleukodystrophies

43 Abcd2tm1Apuj ATP-binding cassette, sub-family D (ALD), member
2; targeted mutation 1, Aurora Pujol

Homozygous 3617308 Pujol et al., 2002, 2004; Fourcade
et al., 2008; Lopez-Erauskin et al.,
2011, 2012; Schluter et al., 2012;
Ruiz et al., 2015

Abcd1tm1Kds ATP-binding cassette, sub-family D (ALD), member
1; targeted mutation 1, Kirby D Smith

Homozygous 2446588, 2680904

Rare aminoacidurias and hyperoxalurias

2195 Slc7a8tm1Gen Solute carrier family 7 (cationic amino acid
transporter, y+ system), member 8; targeted
mutation 1, Genoway

Homozygous 6323258, 6323255 Vilches et al., 2018

Heterozygous 6323256

1032 Slc16a10m1Ingm Solute carrier family 16 (monocarboxylic acid
transporters), member 10; mutation 1, Ingenium
Pharmaceuticals

Homozygous 5544309

93598 Agxttm1Ull Alanine-glyoxylate aminotransferase; targeted
mutation 1, Eduardo C Salido

Homozygous 3717654, 5314652 Salido et al., 2006; Knight et al., 2012

93600 GrhprGt(OST383093)Lex Glyoxylate reductase/hydroxypyruvate reductase;
gene trap OST383093, Lexicon Genetics.

Homozygous 5314653 Knight et al., 2012

Rare cardiomiopathies

247 AAV-PCSK9DY ApoE−/−

AAV-PCSK9DY
AAV-based vector for targeted transfer of the
PCSK9(DY) gene

Cruz et al., 2015;
Roche-Molina et al., 2015

Rare deafness

90635 Tectatm3.1Gpr Tectorin alpha; targeted mutation 3.1, Guy P
Richardson

Homozygous 5527172 Legan et al., 2014

Heterozygous 5527171

90635 Tectatm4.1Gpr Tectorin alpha; targeted mutation 4.1, Guy P
Richardson

Homozygous 5527174 Legan et al., 2014

Heterozygous 5527173

90635 Tectatm5.1Gpr Tectorin alpha; targeted mutation 5.1, Guy P
Richardson

Homozygous 5527176 Legan et al., 2014

Heterozygous 5527175

(Continued)
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levels of dopamine and serotonin (Lee et al., 2016). A clinical
trial using this approach is ongoing with encouraging results
(Chien et al., 2017).

X-linked adrenoleukodystrophy (X-ALD) is another severe
neurometabolic disease characterized by progressive central
demyelination, adrenal insufficiency and accumulation of
saturated very long-chain fatty acids, and caused by loss of
function of the ABCD1 peroxisomal transporter (Ferrer et al.,
2010). To date, no pharmacological treatment has been proven to
be beneficial and current therapeutic options are unsatisfactory
and restricted to bone marrow transplants and hematopoietic
stem cell gene therapy, but most patients remain untreated.
Mouse models uncovered the factors that account for genotype-
phenotype correlation in human disease variants. The Abcd1−

mutant mouse exhibits late-onset axonal degeneration of the
spinal cord corticospinal tracts and microglial and astroglial
activation, compatible with chronic low-level stimulation of the
innate immune response, and constitutes a good model for
ALD (Pujol et al., 2002; Ruiz et al., 2015). The Abcd2 gene
product shares physiological and biochemical functions with
that of Abcd1 (Pujol et al., 2004), and the Abcd1−/Abcd2−/−

double mutant presents with an earlier and more severe axonal
degenerative phenotype, constituting a more useful model for
preclinical evaluation (Pujol et al., 2004). These mouse models
revealed that X-ALD shares pathogenic processes with other
neurodegenerative disorders (Galea et al., 2012), including redox
dyshomeostasis, mitochondrial dysfunction, and proteostasis
malfunction (Fourcade et al., 2015). Encouraging preclinical
results with neurotrophic factors and antioxidants (Pujol, 2016)
have paved the way for the launch of three phase II/III clinical
trials for ALD (Casasnovas et al., 2019), and the approval of two
orphan drug designations.

Defects in glyoxylate and hydroxyproline hepatic metabolism
result in the hepatic overproduction of oxalate and primary
hyperoxaluria (PH) – an ultra-RD with a prevalence of 1–
3 in 106 individuals (Cochat and Rumsby, 2013). PH1, the
most common and severe form, is caused by AGXT mutations
(Milliner et al., 1993), whereas PH2 and PH3 are caused by
mutations in GRHPR and HOGA1, respectively. Loss of function
mutations in any of these genes results in impaired detoxification
of glyoxylate, which is converted into oxalate. PH patients
present elevated oxalate concentrations in plasma and urine,
oxalate deposition in multiple organs, recurrent kidney stone
episodes and chronic renal failure, which results in end-stage
renal disease. Current therapies include large daily fluid intake
and medications to reduce oxalate production (Cochat et al.,
2012), but they do not eliminate recurring stones and renal
disease. Combined liver and kidney transplantation is the only
curative treatment available, but is associated with significant
morbi-mortality and problems related to donor organ shortage
and life-long immunosuppressive treatment.

The AgxtTM1Ull mouse reproduces the main PH1 features
(Salido et al., 2006) and has been used to evaluate promising
experimental therapies (Martin-Higueras et al., 2017). Regulation
of oxalate transepithelial flux in the gut following intestinal
colonization with Oxalobacter (Hatch et al., 2011) has received
an innovative new drug designation by the United States Food
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and Drug Administration and is in clinical trials. Similarly,
gene therapy with adeno-associated vectors carrying human
AGXT under the control of a liver-specific promoter achieved
a long-term metabolic correction (Salido et al., 2011), and was
granted an EMA orphan drug designation. Deletion of the
glycolate oxidase gene, inhibition of its enzymatic product or
suppressing its expression with short-interfering RNA (siRNA)
resulted in a substantial reversal of the hyperoxaluric phenotype
(Martin-Higueras et al., 2016), the latter is currently being
evaluated in a clinical trial with encouraging preliminary results.
Therapies based on in vivo CRISPR-Cas9 technology are also
a potential strategy for curing PH1 by substrate reduction
with the administration of AAV-mediated glycolate oxidase-
targeted guide RNAs (Zabaleta et al., 2018). We have generated
a Grhpr knockout mouse for PH2 (Knight et al., 2012), and
both Agxt and Grhpr mutant mice have been used to test
the potential of inhibiting hepatic lactate dehydrogenase with
siRNA to treat PH (Lai et al., 2018), which has moved to a
clinical trial. In contrast to the models for PH1 and PH2, the
mouse model for PH3 generated by the International Knockout
Mouse Consortium (Hoga1TM2a(KOMP)Wtsi, MGI:4419886) does
not have the expected phenotype and it is currently being
used to investigate differences in mouse and human glyoxylate
metabolism. This example highlights a key point, which is that
the understanding of the differences in the metabolic interactome
between species is fundamental for the efficient transfer of the
knowledge from experimental models to clinical practice.

Rare aminoacidurias caused by defects in amino acid
transporters are being studied with murine models, which
emerge as a promising tool to design evidence-based therapies
to halt the progression of the disease. Using the Slc16a10−/−

Slc7a8−/− mouse and a targeted metabolomics approach, it was
confirmed that both transporters functionally cooperate in vivo.
This approach also uncovered compensation mechanisms that
explain the lack of human basolateral neutral aminoacidurias
(Vilches et al., 2018). Similarly, the Slc7a7−/− model of lysinuric
protein intolerance resembles the human phenotype, including
malabsorption and impaired reabsorption of cationic amino
acids, hypoargininemia, and hyperammonemia, and importantly,
responses to citrulline treatment, which improved the metabolic
derangement and survival (Bodoy et al., 2019).

Rare Cardiac Diseases
Arrhythmogenic right ventricular cardiomyopathy is a severe
disease characterized by ventricular fibrofatty replacement of
cardiomyocytes, contractile defects, and high risk for developing
malignant arrhythmias, which can ultimately lead to sudden
cardiac death especially in young athletes (Gandjbakhch
et al., 2018). More than 50% of the 380 mutations identified
lie within PKP2, which encodes the desmosomal protein
plakoglobin-2, a major component of cell-to-cell junctions
(van Tintelen et al., 2006). Given the complexity of developing
multiple transgenic animals, a novel approach was developed
by delivering genes encoding mutated proteins into wild-type
mice using adeno-associated viruses (Roche-Molina et al.,
2015). Using this strategy, C57BL6/J mice stably expressed
the R735X version of PKP2, a dominant-negative mutant,

driven by a cardiac-specific promoter, resulting in development
of an arrhythmogenic right ventricular cardiomyopathy
phenotype following exercise (Cruz et al., 2015). Although no
evidence of myocardial fibrosis or fibrofatty cardiomyocyte
replacement was observed, a miss localization of the gap-
junction protein connexion-43 was evident. This model
provides a versatile and accessible tool for investigating this
devastating disease.

Albinism
Murine models have been central to understand this rare genetic
condition primarily associated with severe visual deficits and
variable hypopigmentation, and caused by mutations in at least
twenty genes (Montoliu and Marks, 2017). Vision and hearing
deficits have been characterized in the Tyr mutant mouse, a
model for human oculocutaneous albinism 1 (Lavado et al., 2006;
Murillo-Cuesta et al., 2010). Additional mouse models have been
generated using CRISPR-Cas9 tools, including those addressing
the role of non-coding DNA of regulatory elements in Tyr gene
expression (Seruggia et al., 2015).

Sensorineural Hearing Loss
Approximately half of all cases of both non-syndromic
and syndromic human hearing loss (HL) are due to rare
mutations. TECTA-based human deafness is an example of
autosomal dominant non-syndromic HL, in which domain-
specific alterations in the glycoprotein Tecta, leading to
changes in the tectorial membrane of the cochlea, have
been studied using Tecta mutant mice (Legan et al., 2014).
Autosomal recessive non-syndromic HL, which in the
majority of cases is caused by mutations in GJB2 and GJB6,
encoding the gap junction proteins connexin 26 and 30,
respectively, has been studied using conditional mutant
mice. Thus, Gjb2TM1Ugds mouse shows a decrease in Cx26
expression, extensive loss of cochlear epithelial cells and an
increase in hearing thresholds (Cohen-Salmon et al., 2002;
Crispino et al., 2017).

Syndromic HL is a common condition in many RDs including
insulin-like growth factor I (IGF-1) deficiency, an ultra-RD
caused by homozygous mutations in IGF1 and associated with
growth retardation, intellectual deficit, and HL (Varela-Nieto
et al., 2013). The use of experimental models is practically the
only way to investigate the pathology of ultra-RDs. In this respect,
the Igf1TM1Arge/tm1Arge mouse (Liu et al., 1993) recapitulates the
human phenotype, and presents with severe deafness, neural
loss (Cediel et al., 2006) and alterations in the auditory central
pathway (Fuentes-Santamaria et al., 2016; Fuentes-Santamaria
et al., 2019), offering a unique window into the role of the IGF-1
in human hearing.

DISCUSSION

Animal experimentation is essential for understanding the
pathogenic mechanisms of RDs and developing new, safe and
effective treatments (Garattini and Grignaschi, 2017). This is
especially true for RDs whose low prevalence is associated with
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a lack of knowledge, delays in diagnosis, and absence of effective
treatments in most cases (European Commission, 2017). Non-
animal experimental approaches provide valuable information,
but they are far from reproducing the complexities and
interactions in a living organism (Cronin, 2016). Rather than
an alternative, non-animal methods are a useful complementary
approach that helps to reduce the number of specimens used in
biomedical research (European Commission, 2018).

The mouse is currently the most commonly used species
due to its genetic tractability, relative ease of genome editing
and cost-efficient management (European Commission, 2019).
During the last 20 years, public and private initiatives have made
a strong effort to generate and phenotype many hundreds of
genetically modified strains (Cacheiro et al., 2019). However,
it has been only recently that special attention has been
paid to RDs (Institute of Medicine, 2010; Gahl et al., 2016).
Information on RD mouse models is limited and scattered
across different databases, which could hamper the preclinical
testing of new therapeutic approaches. It would be useful to
gather all the data from already existing mutant mouse databases
with those from the orphan drug evaluation committees in
international agencies (Vaquer et al., 2013) and from national
initiatives for RDs research. As an example, the Spanish CIBERER
consortium has generated mouse models for some RDs that
have been shown to be effective for preclinical testing of new
drugs (Table 2).

The usefulness of mouse models to advance RD research
should not make us forget the importance of the ethical aspects
and transparency in animal research. The use of animals in
biomedical research remains a contentious issue in society
(Matthews, 2008). Citizens demand treatments that require
preclinical safety and efficacy testing, but they are increasingly
concerned by animal welfare and demand the elimination of
pain, and ultimately, of animal experimentation. Authorities and
the scientific community are devoted to protect public health
and the environment, and require the testing of new medicines,
chemicals, and food products in animal models. But they are
also fully committed to animal welfare and to the progressive
reduction of animal testing (European Commission, 2018), as
stated in the current legislation. There is a large body of laws and
regulations regarding the use of animals for scientific research
and educational purposes. The 2010/63/EU directive (Table 1)
states that: (i) animal experimentation can be carried out only
after a number of independent evaluations, and authorization
from the competent authority; (ii) researchers must reasonably
justify the use of experimental animals over alternative methods;
(iii) experiments involving animals can only be conducted by
competent and experienced professionals in authorized facilities;
(iv) the 3Rs principle (reduction, refinement, and replacement)
has always to be considered (Mocho, 2020). However, it is critical
to improve communication with the general public to convey the
fact that animal experimentation is necessary not only to protect
human health, but also to protect animals and the environment.

Society also demands transparency regarding animal
experimentation. Modern science is now so complex that
citizens are often unaware of the gaps in knowledge still existing
and wrongly assume that the use of animals is no longer

necessary. It is essential that researchers take a stand and clearly
explain their position with regard to the use of animals (Van
Zutphen, 2002). To fill these gaps, some initiatives have arisen
from scientific organizations addressing the requirement for
transparency (Montoliu, 2018). The scientific community hopes
that society will soon better understand the benefits of the use
of animals in research and will provide greater support for
animal experimentation, resolving the current controversies. In
addition, initiatives like the Animal Research Reporting of In Vivo
Experiments (ARRIVE) guidelines and the European Quality
in Preclinical Data (EQIPD) have arose to solve challenges
with regard to the robustness, rigor, and validity of research
data, which often impact the transition from preclinical to
clinical testing.

Ethics and transparency in this context will undoubtedly
enhance the quality of biomedical research and societal
engagement (Van Zutphen, 2002; Montoliu, 2018).
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