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ABSTRACT 9 

Soil loss by erosion processes is one of the largest challenges for food production and 10 

reservoir siltation around the world. Information on sediment, nutrients and pollutants is 11 

required for designing effective control strategies. The estimation of sediment sources is 12 

difficult to get using conventional techniques, but sediment fingerprinting is a potentially 13 

valuable tool. This procedure intends to develop methods that enable to identify the 14 

apportionment of sediment sources from sediment mixtures. 15 

We developed a new tool to quantify the provenance of sediments in an agroforest 16 

catchment. For the first time, the procedure for the selection of the best combination of 17 

tracers was included in the tool package. An unmixing model algorithm is applied to the 18 

sediment samples to estimate the contribution of each possible source. The operations are 19 

compiled in an R package named FingerPro, which unmixes sediment samples after 20 

selecting the optimum set of tracers. An example from a well-studied Mediterranean 21 

catchment is included in the package to test the model. The sediment source 22 

apportionments are compared with previous results of soil redistributions where 137Cs 23 

derived rates validate the unmixing results, highlighting the potential of sediment 24 

fingerprinting for quantifying the main sediment provenance. Fingerprinting techniques 25 



will allow us to better comprehend sediment transport to water ecosystems and reservoirs 26 

and its detrimental effect on the quality of the water and aquatic habitats.  27 

The FingerPro package provides further understanding of the unmixing procedure 28 

through the use of graphical and statistical tools, offering a broader and easier application 29 

of the technique.  30 

KEYWORDS: FingerPro, unmixing model, sediment source fingerprinting, source 31 

variability, R package  32 

 33 

1. INTRODUCTION 34 

Reliable information on sediment loads transported by a river or stream is crucial to 35 

evaluate the severity of reservoir siltation and river pollution. However, determining 36 

sediment provenance or sediment budgets in catchments using conventional monitoring 37 

techniques is often challenging. However, in most situations, it can be provided by 38 

applying tracing techniques. Fingerprinting techniques can be used to recognise sediment 39 

sources and to determine their relative contribution, thereby allowing the identification 40 

of areas or land uses prone to erosion processes (Schuller et al. 2013). Soil erosion and 41 

subsequent sediment transport are related to the loss of nutrients and their distribution in 42 

the catchment (Lizaga et al. 2019). To assess this issue, several software and indices have 43 

been developed to quantify the effects of different erosion mechanisms, such as 44 

connectivity (Shore et al. 2013), runoff (dos Santos et al. 2017), sheet and rill (Molnár 45 

and Julien, 1998), wind erosion (Schmidt et al.. 2017) and the subsequent effects on water 46 

quality (Panagopoulos et al. 2011; Foucher et al. 2020). However, sediment source 47 

fingerprinting has been developed in recent decades for catchment sediment and pollutant 48 

investigation as the most powerful tool to assess this problem. The procedure identifies 49 



sediment provenance and estimates the relative contribution of each potential source, 50 

using the selected tracer properties. 51 

The first fingerprinting approach dates back to the seventies, based on mineralogical 52 

and grain size characterisation (Klages and Hsieh, 1975). The earliest fingerprinting 53 

studies were fundamentally qualitative in their result, but the introduction of quantitative 54 

mixing models was a methodological advance that enabled researchers to obtain 55 

quantitative results of the relative contribution from different sediment sources (Collins 56 

et al. 1997). Since these early works, sediment source fingerprinting applications have 57 

been greatly expanding with the development of new techniques (Owens et al. 2016).  58 

The traditional approach for applying source-tracing methods is to define the relevant 59 

tracer properties that provide a particular signature between all source samples and 60 

unequivocally discriminate the different sources (Collins and Walling, 2002). Due to the 61 

inherent complexity of catchment characteristics, with large variations in climate, 62 

geology, land use, vegetation, soil, and management practices, commonly, no unique 63 

tracer can discriminate between multiple sediment sources. Consequently, different tracer 64 

properties need to be analysed, such as radionuclides (Wallbrink et al. 1998; Evrard et al., 65 

2020; Navas et al., 2020), geochemistry (Martínez-Carreras et al. 2010; Smith and Blake, 66 

2014; Gaspar et al., 2019a), ultraviolet-visible spectra derived tracers (Ramon et al., 67 

2020), CSSI (Reiffarth et al. 2019) and eDNA (Evrard et al. 2019).  68 

The fundamental theory that supports this technique is that the tracer properties of the 69 

sediment mixtures are directly comparable to the sediment of the sources. A common 70 

procedure, the so-called “range test”, checks if sediment tracers are conservative 71 

excluding the tracers of the mixture/s outside the minimum and maximum values in the 72 

potential sediment sources. This procedure prevents the inclusion in the optimum tracers 73 

of the fingerprint properties exhibiting non-conservative behaviour. However, the 74 



exclusion of a great number of fingerprint properties likely suggests that not all sources 75 

have been correctly identified or characterised. Thus, the methodology for tracer selection 76 

is an open question that is being discussed at present by several authors since different 77 

tracer selection methods could lead models to different results (Pulley et al. 2015; Lizaga 78 

et al. 2020). Following this assumption, the two-stage statistical procedure previously 79 

proposed by Collins and Walling, (2002), is commonly used to assess this 80 

conservativeness. Thus, the Kruskal Wallis H test (KW) and discriminant function 81 

analysis (DFA) test the ability of individual tracers to discern between sediment sources 82 

and select the best combination of tracers. This procedure was used to select the smallest 83 

combination of tracers that provided the maximum discrimination of the identified source 84 

categories and it is implemented by several authors as a common procedure when using 85 

frequentist (Palazón et al. 2015; Lin et al. 2015; Gholami et al., 2020) and Bayesian 86 

(Koiter et al. 2013; Barthod et al. 2015) unmixing models. Subsequently, the relative 87 

contribution of each identified source is estimated using a linear multivariate unmixing 88 

model.  89 

Due to the growing use of fingerprinting methods, other unmixing models, such as 90 

SIFT (Pulley and Collins, 2018), MixSIR (Moore and Semmens, 2008) and IsoSource 91 

(Phillips and Gregg, 2003), appeared in the last years for pollution and ecological 92 

purposes. However, due to operational complexity and the need to use different statistical 93 

software not included in the packages, the use of unmixing models is generally restricted 94 

to academics with a good knowledge of the procedure. Refinement of the sediment source 95 

fingerprinting techniques requires open-source models that help the user in tracer 96 

selection decisions and optimise this time-consuming process for non-expert and 97 

academics with low programming and statistical skills by including the essential 98 

statistical functions and plots.  99 



To fill this gap, our objective was to develop for the first time an R package comprising 100 

an unmixing model with the additional tools needed to comprehend the effect of the 101 

selected properties on the model outcome. To this purpose, we create a new R package 102 

that combines in a novel assemblage the tools needed to unmix sediment samples and the 103 

previous statistical tests to select optimum tracers. Thus, we aim to provide an easy and 104 

straightforward way to apply the sediment fingerprinting technique aimed at beginners or 105 

non R users.  106 

This paper presents the FingerPro package, a user-friendly application and freely 107 

available software for users with limited or nor expertise in statistics. Thus, any user could 108 

implement the fingerprinting procedure with limited previous experience in the technique 109 

and with no need for additional software for statistical analyses. Furthermore, unlike 110 

previous models, this new tool to identify sediment provenance has been successfully 111 

tested with artificial samples (Gaspar et al. 2019b).  112 

The analyses explained in this research are based on 1) a reproducible data set example 113 

of small catchment included in the package and 2) another example of ongoing research 114 

in a medium-size catchment to further describe the capability of the package. The medium 115 

size catchment is selected as representative of mountain headwaters (South Pyrenean 116 

region) that supply water to reservoirs as siltation and pollution is one of the main 117 

environmental issues worldwide (Valero-Garcés et al. 1999). Through these two 118 

examples, the utility of the FingerPro package for applying tools aimed at pre-processing 119 

input data or combining sources without significant differences before or after running 120 

the unmixing model is shown. Through the provided examples, it is evident that 121 

fingerprinting methods are necessary to identify sediment sources to establish 122 

management strategies for ensuring water supply to the lowlands while preserving water 123 

quality. 124 



2. METHODS 125 

Sediment fingerprinting requires a preliminary analysis to select a subset of 126 

conservative tracers that discriminate the potential sources. Then, the relative contribution 127 

of each source is estimated using a linear multivariate unmixing model. This procedure 128 

is iterated considering the variability of the sediment sources to obtain the statistical 129 

distribution of the source contribution.  130 

2.1 Statistical analysis for the selection of tracer properties 131 

Several statistical tests can be used to confirm source discrimination and select the 132 

optimal subset of conservative tracer properties, such as the procedure suggested by 133 

Collins and Walling (2002). However, the use of many tests could remove a considerable 134 

number of tracers and therefore restrict the discrimination between sediment sources. 135 

Consequently, none of the functions included in the FingerPro package are mandatory 136 

and the tracer exclusions can be based on ‘expert judgement’ after visualising boxplots 137 

and results from the statistical tests included. The tracer selection methods implemented 138 

in the package are: 139 

i) Range test: the minimum and maximum values of the tracer properties in the 140 

sediment sources are compared to those of the mixtures. The tracers falling out of the 141 

range of the selected sources are removed from subsequent analyses. These properties 142 

may not be conservative or their exclusion supports the existence of an additional hidden 143 

source.  144 

ii) Kruskal-Wallis H test: this is a rank-based nonparametric test used to determine if 145 

there are significant differences between the medians of selected groups or sources. This 146 

procedure removes tracers that do not show significant differences between at least two 147 

of the sediment sources. 148 



iii) Discriminant Function Analysis identifies the optimum set of tracers that 149 

maximises the discrimination between the sediment sources whilst minimising the 150 

number of tracers. This function executes a stepwise forward variable selection for 151 

classification using the Wilk's Lambda criterion. The function selects the tracers based on 152 

how much they decrease Wilks' lambda. At each step, the function includes the variable 153 

that minimises the overall Wilks' lambda. 154 

2.2 Mixing model 155 

The relative contribution of each potential sediment source is determined using a 156 

standard linear multivariate mixing model: 157 

∑ 𝑎𝑖,𝑗 ∙ 𝜔𝑗

𝑚

𝑗=1

= 𝑏𝑖   159 

which satisfies: 158 

∑ 𝜔𝑗

𝑚

𝑗=1

= 1 160 

0 ≤ 𝜔𝑗 ≤ 1 161 

where 𝑏𝑖 is the tracer property i (i =1 to n) of the sediment mixture, 𝑎𝑖,𝑗 represents the 162 

tracer property i in the source type j (j =1 to m), 𝜔𝑗 is the unknown relative contribution 163 

of the source type j, m represents the number of potential sediment sources and n is the 164 

number of tracer properties selected. 165 

This system of equations is mathematically determined if the number of tracers is 166 

greater than or equal to the number of potential sources minus one (𝑛 ≥ 𝑚 − 1). The 167 

procedure tries to find the source proportions that conserve the mass balance for all tracers 168 

from the complete exploration of the parameter space (Palazón et al. 2015). All possible 169 

combinations of each source contribution (0-100%) are examined in small increments, 170 

using Latin hypercube sampling (LHS) (McKay et al. 1979). The quality of each 171 



candidate is measured using the following function or goodness of fit (GOF), based on 172 

the sum of squares of the relative error: 173 
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where Δi is the range of the tracer property i, used as a normalisation factor. The 175 

combinations that reproduce the observed sediment mixture with the maximum GOF are 176 

selected as the solution.  177 

2.3 Variability analysis of the sources 178 

In small to large size catchments, the heterogeneity of sediment tracers, defined by 179 

different land uses, geomorphic processes, soil types or human activity, is always present. 180 

For this reason, fingerprinting studies should correctly characterise source variability by 181 

collecting several samples from each source. Thus, evaluation of the variability in tracer 182 

data used to characterise sediment sources is important to correctly interpret the source 183 

apportionment results.  184 

Variability analysis is assessed following classical frequentist inference utilising a 185 

Monte-Carlo method (Helton, 1994). A succession of deterministic calculations is 186 

executed, each with different input values sampled from their respective distributions, to 187 

obtain probability distributions of the targeted outcomes.  188 

The heterogeneity of each source is considered as a t-distribution for each property. 189 

The fingerprinting analysis of each sediment mixture is repeated by randomly sampling 190 

the source probability distributions. For the first iteration, the central value of the source 191 

distributions is used as a reference result. The corresponding output values are gathered 192 

to infer the probability distribution of the potential source contributions. Several samples 193 

must be collected for characterising each source to compute the mean and the SD of the 194 

analysed tracer properties. 195 



3. THE FINGERPRO PACKAGE 196 

Application of the functions in the package allows the user to i) characterise the 197 

different tracer properties and select the relevant variables; ii) unmix the sediment 198 

samples and quantify the different source apportionment; iii) assess the effect of the 199 

source variability; and iv) visualise and export the results. Thus, FingerPro package 200 

proposes a step by step procedure divided into three main sections to help users in their 201 

decisions. 202 

3.1 The example dataset  203 

The package includes a soil dataset from a small Mediterranean catchment (4 km2) that 204 

contains high-quality radionuclide and geochemistry data to test the operation of the 205 

functions and help the user to understand the model (Fig.1). This study area was selected 206 

due to its heterogeneous land uses/land covers which are likely to exhibit large differences 207 

in sediment tracer contents. Furthermore, the study area is located in a well-studied 208 

catchment where several studies of soil redistribution 137Cs derived rates were pursued 209 

(Quijano et al. 2016; Lizaga et al. 2018). Thus, soil redistribution rates were used to 210 

evaluate FingerPro model as a suitable tool in the northern-central part of the Ebro basin. 211 

The results obtained by Lizaga et al. (2018) found that net soil loss values were 4 times 212 

higher in agricultural lands than in pine forest highlighting the importance of the 213 

vegetation cover and land management to prevent erosion processes and subsequent land 214 

degradation.  215 

The study area dataset is composed of 21 source sediment samples from 4 different 216 

sources and 2 mixture samples. The sources are divided into agricultural (AG), old pine 217 

forest (PI), recent pine forest (PI1) and degraded soil named subsoil (SS) which occupy 218 

9%, 32%, 58% and 1% of the catchment area, respectively. The agricultural land use is 219 

mainly composed of winter cereal crops and the pine afforestation forest is predominantly 220 



Pinus halepensis Mill. The average temperature ranges from 5 °C to 18 °C, and the mean 221 

annual rainfall is about 520 mm (AEMET).  222 

3.2 Input data 223 

The input variables need to be stored as an R table object. The dataset must satisfy the 224 

following requirements: i) the first column represents the sample id; ii) the second column 225 

is the source classification, containing target samples in the last place.  226 

3.3 Characterising the sediment samples 227 

One of the advantages of the FingerPro package is that it allows the user to analyse 228 

and visually compare different tracer properties, using the state of the art of R packages: 229 

The boxPlot()  function displays a boxplot of each tracer property to help the user in 230 

the decision by visualising the different concentrations of each tracer versus the mixture 231 

sample. A parameter (columns) with the number of tracer properties in the boxplots is 232 

provided. The number of columns (ncol) refers to the number of plots per row in the 233 

display (Fig.2). The boxPlot() function could be used for tracer selection by helping the 234 

user to visualise and select the tracers based on the boxplots and its expert knowledge. 235 

Thus, the user visualises in the example dataset that most of the 210Pbex in the mixture 236 

sample likely comes from PI and PI1 sources and that 40K is almost out of range (Fig.2). 237 

Furthermore, by repeating this function after implementing each test for tracer selection, 238 

users can envisage how representative the remaining tracers are. 239 

The correlationPlot() function displays a correlation matrix of each tracer, divided by 240 

the different sources to help the user by testing the conservatism of tracers by visualising 241 

the relationships between the different tracers and sediment mixtures following the 242 

methodology proposed by Pulley et al. (2015). A parameter (columns) with the number 243 

of tracer properties in the correlation matrix is provided, along with the possibility to 244 

include the sediment mixture (mixtures = T) in the matrix or to exclude it (by default). In 245 



addition, in the correlation plot, once the users have selected the optimum set of tracers, 246 

it is possible to visualise if the mixture samples fit inside the source distributions. If a 247 

mixture sample is outside the sources distribution, then no solution exists or the mixing 248 

model assumptions are not met. 249 

The PCAPlot() function performs a principal components analysis on the given data 250 

matrix and displays a biplot of the results, divided by the different sources, to help the 251 

user in the decision. A parameter (components) with the number of principal components 252 

to display is included.  253 

The LDAPlot() function performs a linear discriminant analysis and visualises the data in 254 

the relevant dimensions. A parameter (P3D) allows the user to display a 3D LDA graph 255 

(Fig.3). This set of functions allows the user to visualise the principal components plot 256 

and the linear discriminant plot after the statistical selection procedure. Thus, the plots 257 

help the user to visually identify whether the excluded variables increase or decrease the 258 

discrimination capacity between sources. Furthermore, the LDAPlot() function was used 259 

in the catchment example to visualise the number of sources that show good 260 

discrimination with this set of tracers (Fig.3). The function shows a large overlap between 261 

PI and PI1 that would suggest merging both sources. Thus, after grouping PI and PI1 the 262 

discriminant plot shows better discrimination between the selected sources (Fig.3). 263 

3.4 Statistical test for selecting the optimal set of tracers 264 

The selection of the optimal tracers is usually based on the two-step procedure 265 

proposed by Collins and Walling (2002), which includes some previous statistical 266 

procedures such as the “range test”, the KW and the DFA test. Thus, FingerPro has 267 

included these functions to support user decisions. However, this procedure might remove 268 

too many tracers or include some inadequate properties and could, therefore, restrict the 269 

discrimination between sediment sources. Hence, the procedure is included as an 270 



individual and informative function to only use the steps needed and to prevent a 271 

reduction in the source discriminations. For this reason, the tracer selection procedure 272 

cannot be only based on statistical tests but also on the expert knowledge of the 273 

geomorphological and hydrological processes of the catchment (Blake et al. 2018). Thus, 274 

the boxplot chart, LDA plots and correlation plot included in the FingerPro package were 275 

implemented to help the users in the decision. 276 

The rangeTest() function excludes the tracer properties of the mixture/s outside the 277 

lowest and highest values in the sediment sources. 278 

The KWTest() function excludes tracers from the original dataset which do not show a 279 

significant difference between sources. This function performs a Kruskal-Wallis rank-280 

sum test using the kruskal.test() function from the R package stats. A parameter to select 281 

the p-value (pvalue) is provided. 282 

The DFATest() function executes a stepwise forward variable selection, using the 283 

Wilk's Lambda criterion, which maximises the discrimination between the sources whilst 284 

minimising the number of tracers. This function performs a stepwise forward variable 285 

selection using the greedy.wilks() function from the R package klaR. A parameter to 286 

select the niveau (niveau) for an approximate F-test decision is provided with a default 287 

value of 0.1. This value could be reduced to be more restrictive in the tracer selection 288 

procedure. However, by reducing the value below 0.05 the statistical test could remove 289 

the majority of the tracers with the subsequent decrease in the discrimination of the 290 

different sources. 291 

These three tracer selection methods were applied in the example dataset. In Fig.2 the 292 

tracers removed by each method can be seen and, based on the boxplot graph, to decide 293 

if it is suitable to use all of them or if the selected tracers represent a good approximation 294 

of the dataset. After the implementation of the range test function, we can see in the 295 



boxplot graph that effectively Pb, Zn and Cr have been removed. However, there are other 296 

tracers such as 40K, Sr, Fe, and V that remain in the dataset though they should not be 297 

considered as tracers inside the source range. Furthermore, by using the LDA and PCA 298 

plots we can decide if the use of other tracer selection methods decreases the 299 

discrimination or if by using them we could remove a tracer with specific information. 300 

As shown in Fig.4, by removing 226Ra and Mn from the dataset by using the DFA after 301 

the KW test, the LDA plot shows similar results. In addition, the arrows of the removed 302 

tracers in the PCA plot were parallel to those that remain in the dataset. Thus, in this 303 

example, the plot information suggests that including or removing 226Ra and Mn should 304 

not produce important variations in the discrimination of sources or the model results as 305 

is evident in Fig.4. 306 

3.5 Sediment unmixing 307 

The unmix() function assesses the relative contribution of the selected sediment 308 

sources for each mixture in the dataset. A parameter (samples) with the number of 309 

samples of the LHS is provided. The number of iterations (iter) in the source variability 310 

analysis is also configurable. However, if the number of iterations is set as 1, results are 311 

produced in a single analysis considering the sources mean value.  312 

The plotResults() function displays a plot with the density distribution of the model 313 

solutions and a table with the mean value and the standard deviation of the model 314 

solutions (Fig.4). Besides, users can display the results in violin plots instead of density 315 

plots by adding the word True to the violin option. 316 

After the tracer selection procedure, FingerPro results reveal that 18% of the mean 317 

sediment supply comes from agricultural land use and 34% and 47% from bare soil and 318 

pine forest, respectively. The small standard deviation of the three sources together with 319 

the high GOF value shows a good fit of the model to efficiently discriminate the selected 320 



sources (Fig.4). However, users should be cautious about using GOF as an assessment of 321 

model reliability. Recent research has shown models with a high GOF can still deliver 322 

inaccurate results (Palazón et al. 2015; Gaspar et al. 2019b), but also has shown that all 323 

models with low GOF always deliver wrong results. 324 

The results of the example dataset are supported by soil erosion rates estimated with 325 

137Cs by Lizaga et al. (2018) in a Mediterranean catchment comprising the one studied 326 

here. Thus, 18% of the sediment contribution is supplied from 9% of the area under 327 

agricultural management and 47% of the contribution comes from pine forest that 328 

occupies 90% of the study catchment. Relatively speaking, the subsoil was the main 329 

source with 34% of the contribution for only 1% of the area taken by the bare soil in the 330 

study catchment. Our results highlight the hazards that subsoils have on supplying 331 

important amounts of sediments to the water systems.  332 

3.6 Application in a Medium-Size catchment  333 

In this section, as an example, the results of applying the FingerPro package in a 334 

medium-size catchment (Lizaga et al. 2019) are described. Its larger surface area and a 335 

higher number of sources result in a more complex unmixing. For this reason, all the tools 336 

added in the FingerPro package to help the users and characterise the unmixing dataset 337 

are essential to reach robust results. Here, we highlight the most important decisions made 338 

during the fingerprinting procedure and how the different tools included in the package 339 

help the authors to unmix their data. To avoid repetition in this manuscript, only one 340 

mixture sample collected at the outlet of the catchment is used to describe the FingerPro 341 

utilities. 342 

Following the application of the range test and Kruskal Wallis test, the final selection 343 

was made based on expert judgment using the boxplots and correlation plots to finally 344 

identify the conservative tracers. Fig.5 illustrates how some tracers pass the selection 345 



tests, such as RT, KW and DFA, but show non-conservative behaviour, i.e. LF, Fe, Ti 346 

and Ca. In addition, if we analyse the correlation plot of the tracers that shows non-347 

conservative behaviour, the sample mixture is located almost out of the point cloud. On 348 

the other hand, the sample mixture is located inside the point cloud of the conservative 349 

tracers. Thus, based on this information it was decided to select the tracers after passing 350 

the KW test using expert knowledge, thus obtaining more defined results and higher GOF 351 

(Fig.6). Hence, all the tools added in the FingerPro package to remove the tracers that 352 

violate the principles of conservativeness are needed in fingerprinting studies. This 353 

methodology suggests that including tracers with non-conservative or discordant 354 

information into fingerprinting models does not add valuable information and could lead 355 

the model to unpredictable results as it was found by Lizaga et al. (2020). 356 

4. CONCLUSIONS 357 

The application of mixing models it is necessary to understand source-tracer 358 

relationships what is generally performed by applying different software’s to select the 359 

best combination of sediment tracers. With FingerPro, diverse test and mechanisms have 360 

been incorporated for tracer selection in a single software. Furthermore, the inclusion of 361 

several plot functions such as boxPlot, correlationPlot, LDAPlot and PCAPlot allows the 362 

user to check if the selected tracers are suitable for the unmixing process. This package 363 

for sediment source fingerprinting in hydrological systems offers a wider and easier 364 

application in catchments affected by natural and human-induced changes.  365 

Due to the increasing attention in tracing sediment methods and the need to select the 366 

best tracer combination, an open-source tool that includes all the steps for sediment 367 

unmixing is a key tool for the unmixing process. The example dataset included in 368 

FingerPro provides evidence of the large sediment supply and severe soil loss caused by 369 

land degradation and bare soil. In addition, the agreement between the unmixing results 370 



obtained from the example dataset with the 137Cs derived rates supports the capability of 371 

the model for the sediment fingerprinting task. These results reflect the high importance 372 

of creating a low time-consuming and open-source unmixing model that combines the 373 

necessary tools to solve environmental issues such as reservoir siltation or soil loss and 374 

trace the sediment provenance.  375 

FingerPro provides the users with tools to i) characterise the different sediment 376 

sources, establish correlations between the tracers and assist the selection of the optimal 377 

tracers, ii) graph the results using the state of the art of R packages iii) unmix sediment 378 

samples to estimate the apportionment of the sediment sources and iv) test the model 379 

using data from a Mediterranean study catchment included in the package.  380 

In addition, the example dataset and the explained results of a medium-size catchment 381 

introduce the users on to the functioning and potential of the tools included in the 382 

FingerPro package while also showing the advantages of the fingerprinting technique to 383 

improve the understanding of sediment supply processes. Future research will concentrate 384 

on keeping the FingerPro package updated with new and upcoming fingerprinting 385 

techniques, such as the recently published Consensus Method (Lizaga et al., 2020) for 386 

improving the selection of tracers, avoiding non-conservative and dissenting tracers. 387 
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FIGURE CAPTIONS 569 

Fig.1 Location of the study area. 3D picture of the catchment created with a DEM and 570 

land cover map 571 

Fig.2 Boxplot of the tracer properties included in the data example of a small 572 

catchment. In different colours, the tracers removed by each statistical test 573 

Fig.3 LDA plot of the data example of a small catchment for the different land covers: 574 

agricultural (AG), old pine forest (PI); recent pine forest (PI) and subsoil (SS). a) 575 

Before running the statistical test, the dataset shows collinearity. b & c) 2D and 3D 576 

LDA display of the dataset after running the statistical selection. d) LDA display after 577 

merging both pines sources PI and PI1 578 

Fig.4 LDA, PCA and density plots of the unmixing process before and after the use 579 

of the DFA test for the different land covers: agricultural (AG), pine afforestation (PI) 580 

and subsoil (SS) 581 

Fig.5 Correlation plots of seven of the tracer properties of the medium size catchment 582 

example. Agricultural (AG), Forest (FO), subsoil (SS) and channel bank (CB) 583 

Fig.6 Scaled density plots and results of the unmixing process after the two different 584 

tracer selection approaches for the different land covers: Agricultural (AG), Forest 585 

(FO), subsoil (SS) and channel bank (CB) 586 
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