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ABSTRACT

We consider a class of multiplicative processes which, added with stochastic reset events, give origin to stationary distributions with power-
law tails—ubiquitous in the statistics of social, economic, and ecological systems. Our main goal is to provide a series of exact results on
the dynamics and asymptotic behavior of increasingly complex versions of a basic multiplicative process with resets, including discrete and
continuous-time variants and several degrees of randomness in the parameters that control the process. In particular, we show how the power-
law distributions are built up as time elapses, how their moments behave with time, and how their stationary profiles become quantitatively
determined by those parameters. Our discussion emphasizes the connection with financial systems, but these stochastic processes are also
expected to be fruitful in modeling a wide variety of social and biological phenomena.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5141837

City sizes, word usage, surname abundance, personal income,
or stock market returns are examples of power-law distributed
quantities. Such a kind of distribution, ubiquitous in the natural
and social sciences, holds “atypical” properties that have awoken
the interest of researchers for over a century.1–5 The dynamics of
these kinds of data exhibit extreme, catastrophic, “unexpected”
black-swan-like events.6 Distribution moments, such as the aver-
age or the variance, are highly volatile and poorly predict future
properties of the process. In that context of uncertainty, knowl-
edge of the dominant mechanisms underlying power-law distri-
butions is relevant to directly compare the short-time properties
of data series to actual asymptotic properties, and to eventually
evaluate the reliability of forecast algorithms. Stochastic mul-
tiplicative processes (SMPs) with reset events, introduced two
decades ago7 as a generic mechanism to generate power laws, have
multiple applications in a variety of situations.8,9 In this contribu-
tion, we derive several finite-time properties of SMPs with reset
events with the aim of improving our understanding of the poor
predictability of the dynamical process. The discussion of our

results in a financial context clarifies the relationship between
gain and risk in investing strategies, and provides clues to control
the frequency and magnitude of extreme events.

I. INTRODUCTION

At first glance, the facts of human life do not seem to subordinate
themselves, as do the phenomena of nature, to certain general laws.
Statistics show, however, that this is just a gradual difference due to
the more complicated nature of human relations, and that man only
has to learn to read the statistics correctly in order to extract more
general conclusions; and it is not uncommon to find interesting and
strange laws.

The quote above opens a report written in 1913 by Felix
Auerbach,1 where he discussed the skewed abundance distribution
of cities of various sizes in Germany, in what is likely the first
published document on the topic. Beyond the identification of an
uncommon statistical pattern, Auerbach’s paper reveals a visionary
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intuition on the existence of general laws underlying the statis-
tical properties of social phenomena. Three decades later, in his
book “Human Behavior and The Principle of Least Effort,”4 George
Kingsley Zipf compiled multiple data with the aim of demonstrating
regularities and subsequently discussing plausible, simple underly-
ing principles. The distribution of city sizes and the frequency of
words in written texts—an observation that goes back to 19162—are
undoubtedly the two best-known examples, but Zipf also analyzed
the length of intervals between repetitions in a Mozart concerto, the
number of retail stores of like kind, the number of passengers trav-
elling by airway, the personal income in different countries—first
described by Vilfredo Pareto in 189610—and the number of com-
posers of chamber music as a function of their year of birth, among
many others. He ordered each set of events by decreasing size, S(k),
assigning rank k = 1 to the largest event, k = 2 to the second largest,
and so on. Though the relationship S(k) ∝ k−α , with α ≈ 1, was per-
vasively found (and became known as Zipf’s law), there were also
many cases of data characterized by different values of α and even
by other functional relations. Ever since, research on the mecha-
nisms underlying emergent properties of collective human behavior
has been pursued with much effort and also remarkable success.11

Quantities whose frequency distributions are given by power-
law functions have always awaken especial interest in the study of
a variety of social systems, as it has the search for simple processes
behind this kind of distribution.12,13 Pure stochastic multiplicative
processes (SMPs) yield lognormal distributions for the relevant
variables,14 and can produce bona fide power laws when acting in
conjunction with additional mechanisms. Actually, SMPs appear at
the core of many successful explanatory models for power laws,
such as Yule’s birth-death process to explain the distribution of
taxa,3 or Simon’s model to derive the abundance of words in writ-
ten texts.5 These early models rationalize power-law distributions in
other systems as well, as in city sizes15 or growth of business firms.16

Furthermore, suitable variations of Simon’s model reproduce the
observed abundance of family names,17,18 while it yields distributions
that fit remarkably well the actual frequency of words in written
texts19 and the usage of notes in musical compositions.20

Stochastic processes with multiplicative noise plus reinjection
are characterized by distributions with power-law tails.21,22 This kind
of mechanism has applications, for instance, in population dynam-
ics and investment portfolio growth.23 A variant of reinjection that
sets a minimum value for the dynamical variable24 can be interpreted
in an economic context as a subsidy that keeps individuals above a
critical poverty line. SMPs with the conservation of the total popula-
tion, which is a generalization of Zeldovich’s intermittency model,25

has been used to explain Zipf’s law for cities.26 Introduction of reset
events in SMPs renders power laws with exponents which depend
on the reset probability and on the distribution of growth rates,7

a situation that can account for the power-law tail of the personal
income distribution.27 Though reset events were introduced in the
generic context of SMPs yielding power laws,7 this mechanism has
been subsequently applied to a broad variety of problems.8,9,28,29

SMPs belong to a class of processes that can exhibit non-
self-averaging effects. In physics, this property was first described
for spin glasses, where the fact that different realizations of the
process visit different areas of the phase space, even in the thermo-
dynamic limit, yields different observable quantities (e.g., moments

FIG. 1. Monthly price indices for three major commodities between years 2001
and 2012 (with 2002–2004 average= 100). Sustainedmultiplicative growth might
precede severe drops to low values. Among the factors put forward a posteriori
to explain such events, one finds weather, increasing demand for meat, use of
biofuels, and variations in currency exchange rates. However, on the basis of a
deterministic model, it has been shown that the two sharp peaks around 2008 and
2011 are specifically due to investor speculation.36 Public-domain data from the
Food and Agriculture Organization (United Nations, www.fao.org).

of the distribution of visited states) for each of the system replicas.30

Later, it was shown that non-self-averaging behavior was present
in various systems,31,32 such as sums of power-law distributed ran-
dom variables, branching processes, and one-dimensional random
walks with return to the origin—a simple case of stochastic addi-
tive processes with resets.33 A major consequence of the lack of
self-averaging is that quantitative properties of the system estimated
through averages over time or realizations can be highly unreli-
able and deeply differ from the actual asymptotic properties of the
stochastic process.

Interestingly, the same phenomenology has been observed in
economics and finance, where its relevance is difficult to overstate.34

In these contexts, multiplicative processes are implicit in Gibrat’s
law35 (or “law or proportionate effect”), which states that the rate of
growth of a business firm is independent of its absolute size. Though,
as a pure SMP, Gibrat’s law implies a lognormal distribution of the
relevant variable, the ample evidence of power-law distributed quan-
tities in economics and finance,34 suggests that additional mecha-
nisms must be at play. Indeed, since sustained exponential growth is
unfeasible in reality, Gibrat’s law cannot hold at all times. Financial
crises and market crashes act as “control mechanisms” in the form of
catastrophic, punctuated interruptions of the idealized multiplica-
tive growth. Actually, examples of such events abound: price indices
suffered severe drops in the crises of 2008 and 201136 (see Fig. 1); in
the 1980s, some banks lost more money than they ever made in their
history;37 financial bubbles more than often cause market crashes,
like the well-known Wall Street crash of 1929 and many others. The
abrupt loss of gains in a time much shorter than that required to
accumulate them is commonplace in finance, and resets appear as a
qualitatively suitable mechanism to mimic such dynamics.
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Nassim Taleb’s Black Swan Theory38 explains the prominent
role of such “unexpected” catastrophic events —as rare black swans
among ordinary birds— not only in finance, but also in many other
contexts, such as history, technology, and science. These hardly pre-
dictable, large-magnitude occurrences have vastly stronger effects
than regular episodes, due to psychological biases and a generalized
poor understanding of the role of probability in social phenomena,
related to the subjective notions of luck and fate.6 Such dispropor-
tionate consequences are a direct corollary of the unavoidable short-
ness of historical records, which tends to magnify the exceptionality
of those events.

In this contribution, we revisit SMPs with resets with the aim
of improving our understanding of the dynamics of such processes.
We derive a number of exact results that allow for precise compari-
son with quantities obtained from dynamical simulations and clarify
the limitations of time-series or realization averages to estimate
the moments of the stochastic process—and therefore to achieve
statistical predictions of future events based on knowledge of the
past. Sections II–IV discuss three models of increasing complex-
ity and present exact results for their dynamics. Their applicability
in a financial context is further discussed in Sec. V, which closes
this paper by highlighting other possible applications and future
extensions of SMPs with resets.

II. UNIFORM MULTIPLICATION AND RESET

The simplest version of the class of multiplicative processes that
we consider here is a Markov chain for a variable xt, evolving in dis-
crete time t = 0, 1, . . . , with xt > 0 for all t and x0 = 1. At each time
step, xt is either multiplied by a constant positive factor µ 6= 1 or it
is reset to its initial value. The two instances occur with probabilities
1 − r and r, respectively (0 < r < 1), namely,

xt+1 =

{

µxt with probability 1 − r,
1 with probability r.

(1)

Through the change of variables x′ = | ln x/ ln µ|, this stochastic
process is equivalent to the so-called Sisyphus random walk, for
which several of the results discussed in this section have been
obtained in previous work.39 For the sake of concreteness, we focus
on the choice µ > 1, which implies that xt ≥ 1 for all t. Power-law
tails in the probability distribution for large x, in fact, develop for
µ > 1 only. However, results can be straightforwardly extended to
the case µ < 1, by exploiting the symmetry of the problem under

the transformation µ → µ−1, xt → x−1
t . In this case, the probability

exhibits power-law behavior for x → 0.
Figure 2 shows the time dependence of xt along two realiza-

tions of process (1), with µ = 1.1 and different values of the reset
probability r. The evolution consists of a succession of “bursts” of
exponential growth induced by the multiplicative process, each of
them terminated by a reset event. For r = 0.08, the less frequent
reset events occasionally allow for rather high bursts, as compared
with those obtained for r = 0.12 in the time span of the simulation.

The stochastic process (1) can be readily dealt with, by not-
ing that the variable xt can only adopt the values 1, µ, µ2, . . . or,
generally, µm, for m = 0, 1, 2, . . . . From Eq. (1), it immediately fol-

lows that the probability p(m)
t that the variable equals µm satisfies the

Chapman–Kolmogorov equation

p(m)
t+1 = (1 − r)p(m−1)

t (1 − δm0) + rδm0, (2)

where δij is Kronecker’s delta. The solution reads

p(m)
t =

{

r(1 − r)m for m < t,

p(m−t)
0 (1 − r)t for m ≥ t,

(3)

in terms of a generic initial condition p(m)
0 . For x0 = 1, we have

p(m)
0 = δm0 and

p(m)
t =







r(1 − r)m for m<t,
(1 − r)m for m = t,
0 for m > t,

(4)

cf. Eq. (7) in Ref. 39. In Eqs. (3) and (4), all the information about the
initial condition is accounted for in the range m ≥ t so that, as time
elapses, it becomes progressively relegated to exponentially higher

values of x. The long-time stationary behavior of the probability p(m)
t

is built up from small values of m, given by the first line in both
equations,

p(m)
∞ = r(1 − r)m, (5)

cf. Eq. (11) in Ref. 39.

The moment 〈xγ 〉t =
∑

m µγ mp(m)
t can be exactly calculated for

any order γ at all times. It reads

〈xγ 〉t =
r

1 − (1 − r)µγ
+

[

〈xγ 〉0 −
r

1 − (1 − r)µγ

]

(1 − r)tµγ t,

(6)

FIG. 2. Two typical realizations of the stochas-
tic process of Eq. (1), for µ = 1.1 and two values
of the reset probability: r = 0.08 (dark curve) and
r = 0.12 (light-shaded curve).
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with 〈xγ 〉0 = 1 for x0 = 1. In contrast with the probability p(m)
t

which, for asymptotically long times, always attains the stationary
form given by Eq. (5), the moment 〈xγ 〉t converges to a finite value,
namely,

〈xγ 〉∞ =
r

1 − (1 − r)µγ
, (7)

only if (1 − r)µγ < 1. The convergence is exponential in time,
within a typical time scale | ln[(1 − r)µγ ]|−1. On the contrary, if
(1 − r)µγ ≥ 1, 〈xγ 〉t diverges exponentially with time. This conver-
gence or divergence of the moment 〈xγ 〉t depending on whether
the order γ is, respectively, lower or larger than the critical value
γc = | ln(1 − r)/ ln µ| is compatible with a probability distribution
(for a continuous variable x) decaying as the power law x−1−γc . In
fact, starting from the stationary distribution of Eq. (5), extending
the index m = ln x/ ln µ to the real positive domain, and changing
variables from m to x, we get the stationary (“fat-tailed”) power-law
probability distribution

f∞(x) =
r

ln µ
x−1−| ln(1−r)/ ln µ|. (8)

A. Dissecting the process: properties of individual

realizations

In certain applications, it is necessary to “dissect” each possi-
ble realization of the stochastic process, determining the probability
of each different way in which the system can evolve. Specifically,
for Eq. (1), we first ask what is the probability that, up to a given
time τ , the evolution consists of a succession of exactly k bursts of
multiplicative growth (k = 1, . . . , τ + 1, including one-step bursts
between two contiguous reset events). Equivalently, we ask for the
probability that exactly k − 1 resets occur somewhere between times
t = 1 and τ , both inclusive. For k = 1, the probability that no reset
has occurred is (1 − r)τ . In turn, each one of the τ options for one
reset (k = 2) has probability (1 − r)τ−1r. Generally, the probability
that the evolution up to time τ includes k − 1 resets, i.e., k bursts, is

ρ(k)
τ =

(

τ

k − 1

)

(1 − r)τ−k+1rk−1, (9)

for 0 ≤ k ≤ τ .
Now, consider the set of realizations where, up to time τ , the

evolution consists of exactly k bursts. How many of all these bursts
have a duration of m + 1 steps (m = 0, 1, . . . , τ ), i.e., at how many
times does xt reach the value µm just before the burst ends (either
by a reset event or because time τ has been reached)? This number
can be calculated by considering the so-called compositions of τ into
k parts40 and turns out to be

K(k,m)
τ =



























1 for k = 1 and m = τ ,

k

(

τ − m − 1
k − 2

)

for 1 < k ≤ τ − m + 1,

0 otherwise.

(10)

Taking into account that, if xt reaches the value µm during a burst,
all the lower values 1, µ, µ2, . . . , µm−1 have also been previously

attained, the total number of times that xt = µm has been attained
at any moment t up to time τ , in all the realizations with exactly k
bursts, can be calculated from K(k,m)

τ , yielding

M(k,m)
τ =















k

(

τ − m
k − 1

)

for 1 ≤ k ≤ τ − m + 1,

0 otherwise.

(11)

Finally, if the system has evolved up to time τ , the probability that
the value of xt is µm at a randomly chosen time t ≤ τ reads

τ+1
∑

k=1

ρ(k)
τ

M(k,m)
t

∑τ

m′=0 M(k,m′)
t

=
1 + r(τ − m)

1 + τ
(1 − r)m, (12)

which, up to the normalization factor (1 + τ)−1, corresponds to
Eq. (39) in Ref. 39. Note carefully the difference between Eqs. (4)
and (12). While the former gives the probability that a given value of
x is attained after t evolution steps, the latter is the probability con-
structed by recording the frequency of all the values of x along the
whole evolution until time τ . For t = τ , the two expressions coincide
in the limit τ → ∞ only; cf. Eq. (5).

B. Remarks on self-averaging and ergodicity

It is well known that systems involving stochastic variables with
fat-tailed distributions exhibit peculiar statistical features, directly
associated with the fact that some of the leading distribution
moments—such as the mean value and/or the variance—are not
finite.14,22 Although, for any finite time t, the moments for the vari-
able xt in the stochastic process (1) are all finite, as given by Eq. (6),
similar features manifest themselves as time elapses and a fat-tailed
asymptotic distribution progressively builds up.

Lack of self-averaging—namely, the failure of a scaled sum of
stochastic variables to converge to a well-defined value—is intu-
itive for distributions with divergent mean value. This phenomenon
has been recognized as a typical feature of random multiplicative
processes,41 and has been widely discussed for a variety of systems
of physical interest,31,32 including Markov processes with resets.33

Self-averaging also fails when the mean value is finite but the vari-
ance diverges, a situation relevant to the theory of financial revenues
and related problems in economics.38,42 The fat-tailed asymptotic
distribution of process (1) has finite mean value 〈x〉 and divergent
variance σ 2 = 〈x2〉 − 〈x〉2 for 1 < γc = | ln(1 − r)/ ln µ| < 2. The
upper panel of Fig. 3 shows xt, up to t = 104, along a single real-
ization of the process with µ = 1.1 and r = 0.1, for which γc ≈ 1.1.
The light-shaded curve is the prediction of Eq. (6) for the mean value
(i.e., with γ = 1), which approaches 〈x〉∞ = 10 for long times. The
large fluctuations of xt around its expected average are apparent in
the main plot and in the inset, which shows a detail for intermediate
times.

The middle panel of Fig. 3 shows the accumulated average of
the stochastic variable, defined as x̄t = (t + 1)−1 ∑t

τ=0 xτ , for the
same realization as in the upper panel. The light-shaded curve stands
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FIG. 3. Upper panel: xt as a function of time, along a single realization of the
stochastic process (1) for µ = 1.1 and r = 0.1 (dark curve). The light-shaded
curve stands for the analytical prediction for 〈x〉t [Eq. (6)]. The inset shows a
close-up for intermediate times. Middle panel: cumulative average of xt (dark
curve; see the main text) for the same realization as in the upper panel, and the
corresponding analytical prediction [Eq. (13) (light-shaded curve)]. Lower panel:
as in the middle panel, averaging over 106 realizations of the stochastic process.
The inset shows the result for short times.

for the corresponding analytical value

〈x̄〉t =
r

1 − (1 − r)µ

+

[

1 −
r

1 − (1 − r)µ

]

1 − (1 − r)t+1µt+1

(t + 1)[1 − (1 − r)µ]
, (13)

derived from Eq. (6). Comparison of the two curves puts in evi-
dence, in particular, the role of large values of xt in building up
the cumulative average. Their contribution, in fact, punctuates with
abrupt upward jumps the otherwise decaying evolution of x̄t. It is
clear, however, that —although the typical convergence time for the
mean value, | ln[(1 − r)µ]|−1 ≈ 100, has long passed—x̄t is nowhere
close to 〈x〉∞. This non-self-averaging effect remains even if an addi-
tional average is performed over many realizations of the stochastic
process—as implicit in Eqs. (6) and (13). In the lower panel of
Fig. 3 we plot x̄t averaged over 106 realizations. While, as shown in
the inset, the coincidence between numerical and analytical results
is very good for small t, a sustained sizable discrepancy—which
decreases only very slowly as time elapses—persists for long times.

Somehow disappointingly, there is no formal theory to describe
the behavior of the mean value of a stochastic variable—calculated
as the average of successive random draws from a prescribed dis-
tribution—when its variance is infinite. Heuristic approaches based
on the estimation of bootstrap distributions or the use of surrogate
tail-trimmed variables, however, have been advanced in applications
to finance.43 A different viewpoint is provided by the extreme-value
theory, which focuses on the statistics of the rare events where the
variable exhibits severe deviations from the mean value.41,44 In our
case, they correspond to the high bursts in the upper panel of Fig. 3,
which cause the sharp steps in the middle panel.

For the stochastic process (1), we can ask what is the mean wait-
ing time wX until xt reaches, for the first time, a given (large) value
X = µM. This event happens at the Mth step of a sufficiently long
burst, assuming that all the preceding bursts have been shorter than
M steps. The corresponding waiting time is the total duration of all
the preceding bursts plus M additional steps. Its mean value turns
out to be

wX =
1

r

[

1

(1 − r)M
− 1

]

≈
1

r
Xγc , (14)

where the approximation holds for large X, i.e., for large M;
cf. Eq. (18) in Ref. 39.

On the other hand, the mean number dX of random draws from
the stationary distribution (5) until the value X = µM is obtained,
assuming that all the preceding draws have produced lower values,
can be immediately found,

dX =
r

(1 − r)M
= rXγc . (15)

Note that the waiting time wX is larger than dX by a factor r−2 (=100
in the realizations of Fig. 3). This difference can be viewed as a
form of “transient non-ergodicity” in our Markov chain. Along the
stochastic process, in fact, observation of xt = X requires waiting the
total duration of a succession of shorter bursts where xt adopts one
or more times each value lower than X. Instead, when drawing the
stochastic variable directly from the distribution, the occurrence of
X is independent of the preceding draws. Evaluation of the distribu-
tion from the time evolution of xt, consequently, can be much slower
than from random realizations of the stochastic variable.

III. THE NON-UNIFORM CASE

Although the stochastic process (1) already captures the key
mechanisms that lead to the generation of a power-law distribution
for the variable xt, it is useful to introduce a couple of generaliza-
tions that relax some assumptions implicit in the formulation of the
above multiplicative process but, at the same time, preserve most of
its analytical tractability. In particular, we now admit that the multi-
plicative coefficient µ and the value of xt after each reset event vary
randomly with time. Namely, we consider the Markov chain7

xt+1 =

{

µtxt with probability 1 − r,
st with probability r,

(16)

where, at each time step, µt > 0 and st > 0 are drawn from distri-
butions P(µ) and F(s), respectively. In this variant, in contrast with
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Eq. (1), xt generally adopts continuous positive values, and its proba-
bility is described by a distribution ft(x). The initial value x0 is chosen
from a prescribed distribution f0(x). The previous case is reobtained
taking delta-like profiles for P(µ), F(s), and f0(x).

In order to avoid hindering our presentation with the discus-
sion of special pathological situations, we assume that the moments
of the distributions P(µ) and F(s),

〈µγ 〉 =

∫ ∞

0

µγ P(µ)dµ, 〈sγ 〉 =

∫ ∞

0

sγ F(s)ds, (17)

are finite for any order γ ∈ (−∞, ∞). This is the case if P(µ) and
F(s) drop rapidly enough to zero for both µ, s → 0 and µ, s → ∞.
In typical applications, in particular, the reset values st are restricted
to some finite domain, so that the support of the distribution F(s)
is a bounded interval, and the finiteness of 〈sγ 〉 is guaranteed for all
γ . The results that we obtain below, however, do not always require
that 〈µγ 〉 and 〈sγ 〉 are finite.

In order to obtain the solution of the stochastic process (16), it
is convenient to consider the evolution of the logarithmic variable
yt = ln xt,

yt+1 =

{

yt + νy with probability 1 − r,
ut with probability r,

(18)

where νt = ln µt and ut = ln st. The stochastic variables νt and
ut are, respectively, drawn from distributions Q(ν) and G(u),
with Q(ν)dν = P(µ)dµ and G(u)du = F(s)ds. In other words,
Q(ν) = P(exp ν) exp ν and G(u) = F(exp u) exp u. The same trans-
formation yields for the initial distribution g0(y) in terms of f0(x).
The Markov chain for yt, Eq. (18), is an additive (generally, drift plus
diffusion) stochastic process with resets.

The Chapman-Kolmogorov equation for the probability distri-
bution of xt, ft(x), is

ft+1(x) = (1 − r)

∫ ∞

0

P(µ)µ−1ft
(

µ−1x
)

dµ + rF(x). (19)

Correspondingly, the probability distribution for yt, gt(y), satisfies

gt+1(y) = (1 − r)

∫ ∞

−∞

Q(ν)gt(y − ν)dν + rG(y). (20)

In the Fourier representation, which we define as
ĝt(η) =

∫ ∞

−∞
gt(y) exp(−2π iηy)dy and analogous expressions for all

the other functions of y, the solution to Eq. (20) reads

ĝt(η) =
rĜ(η)

1 − (1 − r)Q̂(η)

+

[

ĝ0(η) −
rĜ(η)

1 − (1 − r)Q̂(η)

]

(1 − r)tQ̂(η)t. (21)

Since, up to a multiplicative constant in its variable, Q̂(η) is the char-

acteristic function of the variable ν, it satisfies |Q̂(η)| ≤ 1 for all η.
Therefore, ĝt(η) converges to the stationary solution

ĝ∞(η) =
rĜ(η)

1 − (1 − r)Q̂(η)
(22)

for t → ∞.

Except for the term including the initial condition, the solution

ĝt(η) in Eq. (21) is directly proportional to Ĝ(η), the Fourier trans-
form of the distribution of the stochastic variable immediately after
each reset event—see the second line of Eq. (18). The same happens
with the stationary distribution ĝ∞(η) in Eq. (22). This proportion-
ality reveals that gt(y) and, correspondingly, ft(x) are given—up to
a term involving their initial values—by a linear superposition of
contributions coming from each possible value of the variable after
resets, which act as mutually independent “starts” for the ensuing
multiplicative process. Upon Fourier antitransforming, in fact, both
gt(y) and ft(x) would be, respectively, given by convolutions of G(u)

and F(s) with distributions representing the contribution of each u
and s. The effect of having admitted that after resets the variable can
adopt different values is, therefore, rather straightforward.

By Fourier antitransforming Eq. (21), it is, in principle, possi-
ble to find the solution gt(y) to Eq. (20). In turn, using the identity
gt(y)dy = ft(x)dx, we would obtain the solution to Eq. (19), ft(x)
= x−1gt(ln x). For generic forms of Q(ν) and G(u), however, this cal-
culation can seldom be explicitly performed. On the other hand, it is
straightforward to exactly find the moments of the distribution ft(x),

〈xγ 〉t =

∫ ∞

0

xγ ft(x)dx, (23)

for any order γ , by noting that 〈xγ 〉t = ĝt(iγ /2π). Evaluating
Eq. (21) at η = iγ /2π , in fact, we get

〈xγ 〉t =
r〈sγ 〉

1 − (1 − r)〈µγ 〉

+

[

〈xγ 〉0 −
r〈sγ 〉

1 − (1 − r)〈µγ 〉

]

(1 − r)t〈µγ 〉t, (24)

which generalizes Eq. (6). Note that, except for the term involv-
ing the initial condition, 〈xγ 〉t is proportional to the corresponding
moment of the distribution of values after resets, F(s).

Much as for the stochastic process (1), while the distribution for
xt always attains a well-defined asymptotic form, given by Eq. (22)
in the Fourier representation for the logarithmic variable yt, the
moment 〈xγ 〉t converges to a finite value,

〈xγ 〉∞ =
r〈sγ 〉

1 − (1 − r)〈µγ 〉
, (25)

only if (1 − r)〈µγ 〉 < 1. It is interesting to note that—while, in
the uniform case considered in Sec. II, convergence or divergence
of 〈xγ 〉t depends on whether γ is, respectively, lower or larger
than a critical value γc—in the present case it can happen that
the moment converges for γ inside a finite interval (γ−, γ+), with
γ− < 0 < γ+, and diverges elsewhere. This requires, in particu-
lar, that the distribution P(µ) allows for values of µ at both sides
of µ = 1. Take, for instance, the two-delta distribution P(µ) = aδ

(µ − µ0) + (1 − a)δ(µ − µ−1
0 ) with 0 < a < 1 and µ0 6= 1. The

interval of convergence for the order γ is limited by

γ± =
1

ln µ0

ln
1 ±

√

1 − 4a(1 − a)(1 − r)2

2a(1 − r)
, (26)

where, without generality loss, we have assumed µ0 > 1. Figure 4
shows the interval ends γ± as functions of a for three values of r.
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FIG. 4. The ends γ± of the interval of convergence of the moment 〈xγ 〉t for the
multiplicative process with resets (16), with µ drawn from the distribution P(µ)

= aδ(µ − µ0) + (1 − a)δ(µ − µ−1
0 ) and µ0 > 1. The values of γ± are

scaled by lnµ0, and plotted as functions of a for three values of the reset
probability r .

The long-time convergence or divergence of 〈xγ 〉t for γ , respec-
tively, inside and outside the interval(γ−, γ+) is compatible with a
distribution f∞(x) which behaves as x−1−γ+ for x → ∞ (in agree-
ment with the results of Sec. II), and as x−1−γ− for x → 0. Finding
its complete form, however, would require to antitransform Eq. (22).

IV. STATE-DEPENDENT MULTIPLICATION AND RESET

FREQUENCY WITH CONTINUOUS TIME

Coming back to the uniform case considered in Sec. II, a
continuous-time description can be straightforwardly introduced by
first assigning a duration 1t to each evolution step. Writing the
multiplicative coefficient in the first line of Eq. (1) as µ = 1 + λ1t
and taking the limit 1t → 0, the purely multiplicative part of the
stochastic process for x(t) becomes a linear equation, ẋ = λx, whose
solution grows or decays exponentially, depending on the sign of λ.
This exponential evolution is punctuated by the reset events, which
now occur with frequency (probability per unit time) q, related to
the reset probability r of Eq. (1) through r = q1t. As in Sec. II, we
assume here that the stochastic variable is reset to x = 1 after each
event.

The Chapman–Kolmogorov equation for the probability distri-
bution f(x, t) reads now

∂tf + λ∂x(xf) = −qf(x, t) + qδ(x − 1)

∫ ∞

0

f(x′, t)dx′. (27)

Its interpretation as a continuity equation is transparent. The left-
hand side describes probability drift, driven by multiplication,
toward larger or smaller values of x, depending on λ being positive
or negative, respectively. The loss and gain terms in the right-hand
side, meanwhile, stand for probability sinks and sources associated
with reset events. It can be readily seen that Eq. (27) preserves the

distribution norm
∫ ∞

0
f(x, t)dx = 1 at all times, so that the integral

in the last term is, in reality, a constant [see, however, the gener-
alization in Eq. (30) below]. Moreover, if λ > 0 and the support
of the initial condition f0(x) is included in the interval [1, ∞) or,
conversely, if λ < 0 and the support of f0(x) is included in (0, 1],
the distribution f(x, t) will only adopt non-zero values inside either
interval at all times. To simplify the presentation, and in agreement
with our discussion in Sec. II, we assume that λ > 0 and restrict the
analysis to the interval [1, ∞).

Under these conditions, Eq. (27) can be fully solved by treat-
ing the delta-like gain term in the right-hand side as a boundary
condition at x = 1. In fact, assuming that the solution jumps from
f(x, t) = 0 for x < 1 to a finite value f(1+, t) just above the boundary,
the delta-like term must be balanced by the x-derivative in the left-
hand side, so that f(1+, t) = q/λ. Taking this condition into account,
the solution is

f(x, t) = exp[−(λ + q)t]f0[x exp(−λt)]2[x exp(−λt) − 1]

+
q

λ
x−1−q/λ2[1 − x exp(−λt)], (28)

where 2(x) is Heaviside’s step function. The distribution f(x, t) is
neatly divided into two contributions, corresponding to the two
terms in the right-hand side of Eq. (28). For x > exp(λt), in the
first term, we have the contribution of the initial condition, which
shifts toward increasingly larger values of x and, at the same time,
is exponentially damped and stretched. For x < exp(λt), in the sec-
ond term, the asymptotic power-law distribution is established. For
t → ∞, this second contribution spans the whole domain of the
variable x, yielding

f∞(x) =
q

λ
x−1−q/λ, (29)

to be compared with Eq. (8). As an illustration, Fig. 5 shows, in a
log-log scale, four snapshots of f(x, t) as a function of x, evolving
from an initial condition f0(x) = exp(1 − x), with x ∈ [1, ∞) and
λ = q = 1. The exponential cutoff originating in f0(x) shifts to the
right as time elapses, while the asymptotic distribution f∞(x) = x−2

builds up from the left.
Equation (27) can be immediately generalized to the case where

both the coefficient λ and the reset frequency q depend on the
current value of the stochastic variable x. This extension reads

∂tf + ∂x[λ(x)f] = −q(x)f(x, t) + δ(x − 1)8(t), (30)

with

8(t) =

∫ ∞

0

q(x′)f(x′, t)dx′. (31)

Note that the factor x in the x-derivative of Eq. (27) has been
absorbed by λ(x). As in the homogeneous case above, we focus on
the problem restricted to the interval x ∈ [1, ∞), with λ(x) > 0 for
all x. Treating the last term in the right-hand side of Eq. (30) as a
boundary condition at x = 1, we find

f(1+, t) =
8(t)

λ(1)
. (32)

In practice, this condition requires to resort to a self-consistent cal-
culation, where f(x, t) is first solved for arbitrary 8(t), in such a
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FIG. 5. The probability distribution f(x, t), Eq. (28), as a function of x for
t = 0, 2, 5, and ∞, starting from an initial condition f0(x) = exp(1 − x), with
λ = q = 1. Dashed vertical lines stand at the boundary x = exp(λt), which
separates the contributions of the initial condition and the asymptotic long-time
distribution, f∞(x) = x−2.

way that Eq. (32) is satisfied, and then 8(t) is found from Eq. (31).
Whether this calculation can be explicitly performed depends on the
functional form of λ(x) and q(x).

On the other hand, assuming that f(x, t) tends to a well-defined
limit for long times, the asymptotic distribution can be readily
written as

f∞(x) =
8∞

λ(x)
exp

[

−

∫ x

1

q(x′)

λ(x′)
dx′

]

, (33)

with 8∞ being the asymptotic value of 8(t) for t → ∞.
Equation (33) makes it clear that 8∞ is essentially fixed by the
normalization of f∞(x). In fact, it can be easily verified that Eqs.
(31)–(33) are mutually consistent if the distribution is normalized
to unity. Such normalization, however, requires that the integral in
the exponential of Eq. (33) diverges as x → ∞, namely,

∫ ∞

1

q(x′)

λ(x′)
dx′ = ∞. (34)

This condition is verified when the reset frequency increases and/or
the multiplicative coefficient decreases sufficiently fast as x grows. It
expresses the fact that there is no probability “leaking” toward large
values of x due to excessively weakened resets and/or strengthened
multiplication.

From Eq. (33), moreover, it is apparent that admitting state-
dependent multiplication and reset frequency can significantly
widen the class of stationary distributions covered by the model,
well beyond power-law decaying functions. As an illustration, con-
sider the case of constant reset frequency q, with a multiplicative
coefficient with algebraic dependence on x, namely, λ(x) = λ0x

1−α .
Condition (34) is fulfilled if α ≥ 0. For α > 0, the resulting
distribution is

f∞(x) =
q

λ0x1−α
exp

[

−
q(xα − 1)

λ0α

]

, (35)

FIG. 6. The probability distribution of Eq. (35) for λ0 = q = 1 and four values of
the exponent α. For α = 0, it reduces to the power-law distribution f∞(x) = x−2.

which reduces to Eq. (29) for α → 0. This form of f∞(x), shown
in Fig. 6 for λ0 = q = 1 and some values of the exponent α, is
closely related to the Weibull and the stretched exponential distribu-
tion, which play a key role in the quantitative description of several
socioeconomic systems. The present model, thus, provides a unified
mechanism for the occurrence of a variety of distributions relevant
to this kind of problems.

V. DISCUSSION AND CONCLUSION

Stochastic multiplicative processes (SMPs) with reset events, in
their several variants, are characterized by fat-tailed, often power-
law, distributions of the relevant variable. These processes show
punctuated behavior, where periods of growth are terminated by
sudden shifts to a previous state. High-order moments of the prob-
ability distribution diverge in most variants of the general model.
These features are characteristic of, among others, financial pro-
cesses, a context where higher-order moments are relevant. Kur-
tosis, for instance, is typically used as a measure of financial risk:
divergence of the fourth moment (even with finite variance and
skewness) yields unreliable predictions if evaluated using finite
datasets.38,42 An additional difficulty in the numerical estimation of
moments—and, therefore, of risk—is due to the very slow conver-
gence of estimated values to the exact values of the process, even if
the associated moments are finite. This “slow law of large numbers”
is caused by the large weight of rare events (black swans), which
take a lot of data to show up, and prevent a proper estimation of
the moments of such processes through the moments of a sample.42

The interpretation of SMPs with resets in the context of finance
is quite straightforward. Regardless of whether the model is imple-
mented in discrete or continuous time, the relevant variable, either
xt or x(t), can be understood as the gain accumulated at a given time
t, while its dynamics are controlled by two parameters, one charac-
terizing the momentary gain (µ or λ), and another one quantifying
the risk of the investment (r or q). The uniform model analyzed in
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Sec. II would therefore describe an ensemble of gamblers devoid
of strategy and democratically dependent on luck. Still, they expe-
rience dissimilar fortunes and could be, a posteriori, evaluated as
poor, mediocre, or excellent investors. It has been suggested that
the search for causality in lucky realizations of random processes,
together with the elimination of unlucky series from samples, might
lead to highly misleading interpretations of the actual causal mech-
anisms of data, a phenomenon of particular relevance in finance
known as “survivorship bias.”45

The simple model with constant risk and momentary gain clar-
ifies other aspects of the process as well. The exponent of the power
law depends on both parameters: the higher the frequency and mag-
nitude of resets, the smaller the exponent (in absolute value). That is,
black swans will have larger impact if the momentary gain increases,
and also if the risk is high, as it could have been guessed. Further-
more, the estimation of the waiting time to observe an event of size X
shows that the typical, additional waiting time until an event of, say,
twice that size occurs is 2γc time steps longer. If γc is unknown, or if
its estimation is affected by large errors, predictions of the expected
time until the next black swan and of its magnitude can be highly
inaccurate, at best.

The non-uniform model in Sec. III extends those results by
considering a broad class of probability distributions for momen-
tary gains and reset values, while the risk is kept fixed. Momentary
gain is now time-dependent and can be larger or smaller than one
(in the latter case, it becomes a momentary loss), this generalization
leading to two-sided power laws and to moments converging within
a finite interval of γ values. The qualitative properties of this model
are fully comparable to those of the uniform case, though additional
situations can be now embraced. The accumulated gain can increase
or decrease in random amounts at each time step, and the distribu-
tion of reset values F(s) could take into account agents with different
strategies regarding the fraction of their gains put at stake. Prudent
investors might save part of their previous gains to avoid too severe
drops. The details of this strategy directly affect the moments of
the accumulated gain distribution, though the power-law function
persists.

Finally, in Sec. IV, we have studied a variant where the momen-
tary gain and risk can depend on the accumulated gain. In this case,
the model has been formulated in continuous time for the sake of
analytical tractability, but can be interpreted along the same lines as
discrete-time models. This last case incorporates the possibility that
agents, perhaps content with the gains accumulated so far, develop
cautious strategies by investing in products with lower momentary
gain but which are less risk-prone. Interestingly, this non-greedy
strategy can transform the power-law distribution into different
fat-tailed distributions, where the effects of black swans might be
strongly suppressed.

A relevant situation that we have not explicitly explored in
this work is the plausible relationship between risk and gain. In
practice, it comes to reason that financial gain cannot be maxi-
mized while simultaneously minimizing risk. For example, if the
momentary gain in the uniform model becomes a linear function
of risk, µ = 1 + κr (κ > 0), then γc ≈ 1/κ for small risk. Under
the constraint of mutual dependency, strategies decrease the num-
ber of their degrees of freedom, and similar restrictions would hold
if the relationship between gain and risk affects their statistical

distribution [note that, implicitly, Eq. (34) establishes a form of weak
constraint linking the two parameters]. Still, the implementation of
realistic constraints in scenarios where, furthermore, those distri-
butions depend on the accumulated gain appears as an interesting
avenue to explore. In a different context, it has been shown that a
reset probability that depends on time can improve the efficiency of
search processes.46 Another extension with potential applicability is
the consideration of trends in, e.g., the minimum reset value. A vari-
ety of situations might be subject to such trends, as Fig. 1 illustrates
for food price indices. The trend might be positive (inflation), nega-
tive (deflation), or be itself subject to large variations, as it happens
with hyperinflation followed by currency devaluation.

Finance offer multiple situations that can potentially be mod-
elled through SMPs with resets and, occasionally, additional mech-
anisms tailored to specific scenarios. Possible applications are how-
ever broader and extend beyond the many cases already described in
this work.47 In population dynamics, also dominated by multiplica-
tive (demographic) growth processes, the fast, local extinction of a
population is often followed by “reinjection” in the form of a small
number of migrating individuals. This situation could describe par-
asitic infection bursts in metapopulations48 and explain the persis-
tence of populations that would otherwise become extinct.49 Resets
could be also rephrased as any process that finishes the multi-
plicative growth, since the properties described do not depend on
whether the reset is repeatedly applied to realizations that have a
continuity in time or to many different realizations that are inde-
pendently “born,” and then terminated at the time of resetting. An
example can be found in models for cascade fracture with stopping
events.50 Applications of SMPs to such areas as material sciences
and population dynamics would require their generalization to spa-
tially extended systems, considering coupled stochastic processes
occurring at neighbor sites.

Given the ubiquity of multiplicative processes possibly
amended by a variety of mechanisms—resets, among many oth-
ers—the profusion of power-law (or fat-tailed) distributed quantities
found in natural and social sciences no longer comes as a surpris-
ing fact. Such distributions entail non-trivial dynamical properties,
as those characterized in this work, that severely limit our ability to
predict future outcomes of the process. Despite the advances of over
a century of research on this topic, further applications and deeper
analytical approaches are yet to come to improve our understand-
ing of the mechanisms generating fat-tailed distributions and our
control of black-swan-like events.
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