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a b s t r a c t

Grouping individuals according to their metabolic capacities (metabotyping) has caused a shift from individualised to 
grouped treatments for the optimisation of nutritional interventions. Several studies have reported a stratification of 
patients into metabolic clusters after the intake of certain foods, of which polyphenols seem to be mostly associated 
with metabotypes. Despite this, there is a lack of metabotyping studies regarding wine consumption. In this context, 
the human urinary metabolome of healthy volunteers (n=41) was explored by means of a non-targeted metabolomic 
approach after an intervention with red wine (250 mL/day, 28 days). Three clusters of volunteers based on their 
relative production of phenolic metabolites were perceived, and the compounds responsible for this clustering were 
identified. To our knowledge, this is the first time that different urinary metabotypes have been described in healthy 
volunteers after moderate red wine consumption. Our findings suggest that stratification of individuals in clinical trials 
according to their metabotype is necessary to fully understand the health effects of wine polyphenols.
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INTRODUCTION

Excessive alcohol consumption increases the risk 
of liver cirrhosis and cancers (mostly those of the 
upper digestive and respiratory tract), while low to 
moderate red wine consumption has been associated 
with health-promoting properties (Artero et al., 
2015). Red wine is different from other alcoholic 
beverages due to its content in various phenolic 
compounds. Moderate consumption of red wine 
has been linked to a lower risk of cardiovascular 
disease (CVD), diabetes, osteoporosis, and maybe 
neurological diseases (Artero et al., 2015; Karatzi 
et al., 2004; Iriti and Varoni, 2014). Recent 
studies have suggested that the positive health 
effects of wine, particularly red wine, cannot be 
merely attributed to its ethanol content (Karatzi 
et al., 2004; Iriti and Varoni, 2014). Wine is a 
complex matrix that contains many compounds of 
biological interest, of which phenolic compounds 
are some of the most interesting, as they are all 
biologically active and may play a role in the 
health benefitsof wine (Waterhouse, 2002; Nash  
et al., 2018). With the growing interest in this area, 
understanding the absorption, bioavailability, and 
metabolism of phenolic compounds from wine 
in humans is of utmost importance (Cueva et al., 
2017; Fernandes et al., 2017; Mosele et al., 2015; 
Nash et al., 2018). 

In general terms, the human metabolome is 
defined as the complete set of small metabolites 
found in a biological sample (i.e., cells, tissue, 
organ, biological fluids), and is influenced 
by gut microbiota and genetics, as well as  
by environmental factors (diet, contaminants, 
pharmaceuticals, and other lifestyle factors) 
(Riedl et al., 2017). As a consequence, all these 
factors contribute to interindividual differences 
in the metabolome, which translate into distinct 
nutritional requirements and diverse responses to 
nutritional or medical interventions (Riedl et al., 
2017; Morand and Tomás-Barberán, 2019). An 
emerging idea derived from this issue consists 
in studying these metabolic differences in order 
to group subjects with common metabolic 
profiles when studying the effects of a specific 
intervention. This has led to the definition of the 
metabotype, which refers to a group of individuals 
with similar metabolic profiles (Tomás-Barberán 
et al., 2016; Cueva et al., 2017). Although there 
is no global consensus regarding the parametres 
for the definition of metabotypes, three different 
approaches can be applied depending on the 
objective of the study: general fasting metabotypes 
(including all the possible biochemical parametres); 

specific fasting metabotypes (searching for 
differences only in certain parametres, such as 
lipid profile); or response clustering, which is 
defined after a previously designed intervention 
has been carried out. Metabolomics has emerged 
as a tool for classification of individuals in 
metabotytes, and can therefore be used to predict 
physiological response in a dietary intervention. A 
recent metabolomic study has revealed two main 
clusters of postmenopausal women after bread 
intake, based on the correlation of data obtained 
from fasting metabotyping and insulin plasma 
levels (Moazzami et al., 2014). In the same 
way, a metabolomic approach applied to major 
metabolites (bile acids, fatty acids, amino acids, 
carboxy acids, hydroxylic acids, and aromatic 
derivatives) has led to individual stratification into 
two clusters corresponding to contrasting dietary 
patterns (high meat and low vegetable intake; low 
meat and high vegetable intake) (Wei et al., 2018).

Dietary polyphenols belong to one of the 
compound classes in which metabolism seems to 
be associated with individual metabotypes (Selma 
et al., 2009; Bolca et al., 2013; Manach et al., 2017; 
Mena et al., 2018). For instance, there is evidence 
of stratification in ellagitannin-metabolizing 
phenotypes (urolithin-producer metabotypes) 
or isoflavone-metabolizing phenotypes (equol-
producer metabotypes). In previous work, three 
different urolithin-producing metabotypes have 
been described (Tomás-Barberán et al., 2014): 
after a 6 months intervention with pomegranate 
capsules enriched in phenolics, a reduction  
in different blood lipid biomarkers - including 
total cholesterol, LDL-cholesterol or non-HDL 
cholesterol among others - was only perceived in 
metabotype B obese patients (González-Sarrias 
et al., 2017). In a further study, a consistent 
relationship between urolithin metabotypes and 
cardiometabolic risk biomarkers was reported; 
results demonstrated that overweight metabotype 
B patients are at risk of cardiovascular disease, 
whereas metabotype A patients are protected 
from these disorders (Selma et al., 2017). In 
those previous studies, the term ‘individual 
stratification’ was used to classify patients prior to 
an intervention and predict their response in terms 
of level of responsiveness/non-responsiveness.

Several studies on wine have applied metabolomics 
to study changes in metabolites after moderate 
wine consumption (Vázquez-Fresno et al., 2015; 
Boto-Ordonez et al., 2013; Urpi-Sarda et al., 
2015; Muñoz-González et al., 2013). In particular, 
1H-NMR and UHPLC-MS/MS approaches have 
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been used to evaluate differences in the urinary 
metabolome of cardiovascular risk patients after 
moderate intake of red wine and dealcoholized 
red wine (Vázquez-Fresno et al., 2012; Boto-
Ordoñez et al., 2013). More specifically, 
Vázquez-Fresno et al. (2016) clustered a specific 
population into four phenotypic groups according 
to their biochemical characteristics. The two most 
discriminating clusters (“obese and diabetic” 
metabotype and “healthier” metabotype) showed 
different metabolic responses to a wine polyphenol 
intervention. 

The present study aims to investigate the 
differential responsiveness to moderate wine 
consumption in healthy subjects. For this purpose, 
urinary metabolomics of samples collected 
before and after a red wine intervention period 
were studied, and differences in the observed 
metabotypes were explored.

MATERIALS AND METHODS

1. Chemicals

All chemicals were of analytical grade. Formic 
acid was purchased from Riedel-de Haën (Seelze, 
Germany). Acetonitrile and water were of MS 
grade (Labscan, Gliwice, Poland). A commercial 
standard mixture consisting of 42 low-molecular 
weight compounds (including acidic, basic 
and neutral metabolites) was obtained from 
Sigma-Aldrich (St. Louis, MO, USA) and was 
used in order to assess instrument variability 
during the study. Commercial standards of 
citric acid, 4-hydroxyhippuric acid, quinic acid 
and epicatechin were purchased from Panreac 
(Barcelona, Spain), Phytolab (Madrid, Spain), 
Extrasynthese (Genay, France) and Sigma-Aldrich 
(St. Louis, MO, USA), respectively.

2. Red wine intervention 

During the intervention study, healthy subjects 
were given a young red wine from a Pinot Noir 
grape variety (2010) kindly provided by Bodegas 
Miguel Torres S.A. (Spain) with a total phenolic 
content of 1758 mg of gallic acid equivalents/L 
(Muñoz-González et al., 2013). Among them, 
total anthocyanins comprised 447 mg of malvidin-
3-O-glucoside equivalents/L; meanwhile total 
catechins content was 1612 mg, expressed 
as mg of (+)-catechin equivalents/L (Muñoz-
González  et al., 2013). The composition of 
individual phenolic compounds, including the 
content of specific compounds such as resveratrol  
(7.12 mg/L), has also been previously reported 
in Muñoz-González et al. (2013). Other wine 

properties were: ethanol content (13.8 % v/v), 
pH (3.52), total acidity (6.45 g/L tartaric acid) and 
volatile acidity (0.56 g/L acetic acid), determined 
according to OIV (International Organization of 
Vine and Wine, 1990) procedures.

3. Human intervention study

A randomised and controlled 4-week intervention 
study was carried out involving 41 healthy 
22-65 year-old volunteers (8 control and 
33 case subjects; age mean: 36 ± 11 years)  
(Muñoz-González et al., 2013; Esteban-Fernández 
et al., 2018). The participants (22 women and 
19 men) were not suffering from any disease or 
intestinal disorder, and had not taken antibiotics 
or any other medical treatment for at least 
6 months before the start of the study or during 
the study (including the washout period). All the 
participants had been fully informed about the 
study and had given written informed consent. 
The study was approved by the Ethics Committee 
from CSIC (Madrid, Spain). Each participant 
underwent a 2-week washout period during 
which they avoided rich polyphenol-food, wine 
and other alcoholic beverages. After the washout 
period, subjects (n=33) underwent an intervention 
period of 4 weeks, during which they daily 
ingested 250 mL of the red wine, divided into two 
doses (439.5 mg of equivalents of polyphenols per 
day). A control group (n=8) followed the same 
pattern with the difference that no red wine was 
consumed. 24h-urine samples were collected 
after the wash-out period (labeled as “pre-wine” 
samples) and after the intervention period (labeled 
as “post-wine” samples). Samples were stored at 
-80 ºC until analysis.

4. Metabolomic analysis

An MS-based metabolomic analysis was performed 
using the previously described method after 
slight modification (Jiménez-Girón et al., 2015). 
Urine samples were thawed at room temperature.  
500 µL of the urine were centrifuged at 20,000 x 
g for 10 min at 6 °C. Supernatants were directly 
analysed using an ultra-high performance liquid 
chromatography (UHPLC) system, 1290 Infinity 
from Agilent (Santa Clara, CA, USA), coupled 
to a quadrupole-time-of-flight mass spectrometer 
(Q/TOF MS), Agilent 6540, equipped with an 
orthogonal electrospray ionisation (ESI) source 
(Agilent Jet Stream, AJS), and an acquisition set 
in negative ion mode. Chromatographic separation 
was performed on an Agilent ZORBAX Eclipse 
Plus C18 column (2.1 x 100 mm, 1.8 µm) held at 
40 ºC. The mobile phases consisted of (A) 0.01 % 



© 2020 International Viticulture and Enology Society - IVES458 OENO One 2020, 3, 455-467

Adelaida Esteban-Fernández et al.

formic acid in water and (B) 0.1 % formic acid 
in acetonitrile. A linear gradient was applied 
as follows: 0-30 % B in 7 min, 30-100 % B in 
2 min, 100 % B in 2 min; and the column was 
equilibrated for 4 min. The flow rate was  
0.5 mL/min, and the injection volume was 2 µL.  
A sample of pooled urine samples was also prepared 
for quality control and was injected several times 
into each sample batch. To avoid possible bias, the 
sequences of the injections (samples and controls) 
were randomised. 

5. Data processing

Raw UHPLC-MS data were pre-processed 
by MassHunter v7.0 software from Agilent 
Technlogies, and a selection of peaks with an 
absolute height ≥ 5000 counts was applied. 
Archives with a proper format were validated 
and filtered, and peaks were aligned (Mass 
Profiler Professional software v14.0, Agilent 
technologies). After confirming the quality of 
the analysis, the data was filtered to obtain high 
quality ions, resulting in a high quality time-
aligned data set of detected metabolites with their 
corresponding retention time, m/z, and peak area. 
Data was then submitted for statistical analysis.

6. Statistical analysis and data interpretation

A principal component analysis (PCA) provided 
an overview of data distribution (Mass Profiler 
Professional software v14.0, Agilent technologies) 
(Figure 1). 

The metabolites that had been significantly altered 
after wine consumption [26] were then selected  
and an unsupervised Hierarchical Clustering 
Analysis (HCA) using SIMCA-P software v.14 
was carried out. Based on the classification, a non-
parametric Kruskall-Wallis analysis was performed 
(Mass Profiler Professional software v14.0, 
Agilent Technologies) and a list of the metabolites 
(p<0.05) responsible for the stratification of the 
volunteers into the clusters was obtained. Only 
those with a Coefficient of Variance (CV)<20 % 
were selected for further analysis. After that, 
statistical differences between the stratified 
clusters, determined using Orthogonal Partial 
Least-Squares (OPLS) discriminant analysis (DA) 
was performed and metabolites with Variable 
Importance in Projection values (VIP)>1 were 
selected. Finally, the models were validated by the 
goodness-of-fit parameter (R2X), the proportion 
of the variance of the response variable that is 
explained by the model (R2Y) and the predictive 
ability parametre (Q2), calculated by seven-
fold internal cross-validation. The validation 
of the OPLS-DA models was carried out with a 
permutation test (n=200). 

A tentative identification of statistically different 
(p<0.05) metabolites was performed by carrying 
out a mass search in the HMDB within a mass 
accuracy window of 15 ppm. When several 
candidates were found for a given m/z, metabolite 
identification was sorted giving preference to 
metabolites normally found in urine or human 

FIGURE 1. Workflow and statistical approach.
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fluids after wine intake. When available, co-
injection of standards with urine samples was 
carried out for further confirmation.

RESULTS 

1. Urine metabotypes associated with red wine 
consumption 

A total of 33 healthy subjects were accepted for 
the trial for a 4-week intervention study during 
which subjects daily ingested 250 mL of red wine. 
A control group (n=8) followed the same pattern 

with the difference that no red wine was consumed. 
24h-urine samples after a wash-out period (labeled 
as “pre-wine” samples), and after the intervention 
period (labeled as “post-wine” samples) were 
analysed by UHPLC-MS using a non-targeted 
metabolomic approach. After UHPLC-MS 
analysis and data pretreatment, 1825 entities 
were obtained after deconvolution, alignment and 
filtering. This data set was used for PCA analysis to 
evaluate the differences in the urinary metabolome 
between the experimental groups (Figure 1). PCA 
scores plot (Figure 2) shows a clear separation 

FIGURE 2. PCA score plot of the first two components from non-targeted metabolomics data from urine 
belonging to all studied groups: “post-wine” case, “post-wine” control, “pre-wine” case and “pre-wine” 
control. The first component explains 10.1 % of variance and the second component explains 5.7 % of 
variance.

FIGURE 3. Dendrogram of HCA shows case “post-wine”samples clustered into three groups:  
cluster 1 (green), cluster 2 (red), cluster 3 (blue).
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PC1

2.29 147.07 M-H C6H12O4 3.52 1.87 3>2>1

6.86 613.11 M+Cl C30H26O12 2.24 1.71 3>2>1

8.38 293.10 3M-H C5H6O2 0.47 1.64 3>2>1

1.99 161.05 M-H C6H10O5 3.43 1.60 3>2>1

3.47 175.06 M-H C7H12O5 6.30 1.57 3>2>1

3.47 175.06 M-H C7H12O5 6.30 1.57 3>2>1

1.05 129.02 M-H C5H6O4 8.27 1.54 3>2>1

1.03 147.03 M-H C5H8O5 7.50 1.48 3>2>1

1.05 111.01 M-3H C12H16O9S 0.83 1.46 3>2>1

2.09 144.07 M-2H C15H14O6 5.16 1.46 3>2>1

1.06 191.02 M-H C6H8O7 5.09 1 1.44 3>2>1

0.96 264.99 M+K-2H C13H8O4 4.40 1.37 1>2>3

3.48 263.95 M+Br C7H7NO5 12.91 1.34 3>2>1

0.76 193.03 M+Cl C7H10O4 4.72 1.30 3>2>1

4.37 277.00 M+Hac-H C7H6O6S 0.51 1.24 2>3>1

0.78 144.03 M-2H C15H14O6 5.16 1 1.11 2>3>1

0.75 191.02 M-H C7H12O6 8.84 1.09 3>2>1

2.66 161.05 M+FA-H C5H8O3 0.90 1.09 3>2>1

1.52 424.05 M+Cl C12H23NO9S2 4.78 1.06 3>2>1

0.75 227.00 M-H C13H8S2 3.82 1.03 3>2>1

2.07 641.21 M+TFA-H C25H36O12 1.97 1.02 3>2>1

2.77 269.11 M-H C12H18N2O5 0.39 >1 2>3>1

3.67 204.03 M-H20-H C10H9NO5 2.05 >1 2>1>3

1.32 442.08 M+TFA-H C17H15NO6 13.07 >1 2>1>3

2.20 365.14 M+Na-2H C20H24O5 3.12 >1 2>3>1

9.30 233.15 M+Hac-H C13H18 0.01 >1 1>3>2

2.29 245.11 M-H C10H18N2O5 1.65 >1 2>3>1

2.68 194.05 M-H C9H9NO4 1.64 1 >1 3>1>2

1.35 293.03 M-H20-H C13H12O9 12.82 >1 3>2>1

PC2

Relative 
response 

order

Retention 
time

Detected 
m/z

Assigned 
ion

Molecular 
Formula

Error 
(ppm)

2,3-Dihydroxy-3-methylvalerate Wine 1.64

Procyanidin B-type dimer Microbial 1.61

2-Furanmethanol Wine 1.38

3-Hydroxymethylglutaric acid Wine 1.32

2,3-Dimethyl-3-hydroxyglutaric acid Wine 1.32

Isopropylmalic acid Wine 1.31

γ-delta-Dioxovaleric acid Wine 1.27

Hydroxyglutaric acid Wine 1.32

4-Hydroxy-5-(dihydroxyphenyl)-valeric 
acid-O-methyl-O-sulphate

Microbial 1.20

Epicatechin/Catechin Wine 1.21

Citric acid Wine 1.19

Urolithin A Microbial 1.27

2-Amino-3-carboxymuconic acid 
semialdehyde

endogeno
us

1.20

Isopropylmaleate Wine 1.07

Sulfosalicylic acid Microbial 1.13

Epicatechin/Catechin Wine 1.04

Quinic acid Wine >1

2-Oxovaleric acid Wine >1

3-Methylbutyl glucosinolate Diet >1

5-Ethynyl-5'-(1-propynyl)-2,2'-
bithiophene

Diet >1

16,17-Dihydro-16a,17-
dihydroxygibberellin A4 17-glucoside

Microbial >1

Hypoglycin B Diet 1.52

1-Methyl-4-(1-methyl-2-propenyl)-
benzene

Diet 1.14

(R)-2,3-Dihydro-3,5-dihydroxy-2-oxo-3-
indoleacetic acid

Wine 1.39

(Z)-N-Feruloyl-5-hydroxyanthranilic acid Microbial 1.30

Cis-Caffeoyl tartaric acid/Caftaric acid Wine 1.12

Level of 
annotation 

according to 
MSI

GroupTentative ID VIP value

Aspartyl-Leucine/Leucyl-Aspartate endogeno
us

1.13

4-Hydroxyhippuric acid Microbial 1.12

5-(6-Hydroxy-3,7-dimethyl-2,7-
octadienyloxy)-7-methoxycoumarin

Wine 1.27

TABLE 1. Metabolites identified or tentatively identified with VIP>1 and associated with principal 
component 1 and principal component 2 of OPLS-DA analysis of post-consumption samples.
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of subjects after intervention (“post-wine”), 
indicating that red wine consumption clearl 
induced perturbations in the urine metabolome. 
Moreover, as might be expected, an overlapping 
of samples from control subjects and case subjects 
before wine intervention (“pre-wine”) was 
observed. Hierarchical clustering analysis (HCA) 
was then performed with those metabolites whose 

responses were significantly altered (p<0.05) after 
wine intervention (n=182) (Esteban-Fernández 
et al., 2018; Jiménez-Girón et al., 2015). A 
dendrogram showing the overall structural 
similarity determined by Ward’s clustering 
based on Euclidean distance is represented in 
Figure 3. The clustering of individuals by HCA 
suggests the existence of three clusters: Cluster 1 

FIGURE 4. OPLS-DA score plot of “post-wine” urine samples. Cluster 1 is represented by green circles, 
cluster 2 by red circles and cluster 3 by blue circles. The ellipse shown in the model represents the Hotelling 
T2 with 95 % confidence.

FIGURE 5. OPLS-DA score plot of “pre-wine” urine samples. Cluster 1 is represented by green circles, 
cluster 2 by red circles and cluster 3 by blue circles. The ellipse shown in the model represents the Hotelling 
T2 with 95 % confidence.
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(metabotype 1) was the most abundant (n=17) and 
showed a close link with cluster 2 (metabotype 2, 
n=7), while cluster 3 (metabotype 3, n=9) was 
clearly differentiated from clusters 1 and 2. With 
this new classification of volunteers, data of 
samples after wine intervention were subjected 
to a Kruskal-Wallis statistical analysis and a new 
set of 1460 significant signals (p<0.05) were 
generated. Only those signals with a Coefficient 
of Variance (CV) <20 % (n=59) were selected 
for further OPLS-DA analysis. Score plots from 
the supervised OPLS-DA (Figure 4) showed 
distinguishable separation between clusters 
1, 2 and 3. To select the metabolites that were 
important for this model, VIP scores were used. 
VIP scores > 1 were considered as relevant and 29 
metabolites were therefore considered significant 
in differentiating the three metabotypes (Table 1). 

The model parametres were: R2X=0.39, R2Y=0.67 
and Q2=0.51. The response permutation test (with 
n=200) was used to validate the predictive capability 
of the computed OPLS-DA model (Figure S1 of the 
Supporting Information).With the aim of detecting 
possible underlying determinants leading to the 
3 metabotype clusters, we analysed the urinary 
metabolomic profile of samples collected before 
the dietary intervention. 328 metabolites were 
detected after Kruskall-Wallis analysis (p<0.05) 
and those with CV<20 % were selected for further 
identification. From them, 28 metabolites were 
tentatively identified and submitted to OPLS-DA 
analysis. When OPLS-DA was performed for the 

metabolomic data set obtained from urine samples 
before wine intervention, a limited separation 
between previously found clusters was observed 
(Figure 5). A value of VIP (Variable Important 
in Projection) ≥ 1 was considered to identify the 
variables most important to group separation 
(Table 2). The OPLS-DA model parametres 
were: R2X=0.26, R2Y=0.44 and Q2=0.27. The 
volunteers’ metabolic phenotypes before wine 
intervention were more similar and thus appeared 
closer in the OPLS-DA. PC1 (13 %) differentiated 
between cluster 1 and cluster 3, whereas PC2 
(13 %) separated Cluster 2.

2. Metabotypes separation based on significant 
metabolites 

Individuals in the metabotype 3 group had higher 
urinary levels of valeric acid derivatives, including 
2,3-dihydroxy-3-methylvalerate, γ-delta-dioxo-
valeric acid, oxovaleric acid, and 4-hydroxy-5-
(dihydroxyphenyl)-valeric acid-O-methyl-O-
sulfate. Other short-chain hydroxy acids, such 
as 3-hydroxymethylglutaric acid, 2,3-dimethyl-
3-hydroxyglutaric acid, isopropylmalic acid, 
quinic and citric acid, as well as hydroxyhippuric 
and caffeoyl tartaric/caftaric acids, also differed 
depending on the metabotypes. Metabotypes 2 and 
3, however, exhibited the highest concentrations 
of epicatechin/catechin, and they could be slightly 
differentiated from metabotype 1 due to its 
relative levels of microbially-derived metabolite 
sulfosalicylic acid. Metabotype 1 volunteers 
displayed the highest production of urolithin A, 

Retention time Detected m/z Assigned ion Molecular Formula Error (ppm) Tentative ID Group Relative response order

PC1 PC2

1.98 385.10 M+Br C18H26O4 3.13 Capsiate Diet 1.83 1.42 2>3>1

1.32 160.06 M-H C6H11NO4 0.42 Acetylhomoserine Diet 1.79 1.63 3>2>1

0.69 177.04 M-H C7H8N4O3 3.67 Dimethyluric acid Endogenous 1.67 1.83 1>3>2

2.15 328.05 M-H C10H12N5O6P 2.91 Adenosine 2',3'-cyclic phosphate Endogenous 1.63 1.36 3>2>1

2.20 365.14 M-H C17H22N2O7 1.30 Tetrahydropentoxyline Diet 1.60 1.29 3>2>1

2.31 317.06 M+TFA-H C7H12N2O5 3.44 Aspartyl-Alanine/Alanyl-Aspartate Endogenous 1.31 1.01 3>2>1

9.00 194.08 M+Hac-H C8H9NO 1.37 2,3-Dihydro-1H-pyrrolizine-5-carboxaldehyde Diet 1.21 1.41 2>3>1

2.30 317.06 M+TFA-H C7H12N2O5 2.81 Alanyl-Aspartate/Aspartyl-Alanine Endogenous 1.15 >1 3>2>1

3.61 439.14 M+FA-H C18H22N2O8 0.27 N-Acetylserotonin glucuronide Endogenous 1.05 >1 2>3>1

0.93 248.03 M+Hac-H C6H7NO4S 10.37 2-aminophenol sulphate Diet 1.05 >1 2>3>1

3.99 263.10 M-H C13H16N2O4 1.78 di-Hydroxymelatonin Endogenous 1.02 1.76 2>3>1

3.99 835.29 2M-H C18H26O11 1,98 Oleoside dimethyl ester Diet >1 1.13 2>1>3

0.71 147.03 M+H C6H12S2 2,27 Propenyl propyl disulfide Diet >1 1.07 1>2>3

VIP value

TABLE 2. Metabolites with VIP values >1 and associated with PC1 and PC2 of OPLS-DA analysis in  
pre-consumption urine samples.
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a microbial metabolite produced from ellagic 
acid. Other compounds which are unrelated to 
wine and which affected volunteer stratification 
were also observed: 3-methylbutyl glucosinolate 
(from brassica vegetables), 5-ethynyl-5’-(1-
propynyl)-2,2’-bithiophene (from sunflowers), 
and 16,17-dihydro-16a,17-dihydroxygibberellin 
A4 17-glucoside (found in rice) (Jiménez-Girón 
et al., 2015; Vázquez-Fresno et al., 2016; Esteban 
-Fernández et al., 2018). Only one endogenous 
metabolite, 2-amino-3-carboxymuconic acid 
semialdehyde was found to be significant to 
cluster differentiation before wine intervention. 

The metabolite differences found among the 
volunteers from all three metabotype groups 
before the intervention were found to be 
endogenous or acquired by means of diet (mainly 
from vegetables). Larger quantities of metabolites 
were identified in metabotype 2 or 3 subjects, 
while metabotype 1 subjects displayed higher 
levels of dimethyluric acid and propenyl propyl 
disulfide. The highest levels of acetylhomoserine, 
an amino acid normally derived from peas, and 
tetrahydropentoxyline, an amino acid associated 
with fruit juices, were found in metabotype 3 
volunteers. Metabotype 2 subjects produced 
capsiate, a methoxyphenol contained in peppers, 
2,3-dihydro-1H-pyrrolizine-5-carboxaldehyde, 
a Maillard reaction product, and 2-aminophenol 
sulphate, a phenylsulfate previously used as a 
urinary biomarker of rye bread intake (Bondia-
Pons et al., 2013). Metabotype 3 subjects had 
increased levels of endogenous adenosine 
2’,3’-cyclic phosphate, related to purine 
metabolism, and aspartyl-alanine/alanyl-asparte 
dipeptide.

DISCUSSION

Polyphenol-rich dietary interventions in humans 
have demonstrated high interindividual variability 
in polyphenol degradation patterns. A number of 
factors contribute to interindividual differences 
in the human metabolome (gut microbiota, and 
genetic and environmental factors). Metabotyping 
has been proposed to overcome the confounding 
effects of variation, and is becoming accepted 
for studying the effects of a specific intervention. 
In the nutritional field, metabotyping is closely 
linked to the concept of “personalised nutrition”, 
which has evolved from a nutrigenomic concept 
to an approach involving dietary, phenotypic and 
genotypic features (O’Donovan et al., 2016). 
Nowadays, nutritional issues haveprogressed 
from individual to group guidelines, optimising 
dietary interventions and reducing healthcare 

costs and diagnosis time (O’Donovan et al., 
2016; Toro-Martín et al., 2016). In agreement 
with this, the “Food4me” study has shown that 
personalised nutrition can cause positive changes 
in the nutritional behaviour of patients (Celis-
Morales et al., 2017). However, in order to deliver 
targeted dietary advice, the identification of 
metabolic phenotypes or “metabotypes” is of key 
importance. 

The definition of robust metabotypes is a difficult 
task, since it involves taking into account a variety 
of parametres (Toro-Martín et al., 2017; Brennan, 
2017). Nevertheless, the study of responses to a 
dietary intervention is of great interest since the 
differences between metabolic activities become 
more obvious. In this context, metabolomics has 
been successfully applied in the development 
of novel population classification methods after 
the consumption of a specific food, particularly 
polyphenol-rich foods, such as strawberry, 
pomegranate or walnuts (Bolca et al., 2007; 
González-Sarria et al., 2017; Spencer et al., 2008; 
Truchado et al., 2012). Regarding wine or grape-
derived products, metabolomics has been mainly 
applied to the discovery of biomarkers associated 
with their intake (Vázquez-Fresno et al., 2015; 
Van Dorsten et al., 2010). Only Vazquez et al. have 
determined changes in urinary metabolites among 
different clinic phenotypes in an intervention 
study with dealcoholized red wine (Vázquez-
Fresno et al., 2016). In the present study, after 
carrying out an unsupervised HCA, healthy 
volunteers were clustered into three different 
groups after moderate red wine consumption for a 
4-week period. Since we did not use a quantitative 
approach, it is not possible to assume that these 
clusters correspond to individuals with great, 
moderate and low metabolic capacity. However, 
they are in good agreement with the results of a 
previous study in which we identified three distinct 
metabotypes (low, moderate and high metaboliser 
phenotypes), based on the total phenolic content 
of faeces from the same volunteers (Muñoz-
González et al., 2013). Metabotypes observed in 
this previous study  were evidenced after a dietary 
intervention, which, to our knowledge, has not 
been previously reported in relation to moderate 
red wine consumption. Regarding beneficial 
health outcomes, it is assumed that wine should 
only be consumed in a moderate and regular 
way by healthy people, within a framework of 
balanced habits. Therefore, the categorisation of 
individuals demonstrated in this work has revealed 
the relevance of wine moderate intake in  a real 
and everyday nutritional intervention/situation. 
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Metabotype 3 subjects produced the highest levels 
of the most detected metabolites, particularly 
valeric acid and valerolactones derivatives, which 
have already been proposed as urinary biomarkers 
associated with wine consumption (Urpi-Sarda  
et al., 2015; Vázquez-Fresno et al., 2012). Valeric 
acids are short-chain fatty acids (SCFA) produced 
by the microbial catabolism of protein-derived 
branched chain amino acids. They have been 
linked to several health benefits, including anti-
inflammatory (Huda-Faujan et al., 2010), anti-
tumorigenic and antimicrobial effects (Tan et al., 
2014). This group of individuals also showed 
a metabotype marked with increased SCFAs 
production, highlighting the effects of moderate 
wine consumption produced on the gut microbial 
communities, as already observed for gut bacteria, 
such as Flavonifractor plautii (Navarro-Peran et 
al., 2008). Metabotype 3 individuals showed the 
highest levels of procyanidins and 4-hydroxy-
5-(dihydroxyphenyl)-valeric acid-O-methyl-O-
sulphate, the latter being a phenolic conjugate 
previously observed in human urine after tea intake. 
Metabotype 3 subjects had the largest increase 
in epicatechin/catechin oligomers (procyanidin 
B-type dimers). The oligomers and monomers 
of epicatechin and catechin and their metabolites 
exert several health-promoter activities including 
antioxidant, antibacterial, antiadhesive and cardio 
protective effects (Navarro-Peran et al., 2008; 
Escandón et al., 2016). The metabotype 3 group 
was also characterised by significantly higher 
2-amino-3-carboxymuconic acid semialdehyde, 
an intermediate on the tryptophan-niacin 
catabolic pathway; it is therefore related to quinic 
acid, which is also produced by the different 
metabotypes. In agreement with our observations, 
an increase of urine nicotinic acid, as well as 
changes in amino acids related to the tryptophan 
metabolic pathway, have been previously observed 
in healthy volunteers after short-term intake of 
red wine and grape polyphenol extract (Jacobs et 
al., 2012). Moreover, quinic acid is metabolised 
by microbiota into hippuric acid, and it has been 
used as a dietary supplement due to its ability to 
increase nicotinamide and tryptophan in urine, 
suggesting a positive effect of this acid in nutrient 
bioavailability. Hydroxyhippuric acid, its product, 
has been previously reported in metabolomics 
studies concerning moderate wine consumption   
(Vázquez-Fresno et al., 2012; van Dorsten et al., 
2010).

Interestingly, metabotype 1 subjects produced 
the highest levels of urolithin A, a metabolite 
produced in the gut following consumption 

of ellagitannin. This type of compound is not 
only known for its cardioprotective (Graf et al., 
2015) and anti inflammatory (David et al., 2014) 
properties, but also for its protective effects on the 
ageing process (Ryu et al., 2016). The benefits 
implied from this metabolite seems to be structure-
dependent and its production has been associated 
with the composition of colonic microbiota, 
concretely with the presence of Gordinobacter 
spp. (González-Sarrias et al., 2017). 

In site of all the above-mentioned advantages of 
personalised nutrition and metabotyping, there 
are some limiting factors. An important challenge 
is the translation of basic research into clinically 
relevant dietary guidelines, which could be 
achieved by establishing a common framework 
for scientist, clinicians and health professionals. 
It would be necessary to properly define the 
metabotypes and to select the metabolites to be 
analysed for population stratification in wine 
intervention studies. This selection should be wide 
enough to be representative of a physiological 
condition and be meaningful for the appropriate 
clustering of individuals/patients. However, 
the most notable bottleneck is the scale of these 
observations regarding the overall population, 
since there is huge diversity in the parametres and 
observations of each study, thus making it difficult 
to establish universal criteria. 

CONCLUSIONS

Urine, an easily accessible biofluid, can be 
used to reveal different metabotypes associated 
with moderate wine consumption. This study 
has successfully demonstrated the stratification 
of a population into three different clusters of 
individuals/metabotypes after moderate and 
regular wine consumption. This novel clustering 
has been performed on healthy volunteers, 
highlighting the potential applications of tailored 
nutrition, not only for patients at risk of disease, 
but also as a promoter/indicator of healthy life 
habits. Metabolomics constitutes a useful tool 
in metabotyping; however, in order to optimise 
dietary interventions or medical treatments, more 
effort should be made to homogenise the studies 
and facilitate access  to these tools by general  
population.
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