New evidence of cryptic speciation in the family Longidoridae (Nematoda: Dorylaimida)

Ruihang Cai ${ }^{1,2, \dagger}$, Antonio Archidona-Yuste ${ }^{1,3, \dagger}$, Carolina Cantalapiedra-Navarrete ${ }^{1}$, Juan E. Palomares-Rius ${ }^{1}$, and Pablo Castillo ${ }^{1, *}$
${ }^{1}$ Institute for Sustainable Agriculture, CSIC, Avda. Menendez Pidal, Córdoba, Spain
${ }^{2}$ Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture and
Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
${ }^{3}$ Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
\dagger Equal contributors

Correspondence

Pablo Castillo
E-mail: p.castillo@csic.es

Running title: New evidence cryptic diversity longidoridae

KEYWORDS: Bayesian inference, cytochrome oxidase c subunit 1 (coxI), expansion domains of the large ribosomal subunit (28S), integrative taxonomy, plant-parasitic nematodes

Contributing authors: Ruihang Cai (ruihangcai@163.com); Antonio Archidona-Yuste (aarchidona@ias.csic.es); Carolina Cantalapiedra-Navarrete (carocantalapiedra@hotmail.com); Juan E. Palomares-Rius (palomaresje@ias.csic.es); Pablo Castillo (pcastillo@ias.csic.es)

Abstract

Longidorid nematodes comprise more than 500 species, and Longidorus and Xiphinema are the most diversified, abundant and cosmopolitan genera, which increases the risk of species misidentification. We conducted an integrative morphometric and genetic study on two longidorid species to elucidate the existence of new cases of cryptic speciation within the genera Longidorus and Xiphinema. Detailed morphological, morphometric, multivariate and genetic studies were carried out, as well as mitochondrial and nuclear haploweb analyses, to differentiate species within the L. iliturgiensis- and X. hispanum-complexes. Species delimitation using haplonet tools of L. iliturgiensis-species complex clearly separated L. tabernensis sp. nov. from L. iliturgiensis and L. indalus. Similarly, the haploweb analysis of X. subbaetense sp. nov. showed it as a unique and separate species from X. hispanum and X. adenohystherum. D2-D3 expansion domains of $28 S$ rRNA, partial $18 S$ rRNA, and partial coxI region were used for inferring phylogenetic relationships. The present study provides new insights into the diversity of Longidorus and Xiphinema species detected in southern Spain, and new evidence of cryptic speciation in both genera. These results support our hypothesis that the biodiversity of Longidoridae in southern Europe is higher than previously supposed and is still not fully clarified.

1 | INTRODUCTION

Delineating taxonomic boundaries correctly in large species complexes is crucial for addressing practical and theoretical questions of evolution and conservation (Bickford et al., 2007; Dayrat, 2005). However, species delimitation based only on morphological studies may be a difficult task given the inconspicuous or nonexistent (e.g. pseudocryptic and cryptic speciation) differences among closely related species (Lajus, Sukhikh, and Alekseev, 2015). This phenomenon has been described extensively in many taxa such as nematodes both in marine and terrestrial ecosystems (Oliveira et al., 2017; Lee et al., 2017; Palomares-Rius, Cantalapiedra-Navarrete, and Castillo, 2014). There are several reasons that can be used to explain cryptic speciation in nematodes, such as genetic mutations and ecological adaptations by geographic location or host range (PalomaresRius et al., 2014; Wellborn \& Broughton, 2008).

Interest in cryptic species has increased significantly with the progress of molecular-based approaches that have revealed an exponential increase in the number of cryptic species over recent decades (Bickford et al., 2007; Lee \& Oliver, 2016). This enormous acceleration in the identification of cryptic species suggests that traditional morphological techniques may be deficient for accurate species identification in some species groups (Bickford et al., 2007; Jörger \& Schrödl, 2013). In fact, the application of molecular techniques to taxa delimitation has uncovered a remarkable number of unknown cryptic species and/or revealed species hidden under one species identity (Gutiérrez-Gutiérrez et al., 2011; Lee et al., 2017; Palomares-Rius et al., 2014; PérezPortela, Arranz, Rius, \& Turon, 2013; Pfenninger \& Schwenk, 2007). The conserved morphology that characterizes soil nematodes has led to the development of molecular methods using different fragments of nuclear (nc) ribosomal and mitochondrial DNA (mt) gene sequences to be used in DNA barcoding (Hebert, Ratnasingham, \& de Waard, 2003; Palomares-Rius et al., 2014; Palomares-Rius et al., 2017a; Palomares-Rius et al., 2017b). However, molecular taxonomy frequently remains incomplete without standard descriptions of nematode species, through which species delimitation accuracy and consistency has been significantly improved when used with morphological data prior to DNA extraction. Thus, species discovery and description needs to be achieved through the combined use of morphological and molecular analyses (Dayrat, 2005; Padial et al., 2010) defined as "integrative taxonomy". In addition, the use of multivariate methods using morphometric characters as complement to custom integrative taxonomy has proven to be the most common way of delimiting cryptic species and therefore, resolving the taxonomy of diverse groups of organisms (Bärmann et al., 2013; Kuta et al., 2014; Legendre \& Legendre, 1998; Vd’ačný, Slovák, \& Foissner, 2014) including nematodes (Archidona-Yuste et al., 2016a; CantalapiedraNavarrete et al., 2013; Cho \& Robbins, 1991).

Deciphering the cryptic biodiversity of soil nematodes is an essential task to increase our knowledge about soil ecosystem functioning (Barnes et al., 2018). Many cryptic species of both free-living and plant-parasitic nematodes (PPNs) have been discovered (Lee et al., 2017;
Palomares-Rius et al., 2014). In the case of PPNs, the discovery and unravelling of cryptic species has implications in food security, quarantine and agronomic management of crops (Palomares-Rius et al., 2014). In addition, the possibility of an interesting ecological phenomenon describing the coexistence of identical species sharing the same niche and on the same host enhances the significance of describing cryptic species of PPNs (Zhang, Lin, \& Hanski, 2004). To cope with the number of candidate species with the same identity, several studies have widely emphasized the socio-economic benefits of the application of new technologies and careful examination using integrative taxonomy in species delimitation of the cryptic complexes of PPNs (Archidona-Yuste et al., 2016a; Cantalapiedra-Navarrete et al., 2013; Gutiérrez-Gutiérrez et al., 2010; Palomares-Rius et al., 2017b; Palomares-Rius et al., 2014; Qing et al., 2019).

One of the most economically important nematodes includes ectoparasitic species belonging to the family Longidoridae Thorne, 1935 (Thorne, 1935). The importance of this group of nematodes lies not only in their polyphagy and cosmopolitan distribution but also their status as vectors of plant viruses that causes significant damage to a wide range of agricultural crops (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2016c; Archidona-Yuste et al., 2016d; Coomans, 1996; Decraemer \& Robbins, 2007; Macfarlane, 2003; Taylor \& Brown, 1997). The family Longidoridae includes more than 500 species (Coomans et al., 2001; Decraemer \& Robbins, 2007), and Xiphinema Cobb, 1913 (Cobb, 1913) (i.e., 296 species) and Longidorus Micoletzky, 1922 (Micoletzky, 1922) (i.e., 181 species) are the most diversified, abundant and cosmopolitan genera (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2016c; Archidona-Yuste et al., 2016d), enhancing the risk of species misidentification and therefore, highlighting the importance of using integrative taxonomy (Dayrat, 2005; Padial et al., 2010; Palomares-Rius et al., 2014). Some cryptic species have been recently discovered, particularly in the genus Xiphinema, showing the potential of the combined application of morphological and molecular analyses against traditional taxonomy (Archidona-Yuste et al., 2016a; Gutiérrez-Gutiérrez et al., 2010; Lazarova et al., 2019; PerazaPadilla et al., 2016). Likewise, phenetic studies based on multivariate methods have proven a useful and additional tool for species discrimination in cryptic complexes in this group of nematodes (Archidona-Yuste et al., 2016a). These integrative studies also provide DNA sequence data mainly of two marker sequences for precise and unequivocal species identification: the nc ribosomal RNA (rRNA) gene sequences, e.g., D2-D3 expansion domains of the $28 S$ rRNA gene, internal transcribed spacer (ITS1) and the 18 S rRNA gene, as well as the mt gene cytochrome coxidase subunit I (coxI). In fact, the use of these molecular markers has made it possible to provide accurate identification of
species complexes and explain the phylogenetic relationships within the genera Longidorus and Xiphinema (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2016a; Gutiérrez-Gutiérrez et al., 2010; He et al., 2005; Palomares-Rius et al., 2017b; Ye et al., 2004). Two prominent examples of high cryptic species diversity in both genera are the L. iliturgiensis- and X. hispanum-complex species (Archidona-Yuste et al., 2019a; Gutiérrez-Gutiérrez et al., 2010). The Longidorus iliturgiensis-complex was recently described showing a highly conserved morphology with similar anatomical characteristics among species such as lip region and tail shape or key morphometric diagnostic characteristics (i.e., body length) (Archidona-Yuste et al., 2019a). The history of the Xiphinema hispanum-complex has been a nematological hot topic of controversy since Lamberti et al. (1992) first reported this cryptic complex. In that study, the Xiphinema hispanum complex was described as including five new didelphic Xiphinema species from the Mediterranean Basin characterized by a rounded tail in females with or without an inconspicuous bulge projecting slightly ventrally and a uterus showing spiniform structures (Lamberti et al., 1992). Later, Baujard, Luc \& Loof (1996) and Loof, Luc \& Baujard (1996) examined the paratypes of those species and concluded that there were not enough morphological differences to differentiate those species from each other, hence, they were proposed as junior synonyms. However Gutiérrez-Gutiérrez et al. (2010) helped to clarify the identity and phylogenetic relationships of this complex Xiphinema group by applying integrative taxonomical approaches that allowed us to verify these species as valid. Finally, and equally important to emphasize, recent studies have revealed the coexistence of both cryptic complexes in close natural and agricultural areas in southern Spain constrained by the same abiotic and biotic characteristics (such as environmental factors and host species) (ArchidonaYuste et al., 2019a; Archidona-Yuste et al., 2019b; Archidona-Yuste et al., 2020), highlighting the difficult task of making an accurate species identification solely using classical taxonomy approaches.

Intensive nematological surveys during the last decade in agricultural and natural ecosystems in Andalusia, southern Spain, indicated a remarkable diversity within the family Longidoridae including the presence of both cryptic species complexes as stated above (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2016c; Archidona-Yuste et al., 2016d; Cai et al., 2020). However, we suspect that biodiversity of Longidoridae in southern Spain is still not fully clarified and needs additional sampling efforts given the significant gaps in soil nematode biodiversity regarding the large number of undescribed species (Cameron et al., 2018; Decaëns, 2010) and the hypothesis suggesting the Iberian Peninsula as a possible centre of speciation for some groups of the family Longidoridae (Archidona-Yuste et al., 2016b; Archidona-Yuste et al., 2016c; Archidona-Yuste et al., 2016d; Coomans, 1996). In fact, recent surveys during 2019 in natural environments in Andalusia revealed two populations of Longidorus and Xiphinema showing morphological and
morphometric traits quite similar to previously described species and the cryptic species groups mentioned above, such as the members of the L. iliturgiensis- and X. hispanum-complexes, respectively. Nevertheless, the application of integrative taxonomical approaches indicated that both populations belong to undescribed species.

Therefore, the objectives of this research were: (1) to elucidate the existence of new species belonging to cryptic complexes within the genera Longidorus and Xiphinema using an integrative species delineation approach based on multivariate morphometric analysis (Archidona-Yuste et al., 2016a; Reyment, 1982) and haplonet mt and nc haploweb tools (Flot, Couloux \& Tillier, 2010) to differentiate species within the L. iliturgiensis- and X. hispanum-complex species; (2) to describe two new species of the genera Longidorus and Xiphinema (L. tabernensis sp. nov. and X. subbaetense sp. nov.) through integrative methods based on combination of morphological, morphometric and molecular data; and (3) to apply phylogenetic analyses to clarify the relationship of the identified Longidorus and Xiphinema species.

2 | MATERIAL AND METHODS

2.1 | Ethics statement

No specific permits were required for the indicated fieldwork studies. The soil samples were obtained in public areas, forests, and other natural areas and do not involve any species endangered or protected in Spain, nor are the sites protected in any way.

2.2 | Nematode populations and morphological studies

A total of 101 individuals including 51 adult and 50 juvenile specimens were used for morphological analyses. Nematodes were surveyed from March to June 2019 during the spring season in natural ecosystems in Andalusia, southern Spain (Table 1). Soil samples were collected for nematode analysis with a shovel randomly selecting four to five cores of each point, and considering the upper 5-50 cm depth of soil that closed to the active plant root at each sampling spot. Nematodes were extracted from a $500-\mathrm{cm}^{3}$ sub-sample of soil by centrifugal flotation and a modification of Cobb's decanting and sieving methods (Flegg, 1967). For morphometric studies, Longidorus and Xiphinema specimens were killed and fixed by a hot solution of 4% formalin $+1 \%$ glycerol, then processed in pure glycerin (Seinhorst, 1962) as modified by De Grisse (1969). The light micrographs and measurements of each nematode population including important diagnostic characteristics (i.e. de Man indices, body length, odontostyle length, lip region, tail shape, amphid
shape and oral aperture-guiding ring) were performed using a Leica DM6 compound microscope with a Leica DFC7000 T digital camera. For the line drawings of each new species, CorelDraw software version X7 (Corel Corporation, London, UK) was used to redraw according to the selected light micrographs.

2.3 DNA extraction, PCR and sequencing

For molecular analyses, in order to ensure the selected nematodes for extracting DNA are from the same species, two live nematodes from each sample were temporary mounted in a drop of 1 M NaCl containing glass beads (to avoid nematode crushing/damaging specimens) to ensure specimens conformed to the unidentified populations of Longidorus and Xiphinema. Thus, 59 individuals collected from several sampling points in Spain were analyzed (Table 1). All necessary morphological and morphometric data by taking pictures and measurements using the above camera-equipped microscope were recorded. This was followed by DNA extraction from a single specimen and polymerase chain reaction (PCR) cycle conditions as previously described (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2016d). Several sets of primers were used for PCR: the expansion domains of the $28 S$ rRNA gene (D2-D3) were amplified by using the D2A (5'-ACAAGTACCGTGAGGGAAAGTTG-3') and D3B (5'-TCGGAAGGAACCAGCTACTA-3') primers (De Ley et al., 1999); a partial sequence of the 18 S rRNA gene (18S) was amplified as previously described (Holterman et al., 2006) using primers 988F (5^{\prime} -
CTCAAAGATTAAGCCATGC-3'), 1912R (5^{\prime}-TTTACGGTCAGAACTAGGG-3'), 1813F (5^{\prime} '-CTGCGTGAGAGGTGAAAT-3'), and 2426R (5^{\prime}-GCTACCTTGTTACGACTTTT -3'); the ITS1 region (ITS1) was amplified using forward primer 18S (5^{\prime}-TTGATTACGTCCCTGCCCTTT-3') (Vrain et al., 1992) and reverse primer rDNA1 5.8S (5'-ACGAGCCGAGTGATCCACCG-3') (Cherry et al., 1997). Finally, the portion of the coxI gene was amplified using the primers COIF (5^{\prime}-GATTTTTTGGKCATCCWGARG-3') and COIR (5^{\prime} '-CWACATAATAAGTATCATG-3') (Lazarova et al., 2006). The newly obtained sequences were deposited in the GenBank database under accession numbers indicated on the phylogenetic trees and in Table 1.

2.4 Species delimitation

Two independent strategies of species delimitation were applied to address the first objective of this study: multivariate morphometric and haplowebs methods. These methods were based on morphometric and molecular data, respectively. The recognition of the group of species used for both approaches was not only established as belonging to L. iliturgiensis- and X. hispanum-complex (that is, similar key morphometric characters) but also determined by phylogenetic relationships
provided in previous studies (Archidona-Yuste et al., 2016c; Archidona-Yuste et al., 2016d; Cai et al., 2020; Cai et al., 2019; Fouladvand et al., 2019) as well as species distribution (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2019b; Archidona-Yuste et al., 2020). In addition to the new taxa, L. tabernensis sp. nov. and X. subbaetense sp. nov., the selected species list was therefore as follows: L. indalus and L. iliturgiensis for L. iliturgiensis-complex, and X. adenohystherum and X. hispanum for X. hispanum-complex. Several nematode populations from natural and agricultural areas were used for some of the selected species (Table 1). All the nematode populations were selected based on the availability of molecular data in order to avoid misidentifications.

2.4.1 | Multivariate morphometric analysis

Overall, 44 and 73 female specimens were used in multivariate morphometric approach for X. hispanum- and L. iliturgiensis-complex, respectively. Species delineation using morphology was conducted with PCA in order to estimate the degree of association among species within the L. iliturgiensis- and X. hispanum-complex (Archidona-Yuste et al., 2016a; Legendre \& Legendre, 2012). PCA was based upon the following morphological characters: L (body length), the ratios a, c, c', d, d', V [(distance from anterior end to vulva/body length) x 100], odontostyle and odontophore length, lip region width and hyaline region length (Table 2, Archidona-Yuste et al., 2016a; Jairajpuri \& Ahmad, 1992). Prior to the statistical analysis, variables were tested for collinearity (Zuur et al., 2010). We used the collinearity test based on the values of the variance inflation factor (VIF) method that iteratively excludes numeric covariates showing VIF values > 10 as suggested by Montgomery and Peck (1992). PCA was performed by a decomposition of the data matrix amongst populations using the principal function implemented in the package 'psych' (Revelle, 2019). We used an orthogonal varimax raw rotation was used to estimate the factor loadings. Only factors with sum of squares (SS) loadings >1 were extracted. All statistical analyses were performed using the R v. 3.5.1 freeware (R_Core_Team, 2019).

2.4.2 Haplotype networks construction and species delimitation analyses

In order to clarify putative molecular species, haplotype network (briefly, haplonet) was constructed to each of the two separate dataset, i.e. the nc D2-D3 region and the mt coxI region. Alignments were converted to the NEXUS format using DnaSP V. 6 (Rozas et al., 2017); TCS networks (Clement et al., 2002) were applied in the program PopART V.1.7 (http://popart.otago.ac.nz). The haplonets obtained from nc marker were converted into haplotype web (briefly, haploweb) by Adobe illustrator to add connecting curves between the haplotypes found co-occurring in heterozygous individuals (Flot et al., 2010).

2.5 | Phylogenetic analysis

Different Longidorus spp. and Xiphinema spp. sequences applied in the present study as genetic markers (28S, 18S, coxI) were obtained from GenBank and used for phylogenetic reconstruction. Outgroup taxa for each dataset were selected based on previous published studies (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2016d). Multiple sequence alignments of the newly obtained and published sequences were made using the FFT-NS-2 algorithm of MAFFT V.7.450 (Katoh et al., 2019). Sequence alignments were visualised with BioEdit (Hall, 1999) and manually edited by Gblocks ver. 0.91 b (Castresana, 2000) in Castresana Laboratory server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html) using options for a less stringent selection (minimum number of sequences for a conserved or a flanking position: 50% of the number of sequences +1 ; maximum number of contiguous non-conserved positions: 8 ; minimum length of a block: 5; allowed gap positions: with half). All alignments used (pre- and post-Gblocks), original tree files, and scripts for phylogenetic analyses are available at Zenodo repository (https://zenodo.org/record/3749246\#.XpMzvZlS-Uk).

Phylogenetic analyses of the sequence datasets were conducted based on Bayesian inference (BI) using MRBAYES 3.2.7a (Ronquist \& Huelsenbeck, 2003) The best-fit model of DNA evolution was calculated with the Akaike information (AIC) of JMODELTEST V.2.1.7 (Darriba et al., 2012). The best-fit model, the base frequency, the proportion of invariable sites, substitution rates and the gamma distribution shape parameters in the AIC were used for phylogenetic analyses. BI analyses were performed under a general time reversible, with a proportion of invariable sites and a rate of variation across sites (GTR $+\mathrm{I}+\mathrm{G}$) model for D2-D3, the partial 18 S rRNA, and the partial coxI gene. These BI analyses were run separately per dataset with four chains for 2×10^{6} generations. The Markov chains were sampled at intervals of 100 generations. Two runs were conducted for each analysis. After discarding burn-in samples of 10% and evaluating convergence, the remaining samples were retained for more in-depth analyses. The topologies were used to generate a 50% majority-rule consensus tree. Posterior probabilities (PP) are given on appropriate clades. Trees from all analyses were edited by FigTree software V.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).

3 |RESULTS

The identification of species boundaries within the Longidorus and Xiphinema genera was based upon the integrative application of morphological, morphometric, and molecular methods to unravel potential cryptic species diversity (Table 1). Species delimitation was carried out using two independent approaches based on morphometric (multivariate analysis) and molecular data using ribosomal and mt sequences (haploweb and haplonet). Multivariate morphometric and haploweb
methods were performed on the studied populations to verify species identifications. The integration of this procedure with the analysis of nematode morphology allowed us to verify Longidorus tabernensis sp. nov. and Xiphinema subbaetense sp. nov. as valid new species within the Longidorus iliturgiensis and Xiphinema hispanum cryptic complexes. Additionally, we maintained a consensus approach for the different species delimitation methods, including concordant results in phylogenetic trees inferred from nc and mt markers and/or different morphological or morphometric characteristics.

3.1 | Species delimitation

3.1.1 | Multivariate morphometric analysis of longidoridae cryptic-complexes

In the principal component analysis (PCA), the first three components (sum of squares (SS) loadings >1) accounted for 64.75% and 70.42% of the total variance in the morphometric characters of the L. iliturgiensis-complex and X. hispanum-complex species, respectively (Table 2). Table 2 includes the SS loadings for the three extracted factors, which were a linear combination of all characters in the analysis. The eigenvectors for each character were used to interpret the biological meaning of the factors. First, in the L. iliturgiensis complex principal component 1 (PC1) was dominated by d (anterior to guiding ring/body diameter at lip region) and d^{\prime} (body diameter at guiding ring/body diameter at lip region) ratios with a high positive weight (eigenvector $=0.44$ and 0.46 , respectively) as well as with similar but negative weight for lip region width, relating this component with the overall lip region shape. PC2 was dominated by high positive weight (eigenvectors $=0.54,0.43$ and 0.56) for body length, and a (body length/maximum body width) and c (body length/tail length) ratios, respectively. Finally, PC3 was mainly dominated by negative positive weights for a and c' ratios (eigenvectors $=-0.54$ and -0.67 , respectively; Table 2). These results suggest that all of the extracted PCs were related to the overall size and shape of nematode populations. In the case of the X. hispanum complex, PC 1 was dominated by positive weights for body and odontostyle length and d ratio (eigenvectors $=0.47,0.46$ and 0.44 , respectively). PC2 was dominated by a positive weight (eigenvector $=0.46$) for the c^{\prime} (tail length/body width at anus) ratio, and high negative weights for the $\mathrm{V}(($ distance from anterior end to vulva/body length $) \times 100)$ ratio and odontophore length (eigenvectors $=-0.51$ and -0.54 , respectively). According to the results, both principal components were related to the overall nematode size and shape as well as stylet length. Finally, PC3 was mainly dominated by a high positive weight for a ratio (eigenvector = 0.58), relating this component with the overall nematode body shape (Table 2).

The results of the PCA for both cryptic complexes were represented graphically in Cartesian plots in which Longidorus and Xiphinema populations were projected on the plane of the x - and y -
axes, respectively, as pairwise combinations of PC1 to 3 (Fig. 1). In the graphic representation of the L. iliturgiensis-complex, the specimens of each species were projected showing a wide distribution for all combinations of components owing to their wide morphometric variation within species and/or populations, which was more pronounced for L. indalus where a high number of populations were considered (Tables 1 and 2). With the exception of the projection on the plane of PC2 and PC3 where specimens of species were randomly situated, a wide spatial separation amongst the three Longidorus species was observed for the remaining pairwise combinations (Fig. 1). This spatial separation was mainly dominated by the PC1 (33.9% of the total of variance) grouping of species according to the position of the guiding ring and lip region width (Table 2). Thus, L. indalus specimens having a posterior guiding ring and narrower lip region were located on the right side, and on the opposite side was L. tabernensis sp. nov., which is characterized by an anterior position of the guiding ring and wider lip region (Fig. 1). However, specimens of L. iliturgiensis were located in the middle part of the plane and randomly grouped with specimens of L. indalus and L. tabernensis sp. nov., having an intermediate position of the guiding ring and a lip region width between these two species (Fig. 1). In the case of the X. hispanum-complex and with few exceptions, specimens and populations of each species were projected close to each other, except for X. subbaetense sp. nov. which showed a wide distribution for all pairwise combinations of components owing to their wide morphometric variation amongst populations (Fig. 1). However, it is necessary to highlight that this fact was not found in the remaining species where only one population was analysed (Tables 1 and 2). According to their relative position along the x -axis (PC1), the odontostyle and body length as well as body width at the guiding ring level increased from left to right, grouping species with a longer odontostyle and body and wider body at the guiding ring level on the right side (Fig. 1). According to their position along the y-axis (PC2), the length of the female tail ($>\mathrm{c}^{\prime}$ ratio) increased, and the position of the vulva and odontophore length decreased from bottom to top along the y-axis. Then, when projected on the plane of PC1 and PC2 (57.71% of the total variance), species with a longer odontostyle, body and female tail, shorter odontophore and an anterior position of the vulva were located on the right-top side, with a clear distinction of X. adenohystherum (Fig. 1). The Xiphinema hispanum population, having a longer female tail, anterior vulva position and shorter odontophore, was located in the top quadrants (above $y=0$), compared to most specimens of X. subbaetense sp. nov., which were located on the bottom quadrant owing their shorter female tail, posterior vulva position and longer odontophore. However, we found some specimens of these species were mixed up given the wide morphometric variation observed for X. subbaetense sp. nov. as stated above (Fig. 1). A similar pattern was observed when projected on the plane of the pairwise combination among PC1 and PC3, where no clear graphic separation of any of the three species studied was observed. Finally, the clearest
graphic separation of X. subbaetense sp. nov. specimens from the remaining species was detected when projected on the plane of PC2 and 3 (37.5% of total variance) with most of the specimens of the new species situated on the left side because of their shorter female tail, posterior vulva position and longer odontophore (PC2; Fig. 1).

3.1.2 | Mitochondrial haplonet and nuclear haploweb

Species delimitation using haplonet methods in L. iliturgiensis-complex species revealed that the $28 S$ rRNA and coxI alignments contained 9 and 18 sequences with five and four different haplotypes, respectively (Table 1, Fig. 2). Moreover, no differences among sequenced individuals were found in nc $28 S$ rRNA sequences for L. tabernensis sp. nov., and in L. indalus and L. iliturgiensis, and only two haplotypes were found differing in 3 nucleotides (Table 1, Fig. 2). For this reason, haploweb was not suitable for analysis and individuals were simply classified as haplogroups. The $28 S$ rRNA and the coxI haplonets agreed with each other indicating that L. tabernensis sp. nov., L. iliturgiensis and L. indalus were clearly differentiated as distinct haplogroups (Fig. 2). With the coxI marker, two haplotypes were found for L. iliturgiensis with 3 nucleotide differences among both haplotypes in each species (Table 1, Fig. 2) and only one haplotype in L. tabernensis sp. nov. (Table 1, Fig. 2). For X. hispanum-complex species, the $28 S$ rRNA and coxI alignments contained 35 and 32 sequences with 18 and 10 different haplotypes, respectively (Table 1, Fig. 2). The TCS haplotype analysis inferred from the nc $28 S$ region showed three well-differentiated haplogroups, corresponding to three different main lineages (clades I-III) (Figure 2). Clades I and III separately consisted of X. adenohystherum and X. hispanum (Fig. 2). The two studied populations from X. subbaetense sp. nov., the Alto Pandera (APP) and Prado Pandera (PPP) populations located at 1800 m a.s.l. and 1352 m a.s.l., respectively, constituted clade II with 11 different haplotypes (Table 1, Fig. 2), and haplotypes from APP and PPP were separated, with 5 haplotypes from APP and 6 from PPP (Table 1, Fig. 2). However, in mt coxI haplonet, only two haplotypes separated by one nucleotide difference were found in X. subbaetense sp. nov., with one haplotype (co-sub1) comprising both populations (APP and PPP), and only one mutated position within these two haplotypes (co-sub1 vs co-sub2), the latter found only in the APP population. Additionally, these two haplotypes did not change the protein amino acid composition. The coxI haplonet resolved X. subbaetense sp. nov., X. hispanum and X. adenohystherum as separate and genetically isolated lineages in accordance with the $28 S$ haploweb, except for a coxI haplotype of X. hispanum (KY816614) (co-his3) from the type locality (419-Andújar), which was far away from the other two haplotypes of X. hispanum (co-his1 and co-his2), belonging to the 419Andújar and AR52-Andújar populations. The 419-Andújar population showed two very different haplotypes (co-his3 and co-his 2). In addition, this sampling point (419-Andújar) showed all four
haplotypes detected for this species with the D2-D3 marker (his1-his4). With coi-his3, the individual of this population had a unique haplotype for the D2D3 marker (his4), but with scarce differences from the other haplotypes. This individual was collected several years ago and, as for the other individuals, all markers came from the same DNA extraction of a single nematode.

3.2 | Systematic description

3.2.1 | Longidorus tabernensis sp. nov.

ZooBank (zoobank.org) identifier: urn:lsid:zoobank.org:act:E465E695-9B4B-4ABF-9EE8494EA5B55B2B
(Figures 3-5, Table 3)

Material examined

Morphometric measurements were taken for 50 individuals, 20 females, 9 males and 21 juveniles from first-stage (J1) to fourth-stage (J4), Table 3.

Holotype

Adult female was collected by A. Archidona-Yuste on March 16, 2019; mounted in pure glycerin and deposited in the nematode collection at Institute for Sustainable Agriculture (IAS) of Spanish National Research Council (CSIC), Córdoba, Spain (Slide number TAB-02).

Type locality

Nematodes were found in the rhizosphere of yellow broom (Retama sphaerocarpa L.) from Tabernas, Almería province, Spain (GPS: $37^{\circ} 07^{\prime} 25.4^{\prime \prime} \mathrm{E} ; 2^{\circ} 21^{\prime} 39.3^{\prime \prime} \mathrm{W}$) at 550 m a.s.l.

Referenced specimens

Female, male and juvenile paratypes were collected from the same soil samples as the holotype; mounted in pure glycerin and deposited in Institute for Sustainable Agriculture (IAS) of Spanish National Research Council (CSIC), Córdoba, Spain (Slide number TAB-03-TAB-06); one female and one male at Istituto per la Protezione delle Piante (IPP) of Consiglio Nazionale delle Ricerche (C.N.R.), Sezione di Bari, Bari, Italy (TAB-07); and one female and one male at the USDA Nematode Collection (P-7359p).

Etymology

The specific epithet refers to the type locality as well as the name of the desert, Tabernas, where the species was detected.

Description

Female

Body moderately long and thin, open C-shape when heated relaxed, slightly tapering towards both ends. Cuticle $2.0 \pm 0.5(1.5-2.5) \mu \mathrm{m}$ thick at mid body, but thicker $(8.9 \pm 0.6(8.0-10.0) \mu \mathrm{m})$ at tail tip. Lip region expanded and rounded, distinctly set off from the rest of body, 5.6 ± 0.3 (4.5-6.0) $\mu \mathrm{m}$ high. Amphidial fovea pouch-shaped with slightly asymmetrical lobes, occupying $2 / 5$ part of distance from oral aperture to guiding ring. Guiding ring single, located 2.3-2.8 times lip region diameter from anterior end. Odontostyle 1.9-2.4 times as long as odontophore; odontophore weakly developed, with slight basal swellings. Pharynx extending to a terminal pharyngeal bulb with dorsal (DN) gland nucleus and ventrosublateral (SVN) gland nuclei separately located at 33.4 ± 2.8 (30.438.6) $\%$ and $54.7 \pm 1.7(52.3-56.8) \%$ of distance from anterior end of pharyngeal bulb, respectively. Basal bulb cylindrical, $58.8 \pm 1.7(55.5-61.0) \mu \mathrm{m}$ long and $12.6 \pm 1.2(11.0-14.0) \mu \mathrm{m}$ in diam. Glandularium 54.1 ± 2.8 (50.0-58.0) $\mu \mathrm{m}$ long. Cardia conoid. Reproductive system with both genital branches almost equally developed with reflexed ovaries, 452.1 ± 55.8 (395.0-532.0) $\mu \mathrm{m}$ long each one. Vulva slit-like, situated at 45.2-48.9\% of body length, vagina 15.4 ± 2.2 (12.517.5) $\mu \mathrm{m}$ long, perpendicular to body axis $c a$ less than half of corresponding body width, surrounded by constrictor muscles. Sperm cells absent in the genital branch from all female specimens examined. Rectum 18.2 ± 1.9 (15.0-20.5) $\mu \mathrm{m}$ long. Tail moderately long, dorsally convex and ventrally flattened conoid, with two or three pairs of caudal pores on each side.

Male

Common, as frequent as female. Morphologically similar to female except for genital system and secondary sexual features. Male genital tract diorchic with testes opposed, containing multiple rows of spermatogonia. Tail dorsally convex-conoid, with thickened ventral outer cuticular layer. Adanal supplements paired, preceded anteriorly by a row of 6-8 irregularly spaced ventromedians supplements. Spicules paired, dorylaimoid, short, 33.4 ± 1.3 (32.0-36.0) $\mu \mathrm{m}$ long and ventrally curved, approximately $0.70-0.74$ times shorter than tail length. Lateral guiding pieces with a curved proximal end.

Juveniles

Four juvenile stages were found and distinguished by relative body lengths, tail shape, odontostyle and replacement odontostyle length. The first-stage juvenile was characterized by a bluntly conoid
tail ($c^{\prime}=2.9,3.0$), ending with a small bulge, and the replacement odontostyle inserted into odontophore base. Morphologically the second-, third- and fourth-juvenile stages were similar to female, except for their shorter body length, immature sexual characteristics (developing genital primordium 15.5-85.5 $\mu \mathrm{m}$ long) and tail shape (Table 3, Fig. 5).

Diagnosis

Longidorus tabernensis sp. nov. is an amphimictic species characterized by a moderate long body (4.3-5.5 mm); lip region rounded distinctly offset by constriction, 9.5-10.5 $\mu \mathrm{m}$ wide and 4.5-6.0 $\mu \mathrm{m}$ high; amphidial fovea slightly asymmetrically bilobed; relatively short odontostyle (60.0-64.5 $\mu \mathrm{m}$); guiding ring located 22.0-28.0 $\mu \mathrm{m}$ from anterior end; vulva located at 45.2-48.9 \% of body length; female tail 42.0-53.0 $\mu \mathrm{m}$ long, dorsally convex and ventrally flattened conoid ($\mathrm{c}^{\prime}=1.8-2.4$), with two or three pairs of caudal pores. Males frequent ($1: 2$ ratio), with very short spicules (32.0-36.0 $\mu \mathrm{m}$) and $1+6-8$ ventromedian supplements. Four developmental juvenile stages were found, the 1 st-stage juvenile showed a conoid tail, ending with a small bulge. According to the polytomous key by Chen et al. (1997), supplement by Loof \& Chen, 1999 and the addition of some characters by Peneva et al. (2013), codes for the new species are (codes in parentheses are exceptions): A2-B1-C2-D4-E3-F23-G3(24)-H6(5)-I2-J1-K6.

Relationships

According to odontostyle and body length, lip region shape, ratios a, cand c^{\prime}, distance of guidingring from anterior body end, amphidial fovea, female and male tail shape and the abundance of males (in this order), L. tabernensis sp. nov. is closely related to L. iliturgiensis Archidona-Yuste et al. (2019a), from which it can only be differentiated by the J1 tail shape (tail digitate for L. tabernensis sp. nov.) and a shorter odontophore (25.5-34.0 vs 29.5-47.5 $\mu \mathrm{m}$ long) (Archidona-Yuste et al., 2019a), which agrees with the hypothesis that both Longidorus spp. may be considered as cryptic species (Fig. 2). Another species found in a close area and morphologically similar to L. tabernensis sp. nov. is L. indalus Archidona-Yuste et al. (2016d); however, the latter can be differentiated by a combination of morphological traits but particularly by a slightly longer odontostyle ($60.0-64.5 \mathrm{vs} 54.0-59.5 \mu \mathrm{~m}$), the common vs rare presence of males and higher number of ventromedian supplements in the male tail (7-9 vs 5) (Archidona-Yuste et al., 2016d). In addition, L. tabernensis sp. nov. is molecularly related to L. alvegus Roca et al. (1989) and L. rubi Tomilin and Romanenko 1993 (Romanenko, 1998). From Longidorus alvegus can be mainly distinguished by a thinner lip region width (9.5-10.0 vs 13.1-17.0 $\mu \mathrm{m}$), and shorter body and odontostyle lengths (4.3-5.5 vs 5.7-7.8 mm, 60.0-64.5 vs 80.0-92.5 $\mu \mathrm{m}$; respectively) than the other species (Gutiérrez-Gutiérrez et al., 2011; Roca et al., 1989). Finally, the new species mainly differs
from L. rubi in having a shorter odontostyle length ($60.0-64.5$ vs $82.0-90.0 \mu \mathrm{~m}$), a shorter spicule length (32.0-36.0 vs $40.0-45.0 \mu \mathrm{~m}$) and a lower number of ventromedian supplements in the male tail (7-9 vs 11-12) than the other species (Gutiérrez-Gutiérrez et al., 2013; Romanenko, 1998).

3.2.2 | Xiphinema subbaetense sp. nov.

ZooBank (zoobank.org) identifier: urn:lsid:zoobank.org:act: 940F9643-68E0-4706-92E8-
5DCF063D18CF
(Figures 5-7, Table 4)

Material examined

Morphometric measurements were taken for 51 individuals, 20 females and 20 juveniles from J1 to J 4 from the type locality at 1800 m a.s.l. (APP population), and 11 females from a pasture in the same locality at 1352 m a.s.l. (PPP population), Table 4.

Holotype

Adult female was collected by R. Cai on June 9, 2019; mounted in pure glycerin and deposited in the nematode collection at Institute for Sustainable Agriculture (IAS) of Spanish National Research Council (CSIC), Córdoba, Spain (Slide number XPAND-02).

Type locality

Nematodes were found in the rhizosphere of asphodel (Asphodelus ramosus L.) at 1800 m a.s.l. from Valdepeñas de Jaén, Jaén province, Spain (GPS: $37^{\circ} 37^{\prime} 56.31^{\prime \prime} \mathrm{N} ; 3^{\circ} 46^{\prime} 24.57^{\prime \prime} \mathrm{W}$).

Referenced specimens

Female and juvenile paratypes were collected from the same soil sample as the holotype; mounted in pure glycerin and deposited in Institute for Sustainable Agriculture (IAS) of Spanish National Research Council (CSIC), Córdoba, Spain (Slide numbers XPAND-03-XPAND-06); one female at Istituto per la Protezione delle Piante (IPP) of Consiglio Nazionale delle Ricerche (C.N.R.), Sezione di Bari, Bari, Italy (XPAND-07); one female at the USDA Nematode Collection (P-7360p).

Etymology

The specific epithet refers to the Latin word Subbaetica, the mountain chain of the Iberian
Peninsula where the species was found, particularly in the highest peak of this mountain range.

Description

Female

Body cylindrical, slightly tapering towards anterior end, in an open C-shape when heat relaxed. Cuticle with fine transverse striae visible in tail region, 3.6 ± 0.4 (3.0-4.0) $\mu \mathrm{m}$ thick at mid body, but thicker just posterior to anus. Lateral cord 19. ± 1.7 (17.0-21.0) $\mu \mathrm{m}$ wide, occupying $c a .25 \%$ of corresponding body diam. Lip region hemispherical, slightly offset from body contour by a depression, $9.4 \pm 1.9(8.0-15.0) \mu \mathrm{m}$ high. Odontostyle moderately long, 1.3-1.6 times longer than odontophore, the latter with well-developed flanges (16.0-18.0 $\mu \mathrm{m}$ wide). Double guiding ring variable in length depending on degree of protraction/retraction of stylet. Pharynx composed by a slender narrow flexible part 304-499 $\mu \mathrm{m}$ long, and a posterior muscular, cylindrical and expanded part with three gland nuclei. Terminal pharyngeal bulb variable in length, 118.5-142.0 $\mu \mathrm{m}$ long and 22.0-35.5 $\mu \mathrm{m}$ wide. Glandularium 110.5-129.5 $\mu \mathrm{m}$ long. DN located at beginning of basal bulb (10.5$41.1 \%$), SVN situated ca halfway along bulb (46.9-59.2\%) (position of gland nuclei calculated as described by Loof \& Coomans, 1968). In some specimens studied, vestigium (tip of reserve odontostyle), $2.5 \mu \mathrm{~m}$ long, observed in anterior region of slender part of pharynx. Cardia conoidrounded and variable in length, 11.5-14.5 $\mu \mathrm{m}$ long. Intestine simple, prerectum variable in size 232$600 \mu \mathrm{~m}$ long. Rectum 31.0-44.5 $\mu \mathrm{m}$ long ending in anus as a small rounded slit. Reproductive system didelphic-amphidelphic with two equally developed branches. Each branch composed of a 120-154 $\mu \mathrm{m}$ long ovary, a reflexed oviduct 103-144 $\mu \mathrm{m}$ long, with well-developed pars dilatata oviductus, a sphincter, a well-developed pars dilatata uteri, and a 208-301 $\mu \mathrm{m}$ long uterus having pseudo Zdifferentiation containing well discernible crystalloid bodies (7.5-10.0 $\mu \mathrm{m}$ long) and spines (Figs. 67); a 27.5-38.0 $\mu \mathrm{m}$ long vagina perpendicular to body axis (having $37-42 \%$ corresponding body diam.), ovejector well-developed 32.5-43.0 $\mu \mathrm{m}$ wide, pars distalis vaginae 18.1 ± 1.7 (16.0-20.0) $\mu \mathrm{m}$ long, and pars proximalis vaginae $14.3 \pm 1.8(12.0-16.0) \mu \mathrm{m}$ long and $14.8 \pm 1.0(13.5-15.5) \mu \mathrm{m}$ wide, and vulva a transverse slit. Tail short, broadly convex-conoid, dorso-ventrally convex and bearing 2 caudal pores, ending in a rounded and broad terminus.

Male

Not detected.

Juveniles

Four developmental juvenile stages were detected and distinguished by relative body length, odontostyle and replacement odontostyle length (Fig. 5). Morphologically similar to female, except for their size and sexual characteristics (Fig. 7). The first-stage juvenile was characterized by the replacement odontostyle inserted into odontophore base and tail elongate-conoid with characteristic subdigitate rounded terminus (c^{\prime} ratio 2.6-3.1). Tail of developmental stages becoming progressively shorter and wider after each moult.

Diagnosis

Xiphinema subbaetense sp. nov. is an apparently parthenogenetic species belonging to morphospecies Group 5 from the Xiphinema non-americanum-group species (Loof \& Luc, 1990). It is characterized by a moderate long body ($4.0-4.7 \mathrm{~mm}$), assuming an open C-shaped when heatrelaxed; lip region hemispherical, separate from the body contour by a depression, 15.5-19.5 $\mu \mathrm{m}$ wide; a relatively long odontostyle 121.5-138.0 $\mu \mathrm{m}$; vulva located at 49-54\% of body length; female reproductive system didelphic-amphidelphic having both branches about equally developed, pseudo Z-differentiation containing almost 4-5 granular bodies, uterus tripartite with small crystalloid bodies and spines in low number, and presence of prominent wrinkles in the uterine wall that may be confused with spiniform structures; female tail short and broadly convex-conoid, dorsoventrally convex and bearing 2 caudal pores; c' ratio ($0.6-0.9$); males not found. Four developmental juvenile stages were identified, the 1st-stage juvenile with tail elongate-conoid with characteristic subdigitate rounded terminus (c^{\prime} ratio 2.6-3.1). According to the polytomous key of (Loof \& Luc, 1990) and the updating of (Peraza-Padilla et al., 2018), codes for the new species are (codes in parentheses are exceptions): A4-B23-C6-D6-E6(5)-F4(5)-G3-H2-I3-J6-K2-L1.

Relationships

Morphologically and according to the polytomous key by Loof \& Luc (1990) and matrix codes reported by Peraza-Padilla et al. (2018): A (type of female genital apparatus), C (tail shape), D (c' ratio), E (vulva position), F (body length), and G (total stylet length), X. subbaetense sp. nov. is closely related to X. hispanum Lamberti et al., 1992, X. adenohystherum Lamberti et al., 1992, X. sphaerocephalum Lamberti et al., 1992 and X. cohni Lamberti et al., 1992. Xiphinema subbaetense sp. nov. is morphologically almost undistinguishable from X. hispanum, from which it differs in J1 tail shape (elongate-conoid with characteristic subdigitate rounded terminus vs elongate-conoid without terminal swelling), and female tail shape (broadly convex-conoid with rounded tip vs conoid with a central bulge); however, it can be clearly differentiated by the specific molecular markers 28S, ITS1 rRNA and coxI sequences. Xiphinema subbaetense sp. nov. can be differentiated from X. adenohystherum by its shorter odontostyle (121.5-138.0 vs 143.0-152.0 $\mu \mathrm{m}$), longer tail (30.0-41.5 vs 29.0-35.0 $\mu \mathrm{m}$), a wider lip region (15.5-18.5 vs 13.0-15.0 $\mu \mathrm{m}$), and slightly lower a ratio (49.0-64.3 vs 65.2-73.3). It can be differentiated from X. sphaerocephalum by its shorter odontostyle (121.5-138.0 vs 143.5-168.0 $\mu \mathrm{m}$), shorter oral aperture-guiding ring distance (106.5131.5 vs 126.0-162.0 $\mu \mathrm{m}$), and the absence of males. Finally, X. subbaetense sp. nov. can be differentiated from X. cohni by its shorter odontostyle (121.5-138.0 vs $149-174 \mu \mathrm{~m}$), shorter oral aperture-guiding ring distance (106.5-131.5 vs 137.0-161.0 $\mu \mathrm{m}$), slightly shorter tail (30.0-41.5 vs
36.5-48.0 $\mu \mathrm{m}$), and slightly higher c ratio (101.9-139.4 vs 82.6-115.2) than those of X. cohni. Although some morphometric differences were detected between APP and PPP populations, in body and odontostyle length ($4.0-4.7 \mathrm{~mm}, 121.5-138.0 \mu \mathrm{~m}$ vs $4.6-5.3 \mathrm{~mm}, 138.0-149.5 \mu \mathrm{~m}$, respectively), no significant molecular differences were detected among both populations for the coxI marker and only a few molecular differences were found for marker D2-D3.
In addition, X. subbaetense sp. nov. is molecularly related to X. celtiense Archidona-Yuste et al. (2016c), but it can be clearly differentiated by its shorter body length (4.0-4.7 vs $4.7-5.5 \mathrm{~mm}$), shorter odontostyle and odontophore length (121.5-138.0 vs 145.0-167.0 $\mu \mathrm{m}, 82.0-92.0$ vs $89.0-$ $103.0 \mu \mathrm{~m}$, respectively), slightly wider lip region (15.5-18.5 vs 13.5-16.0 $\mu \mathrm{m}$), shorter oral apertureguiding ring distance (106.5-131.5 vs 132.0-155.0 $\mu \mathrm{m}$), pseudo-Z-differentiation containing almost $4-5$ granular bodies vs 15 , lower a ratio (49.0-63.4 vs 67.4-81.0), than those of X. celtiense as well as the lack of males in the new species (absent vs present).

3.3 | Molecular characterisation of Longidorus tabernensis sp. nov. and

Xiphinema subbaetense sp. nov.

The amplification of D2-D3 expansion domains of $28 S$ rRNA, partial $18 S$ rRNA, ITS1 rRNA and partial coxI regions yielded single fragments of ca $900 \mathrm{bp}, 1800 \mathrm{bp}, 1100 \mathrm{bp}$ and 500 bp , respectively, based on gel electrophoresis, and after discarding primer sequences and ambiguously aligned regions from the alignment. Sequences from L. tabernensis sp. nov. and X. subbaetense sp . nov. obtained in this study, and from other species of Longidorus and Xiphinema collected from GenBank were used for further phylogenetic analyses. The low similarity of the ITS1 region and low coverage from L. tabernensis sp. nov. and X. subbaetense sp. nov. and the rest of ITS1 sequences deposited in GenBank made impossible to perform phylogenetic analyses for this molecular marker.

The DNA sequences of D2-D3 expansion domains of 28S, 18 S rRNA, ITS1 rRNA and partial coxI for L. tabernensis sp. nov. were deposited in GenBank under the accession numbers MK941194-MK941197, MK941261, MK941256-MK941257 and MK937587-MK937588, respectively. The D2-D3 expansion domains of 28S for L. tabernensis sp. nov. (MK941194MK941197) differed from the closest related species, L. iliturgiensis (MH430012) by 18 different nucleotides and 0 indels (98% similarity), from L. rubi (JX445116) by 39 different nucleotides and 4 indels (95% similarity), and from L. indalus (KT308853) by 62 different nucleotides and 5 indels (91% similarity). The ITS1 of L. tabernensis sp. nov. (MK941256, MK941257) showed a low intraspecific variability within this population with only one different nucleotide, 0 indel (99% similarity), and the closest species was L. iliturgiensis (MH429988, 79\% similarity, 196 different nucleotides, 112 indels). The partial 18 S sequence of L. tabernensis sp. nov. (MK941261) showed a
high level of similarity with several Longidorus species, such as L. elongatus (EU503141), L. uroshis (EF538760), and L. piceicola (AY687993), and to a lesser extent L. indalus (KT308894), by 6 nucleotides and 0 indels (99% similarity). Finally, the partial coxI sequences of L. tabernensis sp. nov. (MK937587-MK937588, MT040266-MT040270) showed low intraspecific variability within this population with 1-4 different nucleotides and 1 indel (99.7-98.9\% similarity), and the closest species were L. iliturgiensis, L. cretensis, L. pseudoelongatus, and L. indalus, differing in $78,83,86$, and 96 nucleotides, 0 to 2 indels, and showing $76,78,77$, and 74% similarity, respectively.

The DNA sequences of D2-D3 expansion domains of 28S, 18 S rRNA, ITS1 rRNA and partial coxI for X. subbaetense sp. nov. were deposited in GenBank under the accession numbers MT039104-MT039124, MT039135-MT039140, MT026293-MT026295 and MT040280MT040300, respectively. The D2-D3 expansion domains of $28 S$ (MT039104-MT039124) showed a low intraspecific variability with 2-8 different nucleotides and 0 indels (99% similarity). The molecular diversity of this marker within APP (5-7 nucleotides, 0 indels) and PPP (1-2 nucleotides, 0 indels) populations was similar to that detected between APP and PPP populations (2-8 nucleotides, 0 indels). Also, differed from the closest related species, X. hispanum (KX244905, MT039125-MT039134) by 22-25 different nucleotides and 1-3 indels (97% similarity), and from X. adenohystherum (KC567164, KX244898, GU725075, KX244897) by 23-24 different nucleotides and 2 indels (97% similarity). The ITS1 of X. subbaetense sp. nov. (MT026293-MT026295) showed moderate intraspecific variability within this population with only 14-37 different nucleotides and 4-19 indels ($98-97 \%$ similarity), and the closest related species were X. hispanum (GU725061, 88\% similarity, 131 different nucleotides, 25 indels), and X. adenohystherum (GU725063, 87\% similarity, 138 different nucleotides, 39 indels). No intraspecific variability was found in partial $18 S$ rRNA sequences of X. subbaetense sp. nov. (MT039135-MT039140) and a high level of similarity (99% similarity)was found with several Xiphinema species, such as X. celtiense (KX244943), X. pyrenaicum (GU725085) and X. vuittenezi (AY552979). Finally, the partial coxI sequences of X. subbaetense sp. nov. (MT040280-MT040300) showed low intraspecific variability with 1-5 different nucleotides and 0 indels ($99-98 \%$ similarity). The molecular diversity of this marker within APP (1 nucleotide, 0 indels) and PPP (5 nucleotides, 0 indels) populations was similar to that detected between APP and PPP populations (1-5 nucleotides, 0 indels). Additionally, the closest species were X. vuittenezi, X. hispidum and X. celtiense, showing similarity values of 83% with all of them (from 57 to 65 nucleotides and 0 to 6 indels).

3.4 | Phylogenetic relationships

The phylogenetic relationships among Longidorus and Xiphinema species inferred from analyses of D2-D3 expansion domains of $28 S$ rRNA gene sequences using BI are given in Figs. 8, 9. The D2-D3 tree of Longidorus spp. based on a multiple edited alignment including 116 sequences and 742 total characters revealed four highly supported major clades (marked with roman numerals from I to IV) (Fig. 8). Clade I is well-supported ($\mathrm{PP}=1.0$), including 39 species. The majority of these species were from the Iberian Peninsula and shared a short hemispherical to bluntly conoid tail ($c^{\prime}=1.0$), and the lip region anteriorly rounded, continuous or slightly depressed from body contour, except for a well-supported subclade ($\mathrm{PP}=1.00$) including L. tabernensis sp. nov. (MK941194-MK941197), L. iliturgiensis and L. alvegus, with a rounded lip region distinctly offset by a constriction, and a long dorsally convex and ventrally flattened conoid female tail ($c^{\prime}=1.8-2.9$) (Fig. 8). The D2-D3 tree of Xiphinema spp. based on a multiple edited alignment including 102 sequences and 752 total characters showed two clearly separate clades (Fig. 9). Clade I was well supported ($\mathrm{PP}=1.00$), including 43 species from all morphospecies groups, half of them belonging to morphospecies Group 5, and the majority of these species were reported from the Iberian Peninsula and included X. subbaetense sp. nov. (MT039104-MT039124) but also other species belonging to morphospecies Group 1 (X. brasiliense, X. chambersi, X. hangzhouense, X. hunaniense, X. naturale), Group 2 (X. costaricense), Group 3 (X. poasense), Group 4 (X. ifacolum, X. oleae), Group 6 (X. afratakhtehnsis, X. azarbaijanensis, X. robbinsi, X. zagrosense), Group 7 (X. barense, X. elongatum, X. insigne, X. israeliae, X. italiae, X. lupini, X. savanicola, X. setariae), and Group 8 (X. granatum, X. vuittenezi) (Fig. 9). Morphospecies groups were based on the structural diversity of the female reproductive system and female tail shape (Loof \& Luc, 1990). Xiphinema subbaetense sp. nov. (MT039104MT039124) occupies a superior position within clade I clustering with X. hispanum, X. celtiense, X. cohni and X. histriae (Fig. 9) in a well-supported subclade ($\mathrm{PP}=0.99$). Clade II was also well supported $(\mathrm{PP}=0.99)$, including 21 species belonging mostly to morphospecies Group 5 , except for X. bakeri, and X. index which belonged to Groups 7, and 8, respectively (Fig. 9).

The phylogenetic relationships among Longidorus and Xiphinema species inferred from analyses of partial 18 S rRNA gene sequences using BI are given in Figs. 10, 11. Based on the 50% majority rule consensus of Longidorus spp., the BI tree based on a multiple edited alignment including 83 sequences and 1728 total characters showed several major clades (Fig. 10). Longidorus tabernensis sp. nov. (MK941261) clustered with L. iliturgiensis (MH430002) and L. kheiri (EU503142) in a low supported subclade (Fig. 10). The partial $18 S$ rRNA tree of Xiphinema spp. based on a multiple edited alignment including 61 sequences and 1676 total characters also showed several major clades (Fig. 11). Xiphinema subbaetense sp. nov. (MT039135-MT039140) clustered with X. hispanum and X. adenohystherum, and other species from morphospecies Group 5 (Fig. 11).

Finally, the phylogenetic relationships among Longidorus and Xiphinema species inferred from analyses of partial coxI gene sequences using BI are given in Figs. 12, 13. The coxI region of Longidorus spp. using a multiple alignment of 108 sequences and 289 characters showed several clades that were not well defined, and L. tabernensis sp. nov. (MK937587-937588, MT040266MT040270) clustered with L. laevicapitatus (MH430002) in a well-supported clade ($\mathrm{PP}=0.90$), and clearly separated from L. iliturgiensis (MH454065, MT040271-MT040275) and L. indalus (KY816675, MT040276-MT040279) in different subclades (Fig. 12). Similarly, the coxI region of Xiphinema spp. using a multiple alignment of 82 sequences and 338 characters showed several clades that were not well defined (Fig. 13). Xiphinema subbaetense sp. nov. (MT039104MT039124) clustered with X. hispanum (KY816614, Mt040301-MT040305), X. adenohystherum (KY816588-KY816592), and other species from morphospecies Group 5 (Fig. 13).

4 | DISCUSSION

This study aimed to obtain knowledge and a better understanding of the presence of cryptic species complexes within the genera Longidorus and Xiphinema, assessing the potential of using diagnostic morphological, allometric, and molecular markers to differentiate species within the L. iliturgiensisand X. hispanum-species complexes. In fact, we have described here two new species, Longidorus tabernensis sp. nov. and Xiphinema subbaetense sp. nov. during additional surveys in natural environments in southern Spain which closely resembled to the morphological features describing L. iliturgiensis and X. hispanumspecies complexes. There are few distinguishing features that can identify each of the new species, such as the J 1 tail shape in X. subbaetense sp. nov. vs X. hispanum, as well as in L. tabernensis sp. nov. vs L. iliturgiensis (tail digitate for L. tabernensis sp. nov.). This supports the concept that juvenile stages, particularly J1s of Dorylaimida, including Longidoridae, have a decisive practical significance when distinguishing closely related species (Hunt, 1993). . Multivariate morphometric analyses have proven to be useful tools for species delimitation within the genera Longidorus and Xiphinema (Archidona-Yuste et al., 2019a; Archidona-Yuste et al., 2016c; Archidona-Yuste et al., 2016d). The results of the multivariate analysis identified the overall lip region shape described by the position of the guiding ring and lip region width as key morphometric characters to differentiate some closely related species (L. iliturgiensis, L. indalus and L. tabernensis sp. nov.) within L. iliturgiensis-complex (Table 2). This result is in agreement with the taxonomic statement describing the position of the guiding ring as fundamental feature in combination with lip region shape in the identifying species within the genus Longidorus (Archidona-Yuste et al., 2016d; Loof \& Luc, 1990; Loof et al., 1996). Although some specimens for some species, such as L. iliturgiensis share similar values for most of the morphological characters with the remaining species included in this study, multivariate analysis allowed us to
differentiate species within this cryptic complex using a discrete number of characters (Table 2, Fig. 1). Indeed, specimens of L. tabernensis sp. nov. and L. indalus form two clearly distinct groups and those of L. iliturgiensis are located in an intermediate position, supporting the naming of this complex group through this species (Fig. 1). On the other hand, multivariate principal component analysis revealed body and stylet length as well as the position of the vulva and female tail shape as key morphometric features for species delimitation within closely related species (X. hispanum, X. adenohystherum and X. subbaetense sp. nov.) of the X. hispanum-complex (Table 2). As in the L. iliturgiensis-complex but even more evident, some specimens, particularly X. subbaetense sp. nov. showed values outside the overall mean value of the species for some morphometric characters, making their accurate identification difficult and suggesting membership to another different species. In fact, some morphometric characteristics and ratios apparently showed significant differences between APP and PPP individuals of X. subbaetense sp. nov. (viz. body and odontostyle length, Table 4). However, multivariate analysis also supports the idea of a unique species clearly separated from X. adenohystherum (Fig. 1). It is relevant to point out that X. hispanum and X. subbaetense sp. nov. could resemble the same species given the wide morphometric variation in some characters observed in the new taxa as stated above. However, surprisingly and based on this statistical analysis, specimens of both species formed two distinct groups (particularly when using PC2 and 3, Fig. 1), delimiting both species when a combination of morphometric characters was used (Table 2). However, some specimens showed values outside the overall mean value of the species for some morphometric characters, making their accurate identification difficult and suggesting membership to another different species.

In this regard, the haplonet results of L. iliturgiensis-complex species clearly separated L. tabernensis sp. nov. from L. iliturgiensis and L. indalus. Similarly, the haploweb analysis of the X. hispanum complex, showed that X. subbaetense. nov. is a unique and separate species from X. hispanum and X. adenohystherum. Consequently, the important differences found in the morphometric analysis between APP vs PPP populations of X. subbaetense. nov. in body and odontostyle length (4.0-4.7 mm, 121.5-138.0 $\mu \mathrm{m}$ vs $4.6-5.3 \mathrm{~mm}, 138.0-149.5 \mu \mathrm{~m}$, respectively) must be considered intraspecific variation of the species and populations. There was not a link between the morphometric differences and molecular differences within these X. subbaetense sp . nov. populations using the molecular markers coxI and D2-D3. The APP sampling point for X. subbaetense sp. nov. at 1800 m . a.s.l. seems to be a more restrictive habitat for nematode survival during the winter with respect to the PPP sampling point at 1352 m a.s.l. because of low temperatures, in addition, there are differences in the vegetation between these sites, with the former composed mainly of asphodel and the latter composed mainly of graminaceous grasses. To date, nematodes of the family Longidoridae have shown higher diversity for coxI marker than
ribosomal markers (Palomares-Rius et al., 2017b). In some species of this family, even the coxI marker displayed a similarity lower than 90% (Palomares-Rius et al., 2017b), and in the case of Longidorus orientalis Loof (1982), this high variability (15.5% intraspecific coxI variability, only 1% intraspecific amino acid variation) was not associated with ribosomal variability (Subbotin et al., 2015). Surprisingly, for the L. iliturgiensis complex and X. hispanum complex, the variability of $28 S$ rRNA was higher than that of mtDNA, even using direct sequencing of the PCR product, in which the sequence obtained was the majority among the different copies of the rRNA gene array in the genome (Bik et al., 2013). This was also found when the ITS1 region was used, even with the few sequences obtained for this study. We found a similar scenario in X. hispanum, with four haplotypes for 28 S rRNA and two haplotypes for coxI. On the other hand, some PPNs do not have a unique major copy of the ribosomal genes in their genome, as is the case in the genus Rotylenchulus (Palomares-Rius et al., 2018; Van Den Berg et al., 2016). In this study, the $28 S$ rRNA haplotypes were specific to each sampling point, and they were not shared among sites for this marker. However, this is not the same for the coxI marker, in which the same haplotype was shared between the APP and PPP sampling sites. A similar situation of high intraspecific and intrapopulation diversities has been found in Cephalenchus spp., in which the variation of rRNA surpassed the mt gene coxI using a clone sequencing strategy per individual (Pereira \& Baldwin, 2016). Pereira \& Baldwin (2016) suggested that the high levels of intraspecific polymorphism could be mostly due to intragenomic variation with functional rRNA copies, and this variability was suggested by the potential cross-fertilization in some Cephalenchus spp. Recently, another paper by Qing et al. (2020) found that levels of variation varied widely across rRNA loci and species in a wide study across 30 terrestrial nematode species, with some taxa observed to lack rRNA polymorphism entirely. In our case, direct PCR sequencing could lead to sequencing of the major haplotype for each individual, which, with our data, seems to be different for some individuals in each population. However, we did not use several clones per individual to sequence this region and the intragenomic variability was not determined. Additionally of cross-fertilization in some species, the distribution of rRNA gene arrays in different regions of the genome can also affect the ability of concerted evolution if they are found in different chromosomes (Fenton et al., 1998; Keller et al., 2006). In the case of Caenorhabditis elegans, rRNA repeat numbers are all in chromosome 1 and could vary from 56 to 32, as estimated by Bik et al. (2013).

The differential haplotype diversity detected between the two longidorid populations of the L. iliturgiensis and X. hispanum complexes prompted us to perform a species separation analysis based on the $28 S$ rRNA and coxI markers. In our case, for the L. iliturgiensis complex, all species had good congruence between the taxonomy applied for this group and the species separation analyses obtained. Similarly, in the X. hispanum complex, the presence of only one haplotype for coxI shared

This research was supported by grant 201740E042 "Análisis de diversidad molecular, barcoding, y relaciones filogenéticas de nematodos fitoparásitos en cultivos mediterráneos" from the Spanish National Research Council (C.S.I.C.) and by the Humboldt Research Fellowship for Postdoctoral Researchers awarded for the second author.

We would like to thanks J. Martin Barbarroja and G. León Ropero (IAS-CSIC) for their excellent technical assistance in surveys and management of soil samples, and further anonymous reviewers and editors for their effort in reviewing the manuscript and helping improve this study. The first author acknowledges the China Scholarship Council (CSC) for financial support. The second author is a recipient of Humboldt Research Fellowship for Postdoctoral Researchers at Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. The fourth author acknowledges Spanish Ministry of Economy and Competitiveness for the "Ramon y Cajal" Fellowship RYC-2017-22228.

AUTHOR CONTRIBUTIONS

AAY, JEPR, and PC conceived the ideas and designed methodology; RC, AAY, CCN, JEPR, and PC collected the data; RC, AAY, JEPR, and PC analysed the data; RC, AAY, CCN, JEPR, and PC led the writing of the manuscript. All authors contributed to the final discussion data, and read and approved the final manuscript.

ORCID

Antonio Archidona-Yuste https://orcid.org/0000-0002-8113-7687
Juan Emilio Palomares-Rius https://orcid.org/0000-0003-1776-8131
Pablo Castillo https://orcid.org/0000-0003-0256-876X

REFERENCES

Archidona-Yuste, A., Cantalapiedra-Navarrete, C., Castillo, P., \& Palomares-Rius J. E. (2019a). Molecular phylogenetic analysis and comparative morphology reveals the diversity and distribution of needle nematodes of the genus Longidorus (Dorylaimida: Longidoridae) from Spain. Contributions to Zoology 88, 1-41. doi.org/10.1163/18759866-20191345
Archidona-Yuste, A., Navas-Cortés, J.A., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E., \& Castillo, P. (2016a). Cryptic diversity and species delimitation in the Xiphinema americanumgroup complex (Nematoda: Longidoridae) as inferred from morphometrics and molecular markers. Zoological Journal of the Linnean Society 176, 231-265. doi.org/10.1111/zoj. 12316
Archidona-Yuste, A., Navas-Cortés, J. A., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E., \& Castillo, P. (2016b). Molecular phylogenetic analysis and comparative morphology resolve two new species of olive-tree soil related dagger nematodes of the genus Xiphinema (Dorylaimida: Longidoridae) from Spain. Invertebrate Systematics 30, 547-565. doi.org/10.1071/IS16002
Archidona-Yuste, A., Navas-Cortés, J. A., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E., \& Castillo, P. (2016c). Remarkable diversity and prevalence of dagger nematodes of the genus Xiphinema Cobb, 1913 (Nematoda: Longidoridae) in olives revealed by integrative approaches. PLOS ONE 11, e0165412. doi.org/10.1371/journal.pone. 0165412
Archidona-Yuste, A., Navas-Cortés, J. A., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E., \& Castillo, P. (2016d). Unravelling the biodiversity and molecular phylogeny of needle nematodes of the genus Longidorus (Nematoda: Longidoridae) in olive and a description of six new species. PLOS ONE 11, e0147689. doi.org/10.1371/journal.pone. 0147689

Archidona-Yuste, A., Wiegand, T., Castillo, P., \& Navas-Cortés, J. A. (2019b). Dataset on the diversity of plant-parasitic nematodes in cultivated olive trees in southern Spain. Data in Brief 27, 104658. doi.org/10.1016/j.dib.2019.104658
Archidona-Yuste, A., Wiegand, T., Castillo, P., \& Navas-Cortés, J. A. (2020). Spatial structure and soil properties shape local community structure of plant-parasitic nematodes in cultivated olive trees in southern Spain. Agriculture, Ecosystems \& Environment 287, 106688. doi.org/10.1016/j.agee.2019.106688
Bärmann, E. V., Wronski, T., Lerp, H., Azanza, B., Börner, S., Erpenbeck, D., Rössner, G. E., \& Wörheide, G. (2013). A morphometric and genetic framework for the genus Gazella de Blainville, 1816 (Ruminantia: Bovidae) with special focus on Arabian and Levantine mountain gazelles. Zoological Journal of the Linnean Society 169, 673-696. doi.org/10.1111/zoj. 12066

Barnes, A. D., Jochum, M., Lefcheck, J. S., Eisenhauer, N., Scherber, C., O’Connor, M. I., de Ruiter, P., \& Brose, U. (2018). Energy Flux: The Link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology \& Evolution 33, 186-197. doi.org/10.1016/j.tree.2017.12.007
Baujard, P., Luc, M., \& Loof, P. A. A. (1996). Xiphinema pyrenaicum Dalmasso, 1964 and its synonyms (Nematoda: Longidoridae). Fundamental and Applied Nematology 19, 293-296.
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., \& Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology \& Evolution 22, 148-155. doi.org/10.1016/j.tree.2006.11.004
Bik, H. M., Fournier, D., Sung, W., Bergeron, R. D., \& Thomas, W. K. (2013). Intra-genomic variation in the ribosomal repeats of nematodes. PLOS ONE 8, e78230. doi.org/10.1371/journal.pone. 0078230
Cai, R., Archidona-Yuste, A., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E., \& Castillo, P. (2020). Integrative descriptions and molecular phylogeny of two new needle nematodes of the genus Longidorus (Nematoda: Longidoridae) from Spain. European Journal of Plant Pathology 156, 67-86. doi.org/10.1007/s10658-019-01862-4
Cai, R., Archidona-Yuste, A., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E., Zheng, J., \& Castillo, P. (2019). Integrative taxonomy of Xiphinema histriae and Xiphinema lapidosum from Spain. Journal of Nematology 51, e2019-2037. doi: 10.21307/jofnem-2019-037
Cameron, E. K., Martins, I. S., Lavelle, P., Mathieu, J., Tedersoo, L., Gottschall, F., Guerra, C. A., Hines, J., Patoine, G., Siebert, J., Winter, M., Cesarz, S., Delgado-Baquerizo, M., Ferlian, O., Fierer, N., Kreft, H., Lovejoy, T. E., Montanarella, L., Orgiazzi, A., Pereira, H. M., Phillips, H. R. P., Settele, J., Wall, D. H., \& Eisenhauer, N. (2018). Global gaps in soil biodiversity data. Nature Ecology \& Evolution 2, 1042-1043. doi.org/10.1038/s41559-018-0573-8
Cantalapiedra-Navarrete, C., Navas-Cortés, J. A., Liébanas, G., Vovlas, N., Subbotin, S. A., Palomares-Rius, J.E., \& Castillo, P. (2013). Comparative molecular and morphological characterisations in the nematode genus Rotylenchus: Rotylenchus paravitis n . sp., an example of cryptic speciation. Zoologischer Anzeiger - A Journal of Comparative Zoology 252, 246268. doi.org/10.1016/j.jcz.2012.08.002

Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution 17, 540-552. doi:10.1093/oxfordjournals.molbev.a026334
Chen, Q. W., Hooper, D. J., Loof, P. A. A., \& Xu, J. (1997). A revised polytomous key for the identification of species of the genus Longidorus Micoletzky, 1922 (Nematoda: Dorylaimoidea). Fundamental and Applied Nematology 20, 15-28.

Cherry, T., Szalanski, A. L., Todd, T. C., \& Powers, T. O. (1997). The internal transcribed spacer region of Belonolaimus (Nemata: Belonolaimidae). Journal of Nematology 29, 23-29.

Cho, M. R., \& Robbins, R. T. (1991). Morphological variation among 23 Xiphinema americanum populations. Journal of Nematology 23, 134-144.
Clement, M., Snell, Q., Walker, P., Posada, D., \& Crandall, K. (2002). TCS: Estimating gene genealogies. 6th, International parallel and distributed processing symposium. Fort Lauderdale, FL: IEEE Computer Society, 184.
Cobb, N. A. (1913). New nematode genera found inhabiting fresh water and non-brackish soils. Journal of the Washington Academy of Sciences 3, 432-444.
Coomans, A. (1996). Phylogeny of the Longidoridae. Russian Journal of Nematology 4, 51-60.
Coomans, A., Huys, R., Heyns, J., \& Luc, M. (2001). Character analysis, phylogeny, and biogeography of the genus Xiphinema Cobb, 1973 (Nematoda, Longidoridae). Vol. 287, Annales du Musée Royal de l'Afrique Centrale (Zoologie), Tervuren, Belgique.
Darriba, D., Taboada, G. L., Doallo, R., \& Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772. doi:10.1038/nmeth. 2109

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407-415. doi.org/10.1111/j.1095-8312.2005.00503.x
De Grisse, A. T. (1969). Redescription ou modification de quelques techniques utilisées dans l'étude des nématodes phytoparasitaires. Mededelingen Rijksfakulteit Landbouwwetenschappen 34, 351.
De Ley, P., Felix, M. A., Frisse, L. A., Nadler, S., Sternberg, P., \& Thomas, W. (1999). Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1, 591-612. doi.org/10.1163/156854199508559
Decaëns, T. (2010). Macroecological patterns in soil communities. Global Ecology and Biogeography 19, 287-302. doi.org/10.1111/j.1466-8238.2009.00517.x
Decraemer, W., \& Robbins, R. T. (2007). The Who, What and where of Longidoridae and Trichodoridae. Journal of Nematology 39, 295-297.
Fenton, B., Malloch, G., \& Germa, F. (1998). A study of variation in rDNA ITS regions shows that two haplotypes coexist within a single aphid genome. Genome 41, 337-345. doi.org/10.1139/g98-030
Flegg, J. J. M. (1967). Extraction of Xiphinema and Longidorus species from soil by a modification of Coob's decanting and sieving technique. Annals of Applied Biology 60, 429-437.
Flot, J. F., Couloux, A., \& Tillier, S. (2010). Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus

Pocillopora in Clipperton. BMC Evolutionary Biology 10, 372. doi.org/10.1186/1471-2148-10-372

Fouladvand, Z. M., Pourjam, E., Castillo, P., \& Pedram, M. (2019). Genetic diversity, and description of a new dagger nematode, Xiphinema afratakhtehnsis sp. nov., (Dorylaimida: Longidoridae) in natural forests of southeastern Gorgan, northern Iran. PLOS ONE 14, e0214147. doi.org/10.1371/journal.pone. 0214147

Gutiérrez-Gutiérrez, C., Cantalapiedra-Navarrete, C., Montes Borrego, M., Palomares-Rius, J. E., \& Castillo, P. (2013). Molecular phylogeny of the nematode genus Longidorus (Nematoda: Longidoridae) with description of three new species. Zoological Journal of the Linnean Society 167, 473-500. doi:10.1111/zoj. 12019
Gutiérrez-Gutiérrez, C., Palomares-Rius, J. E., Cantalapiedra-Navarrete, C., Landa, B. B., Esmenjaud, D., \& Castillo, P. (2010). Molecular analysis and comparative morphology to resolve a complex of cryptic Xiphinema species. Zoologica Scripta 39, 483-498. doi.org/10.1111/j.1463-6409.2010.00437.x

Gutiérrez-Gutiérrez, C., Palomares-Rius, J., Cantalapiedra-Navarrete, C., Landa, B. B., \& Castillo, P. (2011). Prevalence, polyphasic identification, and molecular phylogeny of dagger and needle nematodes infesting vineyards in southern Spain. European Journal of Plant Pathology 129, 427-453. doi:10.1007/s 10658-010-9705-y
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41, 95-98.
He, Y., Subbotin, S. A., Rubtsova, T. V., Lamberti, F., Brown, D. J. F., \& Moens, M. (2005). A molecular phylogenetic approach to Longidoridae (Nematoda: Dorylaimida). Nematology 7, 111-124. doi:10.1163/1568541054192108

Hebert, P. D. N., Ratnasingham, S., de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, S96-S99. doi: 10.1098/rsbl.2003.0025
Holterman, M., Van Der Wurff, A., Van Den Elsen, S., Van Megen, H., Bongers, T., Holovachov, O., Bakker, J., \& Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Phylogenetic Evolution 23, 1792-1800. doi:10.1093/molbev/ms1044
Hunt, D. J. (1993). Aphelenchida, Longidoridae and Trichodoridae: Their Systematics and Bionomics. CAB International.

Jairajpuri, M.S., \& Ahmad, W. (1992). Dorylaimida: Free-Living, Predaceous and Plant-Parasitic Nematodes. New Delhi; Oxford: IBH Publishing Co.

Jörger, K. M., \& Schrödl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10, 59. doi.org/10.1186/1742-9994-10-59
Katoh, K., Rozewicki, J., \& Yamada, K.D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160-1166. doi: 10.1093/bib/bbx108

Keller, I., Chintauan-Marquier, I. C., Veltsos, P., \& Nichols, R. A. (2006). Ribosomal DNA in the grasshopper Podisma pedestris: escape from concerted evolution. Genetics 174, 863-874. doi: 10.1534/genetics.106.061341

Kuta, E., Jędrzejczyk-Korycińska, M., Cieślak, E., Rostański, A., Szczepaniak, M., Migdałek, G., Wąsowicz, P., Suda, J., Combik, M., \& Słomka, A. (2014). Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content. Plant Biology 16, 924-934. doi.org/10.1111/plb. 12143
Lajus, D., Sukhikh, N., \& Alekseev, V. (2015). Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex. Ecology and Evolution 5, 2374-2385. doi:10.1002/ece3.1521
Lamberti, F., Castillo, P., Gómez-Barcina, A., \& Agostinelli, A. (1992). Descriptions of six new species of Xiphinema (Nematoda, Dorylaimida) from the Mediterranean region. Nematologia Mediterranea 20, 125-139.

Lazarova, S., Oliveira, C.M.G., Prior, T., Peneva, V., \& Kumari, S. (2019). An integrative approach to the study of Xiphinema brevicolle Lordello and Da Costa 1961, supports its limited distribution worldwide (Nematoda: Longidoridae). European Journal of Plant Pathology 153, 441-464. doi.org/10.1007/s 10658-018-1571-z
Lazarova, S. S., Malloch, G., Oliveira, C. M. G., Hübschen, J., \& Neilson, R. (2006). Ribosomal and mitochondrial DNA analyses of Xiphinema americanum-group populations. Journal of Nematology 38, 404-410.
Lee, M.R., Canales-Aguirre, C.B., Nuñez, D., Pérez, K., Hernández, C.E., \& Brante, A. (2017). The identification of sympatric cryptic free-living nematode species in the Antarctic intertidal. PLOS ONE 12, e0186140. doi.org/10.1371/journal.pone. 0186140
Lee, M.S.Y., \& Oliver, P.M. (2016). Count cryptic species in biodiversity tally. Nature 534, 621. doi.org/10.1038/534621a

Legendre, P., \& Legendre, L. (1998). Numerical Ecology. Elsevier.
Legendre, P., \& Legendre, L. (2012). Numerical Ecology. Elsevier.
Loof, P. A. A. (1982). Two new species of Longidoridae (Dorylaimida) from Saudi Arabia. Nematologica 28, 307-317. doi.org/10.1163/187529282X00358

Loof, P. A. A., \& Chen, Q. (1999). A revised polytomous key for the identification of the species of the genus Longidorus Micoletzky, 1922 (Nematoda: Dorylaimoidea). Supplement 1. Nematology 1, 55-59. doi:10.1163/156854199507974
Loof, P. A. A., \& Coomans, A. (1968). On the development and location of the oesophageal gland nuclei in the Dorylaimina. Nematologica 14, 596. doi.org/10.1163/187529268X00345
Loof, P. A. A., \& Luc, M. (1990). A revised polytomous key for the identification of species of the genus Xiphinema Cobb, 1913 (Nematoda: Longidoridae) with exclusion of the X. americanum-group. Systematic Parasitology 16, 35-66. doi.org/10.1007/BF00009600

Loof, P.A.A., Luc, M., \& Baujard, P. (1996). A revised polytomous key for the identification of species of the genus Xiphinema Cobb, 1913 (Nematoda: Longidoridae) with exclusion of the X. americanum-group: Supplement 2. Systematic Parasitology 33, 23-29. doi.org/10.1007/BF00000717
Macfarlane, S.A. (2003). Molecular determinants of the transmission of plant viruses by nematodes. Molecular Plant Pathology 4, 211-215. doi: 10.1046/j.1364-3703.2003.00164.x

Micoletzky, H. (1922). The free-living soil nematodes. Archiv für Naturgeschichte 87, 1-650.
Montgomery, D.C., \& Peck, E.A. (1992). Introduction to Linear Regression Analysis. Wiley. Oliveira, A.S.D., Decraemer, W., Moens, T., dos Santos, G.A.P., \& Derycke, S. (2017). Low genetic but high morphological variation over more than 1000 km coastline refutes omnipresence of cryptic diversity in marine nematodes. BMC Evolutionary Biology 17, 71. doi.org/10.1186/s12862-017-0908-0

Padial, J.M., Miralles, A., De la Riva, I., \& Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16. doi.org/10.1186/1742-9994-7-16

Palomares-Rius, J.E., Cantalapiedra-Navarrete, C., Archidona-Yuste, A., Blok, V.C., \& Castillo, P. (2017a). Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae). Scientific Reports 7, 41813. doi.org/10.1038/srep41813
Palomares-Rius, J.E. Cantalapiedra-Navarrete, C. Archidona-Yuste, A. Subbotin, S. A., \& Castillo, P. (2017b). The utility of mtDNA and rDNA for barcoding and phylogeny of plant-parasitic nematodes from Longidoridae (Nematoda, Enoplea). Scientific Reports 7, 10905. doi: 10.1038/s41598-017-11085-4.

Palomares-Rius, J. E., Cantalapiedra-Navarrete, C., Archidona-Yuste, A., Tzortzakakis, E. A., Birmpilis, I. G., Vovlas, N., Subbotin, S. A., \& Castillo, P. (2018). Prevalence and molecular diversity of reniform nematodes of the genus Rotylenchulus (Nematoda: Rotylenchulinae) in the Mediterranean Basin. European Journal of Plant Pathology 150, 439-455. doi.org/10.1007/s10658-017-1292-8

Palomares-Rius, J.E., Cantalapiedra-Navarrete, C., \& Castillo, P. (2014). Cryptic species in plantparasitic nematodes. Nematology 16, 1105-1118. doi.org/10.1163/15685411-00002831
Peneva, V., Lazarova, S., De Luca, F., \& Brown, D. J. F. (2013) Description of Longidorus cholevae sp. n. (Nematoda, Dorylaimida) from riparian habitat in the Rila Mountains, Bulgaria. ZooKeys 330, 1-26. doi: doi.org/10.3897/zookeys. 330.5750
Peraza-Padilla, W., Archidona-Yuste, A., Ferris, H., Zamora-Araya, T., Cantalapiedra-Navarrete, C., Palomares-Rius, J. E., Subbotin, S. A., \& Castillo, P. (2016). Molecular characterization of pseudomonodelphic dagger nematodes of the genus Xiphinema Cobb, 1913 (Nematoda: Longidoridae) in Costa Rica, with notes on Xiphinema setariae Tarjan, 1964. European Journal of Plant Pathology 148, 739-474. doi.org/10.1007/s10658-016-1124-2
Peraza-Padilla, W., Cantalapiedra-Navarrete, C., Zamora-Araya, T., Palomares-Rius, J. E., Castillo, P., \& Archidona-Yuste, A. (2018). A new dagger nematode, Xiphinema tica n. sp. (Nematoda: Longidoridae), from Costa Rica with updating of the polytomous key of Loof and Luc (1990). European Journal of Plant Pathology 150, 73-90. doi.org/10.1007/s 10658-017-1253-2

Pereira, T. J., \& Baldwin, J. G. (2016). Contrasting evolutionary patterns of 28S and ITS rRNA genes reveal high intragenomic variation in Cephalenchus (Nematoda): Implications for species delimitation. Molecular Phylogenetics and Evolution 98, 244-260. doi:10.1016/j.ympev.2016.02.016
Pérez-Portela, R., Arranz, V., Rius, M., \& Turon, T. (2013). Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Scientific Reports 3, 3197. doi.org/10.1038/srep03197

Pfenninger, M., \& Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121. doi.org/10.1186/1471-2148-7-121
Qing, X., Bert, W., Gamliel, A., Bucki, P., Duvrinin, S., Alon, T., \& Braun Miyara, S. (2019). Phylogeography and molecular species delimitation of Pratylenchus capsici n. sp., a new root-lesion nematode in Israel on pepper (Capsicum annuum). Phytopathology 109, 847-858. doi:10.1094/PHYTO-09-18-0324-R

Qing, X., Bik, H., Yergaliyev, T. M., Gu, J., Fonderie, P., Brown-Miyara, S., Szitenberg, A., \& Bert, W. (2020). Widespread prevalence but contrasting patterns of intragenomic rRNA polymorphisms in nematodes: Implications for phylogeny, species delimitation and life history inference. Molecular Ecology Resources 20, 318-332. doi.org/10.1111/17550998.13118

R_Core_Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Revelle, W. (2019). psych: Procedures for Psychological, Psychometric, and Personality Research.
Reyment, R.A. (1982). Multivariate morphometrics Handbook of Statistics: Elsevier. 721-745.
Roca, F., Pereira, M.J., \& Lamberti, F. (1989). Longidorus alvegus sp. n. (Nematoda, Dorylaimida) from Portugal. Nematologia Mediterranea 17, 1-4.

Romanenko, N. D. 1998. Redescription of Longidorus rubi Tomilin \& Romanenko in Romanenko, 1993 (Nematoda: Longidoridae) associated with raspberry in the Poltava region, Ukraine. Russian Journal of Nematology 6, 185-187.

Ronquist, F., \& Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. doi:10.1093/bioinformatics/btg180
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., \& Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34, 3299-3302. doi:10.1093/molbev/msx248

Seinhorst, J.W. (1962). On the killing, fixation and transferring to glycerin of nematodes.
Nematologica 8, 29-32. doi.org/10.1163/187529262X00981
Subbotin, S. A., Stanley, J. D., Ploeg, A. T., Maafi, Z. T., Tzortzakakis, E. A., Chitambar, J. J., Palomares-Rius, J. E., Castillo, P., \& Inserra, R. N. (2015). Characterisation of populations of Longidorus orientalis Loof, 1982 (Nematoda: Dorylaimida) from date palm (Phoenix dactylifera L.) in the USA and other countries and incongruence of phylogenies inferred from ITS1 rRNA and coxI genes. Nematology 17, 459-477. doi.org/10.1163/15685411-00002881

Taylor, C. A., \& Brown, D. J. F. (1997). Nematode Vectors of Plant Viruses. (CAB International: Wallingford, UK).
Thorne, G. (1935). Notes on free-living and plant-parasitic nematodes. II. Proceedings Helminthological Society of Washington 2, 96-98.

Van Den Berg, E., Palomares-Rius, J. E., Vovlas, N., Tiedt, L. R., Castillo, P., \& Subbotin, S. A. (2016). Morphological and molecular characterisation of one new and several known species of the reniform nematode, Rotylenchulus Linford \& Oliveira, 1940 (Hoplolaimidae: Rotylenchulinae), and a phylogeny of the genus. Nematology 18, 67-107. doi.org/10.1163/15685411-00002945

Vd’ačný, P., Slovák, M., Foissner, W. (2014). Multivariate morphometric analyses of the predatory ciliate genus Semispathidium (Ciliophora: Litostomatea), with description of S. longiarmatum nov. spec. European Journal of Protistology 50, 329-344. doi.org/10.1016/j.ejop.2014.03.003

Vrain, T. C., Wakarchuk, D. A., Levesque, A. C., \& Hamilton, R. I. (1992). Intraspecific rDNA Restriction Fragment Length Polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 563-573.

Wellborn, G. A., \& Broughton, R. E. (2008). Diversification on an ecologically constrained adaptive landscape. Molecular Ecology 17, 2927-2936. doi:10.1111/j.1365294X.2008.03805.x

Ye, W., Szalanski, A.L., \& Robbins, R.T. (2004). Phylogenetic relationships and genetic variation in Longidorus and Xiphinema species (Nematoda: Longidoridae) using ITS1 sequences of nuclear ribosomal DNA. Journal of Nematology 36, 14-19.
Zhang, D-Y., Lin, K., \& Hanski, I. (2004). Coexistence of cryptic species. Ecology Letters 7, 165169. doi.org/10.1111/j.1461-0248.2004.00569.x

Zuur, A.F., Ieno, E.N., \& Elphick, C.S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3-14. doi.org/10.1111/j.2041210X.2009.00001.x

FIGURE LEGENS

FIGURE 1 Principal component on morphometric characters to characterize Longidorus iliturgiensis- and Xiphinema hispanum-complex.

FIGURE 2 Construction of haplonets and haploweb. A: 28 S haploweb of Longidorus tabernensis sp. nov.; B: coxI haplonet of L. tabernensis sp. nov.; C: 28S haplonet of Xiphinema subbaetense sp . nov.; D: coxI haplonet of X. subbaetense sp. nov. Coloured circles represent haplotypes and their diameter are proportional to the number of individuals sharing the same haplotype. Black short lines on the branches indicate the number of mutated positions in the alignment that separate each haplotype. Co-occurring haplotypes are enclosed in black dashes. Abbreviations: APP = Alto Pandera Population; PPP = Prado Pandera Population; 419-Andújar $=$ X. hispanum topotype population; AR52-Andújar $=$ another X. hispanum population.

FIGURE 3 Line drawings of holotype for Longidorus tabernensis sp. nov. A, Pharyngeal region; B-C, Details of lip region; D-E, Female tails; F, Male tail; G, Tail of first-stage juvenile (J1).

FIGURE 4 Light micrographs of Longidorus tabernensis sp. nov. Females: A, Pharynx holotype; B, Anterior region holotype; C, D, Anterior regions paratypes; E-F, Detail of basal bulb; G, Tail region holotype; H-J, Tail region of paratypes; K, Vulval region; L-O, Tail region of $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ stage juveniles; P , Tail region of male. Abbreviations: $\mathrm{a}=\mathrm{anus} ; \mathrm{af}=$ amphidial fovea; $\mathrm{dn}=$ dorsal nucleus; $\mathrm{gr}=$ guiding ring; $\mathrm{sp}=$ spicule; $\mathrm{spl}=$ ventromedian supplements; $\mathrm{svn}=$ ventrosublateral nucleus; v $=$ vulva. Scale bars: $A=50 \mu \mathrm{~m} ; \mathrm{B}-\mathrm{P}=20 \mu \mathrm{~m}$.

FIGURE 5 Relationship of body length to length of functional and replacement odontostyle in four developmental stages and mature adults of Longidorus tabernensis sp. nov. (A), and Xiphinema subbaetense sp. nov.

FIGURE 6 Line drawings of holotype for Xiphinema subbaetense sp. nov. A, Pharyngeal region; B, Detail of lip region; C-E, Female tails; F, G, Details of uterine pseudo Z-differentiation; H, Tail of first-stage juvenile (J1).

FIGURE 7 Light micrographs of Xiphinema subbaetense sp. nov. Females: A, Pharynx holotype; B-C, Anterior regions of holotype and paratype, respectively; D-F, Detail of female genital track showing Z-differentiation; G, Detail of anterior female genital branch; H, Tail region of holotype; I-

M, Tail regions of paratypes; N, Detail of first-stage anterior region; O-R, Tail region of $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ stage juveniles. Abbreviations: $\mathrm{a}=$ anus; $\mathrm{cb}=$ crystalloid bodies; $\mathrm{gb}=$ granular bodies; $\mathrm{gr}=$ guiding ring; odt = odontostyle; psZ = pseudo-Z organ; rodt = replacement odontostyle; spi $=$ spine; $\mathrm{v}=$ vulva. Scale bars: A, G-N $=50 \mu \mathrm{~m}$; B-F, H-M and O-R $=20 \mu \mathrm{~m}$.

FIGURE 8 Phylogenetic relationships of Longidorus tabernensis sp. nov. within the genus Longidorus. Bayesian 50% majority rule consensus trees as inferred from D2-D3 expansion segments of $28 S$ rRNA sequences alignments under the GTR $+\mathrm{I}+\mathrm{G}$ model. Posterior probabilities more than 70% are given for appropriate clades. Newly obtained sequences in this study are in bold letters, and each colour was associated to each species of the complex.

FIGURE 9 Phylogenetic relationships of Xiphinema subbaetense sp. nov. within the genus Xiphinema. Bayesian 50\% majority rule consensus trees as inferred from D2-D3 expansion segments of 28 S rRNA sequences alignments under the GTR $+\mathrm{I}+\mathrm{G}$ model. Posterior probabilities more than 70% are given for appropriate clades. Newly obtained sequences in this study are in bold letters, and each colour was associated to each species of the complex.

FIGURE 10 Phylogenetic relationships of Longidorus tabernensis sp. nov. within the genus Longidorus. Bayesian 50% majority rule consensus trees as inferred from 18 S rRNA sequences alignments under the GTR $+\mathrm{I}+\mathrm{G}$ model. Posterior probabilities more than 70% are given for appropriate clades. Newly obtained sequences in this study are in bold letters.

FIGURE 11 Phylogenetic relationships of Xiphinema subbaetense sp. nov. within the genus Xiphinema. Bayesian 50% majority rule consensus trees as inferred from $18 S$ rRNA sequences alignments under the GTR $+\mathrm{I}+\mathrm{G}$ model. Posterior probabilities more than 70% are given for appropriate clades. Newly obtained sequences in this study are in bold letters.

FIGURE 12 Phylogenetic relationships of Longidorus tabernensis sp. nov. within the genus Longidorus. Bayesian 50% majority rule consensus trees as inferred from coxI mtDNA sequences alignments under the GTR $+\mathrm{I}+\mathrm{G}$ model. Posterior probabilities more than 70% are given for appropriate clades. Newly obtained sequences in this study are in bold letters, and each colour was associated to each species of the complex.

FIGURE 13 Phylogenetic relationships of Xiphinema subbaetense sp. nov. within the genus Xiphinema. Bayesian 50% majority rule consensus trees as inferred from coxI mtDNA sequences

1228 alignments under the GTR + I + G model. Posterior probabilities more than 70% are given for appropriate clades. Newly obtained sequences in this study are in bold letters, and each colour was associated to each species of the complex.

1 TABLE 1 Taxa sampled for Longidorus and Xiphinema species and sequences used in this study for molecular characterization and haploweb analyses.

	Nematode Species		$28 \mathrm{~S}$	coxI		GenBank acce	sion number	
Sample code	Locality, province	Host	haplotype	haplotype	28S	coxI	ITS1	18S
Longidorus il	iensis-complex							
Longidorus ta	nensis sp. nov.							
AZ03	Tabernas, Almería	Yellow broom	tab1	co-tab1	MK941194	MK937587	MK941256	MK941261
AZ28	Tabernas, Almería	Yellow broom	tab1	co-tab1	MK941195	MK937588	MK941257	-
CA83	Tabernas, Almería	Yellow broom	tab1	co-tab1	MK941196	MT040266	-	-
CA84	Tabernas, Almería	Yellow broom	tab1	co-tab1	MK941197	MT040267	-	-
CA85	Tabernas, Almería	Yellow broom	-	co-tab1	-	MT040268	-	-
CA86	Tabernas, Almería	Yellow broom	-	co-tab1	-	MT040269	-	-
AQ98	Tabernas, Almería	Yellow broom	-	co-tab1	-	MT040270	-	-
Longidorus ilitur	iensis							
ALANU	Andújar, Jaén	Black alder	ili1	co-ili1	MH430012	MH454065	MH429987	MH430002
DD52	Andújar, Jaén	Black alder	ili2	co-ili 1	MH430013	MT040271	-	MH430003
DD54	Andújar, Jaén	Black alder	-	co-ili1	-	MT040272	-	-
DD55	Andújar, Jaén	Black alder	-	co-ili 1	-	MT040273	-	-
DD56	Andújar, Jaén	Black alder	-	co-ili1	-	MT040274	-	-
DD53	Andújar, Jaén	Black alder	-	co-ili2	-	MT040275	-	-
Longidorus in								
ST41	Las Tres Villas, Almería	Cultivate olive	ind1	co-ind1	KT308852	KY816675	KT308878	KT308894
AR46	Agua Amarga, Almería	Wild olive	ind1	co-ind1	KT308853	MT040276	KT308879	KT308895
ST042	Las Tres Villas, Almería	Cultivate olive	ind2	co-ind1	KT308854	MT040277	-	-
DD61	Sorbas, Almería	Wild olive	-	co-ind1	-	MT040278	-	-
DD62	Sorbas, Almería	Wild olive	-	co-ind1	-	MT040279	-	-
Xiphinema hi	um-complex							
Xiphinema su	etense sp. nov.							
APP-P60	Valdepeñas, Jaén	Asphodel	sub1	co-sub1	MT039104	MT040280	MT026293	-
APP-P61	Valdepeñas, Jaén	Asphodel	sub2	co-sub2	МT039105	MT040281	MT026294	-

APP-P62	Valdepeñas, Jaén	Asphodel	heterozygous	co-sub2	MT039106	MT040282	-	-
APP-P78	Valdepeñas, Jaén	Asphodel	sub2	co-sub2	MT039107	MT040283	-	MT039135
APP-P79	Valdepeñas, Jaén	Asphodel	sub2	co-sub2	MT039108	MT040284	-	MT039136
APP-P80	Valdepeñas, Jaén	Asphodel	sub3	co-sub2	MT039109	MT040285	-	-
APP-P81	Valdepeñas, Jaén	Asphodel	sub2	co-sub2	MT039110	MT040286	-	-
APP-P82	Valdepeñas, Jaén	Asphodel	sub1	co-sub2	MT039111	MT040287	-	-
APP-P83	Valdepeñas, Jaén	Asphodel	sub3	co-sub2	MT039112	MT040288	-	-
APP-P84	Valdepeñas, Jaén	Asphodel	sub1	co-sub1	MT039113	MT040289	-	-
APP-P85	Valdepeñas, Jaén	Asphodel	sub3	co-sub2	MT039114	MT040290	-	-
PPP-P69	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039115	MT040291	MT026295	-
PPP-P70	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039116	MT040292	-	-
PPP-P71	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039117	MT040293	-	-
PPP-P72	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039118	MT040294	-	-
PPP-P73	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039119	MT040295	-	-
PPP-P74	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039120	MT040296	-	MT039137
PPP-P75	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039121	MT040297	-	MT039138
PPP-P76	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039122	MT040298	-	MT039139
PPP-P77	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039123	MT040299	-	MT039140
PPP-P63	Valdepeñas, Jaén	Pasture	heterozygous	co-sub2	MT039124	MT040300	-	-
Xiphinema hispanum								
419-0419	Andújar, Jaén	Cistus albidus	his4	co-his3	GU725074	KY816614	GU725061	GU725083
419-AP86	Andújar, Jaén	Cistus albidus	his1	-	MT039125	-	-	-
419-AP87	Andújar, Jaén	Cistus albidus	his2	co-his1	MT039126	MT040301	-	-
419-AP88	Andújar, Jaén	Cistus albidus	his2	-	MT039127	-	-	-
419-AP89	Andújar, Jaén	Cistus albidus	his3	-	MT039128	-	-	-
419-AP90	Andújar, Jaén	Cistus albidus	his1	-	MT039129	-	-	-
AR52-P055	Andújar, Jaén	Wild olive	his2	-	KX244905	-	-	-
AR52-AP91	Andújar, Jaén	Wild olive	his2	co-his2	MT039130	MT040302		
AR52-AP92	Andújar, Jaén	Wild olive	his2	co-his2	MT039131	MT040303	-	-
AR52-AP93	Andújar, Jaén	Wild olive	his2	co-his2	MT039132	MT040304	-	-

AR52-AP94	Andújar, Jaén	Wild olive	his2	co-his2	MT039133	MT040305	-	-
AR52-AP95	Andújar, Jaén	Wild olive	his2	-	MT039134	-	-	-
Xiphinema adenohystherum								
SORI	Arevalo, Soria	Holly tree	ade1	-	KC567164	KY816588	GU725063	GU725084
JAO6	La Granjuela, Córdoba	Cultivated olive	ade2	-	KX244898	-	-	-
0431	Bollullos Condado, Huelva	Grapevine	ade2	-	GU725075	-	-	-
AR78	Almodóvar del Rio, Córdoba	Wild olive	ade3	co-ade1	KX244897	KY816591	-	-
ALMAG	Almagro, Ciudad Real	Wild olive	-	co-ade2	-	KY816589	-	-
AR086	Prado del Rey, Cádiz	Wild olive	-	co-ade3	-	KY816590	-	-
IASNB	Jerez de la Frontera, Cádiz	Wild olive	-	co-ade4	-	KY816592	-	-

2 -, not amplified or not sequenced
3 Abbreviations: APP = Alto Pandera Population; PPP = Prado Pandera Population; $419=X$. hispanum topotype population; AR52 $=$ another X.
4 hispanum population
5 GenBank accession numbers in bold represent sequence data that were generated in this study (96 sequences), other accessions (23 sequences) were
6 from previous studies (Gutiérrez-Gutiérrez et al., 2010; 2013; Archidona-Yuste et al., 2016a; 2016b; 2019; Palomares-Rius et al., 2017).
7 Morphological and morphometric data of the new species were generated in this study, and those for known species were available from the literature 8 (Gutiérrez-Gutiérrez et al., 2010; 2013; Archidona-Yuste et al., 2016a; 2016b; 2019).

TABLE 2 Eigenvector and SS loadings of factor derived from nematode morphometric characters for Longidorus iliturgiensis-complex (Longidorus tabernensis sp. nov., Longidorus indalus, Longidorus iliturgiensis) and Xiphinema hispanum-complex (Xiphinema subbaetense sp. nov., Xiphinema adenohystherum, Xiphinema hispanum).

Character ${ }^{\text {b }}$	Longidorus iliturgiensis-complex			Xiphinema hispanum-complex		
	Principal components			Principal components		
	PC1	PC2	PC3	PC1	PC2	PC3
Body length (L)	-0.039	$\underline{0.543}$	-0.004	$\underline{0.467}$	-0.012	$\underline{0.199}$
a	0.051	0.428	$\underline{-0.539}$	0.130	0.167	0.578
c	-0.207	$\underline{0.558}$	0.344	-	-	-
c^{\prime}	0.171	-0.181	$\underline{-0.665}$	0.178	$\underline{0.456}$	0.265
d	$\underline{0.439}$	0.036	0.079	0.441	0.001	-0.380
d^{\prime}	$\underline{0.454}$	-0.014	0.238	0.370	-0.199	-0.315
V	0.105	0.196	-0.118	0.027	-0.506	-0.016
Odt	-0.394	0.097	-0.152	0.454	0.024	0.131
Odph	0.274	0.341	-0.162	$\underline{0.121}$	$\underline{-0.544}$	0.140
Lip region width	$\underline{-0.454}$	-0.097	-0.149	-0.255	$\underline{-0.384}$	0.430
Hyaline region length	0.275	0.059	-0.005	0.340	-0.156	0.301
SS loadings	1.93	1.36	1.24	1.81	1.58	1.13
\% of total variance	33.92	16.79	14.04	32.90	24.80	12.71
Cumulative \% of total variance	33.92	50.71	64.75	32.90	57.71	70.42

${ }^{\text {a }}$ Based on 19 female specimens of Longidorus tabernensis sp. nov. from a population sample, 36 female specimens of Longidorus indalus from seven population samples, 18 female specimens of Longidorus iliturgiensis from a population sample, 25 female specimens of Xiphinema subbaetense sp. nov. from two population samples, 8 female specimens of Xiphinema adenohystherum from a population sample, and 11 female specimens of Xiphinema hispanum from a population sample. Values of morphometric variables 1 to 3 (eigenvector >0.439) are underlined. All populations were molecularly identified and located at southern Spain. The c` ratio was excluded by the multicollinearity test and then, it was not included in the multivariate analysis for the Xiphinema hispanum-complex. Odt = odontostyle length; Odph = Odontophore length.
${ }^{\mathrm{b}}$ Morphological and diagnostic characters according to Jairajpuri and Ahmad (Jairajpuri \& Ahmad, 1992) with some inclusions.

TABLE 3 Morphometrics of Longidorus tabernensis sp. nov. from Tabernas (Almería, Spain)a.

Characters-ratios b	Holotype	Paratypes					
		Females	Males	J1	J2	J3	J4
n	1	19	9	2	6	6	7
L (mm)	5.1	$\begin{aligned} & 5.0 \pm 0.4 \\ & (4.3-5.5) \end{aligned}$	$\begin{gathered} 4.4 \pm 0.35 \\ (4.0-4.9) \end{gathered}$	0.989, 0.995	$\begin{aligned} & 1.6 \pm 0.2 \\ & (1.4-1.8) \end{aligned}$	$\begin{aligned} & 2.5 \pm 0.1 \\ & (2.4-2.7) \end{aligned}$	$\begin{aligned} & 3.5 \pm 0.2 \\ & (3.0-3.7) \end{aligned}$
a	118.1	$\begin{array}{r} 125.8 \pm 15.5 \\ (107.9-172.9) \end{array}$	$\begin{gathered} 142.9 \pm 12.3 \\ (123.1-162.5) \end{gathered}$	48.2, 53.8	$\begin{gathered} 68.3 \pm 5.4 \\ (61.2-76.5) \end{gathered}$	$\begin{aligned} & 86.3 \pm 12.6 \\ & (73.4-99.6) \end{aligned}$	$\begin{gathered} 107.6 \pm 5.0 \\ (97.6-111.6) \end{gathered}$
b	17.9	$\begin{gathered} 17.6 \pm 1.6 \\ (14.9-22.4) \end{gathered}$	$\begin{gathered} 13.7 \pm 1.2 \\ (12.4-15.2) \end{gathered}$	6.4, 7.2	$\begin{aligned} & 7.6 \pm 1.6 \\ & (6.1-9.9) \end{aligned}$	$\begin{gathered} 9.4 \pm 0.6 \\ (8.9-10.1) \end{gathered}$	$\begin{gathered} 14.0 \pm 1.6 \\ (12.1-16.4) \end{gathered}$
c	122.3	$\begin{aligned} & 106.9 \pm 11.4 \\ & (89.5-131.5) \end{aligned}$	$\begin{gathered} 94.2 \pm 7.7 \\ (85.9-107.8) \end{gathered}$	25.0, 25.5	$\begin{gathered} 39.0 \pm 3.5 \\ (33.5-41.8) \end{gathered}$	$\begin{gathered} 56.4 \pm 3.9 \\ (52.4-62.2) \end{gathered}$	$\begin{gathered} 73.8 \pm 6.3 \\ (67.7-82.7) \end{gathered}$
c^{\prime}	1.8	$\begin{aligned} & 2.1 \pm 0.2 \\ & (1.8-2.4) \end{aligned}$	$\begin{gathered} 2.2 \pm 0.09 \\ (2.1-2.4) \end{gathered}$	3.0, 2.9	$\begin{aligned} & 3.0 \pm 0.3 \\ & (2.7-3.3) \end{aligned}$	$\begin{aligned} & 2.7 \pm 0.1 \\ & (2.5-2.8) \end{aligned}$	$\begin{aligned} & 2.5 \pm 0.3 \\ & (2.1-2.8) \end{aligned}$
d	2.3	$\begin{aligned} & 2.3 \pm 0.2 \\ & (2.1-2.7) \end{aligned}$	$\begin{aligned} & 2.4 \pm 0.2 \\ & (2.2-2.6) \end{aligned}$	2.0, 2.2	$\begin{aligned} & 2.2 \pm 0.2 \\ & (1.9-2.5) \end{aligned}$	$\begin{aligned} & 2.3 \pm 0.1 \\ & (2.2-2.4) \end{aligned}$	$\begin{aligned} & 2.3 \pm 0.1 \\ & (2.2-2.4) \end{aligned}$
d'	1.4	$\begin{aligned} & 1.5 \pm 0.1 \\ & (1.4-1.6) \end{aligned}$	$\begin{aligned} & 1.4 \pm 0.1 \\ & (1.4-1.6) \end{aligned}$	1.46,1.53	$\begin{aligned} & 1.5 \pm 0.1 \\ & (1.4-1.6) \end{aligned}$	$\begin{gathered} 1.5 \pm 0.04 \\ (1.5-1.6) \end{gathered}$	$\begin{aligned} & 1.5 \pm 0.1 \\ & (1.4-1.6) \end{aligned}$
V or T	46.9	$\begin{gathered} 47.0 \pm 1.2 \\ (45.2-48.9) \end{gathered}$	$\begin{gathered} 32.0 \pm 2.9 \\ (28.4-36.5) \end{gathered}$	-	-	-	-
G1	8.1	$\begin{gathered} 8.9 \pm 1.1 \\ (6.7-11.4) \end{gathered}$	-	-	-	-	-
G2	7.7	$\begin{gathered} 8.7 \pm 0.9 \\ (7.2-10.5) \end{gathered}$	-	-	-	-	-
Odt	64.0	$\begin{gathered} 62.0 \pm 1.3 \\ (60.0-64.5) \end{gathered}$	$\begin{gathered} 61.6 \pm 1.1 \\ (60.5-63.5) \end{gathered}$	39.0, 37.0	$\begin{aligned} & 42.0 \pm 1, .7 \\ & (40.0-44.5) \end{aligned}$	$\begin{gathered} 47.6 \pm 2.2 \\ (44.0-50.0) \end{gathered}$	$\begin{gathered} 53.8 \pm 2.1 \\ (51.5-56.0) \end{gathered}$
Odph	31.5	$\begin{gathered} 30.2 \pm 2.3 \\ (25.5-34.0) \end{gathered}$	$\begin{gathered} 31.6 \pm 2.3 \\ (28.5-35.0) \end{gathered}$	23.5, 24.5	$\begin{gathered} 25.8 \pm 1.2 \\ (24.5-27.5) \end{gathered}$	$\begin{gathered} 25.5 \pm 1.2 \\ (24.5-27.0) \end{gathered}$	$\begin{gathered} 30.3 \pm 1.2 \\ (28.5-32.0) \end{gathered}$
Total stylet	95.5	$\begin{gathered} 92.1 \pm 2.9 \\ (86.5-96.0) \end{gathered}$	$\begin{gathered} 93.2 \pm 2.3 \\ (89.0-95.5) \end{gathered}$	62.5, 61.5	$\begin{gathered} 67.8 \pm 2.3 \\ (64.5-69.5) \end{gathered}$	$\begin{gathered} 73.1 \pm 2.7 \\ (68.5-75.0) \end{gathered}$	$\begin{gathered} 84.1 \pm 1.9 \\ (81.5-86.5) \end{gathered}$

Replacement Odt	-	-	-	45.0, 44.5	$\begin{gathered} 46.7 \pm 0.8 \\ (45.5-47.5) \end{gathered}$	$\begin{gathered} 53.5 \pm 2.9 \\ (49.5-56.0) \end{gathered}$	$\begin{gathered} 60.9 \pm 0.9 \\ (60.0-62.0) \end{gathered}$
Lip region width	10.0	$\begin{aligned} & 10.1 \pm 0.3 \\ & (9.5-10.5) \end{aligned}$	$\begin{gathered} 9.9 \pm 0.2 \\ (9.5-10.0) \end{gathered}$	7.5, 6.5	$\begin{aligned} & 7.8 \pm 0.4 \\ & (7.5-8.5) \end{aligned}$	$\begin{aligned} & 8.4 \pm 0.2 \\ & (8.0-8.5) \end{aligned}$	$\begin{gathered} 9.2 \pm 0.6 \\ (8.5-10.0) \end{gathered}$
Oral aperture-guiding ring	22.5	$\begin{gathered} 23.7 \pm 1.4 \\ (22.0-28.0) \end{gathered}$	$\begin{gathered} 24.2 \pm 1.5 \\ (21.5-26.0) \end{gathered}$	15.0, 14.0	$\begin{gathered} 17.3 \pm 0.8 \\ (16.5-18.5) \end{gathered}$	$\begin{gathered} 19.3 \pm 1.0 \\ (18.0-20.5) \end{gathered}$	$\begin{gathered} 20.9 \pm 0.9 \\ (20.0-22.5) \end{gathered}$
Tail length	42.0	$\begin{gathered} 46.7 \pm 3.7 \\ (42.0-53.0) \end{gathered}$	$\begin{gathered} 47.3 \pm 3.1 \\ (43.5-51.5) \end{gathered}$	39.0, 39.5	$\begin{gathered} 40.7 \pm 3.3 \\ (36.5-44.0) \end{gathered}$	$\begin{gathered} 44.3 \pm 1.0 \\ (43.5-45.5) \end{gathered}$	$\begin{gathered} 47.8 \pm 3.6 \\ (43.0-52.0) \end{gathered}$
Spicules	-	-	$\begin{gathered} 33.4 \pm 1.3 \\ (32.0-36.0) \end{gathered}$	-	-	-	-
Lateral accessory piece	-	-	$\begin{gathered} 11.2 \pm 0.8 \\ (10.5-12.0) \end{gathered}$	-	-	-	-
J	9.5	$\begin{gathered} 8.9 \pm 0.6 \\ (8.0-10.0) \end{gathered}$	$\begin{gathered} 8.6 \pm 1.0 \\ (7.0-10.0) \end{gathered}$	3.5, 4.0	$\begin{aligned} & 5.8 \pm 1.0 \\ & (4.5-7.0) \end{aligned}$	$\begin{aligned} & 6.4 \pm 0.8 \\ & (5.5-8.0) \end{aligned}$	$\begin{aligned} & 7.1 \pm 1.6 \\ & (5.5-9.0) \end{aligned}$

$2 \quad{ }^{\text {a }}$ Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range).
$3 \quad{ }^{\mathrm{b}} \mathrm{a}=$ body length/maximum body width; $\mathrm{b}=$ body length/pharyngeal length; $\mathrm{c}=$ body length/tail length; $\mathrm{c}^{\prime}=$ tail length/body width at anus; $\mathrm{d}=\mathrm{anterior}$ to guiding ring/body diameter at lip region; $\mathrm{d}^{\prime}=$ body diameter at guiding ring/body diameter at lip region; $\mathrm{V}=$ (distance from anterior end to vulva/body length) x 100; $\mathrm{G} 1=($ anterior genital branch length/body length) $\times 100 ; \mathrm{G} 2=$ (posterior genital branch length/body length) $\times 100 ; \mathrm{T}=$ ((distance from cloacal aperture to anterior end of testis/body length) x 100); $\mathrm{J}=$ hyaline tail region length; Odt = odontostyle length; Odph = Odontophore length.

1
2

Host	ParatypesAsphodel (APP population)						Other Population Pasture (PPP population)
Characters-ratios ${ }^{\text {b }}$	Holotype	Females	J1	J2	J3	J4	Females
n	1	19	5	5	5	5	11
L (mm)	4.3	$\begin{aligned} & 4.3 \pm 0.2 \\ & (4.0-4.7) \end{aligned}$	$\begin{aligned} & 1.30 \pm 0.07 \\ & (1.22-1.41) \end{aligned}$	$\begin{aligned} & 1.84 \pm 0.11 \\ & (1.72-2.00) \end{aligned}$	$\begin{aligned} & 2.59 \pm 0.15 \\ & (2.43-2.75) \end{aligned}$	$\begin{aligned} & 3.56 \pm 0.21 \\ & (3.30-3.75) \end{aligned}$	$\begin{aligned} & 4.9 \pm 0.2 \\ & (4.6-5.3) \end{aligned}$
a	56.7	$\begin{gathered} 57.2 \pm 3.9 \\ (49.0-63.4) \end{gathered}$	$\begin{gathered} 39.9 \pm 2.2 \\ (37.2-43.2) \end{gathered}$	$\begin{gathered} 45.0 \pm 3.8 \\ (40.5-49.9) \end{gathered}$	$\begin{gathered} 47.4 \pm 3.1 \\ (44.4-52.3) \end{gathered}$	$\begin{aligned} & 49.5 \pm 1.0 \\ & (48.5-51.0) \end{aligned}$	$\begin{gathered} 61.1 \pm 4.4 \\ (53.3-70.0) \end{gathered}$
b	8.0	$\begin{gathered} 8.2 \pm 0.8 \\ (7.1-10.4) \end{gathered}$	$\begin{aligned} & 4.5 \pm 0.4 \\ & (4.1-5.1) \end{aligned}$	$\begin{aligned} & 4.7 \pm 0.2 \\ & (4.4-4.9) \end{aligned}$	$\begin{aligned} & 5.3 \pm 0.3 \\ & (4.9-5.8) \end{aligned}$	$\begin{aligned} & 6.8 \pm 0.6 \\ & (5.7-7.2) \end{aligned}$	$\begin{gathered} 9.2 \pm 1.0 \\ (7.8-11.0) \end{gathered}$
c	119.7	$\begin{gathered} 121.9 \pm 12.2 \\ (101.9-139.4) \end{gathered}$	$\begin{gathered} 22.1 \pm 1.3 \\ (20.0-23.2) \end{gathered}$	$\begin{gathered} 36.3 \pm 2.8 \\ (34.1-40.9) \end{gathered}$	$\begin{gathered} 56.9 \pm 3.9 \\ (53.2-63.2) \end{gathered}$	$\begin{gathered} 93.6 \pm 12.9 \\ (78.7-111.3) \end{gathered}$	$\begin{gathered} 130.4 \pm 10.5 \\ (114.2-149.5) \end{gathered}$
c^{\prime}	0.8	$\begin{aligned} & 0.8 \pm 0.1 \\ & (0.6-0.9) \end{aligned}$	$\begin{aligned} & 2.9 \pm 0.2 \\ & (2.6-3.1) \end{aligned}$	$\begin{aligned} & 2.0 \pm 0.2 \\ & (1.9-2.3) \end{aligned}$	$\begin{aligned} & 1.3 \pm 0.1 \\ & (1.3-1.4) \end{aligned}$	$\begin{aligned} & 0.9 \pm 0.1 \\ & (0.8-1.0) \end{aligned}$	$\begin{gathered} 0.9 \pm 0.04 \\ (0.8-0.9) \end{gathered}$
d	7.4	$\begin{aligned} & 7.2 \pm 0.3 \\ & (6.8-7.8) \end{aligned}$	$\begin{aligned} & 4.8 \pm 0.4 \\ & (4.4-5.3) \end{aligned}$	$\begin{aligned} & 5.7 \pm 0.4 \\ & (5.2-6.1) \end{aligned}$	$\begin{aligned} & 6.4 \pm 0.6 \\ & (5.6-7.1) \end{aligned}$	$\begin{aligned} & 6.6 \pm 0.2 \\ & (6.2-6.8) \end{aligned}$	$\begin{aligned} & 7.7 \pm 0.3 \\ & (7.2-8.2) \end{aligned}$
d^{\prime}	2.8	$\begin{aligned} & 2.7 \pm 0.1 \\ & (2.5-2.9) \end{aligned}$	$\begin{aligned} & 2.3 \pm 0.2 \\ & (2.1-2.6) \end{aligned}$	$\begin{aligned} & 2.6 \pm 0.2 \\ & (2.4-2.8) \end{aligned}$	$\begin{aligned} & 2.7 \pm 0.3 \\ & (2.3-3.1) \end{aligned}$	$\begin{aligned} & 2.6 \pm 0.1 \\ & (2.5-2.8) \end{aligned}$	$\begin{aligned} & 2.9 \pm 0.1 \\ & (2.8-3.2) \end{aligned}$
V	52.9	$\begin{gathered} 51.7 \pm 1.6 \\ (48.7-54.3) \end{gathered}$	-	-	-	-	$\begin{gathered} 52.5 \pm 0.8 \\ (50.9-53.5) \end{gathered}$
G1	16.1	$\begin{aligned} & 12.1 \pm 2.7 \\ & (9.4-16.1) \end{aligned}$	-	-	-	-	$\begin{aligned} & 13.8 \pm 1.7 \\ & (12.7-15.7) \end{aligned}$
G2	15.4	$\begin{gathered} 13.6 \pm 1.3 \\ (12.0-15.4) \end{gathered}$	-	-	-	-	$\begin{gathered} 15.0 \pm 1.1 \\ (13.7-15.8) \end{gathered}$
Odt	135.5	$\begin{gathered} 129.1 \pm 5.5 \\ (121.5-138.0) \end{gathered}$	$\begin{gathered} 59.2 \pm 4.1 \\ (55.5-66.0) \end{gathered}$	$\begin{gathered} 78.9 \pm 1.9 \\ (77.0-82.0) \end{gathered}$	$\begin{gathered} 95.8 \pm 3.9 \\ (92.0-100.0) \end{gathered}$	$\begin{gathered} 112.6 \pm 2.5 \\ (110.5-116.5) \end{gathered}$	$\begin{gathered} 143.2 \pm 3.6 \\ (138.0-149.5) \end{gathered}$
Odph	92.0	$\begin{gathered} 88.3 \pm 2.7 \\ (82.0-92.0) \end{gathered}$	$\begin{aligned} & 47.0 \pm 2.8 \\ & (44.0-51.0) \end{aligned}$	$\begin{gathered} 56.9 \pm 2.3 \\ (54.5-60.5) \end{gathered}$	$\begin{gathered} 66.2 \pm 2.8 \\ (61.5-68.0) \end{gathered}$	$\begin{gathered} 80.3 \pm 3.5 \\ (77.5-86.0) \end{gathered}$	$\begin{gathered} 91.8 \pm 2.5 \\ (89.0-96.5) \end{gathered}$
Total stylet	227.5	$\begin{gathered} 217.5 \pm 6.5 \\ (205.5-228.5) \end{gathered}$	$\begin{gathered} 106.2 \pm 4.4 \\ (102.0-111.0) \end{gathered}$	$\begin{gathered} 135.8 \pm 3.2 \\ (132.5-140.0) \end{gathered}$	$\begin{gathered} 162.0 \pm 6.3 \\ (153.5-168.0) \end{gathered}$	$\begin{gathered} 192.9 \pm 2.5 \\ (190.0-196.5) \end{gathered}$	$\begin{gathered} 236.4 \pm 4.4 \\ (228.5-243.5) \end{gathered}$
Replacement Odt	-	-	$\begin{gathered} 77.2 \pm 3.5 \\ (74.0-83.0) \end{gathered}$	$\begin{gathered} 93.9 \pm 3.4 \\ (89.0-98.5) \end{gathered}$	$\begin{gathered} 112.4 \pm 5.3 \\ (106.5-117.5) \end{gathered}$	$\begin{gathered} 132.0 \pm 3.1 \\ (128.0-135.0) \end{gathered}$	-

Lip region width	16.0	$\begin{gathered} 16.4 \pm 0.8 \\ (15.5-18.5) \end{gathered}$	$\begin{gathered} 10.1 \pm 0.2 \\ (10.0-10.5) \end{gathered}$	$\begin{gathered} 10.7 \pm 0.4 \\ (10.5-11.5) \end{gathered}$	$\begin{gathered} 12.7 \pm 0.8 \\ (12.0-13.5) \end{gathered}$	$\begin{gathered} 14.8 \pm 0.4 \\ (14.5-15.5) \end{gathered}$	$\begin{gathered} 16.2 \pm 0.4 \\ (15.5-16.5) \end{gathered}$
Oral aperture-guiding ring	119.0	$\begin{gathered} 118.3 \pm 6.5 \\ (106.5-131.5) \end{gathered}$	$\begin{gathered} 48.4 \pm 3.8 \\ (45.0-53.0) \end{gathered}$	$\begin{gathered} 60.6 \pm 3.7 \\ (54.4-64.5) \end{gathered}$	$\begin{gathered} 81.0 \pm 5.1 \\ (75.5-89.0) \end{gathered}$	$\begin{gathered} 97.4 \pm 5.3 \\ (90.5-105.0) \end{gathered}$	$\begin{gathered} 125.5 \pm 4.1 \\ (119.0-134.0) \end{gathered}$
Tail length	35.5	$\begin{gathered} 35.9 \pm 3.2 \\ (30.0-41.5) \end{gathered}$	$\begin{gathered} 59.0 \pm 2.2 \\ (55.5-61.0) \end{gathered}$	$\begin{gathered} 50.9 \pm 3.6 \\ (45.5-54.4) \end{gathered}$	$\begin{gathered} 45.7 \pm 4.8 \\ (38.5-50.5) \end{gathered}$	$\begin{gathered} 38.4 \pm 3.4 \\ (33.5-43.0) \end{gathered}$	$\begin{gathered} 38.0 \pm 2.9 \\ (34.5-43.0) \end{gathered}$
J	10.0	$\begin{array}{r} 11.4 \pm 1.7 \\ (8.5-15.0) \\ \hline \end{array}$	$\begin{array}{r} 15.3 \pm 1.8 \\ (13.5-17.5) \\ \hline \end{array}$	$\begin{array}{r} 16.9 \pm 1.9 \\ (14.0-19.0) \\ \hline \end{array}$	$\begin{gathered} 13.4 \pm 0.7 \\ (12.5-14.5) \end{gathered}$	$\begin{aligned} & 10.1 \pm 2.1 \\ & (7.5-13.0) \\ & \hline \end{aligned}$	$\begin{gathered} 13.4 \pm 2.2 \\ (11.0-19.0) \end{gathered}$

$2 \quad{ }^{\text {a }}$ Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range).
${ }^{\mathrm{b}} \mathrm{a}=$ body length/maximum body width; $\mathrm{b}=$ body length/pharyngeal length; $\mathrm{c}=$ body length/tail length; $\mathrm{c}^{\prime}=$ tail length/body width at anus; $\mathrm{d}=$ anterior to guiding ring/body diam. at lip region; $\mathrm{d}^{\prime}=$ body diam. at guiding ring/body diam. at lip region; $\mathrm{V}=$ (distance from anterior end to vulva/body length) $\mathrm{x} 100 ; \mathrm{J}=$ hyaline tail region length; $\mathrm{G} 1=($ anterior genital branch length/body length $) \times 100 ; \mathrm{G} 2=($ posterior genital branch length/body length $) \times 100$; Odt = odontostyle length; Odph = Odontophore length.

