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Abstract  31 

Climate warming is responsible for observed reduction in snowpack depth and an earlier 32 

and faster melt-out in many mountains of the Northern Hemisphere. Such changes in 33 

mountain hydroclimate could negatively affect productivity and tree growth in high-34 

elevation forests, but few studies have investigated how and where recent warming trends 35 

and changes in snow cover influence forest growth. A network comprising 36 high-36 

elevation Pinus uncinata forests was sampled in the NE Iberian Peninsula, mainly across 37 

the Spanish Pyrenees, using dendrochronology to relate tree radial growth to a detailed 38 

air temperature and snow depth data. Radial growth was negatively influenced by a longer 39 

winter snow season and a higher late-spring snowpack depth. Notably, the effect of snow 40 

on tree growth was found regardless the widely reported positive effect of growing-season 41 

air temperatures on P. uncinata growth. No positive influence of moisture from spring 42 

snowmelt on annual growth of P. uncinata was detected in sampled forests. Tall trees 43 

showed a lower growth responsiveness to snow than small trees. Decreasing trends in 44 

winter and spring snow depths were detected at most Pyrenean forests, suggesting that 45 

the growth of high-elevation P. uncinata forests can beneficiate for a shallower and of 46 

shorter duration snowpack associated with warmer conditions. However, water-limited 47 

sites located on steep slopes or on rocky substrates, with poor soil-water holding capacity, 48 

could experience drought stress because of early depleted snow-related soil moisture. 49 

 50 

Keywords: dendroecology, tree-ring width, snowpack, subalpine forests, Pyrenees.  51 
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1. Introduction 53 

Mountain forests are particularly susceptible to climatic variation because low 54 

temperatures typically limit radial growth and productivity near the uppermost edge of 55 

tree distribution ranges (Körner, 2012). Recent warming trends have induced shifts in tree 56 

recruitment (Smithers et al., 2018; Sangüesa-Barreda et al., 2018) and have enhanced 57 

radial growth (Innes, 1991; Tardif et al., 2003; Camarero et al., 2015a; Zhuang et al., 58 

2017), excepting few sites were warming have induced some drought stress (Camarero et 59 

al., 2015c, Galván et al. 2015). Most studies have focused on the direct effects of rising 60 

temperatures on tree growth (e.g. Del Barrio et al., 1990; Gutierrez et al., 1991; Tardif et 61 

al., 2003; Andreu et al., 2007; Galván et al., 2014; Camarero et al., 2017; Franke et al., 62 

2017; D’Orangeville et al., 2018; Sanchez-Salguero et al., 2018; Wang et al., 2019). 63 

Research focused on the indirect effects of climate warming, such as the influence of 64 

snow dynamics on forest productivity, is still scarce (Vaganov et al., 1999; Kirdyanov et 65 

al., 2003, Helama et al., 2013, Watson and Luckman 2016; Carlson et al., 2017). 66 

Snow accumulation requires a combination of precipitation and low temperatures 67 

to initiate snowfall and persistent below-zero temperatures to sustain the snowpack 68 

(Beniston et al., 2011; López-Moreno et al., 2011). Due to the high sensitivity of snow 69 

cover to seasonal temperatures (Morán-Tejeda et al., 2013a), a warmer climate can easily 70 

impact the process of snow accumulation/melting (Beniston, 2003). An increase in winter 71 

temperature leads to a precipitation shift from snow towards rain, and warmer spring 72 

conditions induce earlier and faster snowpack melting (Morán-Tejeda et al., 2014). 73 

Reduced snowpack depth and duration have been reported in the main mid-latitude 74 

mountain ranges (López-Moreno, 2005; Marty, 2008; McCabe and Wolock, 2009; 75 

Beniston, 2012; Morán-Tejeda et al., 2013a) including Mediterranean (drought-prone) 76 

areas such as the Pyrenees (Morán-Tejeda et al., 2017).  77 
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Snow dynamics may influence forest growth (e.g., Kirdyanov et al., 2003). Early 78 

snowfalls in the autumn may shorten the growing season and lead to a reduction in the 79 

assimilation of carbohydrates, and this can negatively affect growth in the following year 80 

(Carlson et al., 2017). A lack of snow cover during the winter can cause premature 81 

yellowing and shedding of needles of shrubby krummholz individuals during cold and 82 

dry winters and repeated freeze-thaw cycles (winter drought), reducing growth in the 83 

following spring (Helama et al., 2013; Camarero et al. 2015b). Larger snow accumulation 84 

and a longer snowmelt period may negatively affect tree radial growth by slowing the 85 

increase of soil temperature, delaying the growing period, and thus shortening the 86 

growing season (Vaganov et al., 1999; Kirdyanov et al., 2003; Watson and Luckman, 87 

2016). On the other hand, snowmelt effects on soil moisture have been reported to 88 

positively influence tree growth during the next growing season (St. George, 2014; 89 

Watson and Luckman, 2016). All these observations suggest that the radial growth of 90 

trees can be related to winter snowpack, melt-out date and spring snow depth. 91 

In the main mountains of the NE Iberian Peninsula (Pyrenees, Pre-Pyrenees, Iberian 92 

System), increasing trends in mean temperatures and an increment in precipitation 93 

variability have been observed during the second half of the 20th century (López-Moreno 94 

et al., 2010; El Kenawy et al., 2011). Such consequent water stress increase may also 95 

limit tree growth in high-elevation forests (Tardif et al., 2003; Andreu et al., 2007). 96 

Nevertheless, high-elevation mountain pine (Pinus uncinata) forests and treelines are 97 

forecasted to show enhanced growth during the late 21st century due to a longer and 98 

warmer growing season (Sánchez-Salguero et al., 2012, Camarero et al., 2017). Climate 99 

warming has also affected mountain hydrology and influences the accumulation, duration 100 

and melt-out of snow, leading to a shallow snowpack or a longer snow-free season 101 

(Morán-Tejeda et al., 2013a, 2013b). Discerning how and where snow dynamics affects 102 
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forest growth may help us understand future responses of mountain forests to forecasted 103 

hydroclimatic change. 104 

The main hypothesis of the present study is that snowpack depth and duration 105 

influence radial growth of high-elevation P. uncinata forests. It was expected that snow 106 

cover affects tree radial growth, in addition to the widely reported temperature effects on 107 

growth (Gutiérrez, 1991; Rolland and Schueller, 1994; Camarero et al., 1998). It was also 108 

expected that there would be greater impact of snowpack depth and duration on growth 109 

in high-elevation forests with a shorter growing season, since elevation indirectly controls 110 

the effects of climate on P. uncinata growth by modifying growing season air temperature 111 

(Tardif et al., 2003; Galván et al., 2014). These hypotheses were tested by analyzing the 112 

radial growth of a P. uncinata dendrochronological network in the main mountain ranges 113 

of NE Iberia in relation to snow cover conditions at site level. The specific objectives of 114 

the present study were: (1) to evaluate the associations between snow conditions and 115 

radial-growth variability of P. uncinata forests; (2) to explore the influence of 116 

biogeographical patterns and tree characteristics on tree growth responses to snow depth; 117 

and (3) to estimate and compare the temporal evolution of radial growth and snow trends 118 

for the 1980-2010 period. 119 

 120 

2. Materials and methods 121 

2.1. Study species 122 

The mountain pine (Pinus uncinata Ram.) is a long-lasting and light-demanding conifer, 123 

which shows a wide ecological tolerance regarding topography (slope, aspect, elevation) 124 

and soil type (Cantegrel, 1983) and forms high-elevation forests. The natural habitat of 125 

P. uncinata includes central and southwest European mountains, while its southern 126 

geographical limit is reached in the Iberian System (Spain). It is dominant in the subalpine 127 
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belt of the central and eastern Pyrenees (1800-2500 m a.s.l.). Its growing season starts at 128 

the end of May and ends in October, with major growth rates occurring from the end of 129 

May to July (Camarero et al., 1998). Warm autumn and spring temperatures before and 130 

during tree-ring formation enhance P. uncinata radial growth, whereas summer 131 

precipitation during the growing season is the main positive climate driver of growth in 132 

certain xeric sites located in the Pre-Pyrenees and southern Iberian System (Gutiérrez, 133 

1991; Camarero et al., 1998; Tardif et al., 2003; Andreu et al., 2007; Galván et al., 2014). 134 

The timing of P. uncinata tree-ring formation is schematized in Figure 1. 135 

 136 

2.2. Study sites 137 

The 36 studied forests are located in the main mountain ranges of the NE Iberian 138 

Peninsula (Figure 2): 33 are located in the Pyrenees, (3 of them in the Pre-Pyrenees, the 139 

Pyrenees’ foothills), and the other 3 sites are located in the Iberian System. Two of the 140 

sites sampled in the southern Iberian system (VATE, VA1U) constitute the southernmost 141 

distribution limit of the species in Europe. Sampled sites cover the whole geographical 142 

distribution of the species in the Iberian Peninsula. The elevation of the sampled sites 143 

ranges from 1750 to 2451 m a.s.l. and the mean slope of the terrain is 35°±16º (see Table 144 

S1 in the Supplementary Material). Mean diameter at breast height (dbh) measured at 1.3 145 

m of sampled trees is 66±7 cm, and their age is 334±108 years on average (Table S1). 146 

The location of the Pyrenees, between the Atlantic Ocean on the west side and the 147 

Mediterranean Sea in the east, causes a fast climatic transition, while the Central Pyrenees 148 

shows a greater continental influence (Del Barrio et al., 1990). In the western areas, most 149 

of the annual precipitation falls during the cold winter season, whereas precipitation falls 150 

mainly during spring and autumn in the east (Del Barrio et al., 1990). Air temperature 151 

changes depend on elevation with -5.17 ºC km-1 being the mean temperature lapse rate 152 
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across the Pyrenees (Navarro-Serrano et al. 2018). The annual 0 ºC isotherm is located at 153 

2900 m a.s.l. (Del Barrio et al., 1990), whereas it falls to 1600 m a.s.l. between December 154 

and April, establishing the lower limit of the seasonal snowpack (López-Moreno et al., 155 

2011). Snow accumulation also shows a correlation to Atlantic–Mediterranean proximity 156 

and distance from the main divide of the mountain range (Revuelto et al., 2012). Monthly 157 

mean values of temperature, snow depth and melt-out date from1980 to 2009 158 

hydrological years for all sampled sites are presented in Figure 1. 159 

 160 

 161 

Figure 1. Top panel: Timing of P. uncinata tree-ring formation based on Camarero et al. 162 

(1998). Red boxes indicate the most influencing months to P. uncinata radial growth by 163 

temperature (Tardif et al., 2003; Galván et al., 2014). Bottom panels: monthly median 164 

snow depth (SD, blue line), melt-out date frequency (MOD, bars) and monthly median 165 

temperature (T, red line) of sampled sites in NE Iberian Peninsula from 1980 to 2009 166 

hydrological years. Shaded areas show the 25-75 percentile ranks. 167 

 168 



 

8 

 

 169 

Figure 2. Map of sampled mountain P. uncinata sites in NE Iberian Peninsula (black 170 

dots, see sites’ codes in Table S1) and distribution of the study species in Europe (inset, 171 

top right). 172 

 173 

2.3. Dendrochronological data 174 

Dendrochronological data correspond to an updating of data from 36 forests sampled and 175 

published by Galván et al. (2012, 2014). Wood samples were collected between 1994 and 176 

2010 from 5 to 65 dominant individual trees of different sizes and ages, randomly selected 177 

in each site. From each tree, two or three cores were taken at 1.3 m height with Pressler 178 

increment borers. The sapwood length was measured in the field, and topographic 179 

(elevation, slope and aspect) and biometric (dbh and tree height) variables were also 180 

recorded for each individual tree. 181 

Wood samples were air dried and sanded until tree-ring boundaries were clearly 182 

visible. Then, they were visually cross-dated and measured at 0.01 mm resolution using 183 

a LINTAB measuring device (Rinntech, Heidelberg, Germany). Cross-dating quality was 184 

checked using the program COFECHA (Holmes, 1983) by comparing the individual ring-185 
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width series among coexisting trees of the same species. Finally, cross-dated tree-ring 186 

width (RWL) series were obtained. 187 

Dimensionless ring-width indices (RWI) series were obtained by removing age or 188 

size trends and temporal autocorrelation to reflect growth response to climate. Residual 189 

RWIs were obtained by removing long-term trends of ring-width data fitting negative 190 

linear functions, followed by 30-year cubic smoothing splines, and then by eliminating 191 

the first-order autocorrelation of the resulting residuals using the software ARSTAN V. 192 

44 (Cook, 1985). A bi-weight robust mean was then computed to obtain residual or pre-193 

whitened chronologies (mean site series) for each site, which were used in subsequent 194 

analyses. 195 

2.4. Climatic and snow data 196 

Daily snow depth (SD) and temperature data (T) for the studied sites were extracted from 197 

a gridded meteorological dataset obtained by simulation from Weather Research and 198 

Forecasting (WRF; Skamarock et al., 2008) model. The WRF model was driven by ERA-199 

Interim (Berrisford et al., 2011) reanalysis and coupled offline with Factorial Snow Model 200 

(FSM 1.0; Essery, 2015), a physically based energy and mass balance snow model. WRF 201 

outputs were projected to the target elevation, using hygrobarometric formulas and lapse 202 

rates and the new projected meteorological information as driving data of FSM. The 203 

methodology to develop the snow dataset and its validation is shown in Alonso-González 204 

et al. (2018). 205 

Several annual snow indices were created from the daily snow data as indicators of 206 

specific snow conditions all year round, based on Figure 1: 207 

- Average November snow depth (Nov SD) as previous autumn snow conditions 208 

indicator. 209 

- Average February snow depth (Feb SD) as winter snow conditions indicator. 210 
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- Average May snow depth (May SD) as spring snow conditions indicator. 211 

The selection of these monthly SD values for representing snow seasonal conditions 212 

is based on the cumulative nature of snow. Thus, the snow depth value at the end of the 213 

season will be representative of the accumulated snow and the meteorological conditions 214 

of the previous months (e.g. López-Moreno et al., 2005; Morán-Tejeda et al., 2016). Snow 215 

indices were not highly correlated with each other, showing an average coefficient of 216 

correlation lower than rs = 0.55 (Spearman Rho). Variables were detrended prior to the 217 

correlation analyses. Correlation coefficients (rs) were: 0.48 for Nov SD – Feb SD, 0.33 218 

for Nov SD – May SD and 0.54 for Feb SD – May SD.   219 

Given that snow depth conditions of a given month are highly influenced by the 220 

temperature of previous months, the following monthly aggregations (averages) of 221 

temperature data were computed for statistical analyses: November mean temperature 222 

(Nov T), February mean temperature (Feb T), November-December-January-February 223 

mean temperature (Nov-Feb T), December-January-February mean temperature (Dec-224 

Feb T), January-February mean temperature (Jan-Feb T), May mean temperature (May 225 

T), March-April-May mean temperature (Mar-May T), April-May mean temperature 226 

(Apr-May T). 227 

 228 

2.5. Statistical analyses 229 

We searched for snowpack effects on subsequent tree-ring development, 230 

considering the period from November (previous to tree-ring formation) to May, based 231 

on snow cover presence at the sampled forests (Figure 1). 232 

The growing-season air temperature is a major and widely reported determinant of 233 

P. uncinata growth (Gutiérrez, 1991; Rolland and Schueller, 1994; Camarero et al., 1998; 234 

Tardif et al., 2003; Andreu et al., 2007; Galván et al., 2014). However, temperature also 235 



 

11 

 

determines the large variability of snowpack among elevations (López-Moreno, 2005; 236 

Morán-Tejeda et al., 2013b). Because the aim was to control the temperature effect on 237 

growth (RWI) and infer the pure effect of snow, the computed snow indices from the 238 

influence of temperature were isolated. This was done by considering the aforementioned 239 

snow depth and temperature indices as predictors of RWI by means of stepwise linear 240 

regressions. First, Spearman non-parametric correlations (rs) were computed between the 241 

snow depth indices (Nov SD, Feb SD, May SD) and the whole set of temperature monthly 242 

aggregations. Temperature aggregations that best correlated with snow indices were 243 

November T, Jan-Feb T and Mar-May T for Nov SD, Feb SD and May SD (See 244 

Supplementary Material Table S2). These best-correlated temperature aggregations, 245 

together with mean May temperature, because its influence on tree growth is widely 246 

reported as the most important (e.g., Tardif et al. 2003) and the snow depth indices were 247 

then used as predictors in the stepwise linear models (Eq. 1). The stepwise model allows 248 

introduction of variables that substantially improve the model by rejecting those that may 249 

be redundant. This prevents greatly auto-correlated variables from being included in the 250 

model and allowed us to infer whether the snow depth indices or temperature indices were 251 

the best predictors of RWI. Linear models were performed individually for each site, as 252 

well as a regional model for the whole set of sites. The models can be formulated as 253 

follows: 254 

y = β0+ β1 x1+ β2 x2+⋯+ βn xn + ε    (Eq. 1) 255 

where y is the response variable (i.e. RWI values), β0 is the intercept, x1 to xn are 256 

the predictors (i.e., snow depth and temperature indices), β1 to βn are the estimated partial 257 

regression coefficients and ε is the error. The models were compared using the Akaike 258 

Information Criterion (AIC) value; the smaller the AIC, the better the fit (most 259 

parsimonious model) since it penalizes complex models (Burnham and Anderson, 2003). 260 
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Only the best model for each site and the one run for the whole set of sites are shown in 261 

the results, including the following information: the explained variance (adjusted R2), the 262 

statistical significance (p) and the partial coefficients of the regressions. Automated 263 

model selection was performed with the MuMIn package (Barton and Barton, 2018) of 264 

the R language version 3.1.0 (R Core Team, 2014). 265 

Additionally, partial correlations using the Spearman coefficient were calculated 266 

between RWI and SD indices by partially removing the effects of temperature (Table S2). 267 

Non-parametric methods were used, since not all analyzed variables had normal 268 

distributions (Shapiro–Wilk test, p < 0.05). Snow and temperature variables were 269 

previously detrended.  270 

Variations of tree growth responses to snow conditions along biogeographical 271 

gradients for a subset of sites where a snow index was the best predictor in the 272 

aforementioned stepwise models were investigated. The following variables were 273 

considered: latitude, longitude, slope, elevation of the terrain, dbh, tree height, sapwood 274 

and tree age (Table S1), and annual maximum snow depth (Max SD) (as an indicator of 275 

site differences in snow accumulation). Statistically significant different responses among 276 

groups of sites whose models selected the same best predictor using the non-parametric 277 

Kruskal-Wallis test were identified along gradients. Non-parametric Spearman 278 

correlations were calculated, considering the amount of radial growth variance explained 279 

by snow variables (adjusted R2 from the stepwise models) as the dependent variable and 280 

biogeographical gradients as independent variables. Complementary correlation analyses 281 

were done using partial correlation coefficients between tree growth and snow depth as 282 

dependent variables (in Supplementary Material Figure S3).  283 

Trend analysis for tree-ring width (RWL series) as well as for snow indices was 284 

performed using the Mann-Kendall test and Theil-Sen's slope estimator for computing 285 
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the magnitude of the trend, considering a subset of sites where any snow – growth 286 

significant relationship was previously found. Trend analysis was carried out using the 287 

zyp package in R language (Bronaugh et al., 2009), which includes a trend-free pre-288 

whitening method for removing serial autocorrelation.  289 

RWI and RWL series were shorter than the snow series at some sites. Thus, all 290 

analyses were performed for the longest common period available, for example, from 291 

1981 to last formed tree-ring measured (number of available years for each one is 292 

indicated in Table S1).  293 

 294 

3. Results 295 

3.1. Growth responses to snow variables 296 

Stepwise linear models (Table 1) pointed out snow indices as main predictors of P. 297 

uncinata radial growth in 47% of sites (17 out of 36 sites; with 11 out of the 17 showing 298 

a statistically significant model). These 17 sites (Figure 3) were selected and used in later 299 

analyses. Average explained variance by models in these sites was 24% (30% for 300 

statistically significant models). The site in which predictors explained the larger variance 301 

of RWI was CONU (adjusted R2 = 0.81; Table 1). May SD was the best predictor in 64% 302 

of sites where snow indices were the most important predictors and their models were 303 

statistically significant (Figure 4). It was followed by Feb SD (selected in 27% of these 304 

sites) and Nov SD (only selected in one of these 11 sites). All snow indices negatively 305 

influenced radial growth (RWI) in all sites, except for Nov SD, which positively 306 

influenced tree radial growth in VA1U site. 307 

In total, 17% of statistically significant models (6 out of 36 sites) pointed out 308 

temperature indices as main predictors of P. uncinata radial growth. Jan-Feb T was 309 
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selected as the best predictor of RWI in 5 out of 6 of these sites, and Mar-May T was 310 

selected in only one site. 311 

For the regional model, which takes into account all of the 36 site-chronologies 312 

combined (Table 1, bottom), Nov SD was selected as the most important predictor 313 

(despite it only explained 5% of the total variance). When a subset of statistically 314 

significant sites was included in the general model, May SD was the most important 315 

predictor again explaining 13% of the total growth variance. 316 

Complementary to stepwise linear models, partial correlations also noted the 317 

prevalence of Feb SD, with respect to the other two snow indices, in terms of influencing 318 

radial growth of P. uncinata (Table S3 and Figure S1, Supplementary Material). Most 319 

sites (67%) showed a Feb SD negative influence on radial growth (mean rs = -0.34; SD = 320 

0.18), being five of them statistically significant. For May SD, one site showed 321 

statistically significant partial correlation with radial growth. 322 

 323 

Table 1. Statistical parameters of stepwise linear models between radial growth (response 324 

variable RWI) and snow and temperature indices (predictors) in each site, for all sites 325 

(All sites), and for all statistically significant sites (Sig sites). See sites codes in Table S1 326 

and Figure 2. 327 

 328 

Site N 
Coefficients Adjusted 

R2 p 
Intercept Nov SD Feb SD May SD Nov T May T Jan-Feb T Mar-May T 

ACHE* 30 0.99     -0.15         0.11 0.041 

AIRO* 16 1.00     -0.16     0.04   0.50 0.019 

BIEL* 16 1.01     -4.30         0.20 0.046 

BLLA 30 0.99         0.03 0.03   0.25 0.098 

CAVI 30 1.01 -0.36 -0.07   0.02       0.16 0.090 

COLU 30                 -   

CONU* 14 0.99 -0.77 -0.11 -0.56       -0.08 0.81 0.001 

CORT 30 1.00     -1.80         0.08 0.072 

CUTA 17 1.00       -0.03       0.17 0.058 

EAMI* 29 1.00     -0.55         0.23 0.005 

EGER* 30 0.99     -0.17     0.02   0.21 0.019 

ELLA 29                 -   

ENEG* 29 0.99     -0.32 -0.02       0.26 0.006 

EPER* 17 0.99           0.07   0.44 0.002 

FORA 29                 -   

GUAU 30                 -   

LACO 19             -    

LEST 13 1.00   -0.29       0.18 0.084 
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MAVA* 17 1.00         0.09  0.29 0.016 

MIRA 29 1.00          0.05 0.10 0.055 

MIRE* 18 0.99   -0.18       0.19 0.041 

MONE 29 1.00   -0.08 -1.36     0.19 0.082 

NURI* 21 0.99       -0.03  0.05  0.42 0.005 

PEDR 26 1.00         0.03  0.10 0.063 

PIAR 14 1.01         0.04  0.21 0.059 

RATE 29 0.99 0.76         0.06 0.109 

RESP 30 1.00     -0.04     0.08 0.071 

SAMA* 16 0.98         0.08  0.20 0.047 

SARU* 15 1.00   -0.27       0.25 0.034 

SECA 29             -   

SETU 19             -   

SOBR 29             -   

TESO* 15 0.97         0.08  0.28 0.024 

VA1U* 26 1.00 1.77   -2.83     0.17 0.030 

VAMU* 14 1.02   -0.23       0.35 0.015 

VATE* 26 0.99          0.08 0.15 0.028 

All sites - 0.99 0.08  -0.03 -0.01 0.01 0.01 -0.01 0.05 0.00 

Sig sites - 0.99   -0.13 -0.01 0.02 0.01 -0.01 0.13 0.00 

N: data series length starting from 1981 (years). Statistically significant sites (model p < 329 

0.05) are followed by *. The best predictor for each model (site) is indicated in bold 330 

characters. Hyphen indicates null models (any significant predictor).  331 

 332 

 333 

 334 
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Figure 3. Tree-ring width indices (RWI, lines) and confidence intervals (shaded areas) 335 

stepwise linear models for selected sites. Scatter plots show correlatios between observed 336 

and RWI values (right y-axes) predicted by the model (adjusted R2), and its statistical 337 

significance (red: not significant; blue: significant, p < 0.05). 338 

 339 

 340 

Figure 4. Tree-growth variance (adjusted R2) explained by stepwise linear models for 341 

selected sites. Values are displayed aggregated by best model predictor (snow indices 342 

only). Sites related to each model are labelled. Statistical significance of models is 343 

represented in red (p > 0.05) and blue (p < 0.05) colors. See sites codes in Table S1 and 344 

Figure 2. 345 

 346 

3.2. Influence of biogeographical patterns and tree characteristics on growth responses 347 

to snow depth.  348 

Tree characteristics determined the response of growth to snow (Fig 5a). The presence of 349 

small trees strengthen the linkage between snow and growth in sites where a snow index 350 

was the main driver of RWI (rs = -0.61, p = 0.03) (Figure 5b). It was observed that sites 351 

where a snow index was the statistically significant main driver of P. uncinata radial 352 

growth were mostly located in the Pyrenees (at western and central area of this mountain 353 

range), with the exception of one forest stand located in the southern Iberian System 354 
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(VA1U) (Fig S2). May SD was the main RWI predictor across the Pyrenees and also in 355 

the southern Iberian System site.  356 

Additional biogeographical analyses based on growth-snow partial correlations 357 

showed that greater and statistically significant negative snow influence on tree growth 358 

was found in high-elevation sites (Nov SD index) and sites with bigger tree dbh (Feb SD 359 

index) (Figure S3). 360 

 361 

 362 

Figure 5. (a) Effects of geographical, nival gradients and tree influences on growth-snow 363 

variance (adjusted R2) established by Spearman correlations (rs). The southern Iberian 364 

System sites were omitted in latitude analyses. (b) Scatterplot of single obtained 365 

statistically significant correlation between growth-snow variance and biogeographical 366 

gradients (tree height) (p < 0.05). Histograms show sites frequency of distribution along 367 

this gradient.  368 

 369 

3.3. Tree radial growth and snow indices trend analysis 370 

Five of thirteen forests presented statistically significant RWL trends, only one of them 371 

showed a positive slope for RWL trend while all the others showed a negative slope 372 

(Figure 6b; Figure S4). There were found statistically significant trends for May SD and 373 

Feb SD variables, in 35% and 12% of sites where snow index was the main driver of P. 374 



 

18 

 

uncinata radial growth respectively, but nor for Nov SD. All these statistically significant 375 

snow trends show negative slopes. 376 

A statistically significant correlation was found between growth trends (RWL) and snow 377 

(Feb SD) trends (rs = -0.68; p = 0.01) (Figure 6a). From the regional perspective, only in 378 

the Pyrenees there were found statistically significant trends in snow variables (all of 379 

them with negative coefficients as mentioned above). 380 

 381 
Figure 6. (a) Mann-Kendall linear trends (tau) for tree-ring width (RWL) and Feb SD 382 

snow index of selected sites from 1981 to last year with data (see series’ lengths in Table 383 

S1) and (b) geographical representation of trend analyses results. Pyrenees and Iberian 384 

System (IS) locations are indicated. 385 

 386 

4. Discussion 387 

There is evidence that previous snow cover conditions influence P. uncinata tree-ring 388 

formation, in addition to the widely reported growing season air temperature effects, as 389 

hypothesized. The used methodology allowed us to infer the pure effect of snow on tree-390 

ring growth by controlling the temperature influence on snowpack evolution. First, the 391 

most correlated monthly temperature aggregations to snow indices were detected (Table 392 
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S2), including other key temperature indices (May T) for P. uncinata growth; second, 393 

both temperature and snow indices were taken into account as predictors in radial growth 394 

stepwise linear models and by using partial correlations as complementary analyses. 395 

Similar procedures were used in Carlson et al. (2017) and Helama et al. (2013). Results 396 

provide additional information about the effects of climate on high-elevation P. uncinata 397 

radial growth. Previous studies showed that radial growth of P. uncinata was mainly 398 

limited by growing-season air temperature (Rolland and Schueller, 1994; Camarero et al., 399 

1998; Tardif et al., 2003; Andreu et al., 2007; Galván et al., 2014) and, only in certain 400 

drought-prone sites, by low early summer precipitation (Andreu et al., 2007; Galván et 401 

al., 2014). 402 

The influence of snow cover on radial growth had not been researched for P. 403 

uncinata, but it has been researched for other species of Pinaceae (Walsh et al., 1994; 404 

Kirdyanov et al., 2003; Helama et al., 2013; Watson and Luckman, 2016; Carlson et al., 405 

2017; Franke et al., 2017; Appleton and St. George, 2018; Fkiri et al., 2018; Legendre-406 

Fixx et al., 2018; Truettner et al., 2018). In this study, almost half the sampled forests in 407 

the main mountain ranges of the NE Iberian Peninsula showed certain snow-growth 408 

interaction (most of them were statistically significant). 409 

The date of cambial initiation is a key factor for climate-growth associations. This 410 

date is related to the date when snowmelt occurs (Kirdyanov et al., 2003) and, 411 

consequently, with snow accumulation throughout the winter. The presence of abundant 412 

snowpack in late spring may induce a late melt-out and, as a result, a delay in the onset 413 

of the P. uncinata growing season because the persistent snow cover may cool the soil 414 

(Kirdyanov et al., 2003; Helama et al., 2013). This would explain the dominant negative 415 

spring snow (May SD index) influence on P. uncinata annual growth found in this study 416 

(Table 1, Figure 4). In this regard, Franke et al. (2017) reported that the average monthly 417 
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snow cover during the current year’s May correlated negatively with P. sylvestris 418 

chronologies. Likewise, northern conifers showed delayed cambial activity when snow 419 

melt was delayed in the beginning of the growing season (Vaganov et al., 1999; 420 

Kirdyanov et al., 2003). Previous studies of P. uncinata have demonstrated that this pine 421 

species is negatively affected by the preceding growing-season low air temperatures 422 

because the onset of cambial activity is triggered by a typical rise in temperature during 423 

spring (Tardif et al., 2003; Galvan et al., 2014). Since no positive relation was found 424 

between May SD snow index and RWI series in the performed models, we cannot report 425 

that moisture from spring snowmelt promotes annual growth of P. uncinata in sampled 426 

forests. The positive influence of snow on tree growth, explained by a moisture-427 

limitation, widely reported in more arid places as well as in large snow accumulation 428 

areas (St. George, 2014; Watson and Luckman, 2016; Carlson et al., 2017), was not 429 

detected in the few possible drought-prone sites (Pre-Pyrenees and southern Iberian 430 

System) sampled in this study. Winter precipitation is less likely to contribute to the soil 431 

moisture reservoir used by trees during the following growing season if spring 432 

precipitation is abundant and shows low year-to-year variability as is the case. Spring 433 

rainfalls would introduce an extra source of water that would sum up to the water from 434 

snowmelt, and thus, the positive influence of snow on tree growth based on moisture-435 

limitation was not detected. 436 

As discussed above, large winter snow accumulation likely produces larger snow 437 

presence in spring and this, in turn, causes a delayed melt-out. It is not easy to isolate the 438 

impact of winter snow on radial growth, compared to that of late spring snow, because 439 

they both are related; however, we did observe that May SD was selected 60% more than 440 

Feb SD as best predictor of RWI in the performed models (Table 1). In this regard, 441 

Watson and Luckman (2016) evidenced a relation between larger snow accumulation and 442 



 

21 

 

delays in P. ponderosa and Pseudotsuga menziesii growing seasons in some regions of 443 

Canada. Fkiri et al. (2018) also reported that winter snow is a major factor limiting growth 444 

of P. nigra in NW Tunisia. Other studies, however, pointed to a positive influence of 445 

winter snowfall on tree-ring growth due to snowmelt waters may constitute much of the 446 

available resource to trees during the beginning of the following growing season (e.g. St. 447 

George, 2014). 448 

A possible explanation for the scarce influence of preceding November snow 449 

conditions on growth observed in our study is that occasional early-season snowfalls 450 

before November did not contribute to overall autumn snow accumulation, thus it was 451 

relegated to accumulation occurred in the season last month. As a consequence, small 452 

snowpacks were found in November. Furthermore, this late autumn snow depth 453 

accumulation has a minor influence on the presence of late spring snow (Nov SD and 454 

May SD indices were not correlated, rs = 0.33), which was pointed out in this study as 455 

the most important seasonal snow component influencing P. uncinata growth. Contrary 456 

to our results, Carlson et al. (2017) in P. albicaulis forests and Helama et al. (2013) in P. 457 

sylvestris forests detected significant negative effects of autumn snowfall and autumn 458 

snow depth on radial growth, respectively. The early snowfall in autumn and soil cooling 459 

can be related to the cessation and shortening of the growing season (Carlson et al., 2017). 460 

In this instance, other physiological tree processes are affected: among others, (1) the 461 

reduction of photosynthate storage for the following year growth resumption (Fritts, 462 

1976), (2) the reduction of mycorrhizal activity (Peterson and Peterson, 1994), and (3) 463 

the inhibition of carbon transfer into radial growth and later carbon storage for the 464 

following year (Hoch and Körner, 2003). Moreover, previous studies have demonstrated 465 

that P. uncinata is sensitive to previous November low temperatures, when synthesis and 466 
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storage of carbohydrates can affect later radial growth (Tardif et al., 2003; Galván et al., 467 

2014).  468 

Evidence of tree characteristics’ influence on the snow-radial growth relationship 469 

was found. Smaller trees showed to be more sensitive to snow effects (Figure 5b), which 470 

could be due to a more efficient hydraulic functioning (Galván et al. 2012) or to a lower 471 

influence of snowpack on microclimate and phenology in the case of tall trees. Zhu et al. 472 

(2015) reported that large trees have higher recovery rates from snow damage than 473 

smaller trees. With regard to geographical distribution of snow-growth interactions, in 474 

the Pyrenean sites (central and western areas) occurred almost all of the significant snow-475 

growth correlations, but also the negative snow-growth influence was detected in the drier 476 

Iberian System site. Any snow influence on P. uncinata growth was found in the Pre-477 

Pyrenees or eastern Pyrenees sampled sites. Previous studies (Tardif et al., 2003; Galván 478 

et al., 2014) have demonstrated that elevation plays a major role in P. uncinata radial 479 

growth-index responses to climate. Galván et al. (2014) observed an elevation pattern 480 

regarding temperature: November temperature conditions during the year prior to tree-481 

ring formation influence P. uncinata growth mainly in mid-elevation sites, whereas at 482 

higher elevations, growth was more dependent on May temperature conditions during the 483 

year of tree-ring formation. However, no statistical significant relation was found 484 

regarding the elevation gradient determine whether P. uncinata radial growth is 485 

influenced by a specific snow index. Thought results from partial correlation analyses 486 

indicate that the main negative snow influences on tree growth were found at higher 487 

elevations (Figure S3), this study did not produce sufficient evidence to confirm our initial 488 

hypothesis. We expected that upper and therefore colder forest sites could be the most 489 

sensitive to snow-growth influences. The decrease in near-surface air temperature 490 

produced by an increase in elevation (Navarro-Serrano et al., 2018) was suggested to limit 491 



 

23 

 

the maximum elevation of tree growth due to a short growing season (Körner, 2012). 492 

Consequently, snow conditions could be expected to be the most limiting factor for radial 493 

growth at high elevations which further reduces P. uncinata growth period, especially 494 

linked to late spring snow cover. But more detailed information on elevational gradients 495 

of snow features are needed to test it. 496 

Significant and decreasing trends were detected in winter and spring snow depths 497 

along the Pyrenees (although trend coefficients are very dependent on the selected study 498 

period), similar to other main mid-latitude mountain ranges (López-Moreno, 2005; 499 

Marty, 2008; McCabe and Wolock, 2009; Beniston, 2012; Morán-Tejeda et al., 2013a; 500 

Buisan et al., 2015) (Figure 6b). A significant and negative response of P. uncinata 501 

growth to the negative trends in winter snow was found (Figure 6a), but it was not 502 

ubiquitous. Thus, trends of P. uncinata growth were not consistent through all forests, 503 

thought almost all the statistically significant coefficients found were negative (only there 504 

was one increasing growth trend). This may be related, however, to the length of the radial 505 

growth data series. Overall results suggest that P. uncinata radial growth could benefit 506 

from the predicted shallower snowpack in these mountain ranges (López-Moreno, 2005; 507 

Morán-Tejeda et al., 2013a) over the next decades by a prolongation of the growing 508 

season, especially in high elevation forests. Likewise, climatic warming is expected to 509 

promote forest growth in the Pyrenees in a similar way (Tardif et al., 2003). However, 510 

growth could be declined in some dry sites where the amount of soil water available to 511 

trees in the growing season relates to the previous months’ snowpack (Pederson et al., 512 

2011). Therefore, in xeric sites, a shallower snowpack due to warmer temperatures could 513 

lead to limited soil water content in spring and reduce growth (Walsh et al., 1994; 514 

Truettner et al., 2018). It has been reported that these thermal stress sites are dependent 515 

on early summer precipitation (Richter et al., 1991; Andreu et al., 2007; Galván et al., 516 
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2014), but this has not been observed so far in our studied sites. This may be related to 517 

limitation in the data used in this study. The length of the radial growth data series was 518 

not consistent throughout the sampled sites, ranging from 30 to 13 years of available data 519 

per sampled forest. The temperature and snow depth data were a product of a climate 520 

simulation with the WRF model, with a spatial resolution (10 x 10 km) that could be too 521 

coarse to represent their real spatial variability on the complex terrains of the forests. The 522 

regional nature of this study prevented consideration with finer-scale climatic 523 

observations. 524 

This study seeks to further research with higher spatial and temporal resolution 525 

data, including in-situ climatic and snow cover records, and other environmental variables 526 

(such as soil moisture, wind, and solar radiation) in order to improve understanding of 527 

how snow-growth relations occur in P. uncinata mountain forests.  528 

 529 

5. Conclusions 530 

Radial growth of P. uncinata forests is affected by snow cover depth, independent of the 531 

widely reported effect of growing season air temperature on their wood formation. P. 532 

uncinata growth is negatively influenced by a larger winter and late spring snowpack 533 

depth. Geographical and topographical gradients and some tree characteristics as height 534 

explained differences in snow–growth relationships. This study suggests that a future 535 

shallower and more transitory snowpack in the studied mountains may benefit the growth 536 

of P. uncinata over the next decades, although a few forests could experience warming-537 

induced drought stress.  538 
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Supplementary Material 774 

Table S1. Pinus uncinata sampled sites and their geographical, topographical, ecological 775 

and nival characteristics. Values are means ± standard deviation. 776 
 777 

Mountain 

range 

 

Site (code) 
Analysed 

years 

Latitude 

N (º) 

Longitude 

–W, +E (º) 

Elevation 

(m a.s.l.) 
Slope (º) dbh (cm) Age (years) Max SD (m) 

Pyrenees 

 

Acherito (ACHE) 30 42.89 -0.75 1850 – – – 2.31 ± 0.61 

Airoto (AIRO) 16 42.70 1.03 2300 47 ± 29 58.5 ± 13.5 288 ± 100 2.54 ± 0.70 

Bielsa (BIEL) 16 42.70 0.18 2000 88 ± 4 45.1 ± 9.4 270 ± 67 1.14 ± 0.36 

Barranc de Llacs (BLLA) 30 42.53 0.92 2250 44 ± 38 71.7 ± 20.0 616 ± 175 2.65 ± 0.86 

Conangles (CONU) 14 42.62 0.73 2106 43 ± 15 56 ± 14.5 318 ± 117 1.94 ± 0.61 

Corticelles-Delluí (CORT) 30 42.56 0.93 2269 24 ± 17 83.1 ± 28.8 509 ± 177 1.26 ± 0.47 

Las Cutas (CUTA) 17 42.62 -0.08 2150 20 ± 5 33.3 ± 8.3 129 ± 16 1.31 ± 0.49 

Estany d’Amitges (EAMI) 29 42.58 0.98 2390 40 ± 21 69 ± 26.0 355 ± 106 1.51 ± 0.59 

Estany Gerber (EGER) 30 42.62 0.98 2268 15 ± 15 53.5 ± 14.6 426 ± 147 2.24 ± 0.64 

Estany de Lladres (ELLA) 29 42.55 1.05 2120 35 ± 12 52.1 ± 9.8 313 ± 123 1.03 ± 0.54 

Estany Negre (ENEG) 29 42.55 1.03 2451 35 ± 18 71 ± 26.0 411 ± 182 1.68 ± 0.66 

Estanys de la Pera (EPER) 17 42.45 1.61 2360 30 ± 0 65.2 ± 11.0 339 ± 117 0.94 ± 0.39 

Foratarruego (FORA) 29 42.62 0.10 2031 37 ± 11 49.5 ± 18.3 433 ± 50 1.83 ± 0.83 

Larra (LACO) 19 42.95 -0.77 1750 38 ± 24 46.4 ± 14.0 350 ± 108 1.90 ± 0.53 

La Estiva (LEST) 13 42.68 0.08 2000 – – – 1.10 ± 0.32 

Mata de València (MAVA) 17 42.63 1.07 2019 19 ± 10 43.2 ± 3.6 237 ± 72 1.65 ± 0.58 

Mirador (MIRA) 29 42.58 0.98 2180 33 ± 18 55.1 ± 25.8 401 ± 132 1.06 ± 0.41 

Mirador del Rey (MIRE) 18 42.63 -0.07 1980 25 ± 10 53.3 ± 15.3 117 ± 18 0.94 ± 0.29 

Monestero (MONE) 29 42.56 0.98 2280 28 ± 13 64.4 ± 16.1 346 ± 110 1.28 ± 0.49 

Vall de Núria (NURI) 21 42.38 2.13 2075 – – – 0.49 ± 0.27 

Pic d’Arnousse (PIAR) 14 42.80 -0.52 1940 32 ± 4 65.4 ± 5.1 248 ± 83 2.80 ± 0.67 

Ratera (RATE) 29 42.58 0.98 2170 40 ± 5 28.3 ± 8.1 380 ± 146 1.04 ± 0.40 

Respomuso (RESP) 30 42.82 -0.28 2350 70 ± 19 49.5 ± 15.1 280 ± 83 4.61 ± 1.17 

Sant Maurici (SAMA) 16 42.58 0.98 1933 16 ± 15 38.2 ± 5.7 204 ± 23 0.67 ± 0.22 

Sarradé (SARU) 15 42.55 0.89 1950 – – – 1.65 ± 0.51 

Senda de Cazadores (SECA) 29 42.63 -0.05 2247 49 ± 12 60.9 ± 16.5 337 ± 145 1.60 ± 0.76 

Setcases (SETU) 19 42.40 2.28 2080 – – – 0.68 ± 0.35 

Sobrestivo (SOBR) 29 42.67 0.10 2296 38 ± 2 61.7 ± 17.5 341 ± 97 2.06 ± 0.88 

Tessó de Son (TESO) 15 42.58 1.03 2239 42 ± 14 74.5 ± 18.8 346 ± 202 1.15 ± 0.37 

Vall de Mulleres (VAMU) 14 42.62 0.72 1800 34 ± 13 69 ± 26.0 437 ± 184 1.27 ± 0.35 

Pre-

Pyrenees 

Cap de Boumort (COLU) 30 42.23 1.12 1915 – – – 0.35 ± 0.22 

Guara (GUAU) 30 42.28 -0.25 1790 – – – 0.62 ± 0.32 

Pedraforca (PEDR) 26 42.23 1.70 2100 – – – 0.69 ± 0.37 

Iberian 

System 

Vinuesa (CAVI) 30 42.00 -2.73 2050 21 ± 1 85.6 ± 23.0 368 ± 148 1.31 ± 0.39 

Valdelinares (VATE-VA1U) 26 40.37 -0.37 1955 10 ± 5 63.8 ± 12.4 214 ± 107 0.57 ± 0.32 

  778 



 

36 

 

Table S2. Coefficients from Spearman correlations (rs) between snow indices and 779 

temperature monthly aggregations. Arrow indicates which monthly aggregation of 780 

temperature is best correlated to each snow index and is then used in further analysis. 781 

 782 

Temperature indices 
Snow indices 

Nov SD Feb SD May SD 

Nov T -0.34** ←   

    

Feb T  -0.63**  

Nov-Feb T  -0.57**  

Dec-Feb T  -0.63**  

Jan-Feb T  -0.64** ←  

    

May T   -0.55** 

Mar-May T   -0.57** ← 

Apr-May T   -0.56** 

Values followed by ** are statistically significant at p < 0.01. 783 

 784 

  785 
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Table S3. Correlation coefficients from partial correlations calculated between tree-ring 786 

width and snow indices. 787 

 788 

Site 

Nº 

analysed 

years 

Spearman correlations coefficients (rs) 

Nov SD Feb SD May SD 

ACHE 30 -0.09 -0.27 -0.22 

AIRO 16 -0.24 -0.23 -0.41 

BIEL 16 0.32 -0.34 -0.12 

BLLA 30 0.09 -0.09 -0.13 

CAVI 30 -0.23 -0.35 -0.33 

COLU 30 0.01 0.14 0.03 

CONU 14 -0.06 -0.78** -0.51 

CORT 30 -0.02 -0.26 -0.18 

CUTA 17 -0.30 0.01 0.07 

EAMI 29 0.14 -0.23 0.03 

EGER 30 0.05 -0.29 -0.38* 

ELLA 29 0.19 0.21 -0.16 

ENEG 29 0.06 -0.23 -0.12 

EPER 17 -0.45 -0.56* 0.09 

FORA 29 0.15 0.06 0.20 

GUAU 30 0.13 0.17 0.06 

LACO 19 0.22 -0.25 -0.31 

LEST 13 0.14 -0.31 0.31 

MAVA 17 0.17 0.08 0.15 

MIRA 29 0.06 -0.23 -0.05 

MIRE 18 -0.05 -0.47 0.37 

MONE 29 0.02 -0.26 -0.21 

NURI 21 0.11 -0.13 0.09 

PEDR 26 0.04 -0.21 -0.25 

PIAR 14 0.32 0.07 0.28 

RATE 29 0.33 0.12 -0.24 

RESP 30 -0.15 -0.15 -0.27 

SAMA 16 0.33 0.05 -0.43 

SARU 15 -0.06 -0.54* -0.12 

SECA 29 0.26 0.25 0.10 

SETU 19 -0.15 0.07 -0.11 

SOBR 29 -0.09 -0.29 -0.08 

TESO 15 -0.01 -0.63* -0.18 

VA1U 26 0.34 0.06 0.07 

VAMU 14 0.19 -0.71** 0.10 

VATE 26 0.18 -0.34 -0.15 

Values followed by * and ** are statistically significant at p < 0.05 and p < 0.01, 789 

respectively. Note that data length differs between sites.  790 
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Figure S1. Partial correlation coefficients (Spearman, rs) calculated between tree-ring 792 

width and snow indices. Sites where a statistically significant correlation was found are 793 

labelled. Statistical significance of models is represented in red (p > 0.05) and blue (p < 794 

0.05) colors. 795 

 796 

 797 

  798 
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Figure S2.  Latitude, longitude and elevation distribution patterns for groups of sites with 799 

the same RWI main drivers. Pre-Pyrenees (Pre-Pyr) and Iberian System (IS) locations are 800 

indicated where applicable. NA indicates sites whose selected model was null. Stars 801 

indicate sites whose selected model was statistically significant (p < 0.05). 802 

 803 

 804 
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Figure S3. (a) Effect of geographical, nival gradients and tree influences on growth-snow 806 

partial correlations (Spearman correlations, rs). The southern Iberian System sites were 807 

omitted in latitude analyses. (b) Scatterplots of statistically significant correlations (p < 808 

0.05) obtained between growth-snow partial correlations and biogeographical gradients. 809 

Histograms show sites frequency of distribution along gradients. 810 

 811 

 812 

 813 
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Figure S4. Theil-Sen's slopes (variable’s units in mm·year-1) for tree-ring width (RWL) 815 

and snow indices trends of selected sites from 1981 to last year with data (series’ lengths 816 

are shown after site codes). Statistically significant values at p < 0.05 are represented 817 

with stars. Blank values in RWL mean data is not available for these sites. 818 

 819 

 820 


