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Institut Laue Langevin, 71 avenue des Martyrs CS 20156, 38042, Grenoble Cedex 9, France

Eduardo Enciso
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Abstract

Crystallization under stringent cylindrical confinement leads to novel quasi-one-dimensional materials. Sub-

stances with strong cohesive interactions can eventually preserve the symmetries of their bulk phase compat-

ible with the restricted geometry, while those with weak cohesive interactions develop qualitatively different

structures. Frozen molecular deuterium (D2), a solid with a strong quantum character, is structurally held

by weak dispersive forces. Here, the formation of one-dimensional D2 crystals under carbon nanotube con-

finement is reported. In contradiction with its weak cohesive interactions, their structures, scrutinized using
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neutron scattering, correspond to definite cylindrical sections of the hexagonal close-packed bulk crystal.

The results are rationalized on the grounds of numerical calculations, which point towards nuclear quantum

delocalization as the physical mechanism responsible for the stabilization of such outstanding structures.

Keywords: Quantum Solids, 1D crystals, Confinement, Molecular Hydrogen, Neutron Scattering

1. Introduction

Carbon nanotubes are used to study crystallization under cylindrical constraints as well as to obtain a

plethora of one-dimensional (1D) materials [1, 2, 3]. These new materials emerge, owing to the geometrical

restriction, as crystalline phases with structures unlike their bulk counterparts (see chapter 5 in [3]). Some

substances with strong cohesive interactions can retain their bulk crystallinity down to the strict one-5

dimensional limit, in which all the crystal constituents are simultaneously bulk and surface [4]. However,

in general, for a certain level of geometrical restriction, crystalline arrangements with symmetries alien to

the bulk phases develop [5]. As expected, this is the rule if the cohesive interactions are weak, for instance,

hydrogen bonding in the archetypal case of water [6, 7, 8].

For purely dispersive interactions, molecular hydrogen (H2) is an outstanding case owing to the strong10

quantum character of its condensed phases [9, 10, 11]. In particular, crystalline H2 and its deuterium

isotopologue (D2) are prominent examples of quantum solids. Such crystals are characterized by a quantum

nuclear delocalization sizable compared to the intermolecular distance, eventually rendering the harmonic

crystal approximation useless [12]. The effect is maximized in the case of H2, where quantum fluctuations

are so dominant that make the crystal insensitive to thermal variations [10, 11]. Furthermore, in both15

crystals the molecules behave as quantum free rotators, which implies that the nuclear orientational degrees

of freedom are fully delocalized at low temperatures. Both crystalline states are van der Waals solids with

an interaction potential well of just −2.77 meV, while that of the binding potential to a graphite surface

amounts to � −50 meV [13]. Confinement within narrow carbon nanotubes can roughly double this depth.

Calculations without including the quantum nuclear delocalization predict new ordered arrangements not20

present in the bulk [14, 15, 16], some of them reminiscent of spiral configurations observed in the iodine 1D

case [17, 18, 19]. The search for superfluid behavior has spurred intense theoretical efforts to deal with the

quantum nature of the H2 molecular movements [20, 21, 22, 23, 24]. The results, not free of controversy, seem

to favor a quantum solid resembling neither the spiral arrangements nor the hexagonal close-packed (HCP)

structure of the bulk phase [23]. In the case of molecular deuterium, nuclear wave function calculations hint25

at the possibility of HCP structures within narrow carbon nanotubes [25].
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On the experimental side, as far as solidification under strong cylindrical confinement is concerned, the

results are scarce. In carbon nanotubes, there is only evidence of transitions from one- to two-dimensional

arrangements of D2 on the external grooves of carbon nanotube bundles [26, 27], but no results about crystal

structures within the nanotubes. There are hints of HCP crystallization of D2 in the cylindrical mesopores30

of silica-based MCM-41 materials [28], but with a pore diameter as wide as 2.5 nm, quite far from the

1D limit. In these studies D2 is preferred because the strong incoherent neutron scattering of H2 makes

diffraction measurements impractical.

In this work, by resorting to neutron diffraction (ND), crystallization of molecular deuterium within

multi-walled carbon nanotubes (MWCNT) is studied. We have succeeded in resolving the crystalline struc-35

ture down to the strict 1D limit. In spite of the weakness of the cohesive interactions mentioned above,

the 1D crystals preserve the structure of its bulk counterpart. The strong quantum character of the bulk

crystalline D2 is also preserved in the 1D confined phases: the large delocalization of the nuclear positions

as well as the full quantum nature of the rotational degrees of freedom are manifest in the measured neutron

diffraction. The structures of the discovered 1D crystals correspond to maximally symmetric cylindrical cuts40

of the bulk HCP crystal. Such structures were addressed after the failure in reproducing the measurements

by fully atomistic molecular dynamics (MD) simulations as well as by dispersive density functional theory

(DFT) calculations corresponding to our experimental conditions. Instead, DFT and MD approaches yield

spiral-like arrangements in full agreement with energy considerations as well as consistent with previously

reported calculations. Since such calculations do not deal with quantum nuclear effects, given the strong45

quantum nature of the observed structures we conclude that quantum delocalization in the nuclear degrees

of freedom is essential to stabilize the discovered 1D crystals.

The paper is organized as follows: in section 2 the experimental procedures and setups are described.

The results, in particular the finally resolved crystalline structures, are presented and discussed in section 3.

In section 4 our findings are summarized and the main conclusions exposed. To lighten the exposition, the50

details of materials and methods as well as of the theoretical developments used in the data analysis are given

as appendixes. Likewise, the large series of diffraction patterns explored along with a detailed description of

the nonlinear fitting analysis used to resolve the structures are presented in a Supplementary Material file.

For the sake of reproducibility, details of custom-made experimental setups and specifics of the numerical

runs made are also given there. Finally, figures corresponding to some complementary measurements and55

tables of numerical parameters complete the Supplementary Material.

2. Experimental

Our main goal is to study the structural evolution of molecular deuterium during solidification under

extreme cylindrical confinement. In short, we measured neutron diffraction (ND) in runs of 350 seconds
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Figure 1: Some TEM pictures of the final processed samples. A corresponds to X 30000, B and C to X 100000 and D to X

300000

while submitting a sample of open MWCNTs to thermal cycles (between 24.5 K and 2 K) at four increasing60

loads of adsorbed D2 at 20 K, corresponding to the equilibrium pressures 62 hPa, 175 hPa, 225 hPa, and 284

hPa. The details of the experiment design, the experimental setup as well as of the materials and methods

used are given in Appendix B.

We synthesized MWCNTs by the arc discharge method. Like in the single-walled case, the tubes in

the raw material are closed. In order to open them, we submitted the samples to an oxidation treatment65

(for details, see Appendix B.2). Transmission electron microscopy (TEM) of the final material (see Fig. 1)

shows the expected structure for typical arc discharge MWCNT samples: It is quite heterogeneous, showing

a wide variety of MWCNTs among a plethora of irregular polyhedral closed nanostructures. The surfaces

do not present eroded scars or holes other than the openings of some nanotubes.

The adsorption of the sample was characterized through an isothermal D2 adsorption/desorption mea-70

surement at 20 K using a custom-made setup. The isotherm in Fig. 2 shows during desorption a hys-

teresis beginning at the bulk vapor pressure. This is expected in this kind of samples. It comes from

macro/mesopores, i.e., the interstitials among the various structures observed in the TEM. Consistently

with the opening of a portion of the MWCNTs, the isotherm also presents a small, but noticeable, almost

vertical increase at zero pressure, a feature revealing the presence of micropores of molecular dimensions75
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Figure 2: D2 adsorption (blue)/desorption (red) isotherm at 20.23 ± 0.03 K for the sample of open MWCNTs. The amount

of adsorbed gas is given in millimole per gram of sample. The arrows label the initial working points of the thermal cycles

during the neutron diffraction measurements as described in the text. The inset is a zoom of the same data, focusing in the

lower adsorption range in units of the bulk vapor pressure at 20.23 K (364.9 hPa [31]).

[30]. At sufficiently low loads of D2, which correspond to low pressures in the isotherm, only the MWCNTs

with the narrowest opened inner tubes are filled.

The chosen instrument was D20 at the Laue-Langevin Institute (ILL) in Grenoble, France, since it is

a diffractometer of very high flux which allows to address very small quantities of scatterers in reasonable

acquisition times (see details in Appendix B.6).80

With respect to the neutron scattering, given the lightness of D2 molecule, energy transfers between

the incident neutron and the molecule affect the diffraction signal in a non-perturbative way. Usually this

inelastic component is obtained heuristically since a proper correction requires a knowledge of the complete

scattering law. Based on the neutron scattering theory for diatomic molecules developed by Sears [32],

we have worked out an ansatz for the energy-integrated signal accounting for the observed ID(Q) that

incorporates inelasticity without relying in any heuristic correction. From such an ansatz, the inelastic

correction is given by a background, bg(Q2), expressible as an expansion in Q2 (up to second order in

practical terms). Physically, ID(Q) decomposes in a coherent and an incoherent part. The incoherent

part stems from the random distribution of nuclear spin states along the sample. Formally is like the
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self-scattering contribution coming out from the scatterers. The coherent part of ID(Q) depends on the

orientationally-averaged structure factor of the molecular center-of-mass (COM) specific arrangement of

D2 molecules. It can be calculated efficiently from the pair distribution function, i.e., the table of COM

pair distances dij = |〈Ri〉 − 〈Rj〉| and its associated multiplicities mij , where Ri is the position vector

of the i molecule. An additional key ingredient to reproduce the ND coherent signal is a form factor

corresponding to a spherical shell of diameter equal to the distance between the molecular nuclei, even in

the solid phases at low temperature. This is a consequence of the nuclear orientational full delocalization.

Likewise, the translational degrees of freedom also present a very significant quantum delocalization, which

induces a large root mean square (rms) COM displacement. As explained in the next section, the observed

diffraction signal reveals also the presence of oriented small crystals (or crystal) through barely discernible

Bragg peaks. Although such precursor peaks can be ignored, we must consider the corresponding diffuse

scattering, i.e., the diffraction signal between Bragg peaks in a crystal, which arises from such oriented

crystallites. This is well approximated by a term of the form 1− exp(−Q2u2
3D/3) plus an incoherent part,

where u3D is the rms molecular displacement of the molecules belonging to such crystallite. There is also

an instrumental background whose major contribution to Is(Q) is a flat noise accounted for in bg(Q2).

With these basic constituents we have constructed a theoretical model of the expected ND as a function of

the pair distribution functions of the confined structures with the corresponding rms COM displacement,

the proportion of external crystallite scatterers, and its associated rms COM displacement. The detailed

derivation is provided in Appendix A.1. The final expression for a concentration (mole fraction) C1D of

1D confined molecules with a specific structure and a concentration C3D of molecules in the 3D crystallite

reads,

ID(Q) = C1D

(
4a2d j0(QdD2

/2)2(SM
1D(Q, u1D)− 1) + Finc(Q, u1D)

)
+ C3D

(
Finc(Q, u3D)− 4a2d j0(QdD2

/2)2 exp

[
− (Qu3D)2

3

])
+ bg(Q2) , (1)

where ad is the neutron coherent scattering length of the deuteron, j0 is the spherical Bessel function

of zeroth order, dD2
is the distance between the two deuterons, u1D and u3D are the corresponding rms

molecular displacements, and the background reduces to bg(Q2) = bg0 + bg1 Q
2 + bg2 Q

4 . SM
1D(Q, u1D) is

the structure factor of the molecular COMs of the 1D crystal. The factor j0(QdD2
/2)2 is the spherical form

factor mentioned above. The Finc(Q, u) terms are the incoherent part of the corresponding crystals. As85

explained in Appendix A.1, they depend not only in the temperature but in the concentration of ortho

molecules. In practical terms our scattering intensity is not normalized to absolute units, so that C1D and

C3D are scale factors proportional to the real concentrations.

With respect to the interference part IDC(Q), by its very nature, it most prominent contribution is

around 1.8 Å−1 where the main MWCNTs Bragg peak is located, being negligible for larger values of Q90
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since they correspond to spatial scales shorter than the D2–C distances. This is confirmed a posteriori by

the success of ID(Q) in reproducing the observed ND above 1.8 Å−1. An atomistic description of IDC(Q)

is exceedingly expensive in computational terms; instead, we have assumed the nanotubes as continuous

and infinite to reduce the calculation to sums of analytical expressions as detailed in Appendix A.2. The

approximated IDC(Q) depends on the inner radius of the cylinder where the confined phase forms, ri, on95

the dispersion of the distribution of external MWCNTs diameters, σn, on the average interlayer distance

within the MWCNTs, h, and on an effective rms displacement, ueff , to take into the account the disorder in

the involved pair distances. We remark that its intensity with respect to ID(Q) is not free but determined

by the calculation. Around 1.8 Å−1, the IDC(Q) profile and its derivative change wildly in a few points,

so that iterative minimization algorithms fail to converge. Instead, IDC(Q) is added as a correction to the100

fitted ID(Q), the corresponding free parameters chosen by visual inspection comparing series of plots of

the modeled Is(Q) against the measurements. More specifically, ueff is chosen to the minimum value that

does not perturb the independently fitted ID(Q). The value of h essentially controls the position of the

“dispersive” profile around 1.8 Å−1. A value of 3.41 Å works well for all the explored cases. The inner

radius, ri, is the most relevant parameter with respect to the profile shape. As shown below our IDC(Q)105

reproduces qualitatively the “dispersive” profile around 1.8 Å−1.

3. Results and Discussion

Fig. 3 displays the ND signal I(Q) as a function of the scattering vector modulus Q of the empty MWCNT

sample (black) superimposed to that of the 284 hPa load (green) at low temperature. From now on and for

the sake of simplicity, we label the loads by their equilibrium pressures at 20 K. The red rectangle encloses110

the four main observed Bragg peaks. The normalized area of I(Q) within the rectangle during a thermal

cycle for the two lower loads is shown in the inset. A reversible change of the slope appears at around

13.5 K in both cases, revealing a liquid/solid transition at that temperature. Given that the bulk triple

point is at 18.73 K, and that we are under SVP conditions, such a temperature reduction indicates that the

transition is happening under confinement [33]. Furthermore, since the transition temperature depends of115

the pore size, its reversibility implies confinement under a rather narrow distribution of pore sizes. On the

contrary, the curves of the two larger loads show hysteresis, as expected from the heterogeneous distribution

in size and shape of the interstitials observed in the TEM pictures at meso/macroscales (see Fig. S3 in the

Supplementary Material for the hysteretic cases).

Fig. 4 displays the ND of the solid phases at the four loads after subtraction of the empty MWCNT120

signal, denoted as Is(Q). Here, solid phases refer to those below 11.5 K, a value chosen well under the 13.5

K where the liquid/solid transition manifests. Consistently, the ND of all the independent runs below 11.5

K do not show any discernible changes, so that all the runs with T < 11.5 K have been accumulated. Details
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Figure 3: Neutron diffraction pattern, I(Q), from the pristine MWCNT sample (black) superimposed to that corresponding to

the 284 hPa D2 load (green) at low temperature. The inset shows the evolution during a thermal cycle of the area (normalized

to one at 2 K) under I(Q) within the red rectangle for the 62 hPa load (red circles) and for the 175 hPa case (black circles).

of the neutron scattering data reduction are given in Appendix B.7. The 225 hPa and the 284 hPa loads

present clear crystalline peaks identified as corresponding to both hexagonal close-packed (HCP) and face-125

centered cubic (FCC) phases. As shown in the figure, both kinds of peaks match to an excellent precision

with strictly closed-packed arrangements with the same nearest-neighbor distance, namely, d = 3.605 Å,

a value in agreement with those reported for the bulk solids [34, 35]. The HCP phase is the fundamental

crystal corresponding to the energy minimum of solid D2, but FCC crystallization can also be observed as

soon as any perturbation is introduced in the crystallization environment, as for example, the heterogeneous130

nature of our MWCNTs sample.

D2 tends to crystallize in rather large crystal domains. Since the ND instrument relies on a horizontal

narrow strip detector geometry (see Appendix B.6), the non-uniform distribution of crystal orientations

leads to distorted peak heights and the extinction of peaks with decreasing D2 load. At first glance the

175 hPa and 62 hPa patterns resemble those of amorphous substances with no Bragg peaks. A closer look,135

presented in the inset of Fig. 4, reveals the presence of a couple of precursors of bulk crystalline peaks at

175 hPa and one at 62 hPa. This can be appreciated better in Fig. 5. Since these Bragg peak precursors

appear in both thermal cycles of 62 hPa and 175 hPa, they reveal oriented crystal growth somewhere in the

sample-can system, probably owing to an inhomogeneity-related nucleation site. The “pseudo-amorphous”
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Figure 4: I(Q) after subtraction of the MWCNT sample contribution, Is(Q), for the 62 hPa (red), 175 hPa (black), 225 hPa

(magenta), and 284 hPa (green) D2 loads. The vertical dashed lines mark the position of the bulk solid D2 crystalline peaks.

Dashed blue lines are for peaks present only in the HCP crystal, red dashed lines for those only present in the FCC crystal

and green dashed line for peaks belonging to both. On top of the dashed lines the corresponding Miller indexes are specified,

in red for the HCP structure and in blue for the FCC case. The inset is a zoom of the two lowest loads, i.e., 62 hPa (red) and

175 hPa (black) along with a scaled-down version of the MWCNT sample I(Q) (dotted line).

part necessarily corresponds to confined phases, in view of the behavior of the I(Q) area of each load shown140

in the inset of Fig. 3. Within this respect, they depart significantly from the observed broader patterns in

solid D2 (10 K) adsorbed in SWCNT bundles [26]. There, the fits adscribe the ND to the presence of chains

and stripes of D2 molecules expected to be within the interstitials (chains) and external grooves (chains and

stripes) of the bundles. These two loads are, therefore, the object of our main interest. The scattering from

D2 pairs, ID(Q), contributes dominantly to Is(Q). There is also a contribution from D2 and carbon pairs,145

IDC(Q), relevant mainly below around 2 Å−1. We focus first in modeling the dominant deuterium part,

ID(Q).

Using the ID(Q) theoretical model described in section 2, a nonlinear fitting analysis detailed in the

Supplementary Material was performed along a family of constrained nanostructures. We naturally started

from structures obtained by MD simulations including MWCNTs up to five walls and effective potentials150

derived from state-of-the-art ab-initio calculations. Not surprisingly, they match the expected arrangements

from energy minimization arguments: tubular shells adsorbed to the inner wall of the nanotubes that can be

seen as rolled portions of the D2 HCP crystal basal plane. As a matter of fact, they are explicit realizations
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of the tubular compact packing of spheres studied in the context of biological structures [36]. However, they

are not compatible with our measurements as illustrated in Fig. S4, Supplementary Material.155

Such disagreement drove us to consider other 1D crystalline structures corresponding to sections of

maximal cylindrical symmetry of both the HCP and FCC bulk crystals with increasing diameter. For these

crystals we fixed d to the value obtained from the 225 hPa and 284 hPa loads, i.e., 3.605 Å. Figure 5

presents the final results of our nonlinear model fitting analysis. Let us consider first the 62 hPa load (Fig.

5A). The agreement is excellent just using a log-normal distribution in length (see inset) of the remarkable160

strict 1D crystal displayed in the right side of the figure. Differences of ID(Q) with increasing length become

negligible (see Supplementary Material Figures S10 and S11). Consequently, there is not enough information

in the diffraction signal to discern the 1D crystal length distribution; in fact, a non-parametric fit of the

crystal lengths only needs to populate a few isolated lengths to achieve excellent results. Lacking further

information, we have relied in the log-normal distribution because it is usually observed in growth processes165

with preferential direction [37, 38]. With respect to the ortho concentration, the fits need a proportion

corresponding to room temperature, i.e., there was no para-ortho conversion during the experiment. The

result is not only of a sheer beauty in its simplicity— the simplest nontrivial strict 1D compact crystal

made out of spheres—but incompatible with theoretical predictions, as discussed above. It corresponds to

a cylindrical cut of the minimal diameter which allows more than one molecule in the horizontal plane with170

the axis perpendicular to the hexagonal basal plane of the HCP fundamental bulk crystal, and centered so

that it passes through the molecular centers at alternate layers. The six-fold symmetry of the parent HCP

bulk crystal is reduced to three-fold (Fig. 5A, top right panel), so we call it triangular-close packed (TCP)

1D crystal.

Consistently, in the 175 hPa load (Fig. 5B) the nanocrystalline structure is just a radially enlarged version175

of the TCP 1D crystal. Again, there is a three-fold symmetry, as it can be seen in the transversal cut of

the crystal, upper right panel of Fig. 5B. Since the crystal consists of alternating triangular and hexagonal

layers, we denote it as THCP 1D crystal. Both 1D crystals display large rms COM displacements, around

0.33 Å in the TCP case, and 0.45 Å in the THCP counterpart, to be compared with the 0.46 Å obtained

from neutron scattering of the D2 bulk crystal [39] (see Tables SI and SII in Supplementary Material).180

Interestingly, there is no hint in the 175 hPa ND of the pattern corresponding to the 62 hPa load. Indeed,

the fittings yield a zero population of the TCP phase, i.e., any finite population of the TCP phase worsens

the fits. Should the TCP 1D crystals form also during the 175 hPa load in quantities comparable to the

62 hPa case, they would also manifest in the 175 hPa ND. Therefore, either the THCP crystals grew out

of previously formed TCP seeds, or the MWCNTs of the smallest diameters are not filled during the 175185

hPa load. In the first hypothesis, the TCP crystals grown at 62 hPa would be formed within MWCNTs of

large enough inner diameter, whereas in the latter the two crystals would grow within MWCNTs of different

inner diameters. Fortunately, the interference part, IDC(Q), carries information about the inner MWCNTs

10
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Figure 5: D2 1D crystals fitting the ND data. (A) D2 load corresponding to the 62 hPa case. (B) D2 load corresponding to the

175 hPa case. ND data points displayed in light blue are not included in the fittings (points below 2 Å−1, areas too affected by

MWCNT peak subtraction, and some outliers). Solid red curves are the fitted ID(Q) component. Thin black curves show the

final Is(Q) including the IDC(Q) part. The dashed lines are a down-scaled representation of the pristine MWCNT sample ND.

Arrows mark the positions of some relevant Bragg peaks of the bulk crystal. At the right side, a representative structure giving

rise to the corresponding Is(Q) is shown in perspective. The small spheres have a diameter equal to the deuteron-deuteron

distance of the D2 molecule (0.74 Å). The diameter of the semitransparent larger spheres equals d = 3.605 Å. In the top views

only the inner nanotubes are shown, an (11,4) single-walled CNT (A) and an (18,0) (B). Dotted circumferences mark the

position of the minimum of the adsorption potential. Insets display the fitted log-normal distributions of 1D crystal lengths in

terms of the number of molecular layers perpendicular to the MWCNT axis.
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diameters so we can use it to settle this question. Fig. 5 shows in solid black the complete NDs including

the IDC(Q) contribution. By construction, it coincides with ID(Q) above ∼ 1.8 Å−1 so that it falls below190

the red line representing ID(Q). As shown in the top right panels of Fig. 5, the chosen inner diameters

2ri (10.53 Å for the TCP and 14.09 Å for the THCP) accommodate well the D2 molecules in terms of

the estimated locus [40] of the adsorption potential minima. However, inner diameters around 14 Å in the

TCP case render IDC(Q) profiles incompatible with the measured ND at 62 hPa. We are therefore left to

conclude that the MWCNTs of the narrowest inner diameters are not significantly filled during the 175 hPa195

load. Since we are referring to pore sizes at the molecular limit (below two molecular diameters), steric

molecular hindrance as well as anomalous capillary and condensation effects [41, 42, 43], dependent on the

D2 load, seem plausible. Within this respect, the irregular shapes an the functional groups at the entrance

of the opened nanotubes could play a relevant role. For instance, funnel-like attractive potentials at the

entrance would probably enhance the possibility of molecular jamming at 175 hPa owing to the different200

kinetics and density with respect to the 62 hPa case. Given the large de Broglie wavelength of D2, quantum

wave-like behavior contributing to these effects, as observed with He [44, 45, 46], are also conceivable. At any

rate, here we can only speculate about the microscopic mechanisms involved in this interesting anomalous

behavior since their elucidation requires a study by its own.

Taking into the account that MD simulations do not describe accurately dispersive interactions, which are205

crucial in this kind of systems, we have performed advanced dispersive DFT calculations validated against

experiments, in order to shed light on the discrepancy between the observed structures and theoretical

predictions (details of the calculations are given in Appendix B.9 and Supplementary Material). Due to the

large computational demand of this approach, we restrict ourselves to SWCNTs of a diameter compatible

with the TCP 1D crystal. More specifically, the nanotube of chiral vector (10,5) has an adequate unit cell210

length while its diameter of 10.36 Å is just 2% below that of the (11,4) tube shown in Fig. 5A. The number

of D2 molecules is chosen to be eleven, corresponding to five layers of the 1D TCP crystal, the most probable

length (inset of Fig. 5A). Fig. 6 summarizes the DFT results. Spiral geometries similar to those obtained by

MD are once more the most stable configurations, at variance with the experimental results (see Fig. S4A of

Supplementary Material). Remarkably, the observed 1D TCP structure, presented in Fig. 6B, is metastable215

within this approach, but the next most plausible 1D crystal derived from the FCC bulk structure is not

stable under the DFT approximation (depicted in Fig. S5B of Supplementary Material). The calculated

ID(Q)s are also shown in Fig. 6 along with those corresponding to the equivalent TCP 1D structure obtained

from the fits. Additionally, notice that the DFT calculations yield an effective nearest-neighbor distance

slightly shorter than the experimental one. This is a consequence of the quantum delocalization of the220

rotational degrees of freedom of the nuclei, not taken into account by the DFT approach, which renders

the molecular interactions essentially isotropic. On the contrary, within the DFT approximation the D2

molecules retain its dumbbell-like anisotropic character and tend to order in a parallel, more compact,

12



configuration.

The present results tell of a van der Waals molecular compound that crystallizes retaining the bulk crystal225

structure down to the strict 1D limit. This is in stark contrast with results pertaining to other materials

with weak cohesive energies, which do not show the marked quantum behavior in their translational and/or

rotational degrees of freedom as our 1D crystals do, conspicuously revealed by their neutron scattering

response. Our DFT calculations, with reliable dispersive functionals, make clear that the missing quantum

treatment of the nuclear motions are one key ingredient for the stabilization of these 1D crystals. On the230

other hand, the fact that the TCP 1D crystal is weakly metastable under the DFT calculations suggest

that a precise account of the quantum behavior of the electronic cloud in the description of the dispersive

interactions could also be relevant. In fact, the development of dispersive DFT techniques during the last two

decades is characteristic of the nanoscience revolution: adsorption phenomena within nanostructures depend

too subtly on the dispersive interactions to be accommodated within the traditional effective potential235

approach. The challenge now is to incorporate the nuclear quantum effects accurately, a subject attracting

an increasing interest [47]. At present, inclusion of translational quantum nuclear delocalization effects

in condensed matter can be tackled with computationally very demanding quantum Monte Carlo or path

integral methods [23, 24] but we remark that, both, the nuclear rotational delocalization and the dispersive

forces are treated in the same effective manner as in our MD simulations. Within this context, the structures240

here discovered stand out for testing future theoretical developments since they are dispersive molecular

solids displaying a non-trivial quantum nuclear behavior at the same time being structurally simple.

4. Conclusion

Using neutron diffraction we have discovered 1D quantum crystals of molecular deuterium within MWC-

NTs. Unexpectedly for a molecular solid with very weak cohesive interactions, the 1D crystals preserve the245

structure of the HCP bulk D2 crystal. Neither atomistic molecular dynamics simulations nor advanced dis-

persive DFT calculations predicts such a possibility, signaling the strong quantum nuclear effects as essential

to the emergence of the discovered 1D crystals.

These 1D crystals are the simplest nontrivial condensed matter systems in which the quantum nature,

not only of the electronic cloud, but also of the nuclear translational and rotational degrees of freedom,250

plays an essential role. Our results are deemed to be of special relevance, since they provide a testbed to

confront theoretical approaches aimed to understand and incorporate accurately the full quantum nature of

real interactions, including the nuclear degrees of freedom. Such advances will have a bearing on the design

and simulation of novel (possibly quantum) materials.
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Figure 6: 1D structures obtained by dispersive DFT calculations. (A) Fundamental structure corresponding to the lowest

energy minimum. (B) Structure of the 1D TCP kind corresponding to a metastable energy minimum. Their associated ID(Q)s

are also shown (cyan curves) along with that corresponding to the experimentally-determined equivalent 1D TCP crystal (red

curves). Since the DFT calculations do not reproduce the nearest-neighbor distance accurately, properly Q-rescaled versions

of the ID(Q)s are displayed in the insets.
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Appendix A. Theoretical developments

Appendix A.1. Theory of the measured neutron scattering270

In a neutron diffraction experiment at a continuous source installation such as the ILL, the intensity of

scattered neutrons by the sample out of a mono-energetic incident neutron beam is measured as a function

of the scattering angle. The relevant differential scattering cross section is then given by

dσ

dΩ
=

∫ Ei

−∞

d2σ

dΩ dEf
dEf , (A.1)

where the Ω denotes solid angle, Ei the energy of the incident neutrons and Ef the final detected neutron

energy. Following the full quantum calculations of Sears [32], the double differential cross section in the case

of a homonuclear diatomic molecule under the assumption of free rotation, can be expressed as

d2σ

dΩ dEf
= N

kf
ki

⎛
⎝4 a2d j0(QdD2

/2)2Sint(Q, E) +
∑
J,J ′

a2(Q; J, J
′
)Sself(Q,E − EJ,J ′ )

⎞
⎠ . (A.2)

Here N is the number of nuclei in the sample, ki,f are the initial and final neutron angular wavenumbers, ad

is the coherent neutron scattering length of the deuteron, j0 the spherical Bessel function of zero order, dD2

the distance between the nuclei in the molecule, Q is the scattering angular wavevector (Q its norm), the Js

denote the nuclear orbital angular momentum quantum levels, EJ,J ′ the corresponding energy jumps among

J levels and E = Ei − Ef is the energy transfer. The a2(Q; J, J
′
) factors are quite complex expressions275

involving linear combinations of Bessel spherical functions dependent on the bosonic or fermionic character
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of the nuclei [32]. They depend on all the rotational levels excited by the neutrons at the given incident

energy and, as such, incorporate the corresponding orientational form factors. Transitions between the ortho

(even J angular momentum) and para (J odd) levels are forbidden so that thermalization of the populations

proceeds independently. The J = 1 state is highly metastable so that equilibration at low temperatures280

downwards the fundamental J = 0 level is extremely slow in the bulk [12] but it could be accelerated by

the interaction with the substrate. Otherwise, thermal equilibration proceeds unhindered so that the model

depends on the temperature and the concentration of ortho molecules [32].

Sint(Q, E) is the interference part of the dynamical structure factor of the molecular COMs, i.e., the

part not involving single particle self-scattering. Such self-scattering part (of the COMs) corresponds to285

Sself(Q,E) (Sears uses the subscript inc from incoherent). It is a consequence of the free rotation assumption

that both Sint(Q, E) and Sinc(Q,E) in Eq. (A.2), refer only to the dynamics of the COMs of the molecules.

In order to calculate Eq. (A.1), we need a model of such dynamical structure factors. Since their contribution

to Eq. (A.1) is through integration in E, we will take advantage of general sum rules, i.e., moments in E,

that must be satisfied independently of the system dynamics.290

Focusing on the interference part, the relevant sum rule is
∫∞
−∞ Sint(Q, E) dE = S(Q) − 1, where the

S(Q) is the structure factor. This is the quantity of interest, since it yields a structural characterization of

the system and it is amenable to theoretical modeling. It is given by

S(Q) = 1 +
1

N

∑
i�=j

〈exp [i(Ri −Rj) ·Q]〉 , (A.3)

where N is the number of scatterers, Rj the position vector of the j molecular COM and 〈〉 denotes

quantum-mechanical thermal average. In a solid, thermal fluctuations are well approximated by a Gaussian

distribution of displacements around the mean positions 〈Rj〉. In such a case, after orientational and thermal

average, Eq. (A.3) reduces to

S(Q) = 1 +
1

N

∑
i �=j

j0(|〈Ri〉 − 〈Rj〉|Q) e−
1
3u

2 Q2

= 1 +
1

N

∑
dij

mij j0(dijQ) e−
1
3u

2 Q2

, (A.4)

where the final sum is over all the different pair distances dij = |〈Ri〉 − 〈Rj〉|, mij are the corresponding

multiplicities and u is the rms displacement around the 〈Rj〉, assumed here, isotropic and independent of

the position. In a solid, the vast majority of the interference scattering is elastic, i.e., it accumulates around

E = 0, so that our model for the interference part is Sint(Q,E) = (S(Q)− 1) δ(E), where δ(E) denotes the

Dirac delta.295

With respect to the self part the elastic term amounts to

Se
self(Q,E) = e−

1
3
u2 Q2

δ(E) . (A.5)

However, it is not so dominant as in the interference case, so we need to proceed further. The relevant
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moments to develop a model of the inelastic part are [48]∫ ∞

−∞
Sself(Q,E) dE = 1 , (A.6)

∫ ∞

−∞
E Sself(Q,E) dE =

�
2Q2

2M
= Er , (A.7)∫ ∞

−∞
E2 Sself(Q,E) dE =

4

3
ErK̄ + E2

r , (A.8)

where M is the mass of the molecule, Er is the so-called recoil energy and K̄ is the mean kinetic energy.

The zeroth order moment is always satisfied, the first order moment is satisfied provided that the interaction

does not depend on the molecular velocities, and the second is true for isotropic systems. The elastic part

does not contribute to the first and second moment; decomposing the incoherent part as Sself(Q,E) =

Se
self(Q,E) + Sine

self(Q,E) and using Eq. (A.5), the zeroth moment implies

∫ ∞

−∞
Sine
self(Q,E) dE = 1− e−

1
3
u2 Q2

. (A.9)

On the other hand, from the first and the second moments, the energy dispersion is obtained:

σ2
E = 〈E2〉 − 〈E〉2 =

4

3
ErK̄ . (A.10)

The mean kinetic energy at low temperature is expressed in terms of the rms displacement as [49, 50],

K̄ =
9

16
Θ =

81

64

�
2

Mu2
, (A.11)

where Θ is the Debye temperature, the parameter usually quoted in the experimental reports. We are now

in disposition to write up a model for the incoherent part preserving all the moments up to the second:

SM
self(Q,E) = e−

1
3
u2 Q2

δ(E) + (1− e−
1
3
u2 Q2

)
1√
2πσ2

E

exp

[
− (E − Er)

2

2σ2
E

]
. (A.12)

where the M superscript serves to recall it refers only to molecular COM contribution. The chosen Gaussian

shape for the inelastic scattering is a natural choice to warrant the integral properties up to second order.

Such a profile must be understood as a kind of smoothing of the real signal since it does not incorporate300

the details of the density of vibrational modes. Only in the limit of very large momentum transfer the

same kind of profile would be exact (impulse approximation) but for the nuclei themselves, not for the

molecular COMs. Interestingly, in the case of H2, given the lightness of the molecule, this profile for the

COM dynamics has been observed at least from Q’s as low as 5 Å−1 [51].

In order to calculate Eq. (A.1) the factor kf/ki = ki
√
1− E/Ei must be also included in the inelastic

part. Conservation of energy and momentum establishes a relation among Q, E, and, φ, the angle between

ki and kf , namely,

Q2 = k2i + k2i

(
1− E

Ei

)
− 2k2i

√
1− E

Ei
cosφ . (A.13)
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Substituting Q in terms of E and φ, the integration of Eq. (A.2) in E yields the measured cross section Eq.305

(A.1). Notice that direct integration of Eq. (A.2) does not yield the single cross section, since it is defined

(and measured) at constant φ, not at constant Q. However, usually the ND is expressed in terms of Q, but

only at its elastic value using the relation Qe = 2ki sinφ/2. As a rule, the elastic condition is not explicitly

stated but the same symbol Q is used. We adhere here to such a practice. At any rate, in many experiments

Ei is sufficiently high for the static approximation to be valid [48], where all the scattering can be considered310

elastic.

As far as the fitting is concerned, we first generate a two-dimensional numerical table in u and Q of the

expression

Finc(Q, u) =

∫ ∞

0

kf
ki

∑
J,J ′

a2(Q; J, J
′
)Sself(Q,E − EJ,J ′ ) dE , (A.14)

where the suffix inc remarks that this expression includes not only the coherent self-contribution but the

incoherent scattering. In the actual fittings a two-dimensional interpolation of the table is used to avoid the

computational load of a numerical integration at each fitting step.

With respect to the diffuse coherent scattering of the external crystallite, performing only the thermal

average in Eq. (A.3), we have

S(Q) = 1 +
e−

1
3u

2 Q2

N

∑
i �=j

ei(〈Ri〉−〈Rj〉)·Q = 1 + e−
1
3
u2 Q2

(
1

N

∑
i

∣∣∣ei〈Ri〉·Q
∣∣∣2 − 1

)
(A.15)

= 1− e−
1
3
u2 Q2

+ e−
1
3
u2 Q2 1

N

∑
i

∣∣∣ei〈Ri〉·Q
∣∣∣2 = 1− e−

1
3
u2 Q2

+ SB(Q) . (A.16)

In a crystal, and in the limit of N → ∞, SB(Q) gives rise to the Dirac delta peaks characteristic of Bragg

scattering. The rest is obviously the scattering among the Bragg peaks, i.e., the diffuse scattering. This

remains true also at finite N , where the peaks broaden. Therefore, the diffuse scattering from external

crystallite contributes with an interference part given by

Sint(Q, E) = −e− 1
3
u2 Q2

δ(E) , (A.17)

while the incoherent part is again given by Finc(Q, u), but this time with u corresponding to that of the315

external crystallite.

Altogether, for a number concentration C1D of 1D confined molecules and a C3D number concentration

of molecules in the 3D external small crystal, gives,

ID(Q) = C1D

(
4a2coh j0(QdD2/2)

2(SM
1D(Q, u1D)− 1) + Finc(Q, u1D)

)
+ C3D

(
Finc(Q, u3D)− 4a2coh j0(QdD2

/2)2 exp

[
− (Qu3D)2

3

])
, (A.18)

where SM
1D(Q, u1D) is the structure factor of the molecular COMs as given by Eq. (A.4) and u1D and u3D

are the corresponding rms displacements.
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Besides Eq. (A.18) there must be an instrumental flat background, bg0. With such an addition, Eq. (A.18)

produces convergent fits to the measured I(Q). That is, it captures adequately most of the ND signal. A320

final refinement is now expressible as series in Q2. A background second order in Q2, bg0 + bg1Q
2 + bg2Q

4,

is enough to obtain excellent fits.

Appendix A.2. Modeling of the C−D2 diffraction interference term

In terms of the positions of the D2 COMs, Ri and of the carbon atoms, rj , the ND signal corresponding

to the interference between carbon atoms and D2 molecules reads,

IDC(Q) = C1D ac 2 ad j0(QdD2
)
1

N

∑
i

∑
j

〈
e−iQ·(Ri−rj)

〉
+ c.c.

= C1D ac 2 ad j0(QdD2
) e−

1
6
Q2(u2

1D+u2
c) 1

N

∑
i

∑
j

〈
e−iQ·(〈Ri〉−〈rj〉)

〉
+ c.c. , (A.19)

where c.c. denotes complex conjugate, N is the number of molecules, ac is the coherent neutron scattering

length of carbon nuclei, uc their rms mean displacement and in the second line we have performed thermal325

average, again assumed Gaussian and isotropic. Consequently, 〈〉 reduces to only an orientational average.

Here, 2 ad j0(QdD2) plays the role of the coherent scattering length of the D2 molecule, dependent on Q

owing to the non point-like molecular structure.

An atomistic description of the MWCNTs is computationally too expensive. However, assuming a

continuous distribution of the carbon atoms along infinite tubes, we can take advantage of some analytical

calculations. Given a microscopic density of carbon atoms, ρc(r), a general term of the sums above is written

as 〈
e−iQ·〈Ri〉

∫
V

e−iQ·rρc(r) dr3
〉

=
1

4π

∫
dΩQ e−iQ·〈Ri〉

∫
eiQ·rρc(r) dr3 , (A.20)

where dΩQ is the solid angle corresponding to a direction of the scattering vector and the integrals extend

to all the directions and the whole space respectively. For an infinite tube of diameter RCNT , the density is

expressed in the cylindrical coordinates r, ϕ, z, with z axis that of the cylinder as ρc(r) = ρAδ(r − RCNT ),

being ρA the areal density of carbon in the nanotube. Analytical integration in the cylindrical coordinates

yields ∫
eiQ·rρc(r) dr3 = 4π2ρA RCNT J0(QRCNT ) δ(Qz) , (A.21)

where J0 is the Bessel function of order zero and Qz is the z component of the scattering vector. Notice that

for an infinite tube the symmetry leads to cancellation of the dependence along the z axis. Substituting Eq.

(A.21) in Eq. (A.20), again analytical integration can be done, this time using spherical coordinates, so that〈
e−iQ·〈Ri〉

∫
V

e−iQ·rρc(r) dr3
〉

= 2π2ρA RCNT J0(QRCNT )J0(QR⊥
i )/Q , (A.22)
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where R⊥
i is the modulus of the projection of 〈Ri〉 onto the plane perpendicular to the tube axis. Now the

interference term for a SWCNT amounts to

IDC(Q) = 8π2C1D ad ρA j0(QdD2)e
− 1

6
Q2(u2

1D+u2
c)RCNT J0(QRCNT )

1

NcQ

∑
i

J0(QR⊥
i ) , (A.23)

where i runs from 1 to Nc, being Nc the number of D2 molecules of a unit cell of the corresponding 1D

crystal.330

For a distribution of MWCNTs of well-defined internal radius ri and m layers separated by a distance

h, the term RCNT J0(QRCNT ) transforms into

m−1∑
n=1

(ri + h(n− 1))J0(Q(ri + h(n− 1))) . (A.24)

In our case the m distribution is not narrow, but those of ri and h must be quite. Assuming ri fixed, the

average over the ensemble of MWCNTs modulates the terms in the sum over layers so that they are scaled

down as n increases, since the statistics of larger n decreases because the instances of large m also decreases.

Furthermore, for n small there are almost as many cases as for n = 1, that is, the histogram of n must start

horizontally. A half-Gaussian decay of the n terms matches such specification and emerges as a natural

choice. Altogether it yields

IDC(Q) = 8π2C1D ad ρA j0(QdD2)e
− 1

3
Q2u2

eff
1

NcQ

∑
i

J0(QR⊥
i )

∞∑
n=1

exp

[
−h2(n− 1)2

2σ2
n

]
(ri + h(n− 1))J0(Q(ri + h(n− 1))) , (A.25)

where we have defined an effective rms displacement, ueff , and σn is the dispersion of the half-Gaussian

decay. In practical terms a value of 50 layers worked well for σn, for which a termination of the n sum at

250 were enough to reach convergence in a short cpu time. In general, there are far more sources of disorder

than just the thermal fluctuations around the COMs. For instance, in the real MWCNTs h presents also

dispersion with some systematic evolution with the number of layers [52]. All of these effects are here boldly335

represented through ueff , chosen as the minimum needed to maintain the line shape of the main ND peak

(1.2 Å for the 62 hPa load and 1.5 Å for the 175 hPa case). The parameter h controls the location in Q

of the dispersive profile. A value of 3.41 Å was consistent with both the ND measurements and the values

reported in the literature [52]. Finally, the areal density of any nanotube is given by ρA = 4/(3
√
3 d 2

cc),

where dcc is the distance of the C−C bond in graphene taken here as 1.42 Å.340
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Appendix B. Materials and Methods

Appendix B.1. Experimental design

As for the confining system, we rely on samples of multi-walled carbon nanotubes (MWCNTs). For our

interests, they present several advantages compared to single-walled nanotubes. To begin with, they are345

far stiffer. Given the weakness of the dispersive interactions among the molecules, tube bending should be

avoided as much as possible to facilitate unperturbed crystallization. Besides, since the external diameters

show a large dispersion in a typical MWCNT sample, they do not form so tightly and well ordered ropes, as

their single-walled counterparts tend to do [29]. On the other hand, the interstitial sizes are typically much

larger than those of the smaller inner diameters because the distribution of external diameters is centered350

at much higher values than those of the inner diameters (much larger also that the typical mean diameter of

good quality SWCNTs samples). In such a case, it can be expected that the adsorption inside the smaller of

the multi-walled tubes will not compete appreciably with 1D-like adsorption in the interstitials or external

grooves of the ropes.

To select the smaller inner diameters as our confining systems we rely in the physics of adsorption. The355

smaller open inner diameter tubes produce the stronger attractive potential wells for the molecules so that

they are filled first. For sufficiently small loads these micropores dominate the distribution of adsorbed

molecules.

As for the probe to study the system, neutrons are uncharged, so that they can penetrate deeply into

the target. Thus, they can explore the structure and dynamics of atomic and molecular arrangements360

buried into nanostructured materials, while at the same time making possible the use of complex sample

environments such as cryogenic and gas handling equipment. Contrary to X-rays, they strongly interact with

hydrogen. Since we are interested in structural information, we resort to the deuterium isotope in order to

avoid the very large incoherent scattering of molecular hydrogen that does not contribute to the diffraction

signal. Incoherent scattering stems from the random distribution of nuclear spin states along the sample,365

and implies the interchange of the spin state between the incident neutron and the nuclei. It can also be

avoided in H2 if prepared in its fundamental para-state, that only scatters coherently. However, the neutron

energy must be well below 14.7 meV in order not to excite the molecular rotational levels responsible for

the very strong incoherent scattering. This would limit the range of the scattering vector norm Q below 4

Å−1, too short to properly explore the spatial scales involved.370

Regarding the measurement protocol, we started by measuring the diffraction of the nanotubes sample

(2 g) during a slow cooling/heating cycle (0.1 K decrement/increment each 70 s) between ≈ 24.5 K and

2 K while neutron diffraction signal was acquired in runs of 350 s. Then we proceeded by injecting very

small quantities of D2 into the sample can at 20 K until we observed a barely discernible liquid state

diffraction signal. The equilibrium pressure at that point was 62 hPa. After heating at ≈ 24.5 K, the same375
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cooling/heating cycle as before was done. The same thermal protocol was repeated increasing the D2 load

in each cycle up to a total of four loads, namely, 62 hPa, 175 hPa, 225 hPa, 284 hPa. Before the 175 hPa

thermal cycle, in order to improve the statistics of the measurements at 62 hPa, a second cooling ramp was

performed down to 2 K where neutron diffraction was measured in runs of 600 s up to a total of 31 runs.

The cooling/heating rate during the thermal cycles was chosen as slow as it was feasible in order to remain380

as near as possible to thermodynamic equilibrium, corresponding in this case to those of saturated vapor

pressure (SVP). From the adsorption isotherm in Fig. 2 it is clear that the four loads are far from the bulk

condition at 20 K.

Appendix B.2. Multi-walled carbon nanotubes synthesis and treatment

The raw MWCNTs were prepared by the evaporation of pure graphite anodes in an electric arc discharge385

under a helium atmosphere of 66 kPa applying a current of 60 A and a voltage of 25 V [53]. The raw

material was oxidized by heating to 973 K in open air during 30 minutes. After an annealing at 1223 K in

Ar atmosphere during 10 hours, around 2 g of the open MWCNT sample was obtained.

Appendix B.3. Deuterium

The deuterium gas was taken directly from a 95 liter bottle of Air Liquide N30 Deuterium (purity ≥ 99.9390

%; ∼ 10 ppm of D2O and O2 and ∼ 25 ppm of N2).

Appendix B.4. Electron microscopy

The structure of the obtained MWCNT material was explored by TEM at the National Center for

Electron Microscopy (CNME) in Madrid, Spain. Drops taken from a dispersion of the samples in ethanol

were deposited over copper grids with holey carbon support films. Transmission electron micrographs were395

taken with a JEOL JEM2100 HT microscope operating at 200 kV.

Appendix B.5. Adsorption isotherm

The D2 adsorption of the MWCNT sample was characterized by a measurement of the adsorbed moles

as a function of the pressure at constant temperature (adsorption isotherm) using a standard volumetric

procedure [30]. The chosen temperature was 20 K (D2 triple point at 18.73 K). In essence, given a known400

volume, the adsorbed moles are obtained from the decrease in pressure they cause with respect to the same

volume with no adsorbant. A home-made gas handling manifold was built to accurately manage the gas

dosage. A layout of the system is shown in Figure S1. All pipes and connections in the manifold are made

of steel and Swagelok valves were used to connect the different volumes in the system. The pressure was

determined with a Baratron R© MKS 690A absolute manometer with a full range scale of 1000 Torr and405

an accuracy of 0.12% of the reading. The reference volume VR is provided by a calibrated steel vessel of
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volume 1045.7 ± 2.3 cm3. The MWCNT sample was located in an aluminium cylindrical can of 15 mm

of inner diameter and 56 mm of height. The can was connected vertically to a specially built insertion

stick (used to introduce the sample can in the cryostat) with an inner capillary for the D2 injection. The

stick was designed to match the standard ILL “Orange” cryostat [54, 55]. This is the same kind of vertical410

cryostat used in the neutron scattering experiment. The inner capillary of the stick was connected through

a valve to the end of the manifold labeled as “sample” in Figure S1. Using the known value of VR all

the needed volumes are determined by expansion of He loads. In particular, the volume comprising from

“sample” valve (closed) down to the sample can (not shown in the Figure) was 20.64 ± 0.15 cm3. Once

the system volumes were determined, 0.521 g of the MWCNT sample were loaded in the sample can, the415

sample stick was introduced in the cryostat and the temperature set to 20 K. From repeated D2 loads in

Vinj and subsequent expansions, the adsorbed moles were determined [30].The sample temperature during

the adsorption/desorption isotherm was T = 〈T i
S〉 = 20.23± 0.03 K.

Appendix B.6. Neutron scattering experimental setup

The neutron scattering instrument of choice was D20 at the ILL in Grenoble, a reactor-based neutron420

facility (continuous neutron beam). The most characteristic feature of D20 is its very high neutron flux,

which allows for real-time studies of many processes. The setup was chosen to maximize the neutron flux

corresponding to a neutron wavelength of 1.30 Å. D20 is a powder diffractometer with a circular detection

zone 1.47 m of radius, 4 m long and 15 cm high with the sample holder at the center of the circle (see [56] for

details about D20). For the setup chosen the resolution remains below 0.02 Å−1 until Q = 5.5 Å−1, reaching425

0.1 Å−1 at Q = 9 Å−1. Such resolution values are high enough to avoid resolution integrals in the data

treatment. The gas handling manifold, described in Fig. S2, was located outside the neutron beam safety zone

connected to the cryostat insertion stick through a 5-m-long 1-mm-diameter steel capillary. The injection

volume, Vinj , used during the 20 K loads remained open during the neutron scattering measurements as a

safety expansion volume. The sample can was a standard sample holder for the D20 instrument, namely, a430

0.1 mm thick vanadium cylinder of 60 mm high and 8 mm of inner diameter. The neutron beam size was

8 mm width and 4 cm high. It was centered at the axis of the vanadium cylinder and the lower vertically

edge of the beam located at the bottom part of the vanadium can. All the neutron irradiated volume was

filled with MWCNTs sample (2 g). The pressure was monitored with a MKS 640A manometer (1000 Torr

range) and a MKS 627B manometer (15000 Torr range). Since Vinj was open, the moles of D2 irradiated435

by the neutron beam increased by a factor of around 1.4 from the equilibrium after load at 20 K to zero

pressure solid at 2 K.

Appendix B.7. Neutron scattering data reduction

The raw data were corrected from detector efficiency and transformed to scattering vector reciprocal units

using the LAMP software package freely available at the ILL facility [57, 58]. Self-shielding and neutron440
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absorption correction were estimated using the DAVE software package [59, 60]. As expected, given the

small D2 quantities and the cylindrical geometry of the sample can, self-shielding and neutron absorption

amounts to a small and essentially Q-independent correction. Likewise, multiple scattering corrections

are again Q-independent [61]. Both can be ignored for our purposes, which do not depend on absolute

scattering values. An important point to take into the account is the variation in the number of scatterers445

irradiated by the beam. During a thermal cycle, due to the varying thermodynamic conditions (thermal

expansion/contraction, D2 condensation and diffusion, etc), some grains of the MWCNT powder move in

and out the irradiated volume. In absolute terms the effect is small but not negligible with respect to the

smaller D2 loads. To compensate the effect the I(Q)s of each run are divided by their corresponding total

neutron count, which is proportional to the number of scatterers. In order to improve the statistics, all the450

runs corresponding to the pristine MWCNTs were added together, while for the low temperature I(Q)s of

the loaded MWCNTs, only those below 11.5 K (well below solidification temperature) were considered.

With respect to the subtraction of the MWCNT signal, since self-shielding and neutron absorption can

be considered Q-independent, IC(Q) is just given by an attenuation transmission factor applied to the I(Q)

corresponding to the empty MWCNTs. The porous nature of the D2 distribution within the MWCNT455

sample does not allow for a theoretical calculation of the effective transmissions. Instead, we have just

heuristically adjusted the corresponding values, namely, 0.994 at 62 hPa, 0.9675 at 175 hPa, 0.940 at 225

hPa and 0.930 at 284 hPa.

Appendix B.8. Numerical methods. Molecular Dynamics

Molecular Dynamics (MD) simulations used in our nonlinear fitting analysis have been carried out us-460

ing Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [62]. Taking into account

the quantum delocalization of the nuclear rotational degrees of freedom we have considered for the D2−D2

interaction an isotropic effective potential [12] adapted to the LAMMPS code. For the C−C interaction we

have relied in the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential described

in [63] as it is included in the LAMMPS package. In the case of the D2−C interaction, we have relied in465

the anisotropic pair potential developed in [25] out of accurate ab initio calculations using Density Func-

tional Theory (DFT) based on Symmetry Adapted Perturbation Theory (SAPT(DFT)), again adapted to

LAMMPS. For details, including the parameterization used, see Supplementary Material in [25]. Thermal-

ization has been achieved through the Berendsen thermostat [64], which presents a large thermal stability

suitable for small samples. The chosen time step is one fs. The specifics of the procedure in the present470

calculations are given in the Supplementary Information.

Appendix B.9. Numerical methods. DFT

For the DFT calculations we have relied on the Perdew, Burke, and Ernzerhof (PBE) approach [65] as im-

plemented in the CASTEP code [66]. The pseudopotentials are those corresponding to the 00PBE OP.recpot
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family as given by the Materials Studio package. The dispersive interactions are treated using the semi-475

empirical dispersion correction scheme (DFT-SEDC) [67] with Tkatchenko and Scheffler (TS) correction [68]

(hydrogen atoms corrected to deuterium mass). The energy cutoff of the plane wave basis set was 900 eV,

only one k point was used and the maximum force tolerance per atom was set to 0.006 eV/Å. The CNT

containing the D2 molecules is a (10,5) SWCNT with a length of 22.6211727 Å and 280 carbon atoms. The

specifics of the procedure are given in the Supplementary Material and in Table SIII therein.480
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Instituto de Carboqúımica, Consejo Superior de Investigaciones Cient́ıficas, Miguel Luesma Castán 4, E-50018 Zaragoza,
Spain

Abstract

Crystallization under stringent cylindrical confinement leads to novel quasi-one-dimensional materials. Sub-

stances with strong cohesive interactions can eventually preserve the symmetries of their bulk phase compat-

ible with the restricted geometry, while those with weak cohesive interactions develop qualitatively different

structures. Frozen molecular deuterium (D2), a solid with a strong quantum character, is structurally held

by weak dispersive forces. Here, the formation of one-dimensional D2 crystals under carbon nanotube con-

finement is reported. In contradiction with its weak cohesive interactions, their structures, scrutinized using

1



neutron scattering, correspond to definite cylindrical sections of the hexagonal close-packed bulk crystal.

The results are rationalized on the grounds of numerical calculations, which point towards nuclear quantum

delocalization as the physical mechanism responsible for the stabilization of such outstanding structures.

Key words: Quantum Solids, 1D crystals, Confinement, Molecular Hydrogen, Neutron Scattering

1. Introduction

Carbon nanotubes are used to study crystallization under cylindrical constraints as well as to obtain a

plethora of one-dimensional (1D) materials [1–3]. These new materials emerge, owing to the geometrical

restriction, as crystalline phases with structures unlike their bulk counterparts (see chapter 5 in [3]). Some

substances with strong cohesive interactions can retain their bulk crystallinity down to the strict one-5

dimensional limit, in which all the crystal constituents are simultaneously bulk and surface [4]. However,

in general, for a certain level of geometrical restriction, crystalline arrangements with symmetries alien to

the bulk phases develop [5]. As expected, this is the rule if the cohesive interactions are weak, for instance,

hydrogen bonding in the archetypal case of water [6–8].

For purely dispersive interactions, molecular hydrogen (H2) is an outstanding case owing to the strong10

quantum character of its condensed phases [9–11]. In particular, crystalline H2 and its deuterium isotopo-

logue (D2) are prominent examples of quantum solids. Such crystals are characterized by a quantum nuclear

delocalization sizable compared to the intermolecular distance, eventually rendering the harmonic crystal

approximation useless [12]. The effect is maximized in the case of H2, where quantum fluctuations are so

dominant that make the crystal insensitive to thermal variations [10, 11]. Furthermore, in both crystals the15

molecules behave as quantum free rotators, which implies that the nuclear orientational degrees of freedom

are fully delocalized at low temperatures. Both crystalline states are van der Waals solids with an interaction

potential well of just −2.77 meV, while that of the binding potential to a graphite surface amounts to � −50

meV [13]. Confinement within narrow carbon nanotubes can roughly double this depth.

Calculations without including the quantum nuclear delocalization predict new ordered arrangements20

not present in the bulk [14–16], some of them reminiscent of spiral configurations observed in the iodine

1D case [17–19]. The search for superfluid behavior has spurred intense theoretical efforts to deal with the

quantum nature of the H2 molecular movements [20–24]. The results, not free of controversy, seem to favor

a quantum solid resembling neither the spiral arrangements nor the hexagonal close-packed (HCP) structure

of the bulk phase [23]. In the case of molecular deuterium, nuclear wave function calculations hint at the25

possibility of HCP structures within narrow carbon nanotubes [25].
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On the experimental side, as far as solidification under strong cylindrical confinement is concerned, the

results are scarce. In carbon nanotubes, there is only evidence of transitions from one- to two-dimensional

arrangements of D2 on the external grooves of carbon nanotube bundles [26, 27], but no results about crystal

structures within the nanotubes. There are hints of HCP crystallization of D2 in the cylindrical mesopores30

of silica-based MCM-41 materials [28], but with a pore diameter as wide as 2.5 nm, quite far from the

1D limit. In these studies D2 is preferred because the strong incoherent neutron scattering of H2 makes

diffraction measurements impractical.

In this work, by resorting to neutron diffraction (ND), crystallization of molecular deuterium within

multi-walled carbon nanotubes (MWCNT) is studied. We have succeeded in resolving the crystalline struc-35

ture down to the strict 1D limit. In spite of the weakness of the cohesive interactions mentioned above,

the 1D crystals preserve the structure of its bulk counterpart. The strong quantum character of the bulk

crystalline D2 is also preserved in the 1D confined phases: the large delocalization of the nuclear positions

as well as the full quantum nature of the rotational degrees of freedom are manifest in the measured neutron

diffraction. The structures of the discovered 1D crystals correspond to maximally symmetric cylindrical cuts40

of the bulk HCP crystal. Such structures were addressed after the failure in reproducing the measurements

by fully atomistic molecular dynamics (MD) simulations as well as by dispersive density functional theory

(DFT) calculations corresponding to our experimental conditions. Instead, DFT and MD approaches yield

spiral-like arrangements in full agreement with energy considerations as well as consistent with previously

reported calculations. Since such calculations do not deal with quantum nuclear effects, given the strong45

quantum nature of the observed structures we conclude that quantum delocalization in the nuclear degrees

of freedom is essential to stabilize the discovered 1D crystals.

The paper is organized as follows: in section 2 the experimental procedures and setups are described.

The results, in particular the finally resolved crystalline structures, are presented and discussed in section 3.

In section 4 our findings are summarized and the main conclusions exposed. To lighten the exposition, the50

details of materials and methods as well as of the theoretical developments used in the data analysis are given

as appendixes. Likewise, the large series of diffraction patterns explored along with a detailed description of

the nonlinear fitting analysis used to resolve the structures are presented in a Supplementary Material file.

For the sake of reproducibility, details of custom-made experimental setups and specifics of the numerical

runs made are also given there. Finally, figures corresponding to some complementary measurements and55

tables of numerical parameters complete the Supplementary Material.

2. Experimental

Our main goal is to study the structural evolution of molecular deuterium during solidification under

extreme cylindrical confinement. In short, we measured neutron diffraction (ND) in runs of 350 seconds
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A B

DC

Figure 1: Some TEM pictures of the final processed samples. A corresponds to X 30000, B and C to X 100000 and D to X

300000

while submitting a sample of open MWCNTs to thermal cycles (between 24.5 K and 2 K) at four increasing60

loads of adsorbed D2 at 20 K, corresponding to the equilibrium pressures 62 hPa, 175 hPa, 225 hPa, and 284

hPa. The details of the experiment design, the experimental setup as well as of the materials and methods

used are given in Appendix B.

We synthesized MWCNTs by the arc discharge method. Like in the single-walled case, the tubes in the

raw material are closed. In order to open them, we submitted the samples to an oxidation treatment (for65

details, see Appendix B.2). Transmission electron microscopy (TEM) of the final material (see Fig. 1) shows

the expected structure for typical arc discharge MWCNT samples: It is quite heterogeneous, showing a wide

variety of MWCNTs among a plethora of irregular polyhedral closed nanostructures. The surfaces do not

present eroded scars or holes other than the openings of some nanotubes.

The adsorption of the sample was characterized through an isothermal D2 adsorption/desorption mea-70

surement at 20 K using a custom-made setup. The isotherm in Fig. 2 shows during desorption a hys-

teresis beginning at the bulk vapor pressure. This is expected in this kind of samples. It comes from

macro/mesopores, i.e., the interstitials among the various structures observed in the TEM. Consistently

with the opening of a portion of the MWCNTs, the isotherm also presents a small, but noticeable, almost

vertical increase at zero pressure, a feature revealing the presence of micropores of molecular dimensions75
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Figure 2: D2 adsorption (blue)/desorption (red) isotherm at 20.23 ± 0.03 K for the sample of open MWCNTs. The amount

of adsorbed gas is given in millimole per gram of sample. The arrows label the initial working points of the thermal cycles

during the neutron diffraction measurements as described in the text. The inset is a zoom of the same data, focusing in the

lower adsorption range in units of the bulk vapor pressure at 20.23 K (364.9 hPa [30]).

[29]. At sufficiently low loads of D2, which correspond to low pressures in the isotherm, only the MWCNTs

with the narrowest opened inner tubes are filled.

The chosen instrument was D20 at the Laue-Langevin Institute (ILL) in Grenoble, France, since it is

a diffractometer of very high flux which allows to address very small quantities of scatterers in reasonable

acquisition times (see details in Appendix B.6).80

With respect to the neutron scattering, given the lightness of D2 molecule, energy transfers between

the incident neutron and the molecule affect the diffraction signal in a non-perturbative way. Usually this

inelastic component is obtained heuristically since a proper correction requires a knowledge of the complete

scattering law. Based on the neutron scattering theory for diatomic molecules developed by Sears [31],

we have worked out an ansatz for the energy-integrated signal accounting for the observed ID(Q) that

incorporates inelasticity without relying in any heuristic correction. From such an ansatz, the inelastic

correction is given by a background, bg(Q2), expressible as an expansion in Q2 (up to second order in

practical terms). Physically, ID(Q) decomposes in a coherent and an incoherent part. The incoherent

part stems from the random distribution of nuclear spin states along the sample. Formally is like the
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self-scattering contribution coming out from the scatterers. The coherent part of ID(Q) depends on the

orientationally-averaged structure factor of the molecular center-of-mass (COM) specific arrangement of

D2 molecules. It can be calculated efficiently from the pair distribution function, i.e., the table of COM

pair distances dij = |〈Ri〉 − 〈Rj〉| and its associated multiplicities mij , where Ri is the position vector

of the i molecule. An additional key ingredient to reproduce the ND coherent signal is a form factor

corresponding to a spherical shell of diameter equal to the distance between the molecular nuclei, even in

the solid phases at low temperature. This is a consequence of the nuclear orientational full delocalization.

Likewise, the translational degrees of freedom also present a very significant quantum delocalization, which

induces a large root mean square (rms) COM displacement. As explained in the next section, the observed

diffraction signal reveals also the presence of oriented small crystals (or crystal) through barely discernible

Bragg peaks. Although such precursor peaks can be ignored, we must consider the corresponding diffuse

scattering, i.e., the diffraction signal between Bragg peaks in a crystal, which arises from such oriented

crystallites. This is well approximated by a term of the form 1− exp(−Q2u2
3D/3) plus an incoherent part,

where u3D is the rms molecular displacement of the molecules belonging to such crystallite. There is also

an instrumental background whose major contribution to Is(Q) is a flat noise accounted for in bg(Q2).

With these basic constituents we have constructed a theoretical model of the expected ND as a function of

the pair distribution functions of the confined structures with the corresponding rms COM displacement,

the proportion of external crystallite scatterers, and its associated rms COM displacement. The detailed

derivation is provided in Appendix A.1. The final expression for a concentration (mole fraction) C1D of

1D confined molecules with a specific structure and a concentration C3D of molecules in the 3D crystallite

reads,

ID(Q) = C1D

(
4a2d j0(QdD2

/2)2(SM
1D(Q, u1D)− 1) + Finc(Q, u1D)

)
+ C3D

(
Finc(Q, u3D)− 4a2d j0(QdD2

/2)2 exp

[
− (Qu3D)2

3

])
+ bg(Q2) , (1)

where ad is the neutron coherent scattering length of the deuteron, j0 is the spherical Bessel function

of zeroth order, dD2
is the distance between the two deuterons, u1D and u3D are the corresponding rms

molecular displacements, and the background reduces to bg(Q2) = bg0 + bg1 Q
2 + bg2 Q

4 . SM
1D(Q, u1D)

is the structure factor of the molecular COMs of the 1D crystal. The factor j0(QdD2
/2)2 is the spherical

form factor mentioned above. The Finc(Q, u) terms are the incoherent part of the corresponding crystals.85

As explained in Appendix A.1, they depend not only in the temperature but in the concentration of ortho

molecules. In practical terms our scattering intensity is not normalized to absolute units, so that C1D and

C3D are scale factors proportional to the real concentrations.

With respect to the interference part IDC(Q), by its very nature, it most prominent contribution is

around 1.8 Å−1 where the main MWCNTs Bragg peak is located, being negligible for larger values of Q90
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since they correspond to spatial scales shorter than the D2–C distances. This is confirmed a posteriori by

the success of ID(Q) in reproducing the observed ND above 1.8 Å−1. An atomistic description of IDC(Q)

is exceedingly expensive in computational terms; instead, we have assumed the nanotubes as continuous

and infinite to reduce the calculation to sums of analytical expressions as detailed in Appendix A.2. The

approximated IDC(Q) depends on the inner radius of the cylinder where the confined phase forms, ri, on95

the dispersion of the distribution of external MWCNTs diameters, σn, on the average interlayer distance

within the MWCNTs, h, and on an effective rms displacement, ueff , to take into the account the disorder in

the involved pair distances. We remark that its intensity with respect to ID(Q) is not free but determined

by the calculation. Around 1.8 Å−1, the IDC(Q) profile and its derivative change wildly in a few points,

so that iterative minimization algorithms fail to converge. Instead, IDC(Q) is added as a correction to the100

fitted ID(Q), the corresponding free parameters chosen by visual inspection comparing series of plots of

the modeled Is(Q) against the measurements. More specifically, ueff is chosen to the minimum value that

does not perturb the independently fitted ID(Q). The value of h essentially controls the position of the

“dispersive” profile around 1.8 Å−1. A value of 3.41 Å works well for all the explored cases. The inner

radius, ri, is the most relevant parameter with respect to the profile shape. As shown below our IDC(Q)105

reproduces qualitatively the “dispersive” profile around 1.8 Å−1.

3. Results and Discussion

Fig. 3 displays the ND signal I(Q) as a function of the scattering vector modulus Q of the empty MWCNT

sample (black) superimposed to that of the 284 hPa load (green) at low temperature. From now on and for

the sake of simplicity, we label the loads by their equilibrium pressures at 20 K. The red rectangle encloses110

the four main observed Bragg peaks. The normalized area of I(Q) within the rectangle during a thermal

cycle for the two lower loads is shown in the inset. A reversible change of the slope appears at around

13.5 K in both cases, revealing a liquid/solid transition at that temperature. Given that the bulk triple

point is at 18.73 K, and that we are under SVP conditions, such a temperature reduction indicates that the

transition is happening under confinement [32]. Furthermore, since the transition temperature depends of115

the pore size, its reversibility implies confinement under a rather narrow distribution of pore sizes. On the

contrary, the curves of the two larger loads show hysteresis, as expected from the heterogeneous distribution

in size and shape of the interstitials observed in the TEM pictures at meso/macroscales (see Fig. S3 in the

Supplementary Material for the hysteretic cases).

Fig. 4 displays the ND of the solid phases at the four loads after subtraction of the empty MWCNT120

signal, denoted as Is(Q). Here, solid phases refer to those below 11.5 K, a value chosen well under the 13.5

K where the liquid/solid transition manifests. Consistently, the ND of all the independent runs below 11.5

K do not show any discernible changes, so that all the runs with T < 11.5 K have been accumulated. Details
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Figure 3: Neutron diffraction pattern, I(Q), from the pristine MWCNT sample (black) superimposed to that corresponding to

the 284 hPa D2 load (green) at low temperature. The inset shows the evolution during a thermal cycle of the area (normalized

to one at 2 K) under I(Q) within the red rectangle for the 62 hPa load (red circles) and for the 175 hPa case (black circles).

of the neutron scattering data reduction are given in Appendix B.7. The 225 hPa and the 284 hPa loads

present clear crystalline peaks identified as corresponding to both hexagonal close-packed (HCP) and face-125

centered cubic (FCC) phases. As shown in the figure, both kinds of peaks match to an excellent precision

with strictly closed-packed arrangements with the same nearest-neighbor distance, namely, d = 3.605 Å,

a value in agreement with those reported for the bulk solids [33, 34]. The HCP phase is the fundamental

crystal corresponding to the energy minimum of solid D2, but FCC crystallization can also be observed as

soon as any perturbation is introduced in the crystallization environment, as for example, the heterogeneous130

nature of our MWCNTs sample.

D2 tends to crystallize in rather large crystal domains. Since the ND instrument relies on a horizontal

narrow strip detector geometry (see Appendix B.6), the non-uniform distribution of crystal orientations

leads to distorted peak heights and the extinction of peaks with decreasing D2 load. At first glance the

175 hPa and 62 hPa patterns resemble those of amorphous substances with no Bragg peaks. A closer look,135

presented in the inset of Fig. 4, reveals the presence of a couple of precursors of bulk crystalline peaks at

175 hPa and one at 62 hPa. This can be appreciated better in Fig. 5. Since these Bragg peak precursors

appear in both thermal cycles of 62 hPa and 175 hPa, they reveal oriented crystal growth somewhere in the

sample-can system, probably owing to an inhomogeneity-related nucleation site. The “pseudo-amorphous”
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Figure 4: I(Q) after subtraction of the MWCNT sample contribution, Is(Q), for the 62 hPa (red), 175 hPa (black), 225 hPa

(magenta), and 284 hPa (green) D2 loads. The vertical dashed lines mark the position of the bulk solid D2 crystalline peaks.

Dashed blue lines are for peaks present only in the HCP crystal, red dashed lines for those only present in the FCC crystal

and green dashed line for peaks belonging to both. On top of the dashed lines the corresponding Miller indexes are specified,

in red for the HCP structure and in blue for the FCC case. The inset is a zoom of the two lowest loads, i.e., 62 hPa (red) and

175 hPa (black) along with a scaled-down version of the MWCNT sample I(Q) (dotted line).

part necessarily corresponds to confined phases, in view of the behavior of the I(Q) area of each load shown140

in the inset of Fig. 3. Within this respect, they depart significantly from the observed broader patterns in

solid D2 (10 K) adsorbed in SWCNT bundles [26]. There, the fits adscribe the ND to the presence of chains

and stripes of D2 molecules expected to be within the interstitials (chains) and external grooves (chains and

stripes) of the bundles. These two loads are, therefore, the object of our main interest. The scattering from

D2 pairs, ID(Q), contributes dominantly to Is(Q). There is also a contribution from D2 and carbon pairs,145

IDC(Q), relevant mainly below around 2 Å−1. We focus first in modeling the dominant deuterium part,

ID(Q).

Using the ID(Q) theoretical model described in section 2, a nonlinear fitting analysis detailed in the

Supplementary Material was performed along a family of constrained nanostructures. We naturally started

from structures obtained by MD simulations including MWCNTs up to five walls and effective potentials150

derived from state-of-the-art ab-initio calculations. Not surprisingly, they match the expected arrangements

from energy minimization arguments: tubular shells adsorbed to the inner wall of the nanotubes that can be

seen as rolled portions of the D2 HCP crystal basal plane. As a matter of fact, they are explicit realizations
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of the tubular compact packing of spheres studied in the context of biological structures [35]. However, they

are not compatible with our measurements as illustrated in Fig. S4, Supplementary Material.155

Such disagreement drove us to consider other 1D crystalline structures corresponding to sections of

maximal cylindrical symmetry of both the HCP and FCC bulk crystals with increasing diameter. For these

crystals we fixed d to the value obtained from the 225 hPa and 284 hPa loads, i.e., 3.605 Å. Figure 5

presents the final results of our nonlinear model fitting analysis. Let us consider first the 62 hPa load (Fig.

5A). The agreement is excellent just using a log-normal distribution in length (see inset) of the remarkable160

strict 1D crystal displayed in the right side of the figure. Differences of ID(Q) with increasing length become

negligible (see Supplementary Material Figures S10 and S11). Consequently, there is not enough information

in the diffraction signal to discern the 1D crystal length distribution; in fact, a non-parametric fit of the

crystal lengths only needs to populate a few isolated lengths to achieve excellent results. Lacking further

information, we have relied in the log-normal distribution because it is usually observed in growth processes165

with preferential direction [36, 37]. With respect to the ortho concentration, the fits need a proportion

corresponding to room temperature, i.e., there was no para-ortho conversion during the experiment. The

result is not only of a sheer beauty in its simplicity— the simplest nontrivial strict 1D compact crystal

made out of spheres—but incompatible with theoretical predictions, as discussed above. It corresponds to

a cylindrical cut of the minimal diameter which allows more than one molecule in the horizontal plane with170

the axis perpendicular to the hexagonal basal plane of the HCP fundamental bulk crystal, and centered so

that it passes through the molecular centers at alternate layers. The six-fold symmetry of the parent HCP

bulk crystal is reduced to three-fold (Fig. 5A, top right panel), so we call it triangular-close packed (TCP)

1D crystal.

Consistently, in the 175 hPa load (Fig. 5B) the nanocrystalline structure is just a radially enlarged version175

of the TCP 1D crystal. Again, there is a three-fold symmetry, as it can be seen in the transversal cut of

the crystal, upper right panel of Fig. 5B. Since the crystal consists of alternating triangular and hexagonal

layers, we denote it as THCP 1D crystal. Both 1D crystals display large rms COM displacements, around

0.33 Å in the TCP case, and 0.45 Å in the THCP counterpart, to be compared with the 0.46 Å obtained

from neutron scattering of the D2 bulk crystal [38] (see Tables SI and SII in Supplementary Material).180

Interestingly, there is no hint in the 175 hPa ND of the pattern corresponding to the 62 hPa load. Indeed,

the fittings yield a zero population of the TCP phase, i.e., any finite population of the TCP phase worsens

the fits. Should the TCP 1D crystals form also during the 175 hPa load in quantities comparable to the

62 hPa case, they would also manifest in the 175 hPa ND. Therefore, either the THCP crystals grew out

of previously formed TCP seeds, or the MWCNTs of the smallest diameters are not filled during the 175185

hPa load. In the first hypothesis, the TCP crystals grown at 62 hPa would be formed within MWCNTs of

large enough inner diameter, whereas in the latter the two crystals would grow within MWCNTs of different

inner diameters. Fortunately, the interference part, IDC(Q), carries information about the inner MWCNTs

10
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Figure 5: D2 1D crystals fitting the ND data. (A) D2 load corresponding to the 62 hPa case. (B) D2 load corresponding to the

175 hPa case. ND data points displayed in light blue are not included in the fittings (points below 2 Å−1, areas too affected by

MWCNT peak subtraction, and some outliers). Solid red curves are the fitted ID(Q) component. Thin black curves show the

final Is(Q) including the IDC(Q) part. The dashed lines are a down-scaled representation of the pristine MWCNT sample ND.

Arrows mark the positions of some relevant Bragg peaks of the bulk crystal. At the right side, a representative structure giving

rise to the corresponding Is(Q) is shown in perspective. The small spheres have a diameter equal to the deuteron-deuteron

distance of the D2 molecule (0.74 Å). The diameter of the semitransparent larger spheres equals d = 3.605 Å. In the top views

only the inner nanotubes are shown, an (11,4) single-walled CNT (A) and an (18,0) (B). Dotted circumferences mark the

position of the minimum of the adsorption potential. Insets display the fitted log-normal distributions of 1D crystal lengths in

terms of the number of molecular layers perpendicular to the MWCNT axis.
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diameters so we can use it to settle this question. Fig. 5 shows in solid black the complete NDs including

the IDC(Q) contribution. By construction, it coincides with ID(Q) above ∼ 1.8 Å−1 so that it falls below190

the red line representing ID(Q). As shown in the top right panels of Fig. 5, the chosen inner diameters

2ri (10.53 Å for the TCP and 14.09 Å for the THCP) accommodate well the D2 molecules in terms of

the estimated locus [39] of the adsorption potential minima. However, inner diameters around 14 Å in the

TCP case render IDC(Q) profiles incompatible with the measured ND at 62 hPa. We are therefore left to

conclude that the MWCNTs of the narrowest inner diameters are not significantly filled during the 175 hPa195

load. Since we are referring to pore sizes at the molecular limit (below two molecular diameters), steric

molecular hindrance as well as anomalous capillary and condensation effects [40–42], dependent on the D2

load, seem plausible. Within this respect, the irregular shapes an the functional groups at the entrance

of the opened nanotubes could play a relevant role. For instance, funnel-like attractive potentials at the

entrance would probably enhance the possibility of molecular jamming at 175 hPa owing to the different200

kinetics and density with respect to the 62 hPa case. Given the large de Broglie wavelength of D2, quantum

wave-like behavior contributing to these effects, as observed with He [43–45], are also conceivable. At any

rate, here we can only speculate about the microscopic mechanisms involved in this interesting anomalous

behavior since their elucidation requires a study by its own.

Taking into the account that MD simulations do not describe accurately dispersive interactions, which are205

crucial in this kind of systems, we have performed advanced dispersive DFT calculations validated against

experiments, in order to shed light on the discrepancy between the observed structures and theoretical

predictions (details of the calculations are given in Appendix B.9 and Supplementary Material). Due to the

large computational demand of this approach, we restrict ourselves to SWCNTs of a diameter compatible

with the TCP 1D crystal. More specifically, the nanotube of chiral vector (10,5) has an adequate unit cell210

length while its diameter of 10.36 Å is just 2% below that of the (11,4) tube shown in Fig. 5A. The number

of D2 molecules is chosen to be eleven, corresponding to five layers of the 1D TCP crystal, the most probable

length (inset of Fig. 5A). Fig. 6 summarizes the DFT results. Spiral geometries similar to those obtained by

MD are once more the most stable configurations, at variance with the experimental results (see Fig. S4A of

Supplementary Material). Remarkably, the observed 1D TCP structure, presented in Fig. 6B, is metastable215

within this approach, but the next most plausible 1D crystal derived from the FCC bulk structure is not

stable under the DFT approximation (depicted in Fig. S5B of Supplementary Material). The calculated

ID(Q)s are also shown in Fig. 6 along with those corresponding to the equivalent TCP 1D structure obtained

from the fits. Additionally, notice that the DFT calculations yield an effective nearest-neighbor distance

slightly shorter than the experimental one. This is a consequence of the quantum delocalization of the220

rotational degrees of freedom of the nuclei, not taken into account by the DFT approach, which renders

the molecular interactions essentially isotropic. On the contrary, within the DFT approximation the D2

molecules retain its dumbbell-like anisotropic character and tend to order in a parallel, more compact,
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configuration.

The present results tell of a van der Waals molecular compound that crystallizes retaining the bulk crystal225

structure down to the strict 1D limit. This is in stark contrast with results pertaining to other materials

with weak cohesive energies, which do not show the marked quantum behavior in their translational and/or

rotational degrees of freedom as our 1D crystals do, conspicuously revealed by their neutron scattering

response. Our DFT calculations, with reliable dispersive functionals, make clear that the missing quantum

treatment of the nuclear motions are one key ingredient for the stabilization of these 1D crystals. On the230

other hand, the fact that the TCP 1D crystal is weakly metastable under the DFT calculations suggest

that a precise account of the quantum behavior of the electronic cloud in the description of the dispersive

interactions could also be relevant. In fact, the development of dispersive DFT techniques during the last two

decades is characteristic of the nanoscience revolution: adsorption phenomena within nanostructures depend

too subtly on the dispersive interactions to be accommodated within the traditional effective potential235

approach. The challenge now is to incorporate the nuclear quantum effects accurately, a subject attracting

an increasing interest [46]. At present, inclusion of translational quantum nuclear delocalization effects

in condensed matter can be tackled with computationally very demanding quantum Monte Carlo or path

integral methods [23, 24] but we remark that, both, the nuclear rotational delocalization and the dispersive

forces are treated in the same effective manner as in our MD simulations. Within this context, the structures240

here discovered stand out for testing future theoretical developments since they are dispersive molecular

solids displaying a non-trivial quantum nuclear behavior at the same time being structurally simple.

4. Conclusion

Using neutron diffraction we have discovered 1D quantum crystals of molecular deuterium within MWC-

NTs. Unexpectedly for a molecular solid with very weak cohesive interactions, the 1D crystals preserve the245

structure of the HCP bulk D2 crystal. Neither atomistic molecular dynamics simulations nor advanced dis-

persive DFT calculations predicts such a possibility, signaling the strong quantum nuclear effects as essential

to the emergence of the discovered 1D crystals.

These 1D crystals are the simplest nontrivial condensed matter systems in which the quantum nature,

not only of the electronic cloud, but also of the nuclear translational and rotational degrees of freedom,250

plays an essential role. Our results are deemed to be of special relevance, since they provide a testbed to

confront theoretical approaches aimed to understand and incorporate accurately the full quantum nature of

real interactions, including the nuclear degrees of freedom. Such advances will have a bearing on the design

and simulation of novel (possibly quantum) materials.
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Figure 6: 1D structures obtained by dispersive DFT calculations. (A) Fundamental structure corresponding to the lowest

energy minimum. (B) Structure of the 1D TCP kind corresponding to a metastable energy minimum. Their associated ID(Q)s

are also shown (cyan curves) along with that corresponding to the experimentally-determined equivalent 1D TCP crystal (red

curves). Since the DFT calculations do not reproduce the nearest-neighbor distance accurately, properly Q-rescaled versions

of the ID(Q)s are displayed in the insets.
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Appendix A. Theoretical developments

Appendix A.1. Theory of the measured neutron scattering270

In a neutron diffraction experiment at a continuous source installation such as the ILL, the intensity of

scattered neutrons by the sample out of a mono-energetic incident neutron beam is measured as a function

of the scattering angle. The relevant differential scattering cross section is then given by

dσ

dΩ
=

∫ Ei

−∞

d2σ

dΩ dEf
dEf , (A.1)

where the Ω denotes solid angle, Ei the energy of the incident neutrons and Ef the final detected neutron

energy. Following the full quantum calculations of Sears [31], the double differential cross section in the case

of a homonuclear diatomic molecule under the assumption of free rotation, can be expressed as

d2σ

dΩ dEf
= N

kf
ki

⎛
⎝4 a2d j0(QdD2

/2)2Sint(Q, E) +
∑
J,J ′

a2(Q; J, J
′
)Sself(Q,E − EJ,J ′ )

⎞
⎠ . (A.2)

Here N is the number of nuclei in the sample, ki,f are the initial and final neutron angular wavenumbers, ad

is the coherent neutron scattering length of the deuteron, j0 the spherical Bessel function of zero order, dD2

the distance between the nuclei in the molecule, Q is the scattering angular wavevector (Q its norm), the Js

denote the nuclear orbital angular momentum quantum levels, EJ,J ′ the corresponding energy jumps among

J levels and E = Ei − Ef is the energy transfer. The a2(Q; J, J
′
) factors are quite complex expressions275

involving linear combinations of Bessel spherical functions dependent on the bosonic or fermionic character
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of the nuclei [31]. They depend on all the rotational levels excited by the neutrons at the given incident

energy and, as such, incorporate the corresponding orientational form factors. Transitions between the ortho

(even J angular momentum) and para (J odd) levels are forbidden so that thermalization of the populations

proceeds independently. The J = 1 state is highly metastable so that equilibration at low temperatures280

downwards the fundamental J = 0 level is extremely slow in the bulk [12] but it could be accelerated by

the interaction with the substrate. Otherwise, thermal equilibration proceeds unhindered so that the model

depends on the temperature and the concentration of ortho molecules [31].

Sint(Q, E) is the interference part of the dynamical structure factor of the molecular COMs, i.e., the

part not involving single particle self-scattering. Such self-scattering part (of the COMs) corresponds to285

Sself(Q,E) (Sears uses the subscript inc from incoherent). It is a consequence of the free rotation assumption

that both Sint(Q, E) and Sinc(Q,E) in Eq. (A.2), refer only to the dynamics of the COMs of the molecules.

In order to calculate Eq. (A.1), we need a model of such dynamical structure factors. Since their contribution

to Eq. (A.1) is through integration in E, we will take advantage of general sum rules, i.e., moments in E,

that must be satisfied independently of the system dynamics.290

Focusing on the interference part, the relevant sum rule is
∫∞
−∞ Sint(Q, E) dE = S(Q) − 1, where the

S(Q) is the structure factor. This is the quantity of interest, since it yields a structural characterization of

the system and it is amenable to theoretical modeling. It is given by

S(Q) = 1 +
1

N

∑
i�=j

〈exp [i(Ri −Rj) ·Q]〉 , (A.3)

where N is the number of scatterers, Rj the position vector of the j molecular COM and 〈〉 denotes

quantum-mechanical thermal average. In a solid, thermal fluctuations are well approximated by a Gaussian

distribution of displacements around the mean positions 〈Rj〉. In such a case, after orientational and thermal

average, Eq. (A.3) reduces to

S(Q) = 1 +
1

N

∑
i �=j

j0(|〈Ri〉 − 〈Rj〉|Q) e−
1
3u

2 Q2

= 1 +
1

N

∑
dij

mij j0(dijQ) e−
1
3u

2 Q2

, (A.4)

where the final sum is over all the different pair distances dij = |〈Ri〉 − 〈Rj〉|, mij are the corresponding

multiplicities and u is the rms displacement around the 〈Rj〉, assumed here, isotropic and independent of

the position. In a solid, the vast majority of the interference scattering is elastic, i.e., it accumulates around

E = 0, so that our model for the interference part is Sint(Q,E) = (S(Q)− 1) δ(E), where δ(E) denotes the

Dirac delta.295

With respect to the self part the elastic term amounts to

Se
self(Q,E) = e−

1
3
u2 Q2

δ(E) . (A.5)

However, it is not so dominant as in the interference case, so we need to proceed further. The relevant
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moments to develop a model of the inelastic part are [47]∫ ∞

−∞
Sself(Q,E) dE = 1 , (A.6)

∫ ∞

−∞
E Sself(Q,E) dE =

�
2Q2

2M
= Er , (A.7)∫ ∞

−∞
E2 Sself(Q,E) dE =

4

3
ErK̄ + E2

r , (A.8)

where M is the mass of the molecule, Er is the so-called recoil energy and K̄ is the mean kinetic energy.

The zeroth order moment is always satisfied, the first order moment is satisfied provided that the interaction

does not depend on the molecular velocities, and the second is true for isotropic systems. The elastic part

does not contribute to the first and second moment; decomposing the incoherent part as Sself(Q,E) =

Se
self(Q,E) + Sine

self(Q,E) and using Eq. (A.5), the zeroth moment implies

∫ ∞

−∞
Sine
self(Q,E) dE = 1− e−

1
3
u2 Q2

. (A.9)

On the other hand, from the first and the second moments, the energy dispersion is obtained:

σ2
E = 〈E2〉 − 〈E〉2 =

4

3
ErK̄ . (A.10)

The mean kinetic energy at low temperature is expressed in terms of the rms displacement as [48, 49],

K̄ =
9

16
Θ =

81

64

�
2

Mu2
, (A.11)

where Θ is the Debye temperature, the parameter usually quoted in the experimental reports. We are now

in disposition to write up a model for the incoherent part preserving all the moments up to the second:

SM
self(Q,E) = e−

1
3
u2 Q2

δ(E) + (1− e−
1
3
u2 Q2

)
1√
2πσ2

E

exp

[
− (E − Er)

2

2σ2
E

]
. (A.12)

where the M superscript serves to recall it refers only to molecular COM contribution. The chosen Gaussian

shape for the inelastic scattering is a natural choice to warrant the integral properties up to second order.

Such a profile must be understood as a kind of smoothing of the real signal since it does not incorporate300

the details of the density of vibrational modes. Only in the limit of very large momentum transfer the

same kind of profile would be exact (impulse approximation) but for the nuclei themselves, not for the

molecular COMs. Interestingly, in the case of H2, given the lightness of the molecule, this profile for the

COM dynamics has been observed at least from Q’s as low as 5 Å−1 [50].

In order to calculate Eq. (A.1) the factor kf/ki = ki
√
1− E/Ei must be also included in the inelastic

part. Conservation of energy and momentum establishes a relation among Q, E, and, φ, the angle between

ki and kf , namely,

Q2 = k2i + k2i

(
1− E

Ei

)
− 2k2i

√
1− E

Ei
cosφ . (A.13)
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Substituting Q in terms of E and φ, the integration of Eq. (A.2) in E yields the measured cross section Eq.305

(A.1). Notice that direct integration of Eq. (A.2) does not yield the single cross section, since it is defined

(and measured) at constant φ, not at constant Q. However, usually the ND is expressed in terms of Q, but

only at its elastic value using the relation Qe = 2ki sinφ/2. As a rule, the elastic condition is not explicitly

stated but the same symbol Q is used. We adhere here to such a practice. At any rate, in many experiments

Ei is sufficiently high for the static approximation to be valid [47], where all the scattering can be considered310

elastic.

As far as the fitting is concerned, we first generate a two-dimensional numerical table in u and Q of the

expression

Finc(Q, u) =

∫ ∞

0

kf
ki

∑
J,J ′

a2(Q; J, J
′
)Sself(Q,E − EJ,J ′ ) dE , (A.14)

where the suffix inc remarks that this expression includes not only the coherent self-contribution but the

incoherent scattering. In the actual fittings a two-dimensional interpolation of the table is used to avoid the

computational load of a numerical integration at each fitting step.

With respect to the diffuse coherent scattering of the external crystallite, performing only the thermal

average in Eq. (A.3), we have

S(Q) = 1 +
e−

1
3u

2 Q2

N

∑
i �=j

ei(〈Ri〉−〈Rj〉)·Q = 1 + e−
1
3
u2 Q2

(
1

N

∑
i

∣∣∣ei〈Ri〉·Q
∣∣∣2 − 1

)
(A.15)

= 1− e−
1
3
u2 Q2

+ e−
1
3
u2 Q2 1

N

∑
i

∣∣∣ei〈Ri〉·Q
∣∣∣2 = 1− e−

1
3
u2 Q2

+ SB(Q) . (A.16)

In a crystal, and in the limit of N → ∞, SB(Q) gives rise to the Dirac delta peaks characteristic of Bragg

scattering. The rest is obviously the scattering among the Bragg peaks, i.e., the diffuse scattering. This

remains true also at finite N , where the peaks broaden. Therefore, the diffuse scattering from external

crystallite contributes with an interference part given by

Sint(Q, E) = −e− 1
3
u2 Q2

δ(E) , (A.17)

while the incoherent part is again given by Finc(Q, u), but this time with u corresponding to that of the315

external crystallite.

Altogether, for a number concentration C1D of 1D confined molecules and a C3D number concentration

of molecules in the 3D external small crystal, gives,

ID(Q) = C1D

(
4a2coh j0(QdD2/2)

2(SM
1D(Q, u1D)− 1) + Finc(Q, u1D)

)
+ C3D

(
Finc(Q, u3D)− 4a2coh j0(QdD2

/2)2 exp

[
− (Qu3D)2

3

])
, (A.18)

where SM
1D(Q, u1D) is the structure factor of the molecular COMs as given by Eq. (A.4) and u1D and u3D

are the corresponding rms displacements.
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Besides Eq. (A.18) there must be an instrumental flat background, bg0. With such an addition, Eq. (A.18)

produces convergent fits to the measured I(Q). That is, it captures adequately most of the ND signal. A320

final refinement is now expressible as series in Q2. A background second order in Q2, bg0 + bg1Q
2 + bg2Q

4,

is enough to obtain excellent fits.

Appendix A.2. Modeling of the C−D2 diffraction interference term

In terms of the positions of the D2 COMs, Ri and of the carbon atoms, rj , the ND signal corresponding

to the interference between carbon atoms and D2 molecules reads,

IDC(Q) = C1D ac 2 ad j0(QdD2
)
1

N

∑
i

∑
j

〈
e−iQ·(Ri−rj)

〉
+ c.c.

= C1D ac 2 ad j0(QdD2
) e−

1
6
Q2(u2

1D+u2
c) 1

N

∑
i

∑
j

〈
e−iQ·(〈Ri〉−〈rj〉)

〉
+ c.c. , (A.19)

where c.c. denotes complex conjugate, N is the number of molecules, ac is the coherent neutron scattering

length of carbon nuclei, uc their rms mean displacement and in the second line we have performed thermal325

average, again assumed Gaussian and isotropic. Consequently, 〈〉 reduces to only an orientational average.

Here, 2 ad j0(QdD2) plays the role of the coherent scattering length of the D2 molecule, dependent on Q

owing to the non point-like molecular structure.

An atomistic description of the MWCNTs is computationally too expensive. However, assuming a

continuous distribution of the carbon atoms along infinite tubes, we can take advantage of some analytical

calculations. Given a microscopic density of carbon atoms, ρc(r), a general term of the sums above is written

as 〈
e−iQ·〈Ri〉

∫
V

e−iQ·rρc(r) dr3
〉

=
1

4π

∫
dΩQ e−iQ·〈Ri〉

∫
eiQ·rρc(r) dr3 , (A.20)

where dΩQ is the solid angle corresponding to a direction of the scattering vector and the integrals extend

to all the directions and the whole space respectively. For an infinite tube of diameter RCNT , the density is

expressed in the cylindrical coordinates r, ϕ, z, with z axis that of the cylinder as ρc(r) = ρAδ(r − RCNT ),

being ρA the areal density of carbon in the nanotube. Analytical integration in the cylindrical coordinates

yields ∫
eiQ·rρc(r) dr3 = 4π2ρA RCNT J0(QRCNT ) δ(Qz) , (A.21)

where J0 is the Bessel function of order zero and Qz is the z component of the scattering vector. Notice that

for an infinite tube the symmetry leads to cancellation of the dependence along the z axis. Substituting Eq.

(A.21) in Eq. (A.20), again analytical integration can be done, this time using spherical coordinates, so that〈
e−iQ·〈Ri〉

∫
V

e−iQ·rρc(r) dr3
〉

= 2π2ρA RCNT J0(QRCNT )J0(QR⊥
i )/Q , (A.22)
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where R⊥
i is the modulus of the projection of 〈Ri〉 onto the plane perpendicular to the tube axis. Now the

interference term for a SWCNT amounts to

IDC(Q) = 8π2C1D ad ρA j0(QdD2)e
− 1

6
Q2(u2

1D+u2
c)RCNT J0(QRCNT )

1

NcQ

∑
i

J0(QR⊥
i ) , (A.23)

where i runs from 1 to Nc, being Nc the number of D2 molecules of a unit cell of the corresponding 1D

crystal.330

For a distribution of MWCNTs of well-defined internal radius ri and m layers separated by a distance

h, the term RCNT J0(QRCNT ) transforms into

m−1∑
n=1

(ri + h(n− 1))J0(Q(ri + h(n− 1))) . (A.24)

In our case the m distribution is not narrow, but those of ri and h must be quite. Assuming ri fixed, the

average over the ensemble of MWCNTs modulates the terms in the sum over layers so that they are scaled

down as n increases, since the statistics of larger n decreases because the instances of large m also decreases.

Furthermore, for n small there are almost as many cases as for n = 1, that is, the histogram of n must start

horizontally. A half-Gaussian decay of the n terms matches such specification and emerges as a natural

choice. Altogether it yields

IDC(Q) = 8π2C1D ad ρA j0(QdD2)e
− 1

3
Q2u2

eff
1

NcQ

∑
i

J0(QR⊥
i )

∞∑
n=1

exp

[
−h2(n− 1)2

2σ2
n

]
(ri + h(n− 1))J0(Q(ri + h(n− 1))) , (A.25)

where we have defined an effective rms displacement, ueff , and σn is the dispersion of the half-Gaussian

decay. In practical terms a value of 50 layers worked well for σn, for which a termination of the n sum at

250 were enough to reach convergence in a short cpu time. In general, there are far more sources of disorder

than just the thermal fluctuations around the COMs. For instance, in the real MWCNTs h presents also

dispersion with some systematic evolution with the number of layers [51]. All of these effects are here boldly335

represented through ueff , chosen as the minimum needed to maintain the line shape of the main ND peak

(1.2 Å for the 62 hPa load and 1.5 Å for the 175 hPa case). The parameter h controls the location in Q

of the dispersive profile. A value of 3.41 Å was consistent with both the ND measurements and the values

reported in the literature [51]. Finally, the areal density of any nanotube is given by ρA = 4/(3
√
3 d 2

cc),

where dcc is the distance of the C−C bond in graphene taken here as 1.42 Å.340
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Appendix B. Materials and Methods

Appendix B.1. Experimental design

As for the confining system, we rely on samples of multi-walled carbon nanotubes (MWCNTs). For our

interests, they present several advantages compared to single-walled nanotubes. To begin with, they are345

far stiffer. Given the weakness of the dispersive interactions among the molecules, tube bending should be

avoided as much as possible to facilitate unperturbed crystallization. Besides, since the external diameters

show a large dispersion in a typical MWCNT sample, they do not form so tightly and well ordered ropes, as

their single-walled counterparts tend to do [52]. On the other hand, the interstitial sizes are typically much

larger than those of the smaller inner diameters because the distribution of external diameters is centered350

at much higher values than those of the inner diameters (much larger also that the typical mean diameter of

good quality SWCNTs samples). In such a case, it can be expected that the adsorption inside the smaller of

the multi-walled tubes will not compete appreciably with 1D-like adsorption in the interstitials or external

grooves of the ropes.

To select the smaller inner diameters as our confining systems we rely in the physics of adsorption. The355

smaller open inner diameter tubes produce the stronger attractive potential wells for the molecules so that

they are filled first. For sufficiently small loads these micropores dominate the distribution of adsorbed

molecules.

As for the probe to study the system, neutrons are uncharged, so that they can penetrate deeply into

the target. Thus, they can explore the structure and dynamics of atomic and molecular arrangements360

buried into nanostructured materials, while at the same time making possible the use of complex sample

environments such as cryogenic and gas handling equipment. Contrary to X-rays, they strongly interact with

hydrogen. Since we are interested in structural information, we resort to the deuterium isotope in order to

avoid the very large incoherent scattering of molecular hydrogen that does not contribute to the diffraction

signal. Incoherent scattering stems from the random distribution of nuclear spin states along the sample,365

and implies the interchange of the spin state between the incident neutron and the nuclei. It can also be

avoided in H2 if prepared in its fundamental para-state, that only scatters coherently. However, the neutron

energy must be well below 14.7 meV in order not to excite the molecular rotational levels responsible for

the very strong incoherent scattering. This would limit the range of the scattering vector norm Q below 4

Å−1, too short to properly explore the spatial scales involved.370

Regarding the measurement protocol, we started by measuring the diffraction of the nanotubes sample

(2 g) during a slow cooling/heating cycle (0.1 K decrement/increment each 70 s) between ≈ 24.5 K and

2 K while neutron diffraction signal was acquired in runs of 350 s. Then we proceeded by injecting very

small quantities of D2 into the sample can at 20 K until we observed a barely discernible liquid state

diffraction signal. The equilibrium pressure at that point was 62 hPa. After heating at ≈ 24.5 K, the same375
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cooling/heating cycle as before was done. The same thermal protocol was repeated increasing the D2 load

in each cycle up to a total of four loads, namely, 62 hPa, 175 hPa, 225 hPa, 284 hPa. Before the 175 hPa

thermal cycle, in order to improve the statistics of the measurements at 62 hPa, a second cooling ramp was

performed down to 2 K where neutron diffraction was measured in runs of 600 s up to a total of 31 runs.

The cooling/heating rate during the thermal cycles was chosen as slow as it was feasible in order to remain380

as near as possible to thermodynamic equilibrium, corresponding in this case to those of saturated vapor

pressure (SVP). From the adsorption isotherm in Fig. 2 it is clear that the four loads are far from the bulk

condition at 20 K.

Appendix B.2. Multi-walled carbon nanotubes synthesis and treatment

The raw MWCNTs were prepared by the evaporation of pure graphite anodes in an electric arc discharge385

under a helium atmosphere of 66 kPa applying a current of 60 A and a voltage of 25 V [53]. The raw

material was oxidized by heating to 973 K in open air during 30 minutes. After an annealing at 1223 K in

Ar atmosphere during 10 hours, around 2 g of the open MWCNT sample was obtained.

Appendix B.3. Deuterium

The deuterium gas was taken directly from a 95 liter bottle of Air Liquide N30 Deuterium (purity ≥ 99.9390

%; ∼ 10 ppm of D2O and O2 and ∼ 25 ppm of N2).

Appendix B.4. Electron microscopy

The structure of the obtained MWCNT material was explored by TEM at the National Center for

Electron Microscopy (CNME) in Madrid, Spain. Drops taken from a dispersion of the samples in ethanol

were deposited over copper grids with holey carbon support films. Transmission electron micrographs were395

taken with a JEOL JEM2100 HT microscope operating at 200 kV.

Appendix B.5. Adsorption isotherm

The D2 adsorption of the MWCNT sample was characterized by a measurement of the adsorbed moles

as a function of the pressure at constant temperature (adsorption isotherm) using a standard volumetric

procedure [29]. The chosen temperature was 20 K (D2 triple point at 18.73 K). In essence, given a known400

volume, the adsorbed moles are obtained from the decrease in pressure they cause with respect to the same

volume with no adsorbant. A home-made gas handling manifold was built to accurately manage the gas

dosage. A layout of the system is shown in Figure S1. All pipes and connections in the manifold are made

of steel and Swagelok valves were used to connect the different volumes in the system. The pressure was

determined with a Baratron® MKS 690A absolute manometer with a full range scale of 1000 Torr and405

an accuracy of 0.12% of the reading. The reference volume VR is provided by a calibrated steel vessel of
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volume 1045.7 ± 2.3 cm3. The MWCNT sample was located in an aluminium cylindrical can of 15 mm

of inner diameter and 56 mm of height. The can was connected vertically to a specially built insertion

stick (used to introduce the sample can in the cryostat) with an inner capillary for the D2 injection. The

stick was designed to match the standard ILL “Orange” cryostat [54, 55]. This is the same kind of vertical410

cryostat used in the neutron scattering experiment. The inner capillary of the stick was connected through

a valve to the end of the manifold labeled as “sample” in Figure S1. Using the known value of VR all

the needed volumes are determined by expansion of He loads. In particular, the volume comprising from

“sample” valve (closed) down to the sample can (not shown in the Figure) was 20.64 ± 0.15 cm3. Once

the system volumes were determined, 0.521 g of the MWCNT sample were loaded in the sample can, the415

sample stick was introduced in the cryostat and the temperature set to 20 K. From repeated D2 loads in

Vinj and subsequent expansions, the adsorbed moles were determined [29].The sample temperature during

the adsorption/desorption isotherm was T = 〈T i
S〉 = 20.23± 0.03 K.

Appendix B.6. Neutron scattering experimental setup

The neutron scattering instrument of choice was D20 at the ILL in Grenoble, a reactor-based neutron420

facility (continuous neutron beam). The most characteristic feature of D20 is its very high neutron flux,

which allows for real-time studies of many processes. The setup was chosen to maximize the neutron flux

corresponding to a neutron wavelength of 1.30 Å. D20 is a powder diffractometer with a circular detection

zone 1.47 m of radius, 4 m long and 15 cm high with the sample holder at the center of the circle (see [56] for

details about D20). For the setup chosen the resolution remains below 0.02 Å−1 until Q = 5.5 Å−1, reaching425

0.1 Å−1 at Q = 9 Å−1. Such resolution values are high enough to avoid resolution integrals in the data

treatment. The gas handling manifold, described in Fig. S2, was located outside the neutron beam safety zone

connected to the cryostat insertion stick through a 5-m-long 1-mm-diameter steel capillary. The injection

volume, Vinj , used during the 20 K loads remained open during the neutron scattering measurements as a

safety expansion volume. The sample can was a standard sample holder for the D20 instrument, namely, a430

0.1 mm thick vanadium cylinder of 60 mm high and 8 mm of inner diameter. The neutron beam size was

8 mm width and 4 cm high. It was centered at the axis of the vanadium cylinder and the lower vertically

edge of the beam located at the bottom part of the vanadium can. All the neutron irradiated volume was

filled with MWCNTs sample (2 g). The pressure was monitored with a MKS 640A manometer (1000 Torr

range) and a MKS 627B manometer (15000 Torr range). Since Vinj was open, the moles of D2 irradiated435

by the neutron beam increased by a factor of around 1.4 from the equilibrium after load at 20 K to zero

pressure solid at 2 K.

Appendix B.7. Neutron scattering data reduction

The raw data were corrected from detector efficiency and transformed to scattering vector reciprocal units

using the LAMP software package freely available at the ILL facility [57, 58]. Self-shielding and neutron440
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absorption correction were estimated using the DAVE software package [59, 60]. As expected, given the

small D2 quantities and the cylindrical geometry of the sample can, self-shielding and neutron absorption

amounts to a small and essentially Q-independent correction. Likewise, multiple scattering corrections

are again Q-independent [61]. Both can be ignored for our purposes, which do not depend on absolute

scattering values. An important point to take into the account is the variation in the number of scatterers445

irradiated by the beam. During a thermal cycle, due to the varying thermodynamic conditions (thermal

expansion/contraction, D2 condensation and diffusion, etc), some grains of the MWCNT powder move in

and out the irradiated volume. In absolute terms the effect is small but not negligible with respect to the

smaller D2 loads. To compensate the effect the I(Q)s of each run are divided by their corresponding total

neutron count, which is proportional to the number of scatterers. In order to improve the statistics, all the450

runs corresponding to the pristine MWCNTs were added together, while for the low temperature I(Q)s of

the loaded MWCNTs, only those below 11.5 K (well below solidification temperature) were considered.

With respect to the subtraction of the MWCNT signal, since self-shielding and neutron absorption can

be considered Q-independent, IC(Q) is just given by an attenuation transmission factor applied to the I(Q)

corresponding to the empty MWCNTs. The porous nature of the D2 distribution within the MWCNT455

sample does not allow for a theoretical calculation of the effective transmissions. Instead, we have just

heuristically adjusted the corresponding values, namely, 0.994 at 62 hPa, 0.9675 at 175 hPa, 0.940 at 225

hPa and 0.930 at 284 hPa.

Appendix B.8. Numerical methods. Molecular Dynamics

Molecular Dynamics (MD) simulations used in our nonlinear fitting analysis have been carried out us-460

ing Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [62]. Taking into account

the quantum delocalization of the nuclear rotational degrees of freedom we have considered for the D2−D2

interaction an isotropic effective potential [12] adapted to the LAMMPS code. For the C−C interaction we

have relied in the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential described

in [63] as it is included in the LAMMPS package. In the case of the D2−C interaction, we have relied in465

the anisotropic pair potential developed in [25] out of accurate ab initio calculations using Density Func-

tional Theory (DFT) based on Symmetry Adapted Perturbation Theory (SAPT(DFT)), again adapted to

LAMMPS. For details, including the parameterization used, see Supplementary Material in [25]. Thermal-

ization has been achieved through the Berendsen thermostat [64], which presents a large thermal stability

suitable for small samples. The chosen time step is one fs. The specifics of the procedure in the present470

calculations are given in the Supplementary Information.

Appendix B.9. Numerical methods. DFT

For the DFT calculations we have relied on the Perdew, Burke, and Ernzerhof (PBE) approach [65] as im-

plemented in the CASTEP code [66]. The pseudopotentials are those corresponding to the 00PBE OP.recpot
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family as given by the Materials Studio package. The dispersive interactions are treated using the semi-475

empirical dispersion correction scheme (DFT-SEDC) [67] with Tkatchenko and Scheffler (TS) correction [68]

(hydrogen atoms corrected to deuterium mass). The energy cutoff of the plane wave basis set was 900 eV,

only one k point was used and the maximum force tolerance per atom was set to 0.006 eV/Å. The CNT

containing the D2 molecules is a (10,5) SWCNT with a length of 22.6211727 Å and 280 carbon atoms. The

specifics of the procedure are given in the Supplementary Material and in Table SIII therein.480
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I. NONLINEAR FITTING ANALYSIS

We have performed MD simulations of the D2 molecules inside two types of MWCNTs.

The inner diameters are chosen so that the cross section of the D2 1D system accommodates

at least two molecules, given that a strict 1D chain is not compatible with the measurements.

Specifically, the smallest MWCNT is (1,13)@(4,20)@(31,0)@(5,37)@(8,44) where (a,b)@(c,d)

means tube (a,b) within (c,d). We denote it as MWI(1,13), from “Multi-Walled Inner” with

a (1,13) inner nanotube. The largest is a (18,0)@(10,20)@(35,0)@(44,0)@(5,50) MWCNT,

that is, a MWI(18,0). In the latter case, the inner nanotube allows for the formation of a

D2 shell adsorbed at the nanotube wall and a 1D chain at the center. The D2 arrangements

obtained by MD inside the MWCNTs are in agreement with previously published results

on H2 in single-walled carbon nanotubes [1–3], and they are shown in Fig. S 4. For the

larger diameter, MWI(18,0), two relaxed D2 structures are depicted, one consisting of just

an adsorbed shell and the other consisting of a shell plus a 1D central chain. As mentioned

in the main text, owing to the strong influence of the adsorption potential, the shells can

be seen as a rolled portion of a 2D D2 triangular lattice with a nearest-neighbor distance

consistent with the ND patterns (d = 3.605 Å). Remarkably, even the compact structure

inside the MWI(1,13) is well reproduced with such approach. Following this insight, we have

explored an ample series of diameters and lengths. As in the MD simulations shown in the

Fig. S4, none of the obtained ID(Q)s are able to reproduce adequately the experimental ND

∗ ccabrilo@foton0.iem.csic.es
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signals.

Confronted with these results, we turned to the opposite perspective, i.e., to study struc-

tures preserving the bulk crystalline molecular arrangements. We have chosen cylindrical

cuts of the HCP and FCC crystals which maximize the number of molecules in the minimum

of the adsorption potential. Fig. S5 and Fig. S6 clearly show many structures with ID(Q)s

compatible with both the 62 hPa and 175 hPa ND measurements. Therefore, we performed

a nonlinear fitting analysis (using the NonlinearModelFit procedure of the Mathematica R©

package) of the various structures assuming a log-normal distribution of lengths for each

given type. In such a case, the model for the ND signal reads (see Equation (1) in main

text):

ID(Q) = C1D

⎛
⎝l=40∑

l=1

e−
(ln(l/m)−σ2)2

2σ2√
2πσ2 l

4a2d j0(QdD2/2)
2(SM

1D(Q, u1D, l)− 1) + Finc(Q, u1D)

⎞
⎠

+ C3D

(
Finc(Q, u3D)− 4a2d j0(QdD2/2)

2 exp

[
−(Qu3D)

2

3

])
+ bg0 + bg1 Q

2 + bg2 Q
4 ,

where the fitting parameters are the scaling factor of the scattering coming from the chosen

type of 1D crystals, C1D; m and σ, which define a log-normal distribution of lengths l of such

1D crystals, being l the number of 1D crystal layers, m its mode and σ is the dispersion of

ln(l); u1D is the corresponding rms of the molecular center of mass (COM) displacement; C3D

is the scaling factor of the external small crystals (or crystal); the bgi’s constants define the

background up to second order in Q2. Since u3D is the rms COM molecular displacement

of external small crystals not confined within the MWCNTs, it was fixed to 0.46 Å , the

most recent experimental value corresponding to the bulk case [4]. With respect to the

ortho concentration a value of 2/3, i.e., the value corresponding to room temperature [5],

was needed in order to obtain successful fits.

In Figures S5 and S6 the fits are shown as green solid lines superimposed to the data.

Focusing in the 62 hPa load, Fig. S5, the best fit corresponds to the FCC structure labeled

as B. However, this fit, as that of the HCP structure C, is not physical since it requires

negative S(Q) values (those below the dashed line in the left). Imposing restrictions to force

positivity leads to low quality fits with unnatural length distributions. Remarkably, the

structure A, in spite of being structurally near, yields a fit in excellent agreement with the

measurements. It corresponds to the TCP 1D crystal discussed in the main text. We notice

that despite the great quality of the fit, the reduced χ2
ν value is around 4 instead of ≈ 1,

3



as expected for good fits [6]. This implies an underestimation of the data dispersion that,

in fact, can be visually gauged in the data figures which show fluctuations incompatible

with the lengths of the error bars. The error bars account only for the counting statistics

and therefore some other fluctuations must be present. We have traced the extra noise as

a consequence of fluctuations in the density of buffer gas (He; needed for a proper thermal

conductivity) around the sample cell within the cryostat. The effect, most notorious at

the lowest working point of the cryostat, is approximately reproduced by doubling the data

error bars. Doubling the error bars would divide the χ2
ν value by 4, but otherwise it would

not alter neither the quality of the fits nor the utility of χ2
ν values to compare the goodness

between fits.

Considering the 175 hPa load, which corresponds to larger 1D crystal diameters (see

Fig. S6), the best fit is for the structure C. This is just the THCP 1D crystal, as denoted

in the main text, which once more comes from the HCP bulk crystal. Notice that for this

load the χ2
ν values are larger since the two Bragg peak precursors coming from the external

nanocrystals are not included in the model. At any rate, the quality of the fit is again

excellent not only for the C structure, but also for the A and E, all derived from the HCP

bulk crystal (see Fig. S 6). However, when including the interference term, IDC(Q), the

cases A and C are compatible with the diffraction patterns whereas the E case is not so.

Otherwise, although the C structure (a denser version of A) is the most probable, from the

fits the presence of some proportion of the A structure cannot be disregarded.

In Table S I and Table S II we present the fitting parameters along with their standard

deviation for the TCP and THCP 1D crystals as yielded by the NonlinearModelFit proce-

dure in Mathematica R©.

II. NUMERICAL CALCULATIONS PROCEDURE DETAILS: MOLECULAR DY-

NAMICS

For the MD results finally shown in this work, the initial configurations of the D2 1D

crystals inside the MWCNTs were those obtained from the nonlinear fitting analysis of the

ND results. In a first step, the D2 1D crystals were kept fixed inside the corresponding

MWCNT. In order to relax the MWCNT structure, it was submitted to an annealing pro-
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cedure by cooling down from 100 K to 0.01 K in a stepwise manner, leaving the structure

to thermalize at each temperature. Once the MWCNT are relaxed to the energy minimum,

the D2 molecules are released, now fixing all the CNTs except the most inner one during

0.5 ns. This procedure was applied to the MWI(1,13) and MWI(18,0) nanotubes chosen as

explained in the previous section.

In the former, simulation runs with 1D crystal seeds corresponding to those shown in

Fig. S5A, B and C composed of 87 molecules were performed using a cell length of 171.667

Å. In the latter, crystal seeds corresponding to Fig. S6C and D with 279 D2 molecules and

a cell length of 304.560 Å were addressed. These lengths yield supercells ensuring that the

D2 configurations do not interact with themselves. In all the simulation runs, the initial 1D

crystal arrangements destabilize in around 50 ps in favor of structures adsorbed onto the

CNT wall. In the case of the initial seeds corresponding to the TCP and HCP 1D crystals

we performed a further annealing, thermalizing first at 10 K and cooling down to 0.1 K

in 0.99 ns, keeping the system at 0.1 K during 2.33 ns. As a result of this procedure, the

TCP seed gives the structure shown in Fig. S4A, while the HCP breaks in two independent

structures displayed in Fig. S4 B and C.

III. NUMERICAL CALCULATIONS PROCEDURE DETAILS: DFT

For the DFT calculations, three initial 1D crystals composed of 11 molecules were used

to find the minimum energy configuration, namely, those shown in Fig. S5A (TCP) and B

(FCC bulk parent structure) as well as the stable configuration obtained through MD (see

Fig. S 4A). In regarding the optimization of the electronic density, we start with a rough

criterium for the energy minimization, namely, a convergence tolerance for the total energy

per atom of 0.25×10−8 eV. The minimization criteria sought for the geometry minimization,

made using the BFGS algorithm [7], are a change in energy per atom |ΔE| < 0.02 meV,

a displacement per atom |ΔR| < 0.001 Å and a force per atom |Fmax| < 6 meV/Å for all

the atoms involved. Notice that the maximum force per atom is set here far more stringent

that the CASTEP default. We do so because the minimum of the potential with respect to

the molecular orientation is very shallow. The minimization starts by leaving the COMs of

the molecules and carbon atoms fixed with an initial orientation of the molecules along the

5



SWCNT axis. The rotational degrees of freedom of the D2 molecules were first minimized.

Then, the carbon degrees of freedom are released and, finally, all the system is minimized

without any restriction. For the three initial configurations CASTEP reaches a minimum for

the given energy tolerance corresponding to final structures near the initial ones, but fails for

both, the |ΔR| and the |Fmax| criteria. From these configurations we restart optimization

runs without any restriction requiring a total energy convergence tolerance of 0.9×10−9 eV.

The initial configuration corresponding to the MD yielded the global minimum of total en-

ergy, E, fulfilled the criterium for |ΔR| while |Fmax| was marginally above the threshold (see

Table SIII). In order to check the quality of such a minimum we performed a calculation of

the density of vibrational modes, obtaining 8 low energy unstable modes out of the total of

66, a reasonable result that serves also to gauge the difficulties associated to the shallowness

of the orientational interaction potential. The final configuration is shown in Figure 5A of

the main text. The initial structure corresponding to the FCC parent configuration failed

again both criteria, in particular yielding a high residual force per atom. Finally, the TCP

initial configuration gave as final (meta)stable geometry that shown in Figure 5B, this time

fulfilling all three criteria (see Table S III). In this case the density of vibrational modes

showed 7 low energy unstable modes.

6



VR

D2

Sample

Vacuum pump

640A

Vinj

Figure S1: Layout (top view) of the home-made gas handling manifold employed to measure

the adsorption isotherm. The dotted line defines the volume Vinj: valves enclosed by the

line are open, valves crossed by the line are closed. The volume VR is defined with its

own valve closed (not shown). Their corresponding values are VR = 1045.7 ± 2.3 cm3, and

Vinj = 55.21± 0.11 cm3.
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Vinj

640A
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Figure S 2: Layout (top view) of the home-made gas handling manifold employed in the

neutron scattering experiment. The dotted line defines the volume Vinj: valves enclosed by

the line are open, valves crossed by the line are closed (Vinj = 30 cm3).
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Figure S3: The evolution during a thermal cycle of the normalized area (one at 2 K) under

I(Q) within the red rectangle shown in Figure 2 (main article) for the 225 hPa load (blue

circles) and for the 284 hPa case (red circles).
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Figure S 4: 1D D2 structures obtained from molecular dynamics simulations: (A) Within

the MWI(1,13) nanotube; (B) and (C) within the MWI(18,0) nanotube. For each structure,

ID(Q)s are shown superimposed to the ND pattern (blue data) at (A) 62 hPa and (B) and

(C) at 175 hPa.
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D = √3 d/2
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Q (Å-1)
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χ=  4.06 2
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Figure S5: 1D D2 structures compatible with the HCP (A, and C) and FCC (B, D, and

E) bulk crystals ordered in increasing diameters, D, given in terms of the nearest-neighbor

distance, d, along with their ID(Q)s. For each structure, ID(Q)s corresponding to 4, 8, 12,

16, and 24 layers are shown superimposed in different colors. The ND data at 62 hPa are

also shown (blue data). When it makes sense a fit corresponding to a log-normal distribution

of lengths is also shown as a solid green curve on top of the ND data. In the fits only the

dark blue data are actually used. The cases B and C (χ2
ν in red) are unphysical since they

reach negative values (zero corresponds to the dashed lines in the left).
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Figure S6: Continuation of 1D D2 structures compatible with the HCP (A, C, and E) and

FCC (B, D) bulk crystals ordered in increasing diameters, D, given in terms of the nearest-

neighbor distance, d, along with their ID(Q)s. For each structure, ID(Q)s corresponding to

4, 8, 12, 16, and 24 layers are shown superimposed in different colors. The ND data at 175

hPa are also shown (blue data). Fits corresponding to a log-normal distribution of lengths

is also shown as a solid green curve on top of the ND data. In the fits only the dark blue

data are actually used.
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Table SI: Fitting parameters at 62 hPa load (TCP 1D crystal).

C1D m σ u1D

0.036± 0.001 5.4± 0.4 0.49± 0.05 0.33± 0.02

C3D bg0 bg1 bg2

0.010± 0.003 −3.21± 0.45 0.09± 0.009 −0.00071± 0.00006

Table SII: Fitting parameters at 175 hPa load (THCP 1D crystal).

C1D m σ u1D

0.0520± 0.0007 8.2± 0.2 0.39± 0.02 0.45± 0.02

C3D bg0 bg1 bg2

0.026± 0.002 2.9± 0.3 0.090± 0.006 −0.00057± 0.00004

Table SIII: DFT results

TCP FCC parent MD

E -43703.99311226 eV -43704.09768858 eV -43704.21699157 eV

|ΔE| 2.655354×10−7 eV 4.461872×10−7 eV 2.010411×10−8 eV

|Fmax| 5.50953 meV/Å 18.14 meV/Å 8.6932 meV/Å

|ΔR| 1.321504×10−4 Å 1.866585×10−2 Å 2.88899×10−4 Å
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