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Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms 
underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic 
feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. 
In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched 
genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were sig-
nificantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT 
pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative 
trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the devel-
opmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the 
highest-confidence target genes.

Genome-wide association studies (GWASs) have






 identified 

genetic variants associated with breast cancer risk in more 
than 150 genomic regions1,2. However, the variants and genes 

driving these associations are mostly unknown, with fewer than 20 
regions studied in detail3–20. Here, we aimed to fine-map all known 
breast cancer susceptibility regions using dense genotype data on 
>217,000 subjects participating in the Breast Cancer Association 
Consortium (BCAC) and the Consortium of Investigators of 
Modifiers of BRCA1/2 (CIMBA). All samples were genotyped  
using the OncoArray1,2,21 or the iCOGS chip22,23. Stepwise multi-
nomial logistic regression was used to identify independent asso-
ciation signals in each region and to define credible causal variants 
(CCVs) within each signal. We found genomic features significantly 
overlapping the CCVs. We then used a Bayesian approach, inte-
grating genomic features and genetic associations, to refine the set 
of likely causal variants and calculate their posterior probabilities. 
Finally, we integrated genetic and in silico epigenetic expression and 
chromatin conformation data to infer the likely target genes of each 
signal.























Results
Most breast cancer genomic regions contain multiple indepen-
dent risk-associated signals. We included 109,900 cases of breast 
cancer and 88,937 controls, all of European ancestry, from 75 stud-
ies in the BCAC. Genotypes (directly observed or imputed) were 
available for 639,118 single nucleotide polymorphisms (SNPs),  
deletions/insertions and copy number variants (CNVs) with a minor 
allele frequency (MAF) ≥ 0.1% within 152 previously defined, risk-
associated regions (Supplementary Table 1 and Fig. 1). Multivariate 
logistic regression confirmed associations for 150 out of 152  
regions at a significance threshold of P < 10−4 (Supplementary 
Table  2a). To determine the number of independent risk signals 
within each region, we applied stepwise multinomial logistic regres-
sion, deriving the association of each variant, conditional on the 
more significant ones, in order of statistical significance. Finally, we 
defined CCVs in each signal as variants with conditional P values 
within two orders of magnitude of the index variant24. We classi-
fied the evidence for each independent signal, and its CCVs, as 
either strong (conditional P < 10−6) or moderate (10−6 < conditional 
P < 10−4).

From the 150 genomic regions, we identified 352 independent 
risk signals containing 13,367 CCVs, 7,394 of which were within 
the 196 strong-evidence signals across 129 regions (Fig. 2a,b). The 
number of signals per region ranged from 1–11, with 79 (53%) 
containing multiple signals. We noted a wide range of CCVs per 
signal, but in 42 signals there was only a single CCV: for these sig-
nals, the simplest hypothesis is that the CCV was causal (Fig. 2c,d 
and Table 1). Furthermore, within signals with few CCVs (<10), the 
mean scaled combined annotation-dependent depletion score was 
higher than in signals with more CCVs (13.1 versus 6.7 for CCVs 
in exons; Pt-test = 2.7 × 10−4), suggesting that these are more likely to 
be functional.

The majority of breast tumors express the estrogen receptor (ER 
positive), but ~20% do not (ER negative); these two tumor types 
have distinct biological and clinical characteristics25. Using a case-
only analysis for the 196 strong-evidence signals, we found 66 
signals (34%; containing 1,238 CCVs) where the lead variant con-
ferred a greater relative risk of developing ER-positive tumors (false 
discovery rate (FDR) = 5%), and 29 (15%; 646 CCVs) where the 
lead variant conferred a greater risk of ER-negative cancer tumors 
(FDR = 5%) (Supplementary Table 2b and Fig. 2e). The remaining 
101 signals (51%; 5,510 CCVs) showed no difference by ER status 
(referred to as ER neutral).

Patients with BRCA1 mutations are more likely to develop 
ER-negative tumors26. Hence, to increase our power to identify 
ER-negative signals, we performed a fixed-effects meta-analysis, 
combining association results from BRCA1 mutation carriers 
in CIMBA with the BCAC ER-negative association results. This 
meta-analysis identified ten additional signals (seven ER-negative 
and three ER-neutral), making 206 strong-evidence signals (17% 
ER negative) containing 7,652 CCVs in total (Fig. 2f). More than 
one-quarter of the CCVs (2,277) were accounted for by one sig-
nal, resulting from strong linkage disequilibrium with a CNV. The 
remaining analyses focused on the other 205 strong signals across 
128 regions (Supplementary Table 2c).

The proportion of the familial relative risk (FRR) of breast cancer 
explained by all 206 strong signals was 20.6%, compared with 17.6% 
when only the lead SNP for each region was considered. The pro-
portion of the FRR explained increased by a further 3% (to 23.6%) 
when all 352 signals were considered (Supplementary Table 2d).
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Fine-mapping of 150 breast cancer risk regions 
identifies 191 likely target genes

A full list of authors and affiliations appears at the end of the paper.
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CCVs are over-represented in active gene regulatory regions 
and transcription factor binding sites (TFBSs). We constructed 
a database of mapped genomic features in seven primary cells 
derived from normal breast and 19 breast cell lines using publicly 
available data, resulting in 811 annotation tracks in total. These 
ranged from general features (such as whether a variant was in an 
exon or in open chromatin) to more specific features (such as cell-
specific transcription factor binding or histone marks (determined 
through chromatin immunoprecipitation followed by sequencing 
(ChIP-Seq) experiments) in breast-derived cells or cell lines). Using 
logistic regression, we examined the overlap of these genomic fea-
tures with the positions of 5,117 CCVs in the 195 strong-evidence 
BCAC signals versus the positions of 622,903 variants excluded as 
credible candidates in the same regions (Supplementary Fig. 1a and 
Supplementary Table 3). We found significant enrichment of CCVs 
(FDR = 5%) in four genomic features (open chromatin, actively 
transcribed genes, gene regulatory regions and binding sites), as 
described below.



Open chromatin. As shown in Fig. 3a, DNase I hypersensitive sites 
sequencing and formaldehyde-assisted isolation of regulatory ele-
ments sequencing showed significant enrichment of CCVs in open 
chromatin in ER-positive breast cancer cell lines and normal breast. 

Q10

Conversely, we found depletion of CCVs within heterochromatin 
(determined by the H3K9me3 mark in normal breast, and by chro-
matin state in ER-positive cells27).

Actively transcribed genes. Significant enrichment of CCVs was also 
found in actively transcribed genes in normal breast and ER-positive 
cell lines (as defined by H3K36me3 or H3K79me2 histone marks; 
Fig. 3a). Enrichment was larger for ER-neutral CCVs than for those 
affecting either ER-positive or ER-negative tumors.

Gene regulatory regions. CCVs overlapped distal gene regula-
tory elements in ER-positive breast cancer cells lines (defined by 
H3K4me1 or H3K27ac marks; Fig. 3b). This was confirmed using 
the Encyclopedia of DNA Elements (ENCODE) definition of active 
enhancers in MCF-7 cells (enhancer-like regions defined by com-
bining DNase and H3K27ac marks), as well as the definition of refs. 
27,28 (Supplementary Table 3). Under these more stringent defini-
tions, enrichment among ER-positive CCVs was significantly larger 
than ER-negative or ER-neutral CCVs. Data from ref. 27 showed that 
73% of active enhancer regions overlapped by ER-positive CCVs 
in ER-positive cells (MCF-7) are inactive in the normal human 
mammary epithelial (HMEC) breast cell line; thus, these enhancers 
appear to be MCF-7 specific.
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Fig. 1 | Flowchart summarizing the study design. Logistic regression summary statistics were used to select the final set of variants to run stepwise 
multinomial regression. These results were meta-analyzed with CIMBA to provide the final set of strong independent signals and their CCVs. Through 
case-only analysis, we identified significant differences in effect sizes between ER-positive and ER-negative breast cancer and used this to classify the 
phenotype for each independent signal. With these strong CCVs, we ran the bio-features enrichment analysis, which identified the features to be included 
in the PAINTOR models, together with the OncoArray logistic regression summary statistics and the OncoArray linkage disequilibrium. Both multinomial 
regression CCVs and PAINTOR high-posterior-probability (PP) variants were analyzed with INQUISIT to determine high-confidence target genes. Finally, 
we used the set of high-confidence target genes to identify enriched pathways. iCOGS and OncoArray Cox regression was conditional on the index 
variants from BCAC strong signals.
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We also detected significant enrichment of CCVs in active pro-
moters in ER-positive cells (defined by H3K4me3 marks in T-47D), 
although the evidence for this effect was weaker than for distal reg-
ulatory elements (defined by H3K27ac marks in MCF-7; Fig. 3b). 
Only ER-positive CCVs were significantly enriched in T-47D active 
promoters. Conversely, CCVs were depleted among repressed gene 
regulatory elements (defined by H3K27me3 marks) in normal 
breast (Fig. 3b). As a control, we performed similar analyses with 
autoimmune disease CCVs29 (Methods) and relevant B and T cells 
(Fig. 3b–e). The strongest evidence of enrichment of breast cancer 

CCVs was found at regulatory regions active in ER-positive cells 
(Fig. 3b), whereas enrichment of autoimmune CCVs was in regu-
latory regions active in B and T cells (Fig. 3e). We also compared 
the enrichment of our CCVs in enhancer-like and promoter-like 
regions (defined by ENCODE; Supplementary Fig. 1b). The stron-
gest evidence of enrichment of ER-positive CCVs in enhancer-like 
regions was found in MCF-7 cells—the only ER-positive cell line 
in ENCODE (Supplementary Fig. 1b). These results highlight both 
the tissue specificity and disease specificity of these histone-marked 
gene regulatory regions.

71 10
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Number of
CCVs

b

7,394 CCVs in 196 strong signals 5,973 CCVs in 156 moderate signals

28 38 30 31 21 19 29

1 2–5 6–10 11–20 21–30 31–50 51+Number of CCVs
Number of

signals

c

7,394 CCVs in 196 strong signals

14 23 19 17 22 21 40

1 2–5 6–10 11–20 21–30 31–50 51+Number of CCVs

Number of
signals

d

5,973 CCVs in 156 moderate signals

1,238 646 5,510

66 ER positive 29 ER negative 101 ER neutral

Signal phenotype classification

Number of
CCVs

e

5,117 CCVs in 195 strong signals
2,277 CCVs in

1 strong signal

1,238 646 (226) 5,510 (32)

66 ER positive 36 ER negative 104 ER neutral
Signal phenotype classification (BCAC/CIMBA)

Number of
CCVs

f

5,375 CCVs in 205 strong signals
2,277 CCVs in
1 strong signal

10 5 35 87

≥0.9 ≥0.8–0.9 ≥0.5–0.8 ≥0.3–0.5

PAINTOR posterior probability

Number of
variants

g

60 regions

Fig. 2 | Determining independent risk signals and CCVs. a, Number of independent signals per region, identified through multinomial stepwise logistic 
regression. b, Signal classification as strong- or moderate-confidence signals. c,d, Number of CCVs per signal in strong- (c) and moderate-confidence 
signals (d), identified through multinomial stepwise logistic regression. e, Subtype classification of strong signals into ER positive, ER negative and signals 
equally associated with both phenotypes (ER neutral) from the BCAC analysis. f, Subtype classification from the meta-analysis of BCAC and CIMBA. 
Numbers in brackets show the numbers of CCVs from the meta-analysis of BCAC and CIMBA. g, Number of variants at different posterior probability 
thresholds. In total, 15 variants reached a posterior probability of ≥80% by at least one of the three models (ER all, ER positive or ER negative).
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Binding sites. We observed significant enrichment of CCVs in the 
binding sites for 40 TFBSs determined by ChIP-Seq (Fig.  3f–h). 
The majority of the experiments were performed in ER-positive 
cell lines (90 TFBSs; 20 with data in ER-negative cell lines, 76 with 
data in ER-positive cell lines and 16 with data in normal breast). 
These TFBSs overlap each other and histone marks of active regu-
latory regions (Supplementary Fig.  2). Enrichment in five TFBSs 
(ESR1, FOXA1, GATA3, TCF7L2 and E2F1) has been reported pre-
viously2,30. All 40 TFBSs were significantly enriched in ER-positive 
CCVs (Fig. 3f), seven were also enriched in ER-negative CCVs and 
nine were enriched in ER-neutral CCVs (Fig. 3g–h). ESR1, FOXA1, 
GATA3 and EP300 TFBSs were enriched in all CCV ER subtypes. 
However, the enrichment for ESR1, FOXA1 and GATA3 was stron-
ger for ER-positive CCVs than for ER-negative or ER-neutral CCVs.

CCVs significantly overlap consensus transcription factor bind-
ing motifs. We investigated whether CCVs were also enriched 
within consensus transcription factor binding motifs by conduct-
ing a motif search within active regulatory regions (ER-positive 
CCVs at H3K4me1 marks in MCF-7). We identified 30 motifs from 
eight transcription factor families, with enrichment in ER-positive 
CCVs (FDR = 10%; Supplementary Table  4a) and a further five 
motifs depleted among ER-positive CCVs. To assess whether the 
motifs appeared more frequently than by chance at active regula-
tory regions overlapped by our ER-positive CCVs, we compared 
motif presence in a set of randomized control sequences (Methods). 
Thirteen of 30 motifs were more frequent at active regulatory 
regions with ER-positive CCV enrichment; these included seven 
homeodomain motifs and two forkhead factors (Supplementary 
Table 4b).

When we looked at the change in predicted binding affinity, 57 
ER-positive signals (86%) included at least one CCV predicted to 
modify the binding affinity of the enriched TFBSs (at least twofold; 
Supplementary Table 4c). Forty-eight ER-positive signals (73%) had 
at least one CCV predicted to modify the binding affinity greater 
than tenfold. This analysis validates previous reports of breast can-
cer causal variants that alter the DNA binding affinity for FOXA1 
(refs. 3,30).

Bayesian fine-mapping incorporating functional annotations 
and linkage disequilibrium. As an alternative statistical approach 
for inferring likely causal variants, we applied PAINTOR31 to the 
same 128 regions (Fig.  1). In brief, PAINTOR integrates genetic 
association results, linkage disequilibrium structure and enriched 
genomic features in an empirical Bayes framework and derives the 
posterior probability of each variant being causal, conditional on 
available data. To eliminate artefacts due to differences in geno-
typing and imputation across platforms, we restricted PAINTOR 
analyses to cases and controls typed using OncoArray (61% of the 
total). We identified seven variants with a high posterior probability 
(HPP ≥ 80%) of being causal for overall breast cancer, and ten for 
the ER-positive subtype (Table  1); two of these had a HPP > 80% 
for both ER-positive and overall breast cancer. These 15 HPP vari-
ants (HPPVs; ≥80%) were distributed across 13 regions. We also 
identified an additional 35 variants in 25 regions with HPP (≥50 
and <80%) for ER-positive, ER-negative or overall breast cancer 
(Fig. 2g).

Consistent with the CCV analysis, we found evidence that most 
regions contained multiple HPPVs; the sum of posterior prob-
abilities across all variants in a region (an estimate of the number 
of distinct causal variants in the region) was >2.0 for 84 out of 86 
regions analyzed for overall breast cancer, with a maximum of 16.1 
and a mean of 6.4. For ER-positive cancer, 46 out of 47 regions had 
total posterior probability of >2.0 (maximum: 18.3; mean: 6.5). For 
ER-negative cancer, 17 out of 23 regions had a total posterior prob-
ability of >2.0 (maximum: 9.1; mean: 3.2).

Although for many regions we were not able to identify HPPVs, 
we were able to reduce the proportion of variants needed to account 
for 80% of the total posterior probability in a region to <5% for 65 
regions for overall breast cancer, 43 regions for ER-positive breast 
cancer and 18 regions for ER-negative breast cancer (Supplementary 
Fig. 3a–c). PAINTOR analyses were also able to reduce the set of 
likely causal variants in many cases. After summing the posterior 
probabilities for CCVs in each of the overall breast cancer signals, 
39 out of 100 strong-evidence signals had a total posterior prob-
ability of >1.0. The number of CCVs in these signals ranged from 
1–375 (median: 24), but the number of variants needed to capture 
95% of the total posterior probability in each signal ranged from 
1–115 (median: 12), representing an average reduction of 43% in 
the number of variants needed to capture the signal.

PAINTOR and CCV analyses were generally consistent, yet com-
plementary. Only 3.3% of variants outside of the set of strong-signal 
CCVs for overall breast cancer had a posterior probability of >1%, 
and only 48 (0.013%) of these had a posterior probability of >30% 
(Supplementary Fig.  3d). At ER-positive and ER-negative signals, 
respectively, 3.1 and 1.6% of the non-CCVs at strong signals had 
a posterior probability of >1%, and 40 (0.019%) and 3 (0.003%) of 
these had a posterior probability of >30% (Supplementary Fig. 3e–
f). For the non-CCVs at strong-evidence signals with a posterior 
probability of >30%, the relatively HPP may be driven by the addi-
tion of functional annotation. Indeed, the incorporation of func-
tional annotations more than doubled the posterior probability for 
64 out of 88 variants when compared with a PAINTOR model with 
no functional annotations.

CCVs co-localize with variants controlling local gene expres-
sion. We used four breast-specific expression quantitative trait loci 
(eQTL) datasets to identify a credible set of variants associated with 
differences in gene expression (expression variants): tumor tissue 
from the Nurses’ Health Study (NHS)32 and The Cancer Genome 
Atlas (TCGA)33; and normal breast tissue from the NHS and the 
Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC)34. We then examined the overlap of expression vari-
ants (for each gene, expression variants were defined as those vari-
ants that had a P value within two orders of magnitude of the variant 
most significantly associated with that gene’s expression) with CCVs 
(Methods). There was significant overlap of CCVs with expression 
variants from both the NHS normal and breast cancer tissue studies 
(normal breast: odds ratio (OR) = 2.70; P = 1.7 × 10−5; tumor tissue: 
OR = 2.34; P = 2.6 × 10−4; Supplementary Table 3). ER-neutral CCVs 
overlapped with expression variants in normal tissue more fre-
quently than ER-positive and ER-negative CCVs (ORER neutral = 3.51; 
P = 1.3 × 10−5). Cancer risk CCVs overlapped credible expression 
variants in 128 out of 205 signals (62%) in at least one of the data-
sets (Supplementary Table  5a,b). Sixteen additional variants with 
a posterior probability of ≥30%, not included among the CCVs, 
also overlapped with a credible expression variant (Supplementary 
Table 5a,b).

Transcription factors and known somatic breast cancer driv-
ers are over-represented among prioritized target genes. We 
assumed that causal variants function by affecting the behavior of 
a local target gene. However, it is challenging to define target genes 
or to determine how they may be affected by the causal variant. 
Few potentially causal variants directly affect protein coding: we 
observed 67 out of 5,375 CCVs and 19 out of 137 HPPVs (≥30%) 
in protein-coding regions. Of these, 33 (0.61%) were predicted to 
create a missense change, one a frameshift and another a stop gain, 
while 30 were synonymous (0.59%; Supplementary Table  5c). In 
total, 499 CCVs at 94 signals, and four additional HPPVs (≥30%), 
are predicted to create new splice sites or activate cryptic splice sites 
in 126 genes (Supplementary Table 5d). These results are consistent 
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Fig. 3 | Overlap of CCVs with gene regulatory regions, gene bodies and TFBSs. a, Breast cancer CCVs overlap with chromatin states and broad breast 
cell epigenetic marks. HMEC, human mammary epithelial cells. b,c, Breast cancer CCVs (b) and autoimmune CCVs (c) overlap with breast cell epigenetic 
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with previous observations that the majority of common suscepti-
bility variants are regulatory.

We applied an updated version of our pipeline INQUISIT 
(integrated expression quantitative trait and in silico prediction 
of GWAS targets)2 to prioritize potential target genes from 5,375 
CCVs in strong signals and all 138 HPPVs (≥30%; Supplementary 
Table 2c). The pipeline predicted 1,204 target genes from 124 out 
of 128 genomic regions examined. As a validation, we examined 
the overlap between INQUISIT predictions and 278 established 

breast cancer driver genes35–39. Cancer driver genes were over-rep-
resented among high-confidence (level 1) targets, with a fivefold 
increase over expected levels from CCVs and a 15-fold increase 
from HPPVs (P = 1 × 10−6; Supplementary Fig. 4a). Notably, 13 can-
cer driver genes (ATAD2, CASP8, CCND1, CHEK2, ESR1, FGFR2, 
GATA3, MAP3K1, MYC, SETBP1, TBX3, XBP1 and ZFP36L1) were 
predicted from the HPPVs derived from PAINTOR. Cancer driver 
gene status was consequently included as an additional weighting 
factor in the INQUISIT pipeline. Transcription factor genes40 were 
also enriched among high-confidence targets predicted from both 
CCVs (twofold; P = 4.6 × 10−4) and HPPVs (2.5-fold; P = 1.8 × 10−2; 
Supplementary Fig. 4a).

In total, INQUISIT identified 191 target genes supported by strong 
evidence (Supplementary Table  6). Significantly more genes were 
targeted by multiple independent signals (n = 165) than expected by 
chance (P = 4.3 × 10−8; Supplementary Fig. 4b and Fig. 4). Six high-
confidence predictions came only from HPPVs, although three of 
these (IGFBP5, POMGNT1 and WDYHV1) had been predicted at 
lower confidence from CCVs. Target genes included 20 that were 
prioritized via potential coding/splicing changes (Supplementary 
Table 7), ten via promoter variants (Supplementary Table 8) and 180 
via distal regulatory variants (Supplementary Table 9). We illustrate 
the genes prioritized via multiple lines of evidence in Fig. 4.

Three examples of INQUISIT using genomic features to identify 
predict target genes. Based on genome-wide chromosome confor-
mation capture from human mammary epithelial cells (Hi-C) and 
chromatin interaction analysis by paired-end tag sequencing (ChIA-
PET) data, NRIP1 is a predicted target of intergenic CCVs and 
HPPVs at chr21q21 (Supplementary Fig. 5a).






 Multiple target genes 

were predicted at chr22q12, including the driver genes CHEK2 and 
XBP1 (Supplementary Fig. 5b). A third example at chr12q24.31 is a 
more complicated scenario with two level 1 targets: RPLP0 (ref. 41) 
and a modulator of mammary progenitor cell expansion, MSI1 (ref. 
42) (Supplementary Fig. 5c).

Target gene pathways include DNA integrity checkpoint, apop-
tosis and developmental processes and the immune system. We 
performed pathway analysis to identify common processes using 
INQUSIT high-confidence target protein-coding genes (Fig. 5a) and 
identified 488 Gene Ontology terms and 307 pathways at an FDR of 
5% (Supplementary Table 10). These were grouped into 98 themes 
by common ancestor Gene Ontology terms, pathways or tran-
scription factor classes (Fig. 5b). We found that 23% (14/60) of the 
ER-positive target genes were classified within developmental pro-
cess pathways (including mammary development), 18% were classi-
fied in immune system pathways and a further 17% were classified 
in nuclear receptor pathways. Of the genes targeted by ER-neutral 
signals, 21% (18/87) were classified in developmental process path-
ways, 19% were classified in immune system pathways and a further 
18% were classified in apoptotic process pathways. The top themes 
of genes targeted by ER-negative signals were DNA integrity check-
point processes and the immune system, each of which contained 
19% of genes (7/37), and apoptotic processes (16%).

Novel pathways revealed by this study include tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) signaling, the 
AP-2 transcription factors pathway, and regulation of IκB kinase/
nuclear factor-κB (NF-κB) signaling. Of note, the latter of these is 
specifically over-represented among ER-negative target genes. We 
also found significant over-representation of additional carcinogen-
esis-linked pathways, including cyclic adenosine monophosphate, 
NOTCH, phosphoinositide 3-kinase, RAS and WNT/β-catenin, 
and of receptor tyrosine kinase signaling, including fibroblast 
growth factor receptor, epidermal growth factor receptor and trans-
forming growth factor-β receptor43–47.


 Finally, our target genes are 

also significantly over-represented in DNA damage checkpoint and 
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Fig. 4 | Predicted target genes are enriched in known breast cancer driver 
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DNA repair pathways, as well as programmed cell death pathways, 
such as apoptotic processes, regulated necrosis and death receptor 
signaling-related pathways.

Discussion
We have performed multiple, complementary analyses on 150 
breast cancer-associated regions, originally found by GWASs, and 
identified 362 independent risk signals, 205 of these with high con-
fidence (P < 10−6). The inclusion of these new variants increases 
the explained proportion of familial risk by 6% compared with that 
explained by the lead signals alone.

We observed that most regions contain multiple independent 
signals, with the greatest number (nine) in the region surround-
ing ESR1 and its co-regulated genes, and on 2q35, where IGFBP5 
appears to be a key target. We used two complementary approaches 
to identify likely causal variants within each region: a Bayesian 
approach, PAINTOR (which integrated genetic associations, link-
age disequilibrium and informative genomic features, providing 
complementary evidence) and a more traditional, multinomial 
regression approach. PAINTOR supported most associations found 
by multinomial regression and also identified additional variants. 
Specifically, the Bayesian method highlighted 15 variants that are 
highly likely to be causal (HPP ≥ 80%). From these approaches, 

we identified a single variant, likely to be causal, at each of 34 sig-
nals (Table 1). Of these, only rs16991615 (MCM8; NP_115874.3:p.
E341K) and rs7153397 (CCDC88C; NM_001080414.2:c.5058 + 134
2G > A; a cryptic splice-donor site) were predicted to affect protein-
coding sequences. However, in other signals, we also identified four 
coding changes previously recognized as deleterious: the stop gain 
rs11571833 (BRCA2; NP_000050.2:p.K3326*)48; two CHEK2 cod-
ing variants (the frameshift rs555607708 (refs. 49,50) and a missense 
variant, rs17879961 (refs. 51,52)); and a splicing variant (rs10069690, 
which in TERT results in the truncated protein INS1b19, decreased 
telomerase activity, telomere shortening and increased DNA dam-
age response53).



Having identified potential causal variants within each signal, we 
aimed to uncover their functions at the DNA level, as well as try-
ing to predict their target gene(s). Looking across all 150 regions, 
a notable feature is that many likely causal variants implicated in 
ER-positive cancer risk lie in gene regulatory regions marked as 
open and active in ER-positive breast cells, but not in other cell types. 
Moreover, a significant proportion of potential causal variants over-
lap the binding sites for transcription factor proteins (n = 40 from 
ChIP-Seq) and co-regulators (n = 64 with the addition of compu-
tationally derived motifs). Furthermore, nine proteins also appear 
in the list of high-confidence target genes; hence, the following  
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genes and their products have been implicated by two different 
approaches: CREBBP, EP300, ESR1, FOXI1, GATA3, MEF2B, MYC, 
NRIP1 and TCF7L2. Most proteins encoded by these genes already 
have established roles in estrogen signaling. CREBBP, EP300, ESR1, 
GATA3 and MYC are also known cancer driver genes that are fre-
quently somatically mutated in breast tumors.

In contrast with ER-positive signals, we identified fewer genomic 
features enriched in ER-negative signals. This may reflect the com-
mon molecular mechanisms underlying their development, but the 
power of this study was limited, despite including as many patients 
with ER-negative tumors as possible from the BCAC and CIMBA 
consortia. Less than 20% of genomic signals confer a greater risk of 
ER-negative cancer and there are few publicly available ChIP-Seq 
data on ER-negative breast cancer cell lines. The heterogeneity of 
ER-negative tumors also may have limited our power. Nevertheless, 
we have identified 35 target genes for ER-negative likely causal vari-
ants. Some of these already had functional evidence supporting 
their role: including CASP8 (ref. 54) and MDM4 (ref. 55). However, 
most targets currently have no reported function in ER-negative 
breast cancer development.

Finally, we examined the Gene Ontology pathways in which tar-
get genes most often lie. Of note, 14% (25/180) of all high-confi-
dence target genes and 19% of ER-negative target predictions are in 
immune system pathways. Among the significantly enriched path-
ways were T cell activation, interleukin signaling, Toll-like receptor 
cascades and I-κB kinase/NF-κB signaling, as well as processes lead-
ing to activation and perpetuation of the innate immune system. 
The link between immunity, inflammation and tumorigenesis has 
been studied extensively56, although not primarily in the context of 
susceptibility. Five ER-negative high-confidence target genes (ALK, 
CASP8, CFLAR, ESR1 and TNFSF10) lie in the I-κB kinase/NF-κB 
signaling pathway. Interestingly, ER-negative cells have high lev-
els of NF-kB activity compared with ER-positive cells57. A recent 
expression–methylation analysis on breast cancer tumor tissue also 
identified clusters of genes correlated with DNA methylation levels: 
one enriched in ER signaling genes and a second in immune path-
way genes58.

These analyses provide strong evidence for more than 200 inde-
pendent breast cancer risk signals, identify the plausible cancer 
variants and define likely target genes for the majority of these. 
However, notwithstanding the enrichment of certain pathways and 
transcription factors, the biological basis underlying most of these 
signals remains poorly understood. Our analyses provide a rational 
basis for such future studies into the biology underlying breast can-
cer susceptibility.
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Methods
Study samples. Epidemiological data for European women were obtained from 
75 breast cancer case–control studies participating in the BCAC (cases: 40,285 
iCOGS and 69,615 OncoArray; cases with ER status available: 29,561 iCOGS and 
55,081 OncoArray; controls: 38,058 iCOGS and 50,879 OncoArray). Details of the 
participating studies, genotype calling and quality control are given in refs. 2,22,23, 
respectively. Epidemiological data for BRCA1 mutation carriers were obtained 
from 60 studies providing data to the CIMBA (affected: 1,591 iCOGS and 7,772 
OncoArray; unaffected: 1,665 iCOGS and 7,780 OncoArray). This dataset has 
been described in detail previously1,59,60. All studies provided samples of European 
ancestry. Any non-European samples were excluded from the analyses.

Variant selection and genotyping. Similar approaches were used to select variants 
for inclusion on the iCOGS and OncoArray, and these are described in detail 
elsewhere2,21. Both arrays included a dense coverage of variants across known 
susceptibility regions (at the time of their design), with sparser coverage of the 
rest of the genome. Twenty-one known susceptibility regions were selected for 
dense genotyping using iCOGS and 73 regions were selected for OncoArray. 
These regions were 1-megabase (Mb) intervals centered on the published lead 
GWAS hit (combined into larger intervals where these overlapped). For iCOGS, 
all known variants from the March 2010 release of the 1000 Genomes Project 
with a MAF > 0.02 in Europeans were identified, and all those correlated with the 
published GWAS variants at r2 > 0.1, together with a set of variants designed to tag 
all remaining variants at r2 > 0.9, were selected to be included in the array




 (http://

ccge.medschl.cam.ac.uk/files/2014/03/iCOGS_detailed_lists_ALL1.pdf). For 
OncoArray, all designable variants correlated with the known hits at r2 > 0.6, plus 
all variants from lists of potentially functional variants on RegulomeDB and a set 
of variants designed to tag all of the remaining variants at r2 > 0.9, were selected. 
In total, across the 152 regions considered here, 26,978 iCOGS- and 58,339 
OncoArray-genotyped variants passed the quality control criteria.

We imputed genotypes for all of the remaining variants using IMPUTE2 (ref. 
61) and the October 2014 release of the 1000 Genomes Project as a reference. 
Imputation was conducted independently in the iCOGS and OncoArray subsets. 
To improve accuracy at low-frequency variants, we used the standard IMPUTE2 
MCMC algorithm for follow-up imputation, which includes no pre-phasing of the 
genotypes and increasing both the buffer regions and the number of haplotypes to 
use as templates (a more detailed description of the parameters used can be found 
in ref. 21). We thus genotyped or successfully imputed 639,118 variants (all with 
an imputation info score ≥ 0.3 and a MAF ≥ 0.001 in both iCOGS and OncoArray 
datasets). Imputation summaries and coverage for each of the analyzed regions 
stratified by allele frequency can be found in Supplementary Table 1b.

BCAC statistical analyses. Per-allele odds ratios and standard errors were 
estimated for each variant using logistic regression. We ran this analysis separately 
for iCOGS and OncoArray, and for overall, ER-positive and ER-negative breast 
cancer. The association between each variant and breast cancer risk was adjusted 
by study (iCOGS) or country (OncoArray), and eight (iCOGS) or ten (OncoArray) 
ancestry-informative principal components. The statistical significance for each 
variant was derived using a Wald test.

Defining appropriate significance thresholds for association signals. To establish an 
appropriate significance threshold for independent signals, all variants evaluated 
in the meta-analysis were included in logistic forward selection regression analyses 
for overall breast cancer risk in iCOGS, run independently for each region. We 
evaluated five P value thresholds for inclusion: <1 × 10−4, <1 × 10−5, <1 × 10−6, 
<1 × 10−7 and <1 × 10−8. The most parsimonious iCOGS models were tested in 
OncoArray, and the FDR at the 1% level for each threshold was estimated using 
the Benjamini–Hochberg procedure. At a 1% FDR threshold, 72% of associations, 
significant at P < 10−4, were replicated on iCOGS, and 94% of associations, 
significant at P < 10−6, were replicated on OncoArray. Based on these results, two 
categories were defined: strong-evidence signals (conditional P < 10−6 in the final 
model) and moderate-evidence signals (conditional P < 10−4 and P ≥ 10−6 in the 
final model).

Identification of independent signals. To identify independent signals, we ran 
multinomial stepwise regression analyses, separately in iCOGS and OncoArray, 
for all variants displaying evidence of association (nvariants = 202,749). We selected 
two sets of well-imputed variants (imputation info score ≥ 0.3 in both iCOGS and 
OncoArray): (1) common and low-frequency variants (MAF ≥ 0.01) with a logistic 
regression P value inclusion threshold of ≤0.05 in either the iCOGS or OncoArray 
datasets for at least one of the three phenotypes (overall, ER positive and ER 
negative breast cancer); and (2) rarer variants (MAF ≥ 0.001 and <0.01), with a 
logistic regression inclusion P value of ≤ 0.0001. The same parameters used for 
adjustment in logistic regression were used in the multinomial regression analysis 
(R function multinom). The multinomial regression estimates were combined 
using a fixed-effects meta-analysis weighted by the inverse variance. Variants with 
the lowest conditional P value from the meta-analysis of both European cohorts 
at each step were included in the multinomial regression model. However, if the 
new variant to be included in the model caused collinearity problems due to 
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high correlation with an already selected variant, or showed high heterogeneity 
(P < 10−4) between iCOGS and OncoArray after being conditioned by the 
variant(s) in the model, we dropped the new variant and repeated this process.

At 105 of 152 evaluated regions, the main signal showed genome-wide 
significance, while 44 were marginally significant (9.89 × 10−5 ≥ P > 5 × 10−8). For 
two regions, there were no variants significant at P < 10−4 (chr14:104712261–
105712261; rs10623258; multinomial regression P = 2.32 × 10−4; chr19:10923703–
11923703; rs322144; multinomial regression P = 3.90 × 10−3). Four main differences 
in the datasets used here and in the previous paper may account for this: (1) our 
previous paper2 included data from 11 additional GWASs (14,910 cases and 17,588 
controls) that have not been included in the present analysis in order to minimize 
differences in array coverage, and because ER status data were substantially 
incomplete and individual-level data were not available for all GWASs; (2) the 
present analysis was based on estimating separate risks for ER-positive and 
ER-negative disease, whereas in our previous paper the outcome was overall 
breast cancer risk; ER status was available for only 73% of the iCOGS and 79% 
of the OncoArray breast cancer cases; (3) for the set of samples genotyped with 
both arrays, ref. 2 used the iCOGS genotypes, while the present study included 
OncoArray genotypes to maximize the number of samples genotyped with a larger 
coverage; and (4) the imputation procedure was modified (in particular using one-
step imputation without pre-phasing) to improve the imputation accuracy of less 
frequent variants.

We used a forward stepwise approach to define the number of independent 
signals within each associated genomic region. First, we identified the index variant 
of the main signal in the region, and then ran multinomial logistic regression for all 
of the other variants, adjusted by the index variant, to identify additional variants 
that remained independently significant within the model. We repeated this 
process, adjusting for identified index variants, until no more additional variants 
could be added. In this way, we found from 1–11 independent signals within the 
150 regions that containing a genome-wide significant main signal.

Selection of a set of CCVs. For each independently associated signal, we first defined 
CCVs likely to drive its association as those variants with P values within two orders 
of magnitude of the most significant variant for that signal, after adjusting for 
the index variant of other signals within that region (as identified in the forward 
stepwise regression above; Supplementary Fig. 6a)24. For each region, we then 
attempted to obtain the best-fitting model by successively fitting models in which the 
index variant for each signal was replaced by other CCVs for that signal, adjusting 
for the index variants for the other signals (Supplementary Fig. 6b). Where a model 
with a higher chi-squared value was obtained, the index variant was replaced by the 
CCV in the best model (Supplementary Fig. 6c,d). This process was repeated until 
the model (that is, the set of index variants) did not change further (Supplementary 
Fig. 6g). This procedure was performed first for the set of strong signals (that is, 
considering models including only the strong signals). Once a final model had 
been obtained for the strong signals, the index variants for the strong signals were 
considered fixed and the process was repeated for all signals, the index variants 
for the weak signals (but not the strong signals) to vary.




 Using this procedure, we 

could define the best model for 140 out of 150 regions, but for ten regions this 
approach did not converge (chr4:175328036–176346426, chr5:55531884–56587883, 
chr6:151418856–152937016, chr8:75730301–76917937, chr10:80341148–81387721, 
chr10:122593901–123849324, chr12:115336522–116336522, chr14:36632769–
37635752, chr16:3606788–4606788 and chr22:38068833–39859355). For these 
ten regions, we defined the best model, from among all possible combinations of 
credible variants, as that with the largest chi-squared value. Finally, we redefined 
the set of CCVs for each signal using the conditional P values, after adjusting for the 
revised set of index variants. Again, for the strong signals, we conditioned on the 
index variants for the other strong signals, while for the weak signals we conditioned 
on the index variants for all of the other signals.

Case-only analysis. Differences in the effect size between ER-positive and ER-
negative disease for each index-independent variant were assessed using a case-
only analysis. We performed logistic regression with ER status as the dependent 
variable and the lead variant at each strong signal in the fine-mapping region as the 
independent variables. We used FDR (5%) to adjust for multiple testing.

OncoArray-only stepwise analysis. To evaluate whether the lower coverage in 
iCOGS could affect the identification of independent signals, we ran stepwise 
multinomial regression using only the OncoArray dataset. We identified 249 
independent signals. Ninety-two signals, in 67 fine-mapping regions, achieved 
a genome-wide significance level (conditional P < 5 × 10−8). Of these, 205 
signals were also identified in the meta-analysis with iCOGS. Nine independent 
variants across ten regions were not evaluated in the combined analysis due 
to their low imputation information score in iCOGS. Of these nine signals, 
two signals would be classified as main primary signals: rs114709821 at region 
chr1:145144984–146144984 (OncoArray imputation information score = 0.72); 
and rs540848673 at region chr1:149406413–150420734 (OncoArray imputation 
information score = 0.33). Given the low number of additional signals identified 
in the OncoArray dataset alone, all analyses were based on the combined iCOGS/
OncoArray dataset.
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CIMBA statistical analysis. CIMBA provided data from 60 retrospective cohort 
studies consisting of 9,445 unaffected and 9,363 affected female BRCA1 mutation 
carriers of European ancestry. Unconditional (that is, single-variant) analyses were 
performed using a score test based on the retrospective likelihood of observing 
the genotype conditional on the disease phenotype62,63. Conditional analyses, 
where more than one variant is analyzed simultaneously, cannot be performed 
in this score test framework. Therefore, conditional analyses were performed by 
Cox regression, allowing for adjustment of the conditionally independent variants 
identified by the BCAC/DRIVE analyses. All models were stratified by country 
and birth cohort, and adjusted for relatedness (unconditional models used kinship-
adjusted standard errors based on the estimated kinship matrix; conditional 
models used cluster robust standard errors based on phenotypic family data).

Data from the iCOGS array and OncoArray were analyzed separately and 
combined to give an overall BRCA1 association by fixed-effects meta-analysis. 
Variants were excluded from further analyses if they exhibited evidence of 
heterogeneity (heterogeneity P < 1 × 10−4) between iCOGS and OncoArray, had a 
MAF < 0.005, were poorly imputed (imputation information score < 0.3) or were 
imputed to iCOGS only (that is, they must have been imputed to OncoArray or 
iCOGS and OncoArray).

Meta-analysis of ER-negative cases in BCAC with BRCA1 mutation carriers 
from CIMBA. BRCA1 mutation carrier association results were combined with 
the BCAC multinomial regression ER-negative association results in a fixed-
effects meta-analysis. Variants considered for analysis must have passed all 
previous quality control steps and have had MAF ≥ 0.005. All meta-analyses were 
performed using the METAL software64. Instances where spurious associations 
might occur were investigated by assessing the linkage disequilibrium between a 
possible spurious association and the conditionally independent variants. High 
linkage disequilibrium between a variant and a conditionally independent variant 
within its region causes model instability through collinearity, and convergence 
of the model likelihood maximization may not be reliable.




 Where the association 

appeared to be driven by collinearity, the signals were excluded.

Heritability estimation. To estimate the frailty-scale heritability due to all of the 
fine-mapping signals, we used the formula:





h2 ¼ 2 γ0TRγ0 � τ0T Iτ0
� �

Here, γ0 ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

p

I
 and τ0T ¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

p

I
, where p is a vector of allele 

frequencies, γ are the estimated per-allele odds ratios, τ are the corresponding 
standard errors and R is the correlation matrix of genotype frequencies.

To adjust for the overestimation resulting from only including signals 
passing a given significance threshold, we adapted the approach of ref. 65, 
based on maximizing the likelihood conditional on the test statistic passing the 
relevant threshold. Since our analyses were based on estimating ER-negative 
and ER-positive odds ratios simultaneously, the method needed to be adapted 
to maximize a conditional bivariate normal likelihood. Following ref. 65, we then 
estimated mean square error estimates based on a weighted mean of the maximum 
likelihood estimates and the naïve estimates, which were shown to be unbiased in 
the 1-degree of freedom case.




 The estimated effect sizes for overall breast cancer 

were computed as a weighted mean of the ER-negative and ER-positive estimates, 
based on the proportions of each subtype in the whole study (weights: 0.21 and 
0.79). The results were then expressed in terms of the proportion of the FRR to 
first-degree relatives of affected women, using the formula h2/(2log[λ]), where the 
FRR λ was assumed to be 2 (ref. 2).

eQTL analysis. Total RNA was extracted from normal breast tissue in formalin-
fixed paraffin-embedded breast cancer tissue blocks from 264 NHS participants32. 
Transcript expression levels were measured using the Glue Grant Human 
Transcriptome Array version 3.0 at the Molecular Biology Core Facilities, Dana-
Farber Cancer Institute. Gene expression was normalized and summarized into 
log2 values using RMA (Affymetrix Power Tools version 1.18.012). Quality control 
was performed using GlueQC and arrayQualityMetrics version 3.24.014. Genome-
wide data on variants were generated using the Illumina HumanHap550 BeadChip 
as part of the Cancer Genetic Markers of Susceptibility initiative66. Imputation to 
the 1000KGP Phase 3 version 5 ALL reference panel was performed using MACH 
to pre-phase measured genotypes, and minimac to impute.

Expression analyses were performed using data from the TCGA and 
METABRIC projects34,38. The TCGA eQTL analysis was based on 458 breast 
tumors that had matched gene expression, copy number and methylation profiles, 
together with the corresponding germline genotypes available. All 458 individuals 
were of European ancestry, as ascertained using the genotype data and the Local 
Ancestry in Admixed Populations (LAMP) software package (LAMP estimate 
cut-off > 95% European)67. Germline genotypes were imputed into the 1000 
Genomes Project reference panel (October 2014 release) using IMPUTE version 2 
(refs. 68,69). Gene expression had been measured on the Illumina HiSeq 2000 RNA 
sequencing (RNA-Seq) platform (gene-level RSEM normalized counts70), copy 
number estimates were derived from Affymetrix SNP 6.0 (somatic copy number 
alteration minus germline copy number variation called using the GISTIC2 
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algorithm71), and methylation beta values were measured on the Illumina Infinium 
HumanMethylation450. Expression QTL analysis focused on all variants within 
each of the 152 genomic intervals that had been subjected to fine-mapping for their 
association with breast cancer susceptibility. Each of these variants was evaluated 
for its association with the expression of every gene within 2 Mb that had been 
profiled for each of the three data types. The effects of tumor copy number and 
methylation on gene expression were first regressed out using a method described 
previously72. eQTL analysis was performed by linear regression, with residual gene 
expression as the outcome, germline SNP genotype dosage as the covariate of 
interest, and ESR1 expression and age as additional covariates, using the R package 
Matrix eQTL73.

The METABRIC eQTL analysis was based on 138 normal breast tissue 
samples resected from patients with breast cancer of European ancestry. Germline 
genotyping for the METABRIC study was also done on the Affymetrix SNP 6.0 
array, and gene expression in the METABRIC study was measured using the 
Illumina HT12 microarray platform (probe-level estimates). No adjustment was 
implemented for somatic copy number and methylation status since we were 
evaluating eQTLs in normal breast tissue. All other steps were identical to the 
TCGA eQTL analysis described above.

Genomic features enrichment. We explored the overlap of CCVs and 
excluded variants with 90 transcription factors, ten histone marks and DNase 
hypersensitivity sites in 15 breast cell lines and eight normal human breast 
tissues. We analyzed data from the Encyclopedia of DNA Elements (ENCODE) 
Project74,75, Roadmap Epigenomics Projects76, the International Human Epigenome 
Consortium27,77, Pellacani et al.78, TCGA33, METABRIC34, the ReMap database (we 
included 241 transcription factor annotations from ReMap (from a total of 2,825), 
which showed at least 2% overlap for any of the phenotype SNP sets)79 and other 
data obtained through the National Center for Biotechnology Information Gene 
Expression Omnibus. Promoters were defined following the procedure defined 
in ref. 78 (that is, ±2 kilobases (kb) from a gene transcription start site) using an 
updated version of the RefSeq genes (refGene version updated 11 April 2017)80. 
Transcribed regions were defined using the same version of RefSeq genes. lncRNA 
annotation was obtained from GENCODE (version 19)81

To include eQTL results in the enrichment analysis we: (1) identified all of the 
genes for which summary statistics were available; (2) defined the most significant 
eQTL variant for each gene (index eQTL variant; P value threshold ≤ 5 × 10−4); and 
(3) classified variants with P values within two orders of magnitude of the index 
expression variant as the credible set of eQTL variants (that is, the best candidates 
to drive expression of the gene). Variants within at least one eQTL credible set 
were defined as expression variants. We evaluated the overlap between eQTL 
credible sets and CCVs (risk variants credible set). We evaluated the enrichment 
of CCVs for genomic features using logistic regression, with CCV (versus non-
CCV variants) being the outcome. To adjust for the correlation among variants in 
the same fine-mapping region, we used robust variance estimation for clustered 
observations (R function multiwaycov). The associated variants at an FDR of 5% 
were included in a stepwise forward logistic regression procedure to select the most 
parsimonious model. A likelihood ratio test was used to compare multinomial 
logistic regression models with and without equality effect constraints to evaluate 
whether there was heterogeneity among the effect sizes for ER positive, ER negative 
or signals equally associated with both phenotypes (ER neutral).

To validate the disease specificity of the regulatory regions identified through 
this analysis, we followed the same approach for the autoimmune-related CCVs 
from ref. 29 (n = 4,192). Variants excluded as candidate causal variants, and within 
500 kb upstream and downstream of the index variant for each signal, were 
classified as excluded variants (n = 1,686,484). We then tested the enrichment 
for both the breast cancer and autoimmune CCVs with breast and T and B cell 
enhancers. We also evaluated the overlap of our CCVs with ENCODE enhancer-
like and promoter-like regions for 111 tissues, primary cells, immortalized cell lines 
and in vitro-differentiated cells. Of these, 73 had available data for both enhancer- 
and promoter-like regions.

Transcription binding site motif analysis. We conducted a search to find motif 
occurrences for the transcription factors significantly enriched in the genomic 
featured.




 For this, we used two publicly available databases: Factorbook82 and 

JASPAR 2016 (ref. 83). For the search using Factorbook, we included the motifs for 
the transcription factors discovered in the cell lines where significant enrichment 
was found in our genomic features analysis. We also searched for all of the 
available motifs for Homo sapiens in the JASPAR database (JASPAR CORE 2016; 
TFBSTools84). Using the USCS sequence (BSgenome.Hsapiens.USCS.hg19) as a 
reference, we created fasta sequences with the reference and alternative alleles for 
all of the variants included in our analysis plus 20 base pairs flanking each variant. 
We used FIMO (version 4.11.2; Grant et al.85) to scan all of the fasta sequences, 
searching for the JASPAR and Factorbook motifs to identify any overlap of any 
of the alleles for each of the variants (setting the P value threshold to 10−3). We 
subsequently determined whether our CCVs were more frequency overlapping a 
particular transcription factor binding motif when compared with the excluded 
variants. We ran these analyses for all of the strong signals, but also strong signals 
stratified by ER status. Also, we subset this analysis to the variants located at 
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regulatory regions in an ER-positive cell line (MCF-7 marked by H3K4me1; 
ENCODE identification: ENCFF674BKS) and evaluated whether the ER-positive 
CCVs overlapped any of the motifs more frequently than the excluded variants. We 
also evaluated the change in total binding affinity caused by the ER-positive CCCR 
alternative allele for all but one (2:217955891:T:<CN0>:0) of the ER-positive CCVs 
(MatrixRider86).

Subsequently, we evaluated whether the MCF-7 regions demarked by H3K4me1 
(ENCODE identification: ENCFF674BKS) and overlapped by ER-positive CCVs 
were enriched in known TFBS motifs. First, we subset the ENCODE bed file 
ENCFF674BKS to identify MCF-7 H3K4me1 peaks overlapped by the ER-positive 
CCVs (n = 107), as well as peaks only overlapped by excluded variants (n = 11,099), 
using BEDTools87. We created fasta format sequences using genomic coordinate 
data from the intersected bed files. To create a control sequence set, we used the 
script included with the MEME Suite (fasta-shuffle-letters) to create ten shuffled 
copies of each sequence overlapped by ER-positive CCVs (n = 1,070). We then 
used AME88 to interrogate whether the 107 MCF-7 H3K4me1 genomic regions 
overlapped by ER-positive CCVs were enriched in known TFBS consensus motifs 
when compared with the shuffled control sequences, or with the MCF-7 H3K4me1 
genomic regions overlapped only by excluded variants. We used the command line 
version of AME (version 4.12.0), selecting as a scoring method the total number of 
positions in the sequence whose motif score P value was <10−3, and using a one-
tailed Fisher’s exact test as the association test.

PAINTOR analysis. To further refine the set of CCVs, we performed empirical 
Bayes fine-mapping using PAINTOR to integrate marginal genetic association 
summary statistics, linkage disequilibrium patterns and biological features31,89. 
PAINTOR derives jointly the posterior probability for causality of all variants 
along the respective contribution of genomic features, in order to maximize the 
log-likelihood of the data across all regions. PAINTOR does not assume a fixed 
number of causal variants in each region, although it implicitly penalizes non-
parsimonious causal models. We applied PAINTOR separately to association 
results for overall breast cancer (in 85 regions determined to have at least one 
ER-neutral association or ER-positive and ER-negative association), ER-positive 
breast cancer (in 48 regions determined to have at least one ER-positive-
specific association) and ER-negative breast cancer (in 22 regions determined 
to have at least one ER-negative-specific association). To avoid artefacts due 
to mismatches between the linkage disequilibrium in study samples and the 
linkage disequilibrium matrix supplied to PAINTOR, we used association logistic 
regression summary statistics from OncoArray data only, and estimated the linkage 
disequilibrium structure in the OncoArray sample. For each endpoint, we fit four 
models with increasing numbers of genomic features selected from the stepwise 
enrichment analyses described above: model 0 (with no genomic features; assumes 
each variant is equally likely to be causal a priori); model 1 (with those genomic 
features selected with the stopping rule P < 0.001); model 2 (with those genomic 
features selected with the stopping rule P < 0.01); and model 3 (with those genomic 
features selected with the stopping rule P < 0.05).

We used the Bayesian information criterion (BIC) to choose the best-fitting 
model for each outcome. As PAINTOR estimates the marginal log-likelihood 
of the observed Z scores using Gibbs sampling, we used a shrunk mean BIC 
across multiple Gibbs chains to account for the stochasticity in the log-likelihood 
estimates. We ran PAINTOR four times to generate four independent Gibbs 
chains, and estimated the BIC difference between model i and model j as 
Δij ¼ 100

Vþ100

� �
BICi � BICj
� �

I

.



 This assumes an n(0,100) prior on the difference, or 

roughly a 16% chance that model i would be decisively better than model j (that 
is |BICi − BICj| > 10). We then proceeded to choose the best-fitting model in a 
stepwise fashion: starting with a model with no annotations, we selected a model 
with more annotations in favor of a model with fewer if the larger model was a 
considerably better fit (that is, Δij > 2). Model 1 was the best fit according to this 
process for overall and ER-positive breast cancer, while model 0 was the best fit for 
ER-negative breast cancer.

Differences between the PAINTOR and CCV outputs may be due to several 
factors. By considering functional enrichment and joint linkage disequilibrium 
among all SNPs, PAINTOR may refine the set of likely causal variants; rather than 
imposing a hard threshold, PAINTOR allows for a gradient of evidence supporting 
causality, and the two sets of calculations are based on different summary statistics. 
CCV analyses used both iCOGS and OncoArray genotypes, while PAINTOR used 
only OncoArray data (Fig. 1 and Methods).





Variant annotation. Variant genome coordinates were converted to assembly 
GRCh38 with liftOver and uploaded to Variant Effect Predictor90 to determine 
their effect on genes, transcripts and protein sequence. The commercial software 
Alamut Batch version 1.6 was also used to annotate coding and splicing variants. 
PolyPhen-2 (ref. 91), SIFT92 and MAPP93 were used to predict the consequences of 
missense coding variants. MaxEntScan94, Splice-Site Finder and Human Splicing 
Finder95 were used to predict splicing effects.

INQUISIT analysis. Logic underlying INQUISIT predictions. Briefly, genes were 
considered to be potential targets of candidate causal variants through effects on: 
(1) distal gene regulation; (2) proximal regulation; or (3) a gene’s coding sequence. 
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We intersected CCV positions with multiple sources of genomic information, 
including chromatin interactions from capture Hi-C experiments performed in 
a panel of six breast cell lines96, ChIA-PET97 and Hi-C (Rao et al. 2014).




 We used 

computational enhancer–promoter correlations (PreSTIGE98, IM-PET (He et al. 
2014), FANTOM5 (ref. 99) and super-enhancers28), results for breast tissue-specific 
expression variants from multiple independent studies (TCGA, METABRIC and 
NHS; Methods), allele-specific imbalance in gene expression100, transcription factor 
and histone modification ChIP-Seq from the ENCODE and Roadmap Epigenomics 
Projects, together with the genomic features found to be significantly enriched as 
described above, gene expression RNA-Seq from several breast cancer lines and 
normal samples, and topologically associated domain boundaries from T-47D 
cells (ENCODE101; Methods and Key Resources Table).




 To assess the impact of 

intragenic variants, we evaluated their potential to alter splicing using Alamut 
Batch to identify new and cryptic donors and acceptors, and several tools to predict 
the effects of coding sequence changes (see ‘Variant annotation’ section). Variants 
potentially affecting post-translational modifications were downloaded from the ‘A 
Website Exhibits SNP On Modification Event’ database (http://www.awesome-hust.
com/)102. The output from each tool was converted to a binary measure to indicate 
deleterious or tolerated predictions.

Scoring hierarchy. Each target gene prediction category (distal, promoter or coding) 
was scored according to different criteria. Genes predicted to be distally regulated 
targets of CCVs were awarded points based on physical links (for example, CHi-C), 
computational prediction methods, allele-specific expression or expression variant 
associations. All CCVs and HPPVs were considered as potentially involved in 
distal regulation. Intersection of a putative distal enhancer with genomic features 
found to be significantly enriched (see ‘Genomic features enrichment’ for details) 
were further upweighted. Multiple independent interactions were awarded an 
additional point. CCVs and HPPVs in gene proximal regulatory regions were 
intersected with histone ChIP-Seq peaks characteristic of promoters and assigned 
to the overlapping transcription start sites (defined as −1.0 kb to +0.1 kb). Further 
points were awarded to such genes if there was evidence of expression variant 
association or allele-specific expression, while a lack of expression resulted in 
down-weighting as potential targets. Potential coding changes, including missense, 
nonsense and predicted splicing alterations, resulted in the addition of one point 
to the encoded gene for each type of change, while lack of expression reduced the 
score. We added an additional point for predicted target genes that were also breast 
cancer drivers. For each category, scores ranged from 0–7 (distal), 0–3 (promoter) 
or 0–2 (coding). We converted these scores into ‘confidence levels’: level 1 (highest 
confidence; distal score > 4, promoter score ≥ 3 and coding score > 1); level 2 
(1 ≤ distal score ≤ 4, promoter score = 1 or 2 and coding score = 1); and level 3 
(0 < distal score < 1, 0 < promoter score < 1 and 0 < coding < 1). For genes with 
multiple scores (for example, those predicted as targets from multiple independent 
risk signals or predicted to be impacted in several categories), we recorded the 
highest score. Driver and transcription factor gene enrichment analysis was 
carried out using INQUISIT scores before adding a point for driver gene status. 
Modifications to the pipeline since original publication2 included:
•	 Topologically associated domain boundary definitions from ENCODE T-47D 

Hi-C analysis. Previously, we used regions from Rao, Cell 2013.




•	 eQTL (addition of NHS normal and tumor samples).
•	 Allele-specific imbalance using TCGA and Genotype-Tissue Expression RNA-

Seq data100.
•	 Capture Hi-C data from six breast cell lines103.
•	 Additional bio-features derived from global enrichment in this study.
•	 Variants affecting sites of post-translational modification102.

Multi-signal targets. To test whether more genes were targeted by multiple signals than 
would be expected by chance, we modeled the number of signals per gene by negative 
binomial regression (R function glm.nb; package MASS) and Poisson regression (R 
function glm; package stats) with ChIA-PET interactions as a covariate, and adjusted 
by fine-mapping region. Likelihood ratio tests were used to compare goodness of fit. 
Rootograms were created using the R function rootogram (package vcd).

Pathway analysis. The pathway gene set database dated 1 September 2018 was 
used104 (http://download.baderlab.org/EM_Genesets/current_release/Human/
symbol/). This database contains pathways from Reactome105, the NCI Pathway 
Interaction Database106, Gene Ontology107, HumanCyc108, MSigdb109, NetPath110 
and Panther111. All duplicated pathways, defined in two or more databases, were 
included. To provide more biologically meaningful results, only pathways that 
contained ≤200 genes were used.

We interrogated the pathway annotation sets with the list of high-confidence 
(level 1) INQUISIT genes. The significance of over-representation of the 
INQUISIT genes within each pathway was assessed with a hypergeometric test 
using the R function phyper as follows:

P xjn;m;Nð Þ ¼ 1�
Xx�1

i¼0

m
i

 
N �m
n� i

 

N
n

 
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where x is the number of level 1 genes that overlap with any of the genes in 
the pathway, n is the number of genes in the pathway, m is the number of level 1 
genes that overlap with any of the genes in the pathway dataset (mstrong GO = 145; 
mER-positive GO = 50; mER-negative GO = 27; mER-neutral GO = 73; mstrong pathways = 121; mER-positive 

pathways = 38; mER-negative pathways = 21; mER-neutral pathways = 68) and N is the number of genes 
in the pathway dataset (Ngenes GO = 14,252; Ngenes pathways = 10,915). We only included 
pathways that overlapped with at least two level 1 genes. We used the Benjamini–
Hochberg FDR112 at the 5% level.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The credible set of causal variants (determined by either multinomial stepwise 
regression or PAINTOR) is provided in Supplementary Table 2c. Further 
information and requests for resources should be directed to M.K.B. (bcac@
medschl.cam.ac.uk).
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fasta-shuffle-letters), Meta, R (R libraries: stats, nnet, MASS, vcd, TFBSTools, MatrixRider, multinomRob, multiwaycov), Bedtools, MACs, 
Variant Effect Predictor, Alamut® Batch v1.6 (tools PolyPhen-2 , SIFT, MAPP, MaxEntScan, Splice-Site Finder, Human Splicing Finder), 
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- Accession codes, unique identifiers, or web links for publicly available datasets 
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The credible set of causal variants (determined by either multinomial stepwise regression and PAINTOR) is provided in Supplementary Table S2C. Further 
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Sample size No sample size calculation was made. We aimed to bring together the largest possible sample size (109,900 breast cancer cases and 88,937 
controls of European ancestry) with GWAS imputed up to 1000 Genomes Project Panel to study the role of genetic variants in breast cancer. 
The sample size included in this study (N ~ 199,000) is 2 times larger than previous breast cancer fine-mapping studies (N ~ 100,000 samples).

Data exclusions Established protocols were used to conduct rigorous data quality control for each GWAS at the study level (more details can be found in 
Michailidou et al. Nature 2017 and Amos et al. Cancer Epidemiol Biomarkers Prev 2017). Imputed variants were excluded for the 
following reasons: (i) info score < 0.3 and (ii) minor allele frequencies (MAF) < 0.001 in both the iCOGS and OncoArray datasets. Only samples 
with ER status were included in the multinomial regression analyses (cases with ER status available: 29,561 iCOGS, 55,081 OncoArray). More 
details about the data exclusions can be found in the Online Methods section.

Replication This was an observational study - analyses were based on all available data. All signals show no statistically significant heterogeneity between 
effect sizes estimated in iCOGS and OncoArray cohorts.

Randomization Not relevant because the study is not experimental.

Blinding Not relevant because the study is not experimental.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Animals and other organisms
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Methods
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Human research participants
Policy information about studies involving human research participants

Population characteristics Analyses were conducted on breast cancer cases and controls of European ancestry. The association between each variant and 
breast cancer risk was adjusted by study (iCOGS) or country (OncoArray), and eight (iCOGS) or ten (OncoArray) ancestry-
informative principal components.

Recruitment Epidemiological data for European women were obtained from 75 breast cancer case-control studies participating in the Breast 
Cancer Association Consortium (BCAC). The majority of studies are population-based case–control studies, or case–control 
studies nested within population-based cohorts, but a subset of studies oversampled cases with a family history of the disease.  
 
Subjects included from CIMBA are women of European ancestry aged 18 years or older with a pathogenic variant for BRCA1. The 
majority of the participants were sampled through cancer genetics clinics. Multiple members of the same family were included in 
some instances.

Ethics oversight All participating studies were approved by their appropriate ethics review board and all subjects provided informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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