https://doi.org/10.1038/s41588-019-0537-1

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes

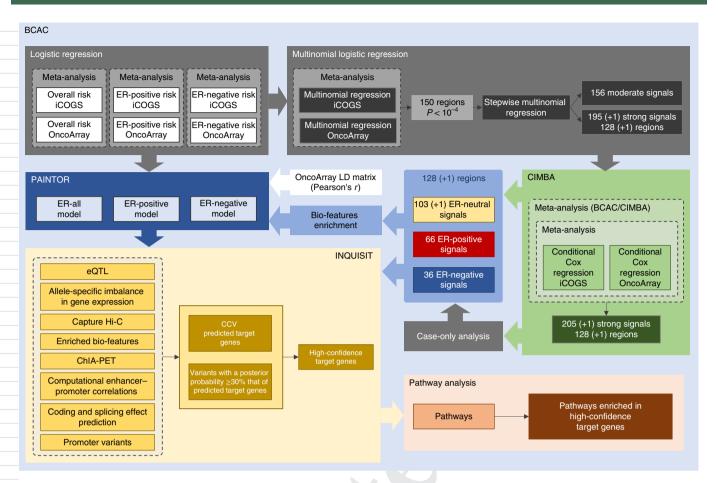
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.

В

enome-wide association studies (GWASs) have identified genetic variants associated with breast cancer risk in more than 150 genomic regions^{1,2}. However, the variants and genes driving these associations are mostly unknown, with fewer than 20 regions studied in detail3-20. Here, we aimed to fine-map all known breast cancer susceptibility regions using dense genotype data on >217,000 subjects participating in the Breast Cancer Association Consortium (BCAC) and the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). All samples were genotyped using the OncoArray^{1,2,21} or the iCOGS chip^{22,23}. Stepwise multinomial logistic regression was used to identify independent association signals in each region and to define credible causal variants (CCVs) within each signal. We found genomic features significantly overlapping the CCVs. We then used a Bayesian approach, integrating genomic features and genetic associations, to refine the set of likely causal variants and calculate their posterior probabilities. Finally, we integrated genetic and in silico epigenetic expression and chromatin conformation data to infer the likely target genes of each _signal.

Results

Q2 Q1


Most breast cancer genomic regions contain multiple independent risk-associated signals. We included 109,900 cases of breast cancer and 88,937 controls, all of European ancestry, from 75 studies in the BCAC. Genotypes (directly observed or imputed) were available for 639,118 single nucleotide polymorphisms (SNPs), deletions/insertions and copy number variants (CNVs) with a minor allele frequency (MAF) ≥ 0.1% within 152 previously defined, riskassociated regions (Supplementary Table 1 and Fig. 1). Multivariate logistic regression confirmed associations for 150 out of 152 regions at a significance threshold of $P < 10^{-4}$ (Supplementary Table 2a). To determine the number of independent risk signals within each region, we applied stepwise multinomial logistic regression, deriving the association of each variant, conditional on the more significant ones, in order of statistical significance. Finally, we defined CCVs in each signal as variants with conditional Pvalues within two orders of magnitude of the index variant²⁴. We classified the evidence for each independent signal, and its CCVs, as either strong (conditional $P < 10^{-6}$) or moderate ($10^{-6} <$ conditional $P < 10^{-4}$).

From the 150 genomic regions, we identified 352 independent risk signals containing 13,367 CCVs, 7,394 of which were within the 196 strong-evidence signals across 129 regions (Fig. 2a,b). The number of signals per region ranged from 1–11, with 79 (53%) containing multiple signals. We noted a wide range of CCVs per signal, but in 42 signals there was only a single CCV: for these signals, the simplest hypothesis is that the CCV was causal (Fig. 2c,d and Table 1). Furthermore, within signals with few CCVs (<10), the mean scaled combined annotation-dependent depletion score was higher than in signals with more CCVs (13.1 versus 6.7 for CCVs in exons; $P_{t-test} = 2.7 \times 10^{-4}$), suggesting that these are more likely to be functional.

The majority of breast tumors express the estrogen receptor (ER positive), but ~20% do not (ER negative); these two tumor types have distinct biological and clinical characteristics²⁵. Using a case-only analysis for the 196 strong-evidence signals, we found 66 signals (34%; containing 1,238 CCVs) where the lead variant conferred a greater relative risk of developing ER-positive tumors (false discovery rate (FDR)=5%), and 29 (15%; 646 CCVs) where the lead variant conferred a greater risk of ER-negative cancer tumors (FDR=5%) (Supplementary Table 2b and Fig. 2e). The remaining 101 signals (51%; 5,510 CCVs) showed no difference by ER status (referred to as ER neutral).

Patients with *BRCA1* mutations are more likely to develop ER-negative tumors²⁶. Hence, to increase our power to identify ER-negative signals, we performed a fixed-effects meta-analysis, combining association results from *BRCA1* mutation carriers in CIMBA with the BCAC ER-negative association results. This meta-analysis identified ten additional signals (seven ER-negative and three ER-neutral), making 206 strong-evidence signals (17% ER negative) containing 7,652 CCVs in total (Fig. 2f). More than one-quarter of the CCVs (2,277) were accounted for by one signal, resulting from strong linkage disequilibrium with a CNV. The remaining analyses focused on the other 205 strong signals across 128 regions (Supplementary Table 2c).

The proportion of the familial relative risk (FRR) of breast cancer explained by all 206 strong signals was 20.6%, compared with 17.6% when only the lead SNP for each region was considered. The proportion of the FRR explained increased by a further 3% (to 23.6%) when all 352 signals were considered (Supplementary Table 2d).

Fig. 1 Flowchart summarizing the study design. Logistic regression summary statistics were used to select the final set of variants to run stepwise multinomial regression. These results were meta-analyzed with CIMBA to provide the final set of strong independent signals and their CCVs. Through case-only analysis, we identified significant differences in effect sizes between ER-positive and ER-negative breast cancer and used this to classify the phenotype for each independent signal. With these strong CCVs, we ran the bio-features enrichment analysis, which identified the features to be included in the PAINTOR models, together with the OncoArray logistic regression summary statistics and the OncoArray linkage disequilibrium. Both multinomial regression CCVs and PAINTOR high-posterior-probability (PP) variants were analyzed with INQUISIT to determine high-confidence target genes. Finally, we used the set of high-confidence target genes to identify enriched pathways. iCOGS and OncoArray Cox regression was conditional on the index variants from BCAC strong signals.

CCVs are over-represented in active gene regulatory regions and transcription factor binding sites (TFBSs). We constructed a database of mapped genomic features in seven primary cells derived from normal breast and 19 breast cell lines using publicly available data, resulting in 811 annotation tracks in total. These ranged from general features (such as whether a variant was in an exon or in open chromatin) to more specific features (such as cellspecific transcription factor binding or histone marks (determined through chromatin immunoprecipitation followed by sequencing (ChIP-Seq) experiments) in breast-derived cells or cell lines). Using logistic regression, we examined the overlap of these genomic features with the positions of 5,117 CCVs in the 195 strong-evidence BCAC signals versus the positions of 622,903 variants excluded as credible candidates in the same regions (Supplementary Fig. 1a and Supplementary Table 3). We found significant enrichment of CCVs (FDR = 5%) in four genomic features (open chromatin, actively transcribed genes, gene regulatory regions and binding sites), as ^{Q™} described below.

Open chromatin. As shown in Fig. 3a, DNase I hypersensitive sites sequencing and formaldehyde-assisted isolation of regulatory elements sequencing showed significant enrichment of CCVs in open chromatin in ER-positive breast cancer cell lines and normal breast.

Conversely, we found depletion of CCVs within heterochromatin (determined by the H3K9me3 mark in normal breast, and by chromatin state in ER-positive cells²⁷).

Actively transcribed genes. Significant enrichment of CCVs was also found in actively transcribed genes in normal breast and ER-positive cell lines (as defined by H3K36me3 or H3K79me2 histone marks; Fig. 3a). Enrichment was larger for ER-neutral CCVs than for those affecting either ER-positive or ER-negative tumors.

Gene regulatory regions. CCVs overlapped distal gene regulatory elements in ER-positive breast cancer cells lines (defined by H3K4me1 or H3K27ac marks; Fig. 3b). This was confirmed using the Encyclopedia of DNA Elements (ENCODE) definition of active enhancers in MCF-7 cells (enhancer-like regions defined by combining DNase and H3K27ac marks), as well as the definition of refs. ^{27,28} (Supplementary Table 3). Under these more stringent definitions, enrichment among ER-positive CCVs was significantly larger than ER-negative or ER-neutral CCVs. Data from ref. ²⁷ showed that 73% of active enhancer regions overlapped by ER-positive CCVs in ER-positive cells (MCF-7) are inactive in the normal human mammary epithelial (HMEC) breast cell line; thus, these enhancers appear to be MCF-7 specific.

NATURE GENETICS ARTICLES

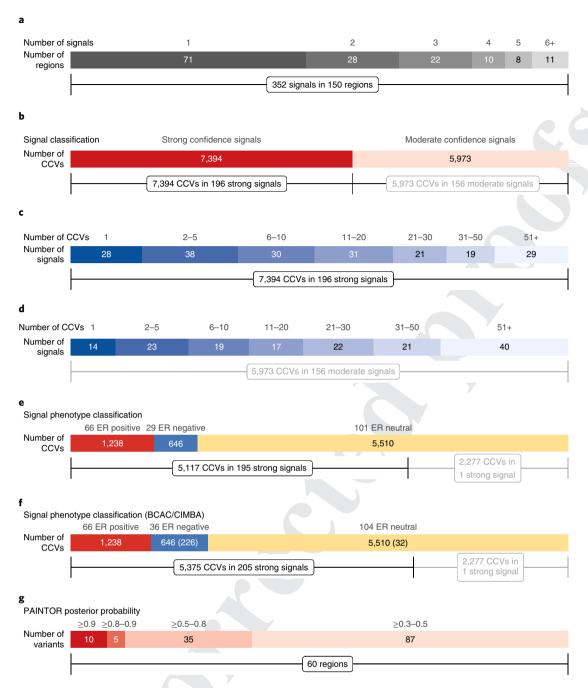


Fig. 2 | Determining independent risk signals and CCVs. a, Number of independent signals per region, identified through multinomial stepwise logistic regression. b, Signal classification as strong- or moderate-confidence signals. c,d, Number of CCVs per signal in strong- (c) and moderate-confidence signals (d), identified through multinomial stepwise logistic regression. e, Subtype classification of strong signals into ER positive, ER negative and signals equally associated with both phenotypes (ER neutral) from the BCAC analysis. f, Subtype classification from the meta-analysis of BCAC and CIMBA. Numbers in brackets show the numbers of CCVs from the meta-analysis of BCAC and CIMBA. g, Number of variants at different posterior probability thresholds. In total, 15 variants reached a posterior probability of ≥80% by at least one of the three models (ER all, ER positive or ER negative).

We also detected significant enrichment of CCVs in active promoters in ER-positive cells (defined by H3K4me3 marks in T-47D), although the evidence for this effect was weaker than for distal regulatory elements (defined by H3K27ac marks in MCF-7; Fig. 3b). Only ER-positive CCVs were significantly enriched in T-47D active promoters. Conversely, CCVs were depleted among repressed gene regulatory elements (defined by H3K27me3 marks) in normal breast (Fig. 3b). As a control, we performed similar analyses with autoimmune disease CCVs²⁹ (Methods) and relevant B and T cells (Fig. 3b–e). The strongest evidence of enrichment of breast cancer

CCVs was found at regulatory regions active in ER-positive cells (Fig. 3b), whereas enrichment of autoimmune CCVs was in regulatory regions active in B and T cells (Fig. 3e). We also compared the enrichment of our CCVs in enhancer-like and promoter-like regions (defined by ENCODE; Supplementary Fig. 1b). The strongest evidence of enrichment of ER-positive CCVs in enhancer-like regions was found in MCF-7 cells—the only ER-positive cell line in ENCODE (Supplementary Fig. 1b). These results highlight both the tissue specificity and disease specificity of these histone-marked gene regulatory regions.

Binding sites. We observed significant enrichment of CCVs in the binding sites for 40 TFBSs determined by ChIP-Seq (Fig. 3f-h). The majority of the experiments were performed in ER-positive cell lines (90 TFBSs; 20 with data in ER-negative cell lines, 76 with data in ER-positive cell lines and 16 with data in normal breast). These TFBSs overlap each other and histone marks of active regulatory regions (Supplementary Fig. 2). Enrichment in five TFBSs (ESR1, FOXA1, GATA3, TCF7L2 and E2F1) has been reported previously^{2,30}. All 40 TFBSs were significantly enriched in ER-positive CCVs (Fig. 3f), seven were also enriched in ER-negative CCVs and nine were enriched in ER-neutral CCVs (Fig. 3g-h). ESR1, FOXA1, GATA3 and EP300 TFBSs were enriched in all CCV ER subtypes. However, the enrichment for ESR1, FOXA1 and GATA3 was stronger for ER-positive CCVs than for ER-negative or ER-neutral CCVs.

CCVs significantly overlap consensus transcription factor binding motifs. We investigated whether CCVs were also enriched within consensus transcription factor binding motifs by conducting a motif search within active regulatory regions (ER-positive CCVs at H3K4me1 marks in MCF-7). We identified 30 motifs from eight transcription factor families, with enrichment in ER-positive CCVs (FDR=10%; Supplementary Table 4a) and a further five motifs depleted among ER-positive CCVs. To assess whether the motifs appeared more frequently than by chance at active regulatory regions overlapped by our ER-positive CCVs, we compared motif presence in a set of randomized control sequences (Methods). Thirteen of 30 motifs were more frequent at active regulatory regions with ER-positive CCV enrichment; these included seven homeodomain motifs and two forkhead factors (Supplementary Table 4b).

When we looked at the change in predicted binding affinity, 57 ER-positive signals (86%) included at least one CCV predicted to modify the binding affinity of the enriched TFBSs (at least twofold; Supplementary Table 4c). Forty-eight ER-positive signals (73%) had at least one CCV predicted to modify the binding affinity greater than tenfold. This analysis validates previous reports of breast cancer causal variants that alter the DNA binding affinity for FOXA1 (refs. ^{3,30}).

Bayesian fine-mapping incorporating functional annotations and linkage disequilibrium. As an alternative statistical approach for inferring likely causal variants, we applied PAINTOR³¹ to the same 128 regions (Fig. 1). In brief, PAINTOR integrates genetic association results, linkage disequilibrium structure and enriched genomic features in an empirical Bayes framework and derives the posterior probability of each variant being causal, conditional on available data. To eliminate artefacts due to differences in genotyping and imputation across platforms, we restricted PAINTOR analyses to cases and controls typed using OncoArray (61% of the total). We identified seven variants with a high posterior probability (HPP \geq 80%) of being causal for overall breast cancer, and ten for the ER-positive subtype (Table 1); two of these had a HPP>80% for both ER-positive and overall breast cancer. These 15 HPP variants (HPPVs; ≥80%) were distributed across 13 regions. We also identified an additional 35 variants in 25 regions with HPP (≥50 and <80%) for ER-positive, ER-negative or overall breast cancer (Fig. 2g).

Consistent with the CCV analysis, we found evidence that most regions contained multiple HPPVs; the sum of posterior probabilities across all variants in a region (an estimate of the number of distinct causal variants in the region) was >2.0 for 84 out of 86 regions analyzed for overall breast cancer, with a maximum of 16.1 and a mean of 6.4. For ER-positive cancer, 46 out of 47 regions had total posterior probability of >2.0 (maximum: 18.3; mean: 6.5). For ER-negative cancer, 17 out of 23 regions had a total posterior probability of >2.0 (maximum: 9.1; mean: 3.2).

Although for many regions we were not able to identify HPPVs, we were able to reduce the proportion of variants needed to account for 80% of the total posterior probability in a region to <5% for 65 regions for overall breast cancer, 43 regions for ER-positive breast cancer and 18 regions for ER-negative breast cancer (Supplementary Fig. 3a–c). PAINTOR analyses were also able to reduce the set of likely causal variants in many cases. After summing the posterior probabilities for CCVs in each of the overall breast cancer signals, 39 out of 100 strong-evidence signals had a total posterior probability of >1.0. The number of CCVs in these signals ranged from 1–375 (median: 24), but the number of variants needed to capture 95% of the total posterior probability in each signal ranged from 1–115 (median: 12), representing an average reduction of 43% in the number of variants needed to capture the signal.

PAINTOR and CCV analyses were generally consistent, yet complementary. Only 3.3% of variants outside of the set of strong-signal CCVs for overall breast cancer had a posterior probability of >1%, and only 48 (0.013%) of these had a posterior probability of >30% (Supplementary Fig. 3d). At ER-positive and ER-negative signals, respectively, 3.1 and 1.6% of the non-CCVs at strong signals had a posterior probability of >1%, and 40 (0.019%) and 3 (0.003%) of these had a posterior probability of >30% (Supplementary Fig. 3e-f). For the non-CCVs at strong-evidence signals with a posterior probability of >30%, the relatively HPP may be driven by the addition of functional annotation. Indeed, the incorporation of functional annotations more than doubled the posterior probability for 64 out of 88 variants when compared with a PAINTOR model with no functional annotations.

CCVs co-localize with variants controlling local gene expression. We used four breast-specific expression quantitative trait loci (eQTL) datasets to identify a credible set of variants associated with differences in gene expression (expression variants): tumor tissue from the Nurses' Health Study (NHS)32 and The Cancer Genome Atlas (TCGA)33; and normal breast tissue from the NHS and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)³⁴. We then examined the overlap of expression variants (for each gene, expression variants were defined as those variants that had a P value within two orders of magnitude of the variant most significantly associated with that gene's expression) with CCVs (Methods). There was significant overlap of CCVs with expression variants from both the NHS normal and breast cancer tissue studies (normal breast: odds ratio (OR) = 2.70; $P = 1.7 \times 10^{-5}$; tumor tissue: OR = 2.34; $P = 2.6 \times 10^{-4}$; Supplementary Table 3). ER-neutral CCVs overlapped with expression variants in normal tissue more frequently than ER-positive and ER-negative CCVs ($OR_{ER neutral} = 3.51$; $P=1.3\times10^{-5}$). Cancer risk CCVs overlapped credible expression variants in 128 out of 205 signals (62%) in at least one of the datasets (Supplementary Table 5a,b). Sixteen additional variants with a posterior probability of $\geq 30\%$, not included among the CCVs, also overlapped with a credible expression variant (Supplementary Table 5a,b).

Transcription factors and known somatic breast cancer drivers are over-represented among prioritized target genes. We assumed that causal variants function by affecting the behavior of a local target gene. However, it is challenging to define target genes or to determine how they may be affected by the causal variant. Few potentially causal variants directly affect protein coding: we observed 67 out of 5,375 CCVs and 19 out of 137 HPPVs (≥30%) in protein-coding regions. Of these, 33 (0.61%) were predicted to create a missense change, one a frameshift and another a stop gain, while 30 were synonymous (0.59%; Supplementary Table 5c). In total, 499 CCVs at 94 signals, and four additional HPPVs (≥30%), are predicted to create new splice sites or activate cryptic splice sites in 126 genes (Supplementary Table 5d). These results are consistent

Fine-mapping region ^a	Variant ^b	Ref/alt ^c	EAF	Ъъ	Model	Signal	CCVsh		ER negative	띪	ER positive	P value	Ē	Predicted target gene(s) ^k	Confidence
								OR	95% CI	OR	12 % 56				
Chr1:120723447-121780613	rs11249433	A/G	0.42	0.57	ER all	Signal 1	-	1.02	0.99-1.04	1.13	1.11-1.15	8.11×10 ⁻⁶⁰	N A	NA	
Chr1:200937832-201937832	rs35383942	C/T	90.0	96.0	ER all	Signal 1	2	1.10	1.05-1.16	1.09	1.06-1.13	1.14×10^{-7}	۵	TNNII	Level 1
Chr2:201681247-202681247	rs3769821	C/T	99.0	0.40	ER all	Signal 1	1	0.94	0.92-0.97	0.95	0.93-0.96	1.46×10^{-12}	۵	ALS2CR12	Level 1
Chr2:217405832-218796508	rs4442975m	G/T	0.48	0.84	ER all	Signal 1	_	0.94	0.92-0.97	98.0	0.85-0.87	2.50×10^{-90}	۵	IGFBP5"	Level 2
Chr4:105569013-106856761	esv3601665	-/Alu	0.07	0.95	ER pos			1.01	0.95-1.08	1.10	1.06-1.14	3.27×10 ⁻⁶	۵	ARHGEF38 and AC004066.3	Level 1
Chr5:779790-1797488	rs10069690	C/T	0.27	0.58	ER neg	Signal 1	1	1.18	1.15-1.21	1.03	1.01-1.05	1.20×10^{-34}	۵	SLC6A18 and TERT	Level 2
Chr5:44013304-45206498	rs10941679	A/G	0.26	0.00	ER pos	Signal 1	1	1.04	1.02-1.07	1.17	1.15-1.19	1.50×10^{-77}	۵	MRPS30	Level 2
	rs5867671	A/-	0.77	0.01	ER pos	Signal 2	1	0.91	0.89-0.94	0.99	0.97-1.01	2.25×10^{-9}	Υ	ΥN	
Chr5:44013304-45206498	rs190443933	1/C	0.01	0.00	ER all	Signal 4	1	1.30	1.14-1.48	1.26	1.16-1.37	2.32×10^{-8}	Υ	Ϋ́Z	
Chr5:55531884-56587883	rs984113	G/C	0.61	0.81	ER pos	Signal 2	_	96.0	0.93-0.98	96.0	0.94-0.97	3.51x10 ⁻⁸	Ω	MAP3K1"	Level 2
	rs889310	C/T	0.56	0.84	ER pos	(Signal 6)	15	1.03	1.00-1.05	1.05	1.03-1.06	1.75×10^{-7}	۵	MAP3K1"	Level 1
Chr6:15899557-16899557	rs3819405	C/T	0.32	96.0	ER all	Signal 1	1	0.97	0.95-1.00	0.95	0.94-0.97	1.14×10^{-7}	۵	ATXN1, RP1-151F1Z1 and RP1-151F1Z.2	Level 2
Chr6:151418856-152937016	rs12173562	C/T	0.08	0.10	ER neg	Signal 1	1	1.30	1.25-1.36	1.14	1.11-1.18	3.98×10^{-40}	Ω	ESR1"	Level 1
	rs34133739	-/C	0.53	0.25	ER all	Signal 2	1	1.11	1.09-1.14	1.05	1.04-1.07	2.36×10^{-22}	۵	ESRT	Level 1
	rs851984	G/A	0.40	0.73	ER all	Signal 3	1	1.07	1.04-1.09	1.05	1.04-1.07	3.69x10 ⁻¹³	Ω	ESR1"	Level 1
Chr7:130167121-131167121	rs68056147	G/A	0.30	0.84	ER all			1.04	1.01-1.07	1.05	1.03-1.06	3.07×10^{-7}	Ω	WKLN1	Level 2
Chr8:127424659-130041931	rs35961416	-/A	0.41	0.68	ER all	Signal 3	_	0.97	0.94-0.99	0.95	0.93-0.96	9.97×10^{-11}	Ω	MYC"	Level 1
Chr9:21247803-22624477	rs539723051	AAAA/-	0.33	0.43	ER all	Signal 1	-	1.08	1.05-1.11	1.06	1.04-1.08	1.81×10^{-15}	Υ	۲×	
Chr9:109803808-111395353	rs10816625	A/G	0.07	0.95	ER pos	Signal 3	_	1.06	1.01-1.11	1.13	1.10-1.16	3.62×10^{-15}	Ω	KLF4"	Level 2
	rs13294895	C/T	0.18	0.93	ER pos	Signal 4	_	1.01	0.98-1.05	1.09	1.07-1.11	4.00×10^{-17}	Ω	KLF4"	Level 1
Chr9:109803808-111395353	rs60037937	AA/-	0.22	0.68	ER pos	Signal 2	1	1.02	0.99-1.06	1.11	1.09-1.13	3.17×10^{-26}	۵	KLF4" and RAD23B	Level 2
Chr10:63758684-65063702	rs10995201	A/G	0.15	0.31	ER all	Signal 1	1	0.91	0.88-0.94	0.87	0.85-0.89	1.40×10^{-37}	ΥZ	Ϋ́Ζ	
Chr10:122593901-123849324	rs35054928	-\ -\	0.56	09.0	ER all	Signal 1	1	96.0	0.94-0.98	0.74	0.73-0.76	6.55×10^{-342}	۵	FGFR2"	Level 1
	rs45631563"	A/T	0.04	0.93	ER pos	Signal 3	_	0.97	0.92-1.03	0.76	0.73-0.79	4.84×10^{-44}	O	FGFR2"	Level 2
	rs7899765	1/C	90.0	0.02	ER all	Signal 5	_	1.01	0.97-1.06	0.87	0.84-0.90	2.21×10^{-18}	Ω	FGFR2"	Level 1
Chr11:68831418-69879161	rs78540526	C/T	0.09	0.91	ER pos	Signal 1	_	1.01	0.97-1.06	1.40	1.36-1.44	2.77×10^{-145}	Ω	CCND1" and MYEOV	Level 1
Chr12:27639846-29034415	rs7297051	C/T	0.23	0.23	ER all	Signal 1	_	0.87	0.85-0.90	0.89	0.88-0.91	3.12×10^{-43}	Ω	CCDC91", PTHLH ⁿ and RP11-967K21.1	Level 2
Chr12:115336522-116336522	rs35422	G/A	0.57	0.58	ER pos	Signal 2	1	0.98	0.96-1.01	1.05	1.03-1.07	4.85×10^{-10}	Ω	TBX3	Level 1
Chr14:91341069-92368623	rs7153397	C/T	0.70	0.81	ER pos	Signal 1	m	1.01	0.99-1.04	1.06	1.04-1.08	3.25×10 ⁻¹¹	D and C	CCDC88C, CTD-2547L24.4, C14orf159, GPR68, RPS6KAS, RP11-73M18.7 and RP11-895M11.3	Level 2
Chr16:52038825-53038825	rs4784227	C/T	0.27	0.95	ER pos	Signal 1	-	1.15	1.12-1.18	1.26	1.24-1.28	4.63×10^{-160}	۵	TOX3"	Level 1
Chr18:23832476-25075396	rs180952292	T/C	0.01	0.01	ER neg	Signal 4	_	1.24	1.12-1.37	0.98	0.92-1.05	2.07×10^{-5}	ΥZ	Ϋ́Ζ	
Chr18:41899590-42899590	rs9952980	1/C	0.34	0.95	ER all	Signal 2	м	0.97	0.94-0.99	0.95	0.93-0.96	7.43×10^{-12}	۵	SLC14A2	Level 2
Chr20:5448227-6448227	rs16991615	G/A	0.07	0.97	ER all	Signal 1	1	1.09	1.04-1.15	1.07	1.04-1.11	7.89×10^{-7}	D and C	C GPCPD1 and MCM8	Level 2

"Labels show the chromosome (chr) number and range of base pairs (from genome assembly GRCh37/hgl9) "Current reference (ref) versus alternative (atl) allele. "Effect (all) allele. "Effect (all) allele "requency (EAP) in OncoArray. "Largest posterior probability (PP) in all of the evaluated models. "Model with which the variant reaches the largest PP (ER all, ER positive (ER pos) or ER negative (ER neg). "Signal where the variant is included. Numbers in brackets represent moderate-confidence signals. "Number of CCVs in the signal. "Multinomial logistic regression summary statistics (odds ratios (ORs), confidence intervals (CIs) and X² single-variant analysis Pvalues), estimated using 67,136 ER-positive and 17,506 ER-negative cases, together with 88,937 controls. Function prediction (FP) (distal regulation (D), proximal regulation (P), coding (C) or not available (NA)). "Predicted target genes with the largest confidence level for each variant. "INQUISIT level of confidence." Two variants reach a PP of >0.8 in both the ER-all and ER-pos models: rs4442975 (ER-pos PP = 0.83; ER-all PP = 0.92). "Target genes with functional follow up."

60

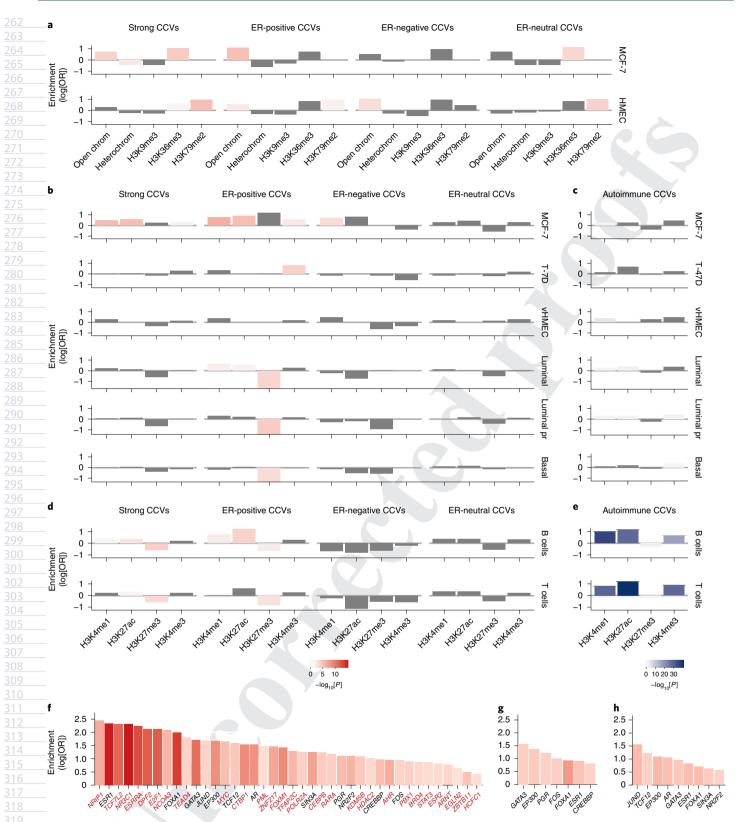
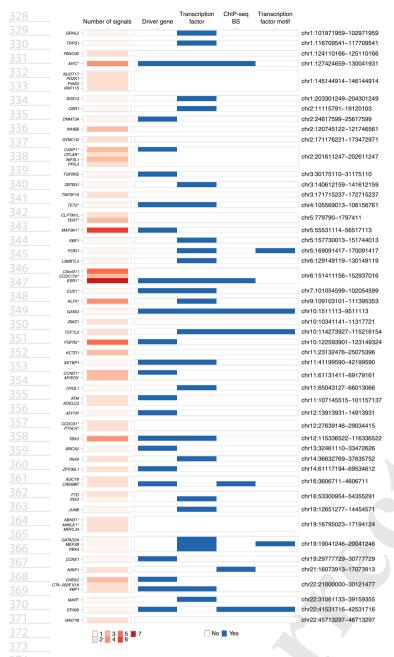



Fig. 3 | Overlap of CCVs with gene regulatory regions, gene bodies and TFBSs. a, Breast cancer CCVs overlap with chromatin states and broad breast cell epigenetic marks. HMEC, human mammary epithelial cells. b, c, Breast cancer CCVs (b) and autoimmune CCVs (c) overlap with breast cell epigenetic marks. vHMEC, variant HMEC. d, e, Breast cancer CCVs (d) autoimmune CCVs (e) and overlap with autoimmune-related epigenetic marks. In a, b and d, the column 'strong CCVs' represents analysis with all CCVs at strong signals, while the remaining columns represent analysis of CCVs at strong signals stratified by phenotype. Logistic regression robust variance estimation for clustered observations was used, and Wald test X^2 P values were estimated using 67,136 ER-positive and 17,506 ER-negative cases, together with 88,937 controls. Non-significant P values are shown in dark gray. Significance was defined as an FDR of 5%, which corresponds to the following P value thresholds: $P = 1.66 \times 10^{-2}$ (strong signals); $P = 2.42 \times 10^{-2}$ (ER positive); $P = 3.02 \times 10^{-3}$ (ER negative); and $P = 1.76 \times 10^{-3}$ (ER neutral). f-h, Significant ER-positive (f), ER-negative (g) and ER-neutral CCVs (h) overlap with TFBSs. TFBSs found significant for ER-positive CCVs are highlighted in red (x axis labels).

NATURE GENETICS ARTICLES

Fig. 4 | Predicted target genes are enriched in known breast cancer driver genes and transcription factors. Target genes (n=79) that fulfill at least one of the following criteria: (1) is targeted by more than one independent signal; (2) is a known driver gene; (3) is a known transcription factor gene; (4) its binding sites (as determined by ChIP-Seq with bisulfite sequencing (ChIP-Seq)) are significantly overlapped by CCVs; or (5) its consensus (transcription factor) motif is significantly overlapped by CCVs. Asterisks indicate genes with published functional follow up.

with previous observations that the majority of common susceptibility variants are regulatory.

We applied an updated version of our pipeline INQUISIT (integrated expression quantitative trait and in silico prediction of GWAS targets)² to prioritize potential target genes from 5,375 CCVs in strong signals and all 138 HPPVs (≥30%; Supplementary Table 2c). The pipeline predicted 1,204 target genes from 124 out of 128 genomic regions examined. As a validation, we examined the overlap between INQUISIT predictions and 278 established

breast cancer driver genes^{35–39}. Cancer driver genes were over-represented among high-confidence (level 1) targets, with a fivefold increase over expected levels from CCVs and a 15-fold increase from HPPVs ($P=1\times10^{-6}$; Supplementary Fig. 4a). Notably, 13 cancer driver genes (ATAD2, CASP8, CCND1, CHEK2, ESR1, FGFR2, GATA3, MAP3K1, MYC, SETBP1, TBX3, XBP1 and ZFP36L1) were predicted from the HPPVs derived from PAINTOR. Cancer driver gene status was consequently included as an additional weighting factor in the INQUISIT pipeline. Transcription factor genes⁴⁰ were also enriched among high-confidence targets predicted from both CCVs (twofold; $P=4.6\times10^{-4}$) and HPPVs (2.5-fold; $P=1.8\times10^{-2}$; Supplementary Fig. 4a).

In total, INQUISIT identified 191 target genes supported by strong evidence (Supplementary Table 6). Significantly more genes were targeted by multiple independent signals (n=165) than expected by chance (P=4.3×10⁻⁸; Supplementary Fig. 4b and Fig. 4). Six high-confidence predictions came only from HPPVs, although three of these (IGFBP5, POMGNT1 and WDYHV1) had been predicted at lower confidence from CCVs. Target genes included 20 that were prioritized via potential coding/splicing changes (Supplementary Table 7), ten via promoter variants (Supplementary Table 8) and 180 via distal regulatory variants (Supplementary Table 9). We illustrate the genes prioritized via multiple lines of evidence in Fig. 4.

Three examples of INQUISIT using genomic features to identify predict target genes. Based on genome-wide chromosome conformation capture from human mammary epithelial cells (Hi-C) and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) data, *NRIP1* is a predicted target of intergenic CCVs and HPPVs at chr21q21 (Supplementary Fig. 5a). Multiple target genes were predicted at chr22q12, including the driver genes *CHEK2* and *XBP1* (Supplementary Fig. 5b). A third example at chr12q24.31 is a more complicated scenario with two level 1 targets: *RPLP0* (ref. ⁴¹) and a modulator of mammary progenitor cell expansion, *MSI1* (ref. ⁴²) (Supplementary Fig. 5c).

Target gene pathways include DNA integrity checkpoint, apoptosis and developmental processes and the immune system. We performed pathway analysis to identify common processes using INQUSIT high-confidence target protein-coding genes (Fig. 5a) and identified 488 Gene Ontology terms and 307 pathways at an FDR of 5% (Supplementary Table 10). These were grouped into 98 themes by common ancestor Gene Ontology terms, pathways or transcription factor classes (Fig. 5b). We found that 23% (14/60) of the ER-positive target genes were classified within developmental process pathways (including mammary development), 18% were classified in immune system pathways and a further 17% were classified in nuclear receptor pathways. Of the genes targeted by ER-neutral signals, 21% (18/87) were classified in developmental process pathways, 19% were classified in immune system pathways and a further 18% were classified in apoptotic process pathways. The top themes of genes targeted by ER-negative signals were DNA integrity checkpoint processes and the immune system, each of which contained 19% of genes (7/37), and apoptotic processes (16%).

Novel pathways revealed by this study include tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling, the AP-2 transcription factors pathway, and regulation of IkB kinase/nuclear factor-kB (NF-kB) signaling. Of note, the latter of these is specifically over-represented among ER-negative target genes. We also found significant over-representation of additional carcinogenesis-linked pathways, including cyclic adenosine monophosphate, NOTCH, phosphoinositide 3-kinase, RAS and WNT/ β -catenin, and of receptor tyrosine kinase signaling, including fibroblast growth factor receptor, epidermal growth factor receptor and transforming growth factor- β receptor^{43–47}. Finally, our target genes are also significantly over-represented in DNA damage checkpoint and

Q12 Q13

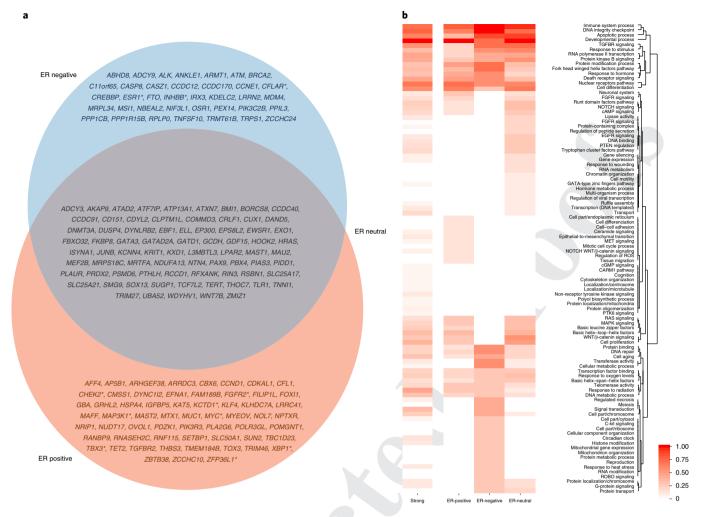


Fig. 5 | Predicted target genes by phenotype and significantly enriched pathways. a, Venn diagram showing the associated phenotype (ER positive, ER negative or ER neutral) for the level 1 target genes, predicted by the CCVs and HPPVs. Asterisks denote ER-positive or ER-negative target genes also targeted by ER-neutral signals. b, Heatmap showing clustering of pathway themes over-represented by INQUISIT level 1 target genes. Colors represent the relative number of genes per phenotype within enriched pathways, grouped by common themes (ER positive, ER negative, ER neutral or all phenotypes together (strong)).

DNA repair pathways, as well as programmed cell death pathways, such as apoptotic processes, regulated necrosis and death receptor signaling-related pathways.

Discussion

We have performed multiple, complementary analyses on 150 breast cancer-associated regions, originally found by GWASs, and identified 362 independent risk signals, 205 of these with high confidence ($P < 10^{-6}$). The inclusion of these new variants increases the explained proportion of familial risk by 6% compared with that explained by the lead signals alone.

We observed that most regions contain multiple independent signals, with the greatest number (nine) in the region surrounding *ESR1* and its co-regulated genes, and on 2q35, where *IGFBP5* appears to be a key target. We used two complementary approaches to identify likely causal variants within each region: a Bayesian approach, PAINTOR (which integrated genetic associations, linkage disequilibrium and informative genomic features, providing complementary evidence) and a more traditional, multinomial regression approach. PAINTOR supported most associations found by multinomial regression and also identified additional variants. Specifically, the Bayesian method highlighted 15 variants that are highly likely to be causal (HPP≥80%). From these approaches,

we identified a single variant, likely to be causal, at each of 34 signals (Table 1). Of these, only rs16991615 (*MCM8*; NP_115874.3:p. E341K) and rs7153397 (*CCDC88C*; NM_001080414.2:c.5058 + 134 2G > A; a cryptic splice-donor site) were predicted to affect proteincoding sequences. However, in other signals, we also identified four coding changes previously recognized as deleterious: the stop gain rs11571833 (*BRCA2*; NP_000050.2:p.K3326*)⁴⁸; two *CHEK2* coding variants (the frameshift rs555607708 (refs. ^{49,50}) and a missense variant, rs17879961 (refs. ^{51,52})); and a splicing variant (rs10069690, which in *TERT* results in the truncated protein INS1b¹⁹, decreased telomerase activity, telomere shortening and increased DNA damage response⁵³). *

Having identified potential causal variants within each signal, we aimed to uncover their functions at the DNA level, as well as trying to predict their target gene(s). Looking across all 150 regions, a notable feature is that many likely causal variants implicated in ER-positive cancer risk lie in gene regulatory regions marked as open and active in ER-positive breast cells, but not in other cell types. Moreover, a significant proportion of potential causal variants overlap the binding sites for transcription factor proteins (n=40 from ChIP-Seq) and co-regulators (n=64 with the addition of computationally derived motifs). Furthermore, nine proteins also appear in the list of high-confidence target genes; hence, the following

DispatchDate: 03.12.2019 · ProofNo: 537, p.9

NATURE GENETICS

ARTICLES

genes and their products have been implicated by two different approaches: *CREBBP*, *EP300*, *ESR1*, *FOXI1*, *GATA3*, *MEF2B*, *MYC*, *NRIP1* and *TCF7L2*. Most proteins encoded by these genes already have established roles in estrogen signaling. *CREBBP*, *EP300*, *ESR1*, *GATA3* and *MYC* are also known cancer driver genes that are frequently somatically mutated in breast tumors.

In contrast with ER-positive signals, we identified fewer genomic features enriched in ER-negative signals. This may reflect the common molecular mechanisms underlying their development, but the power of this study was limited, despite including as many patients with ER-negative tumors as possible from the BCAC and CIMBA consortia. Less than 20% of genomic signals confer a greater risk of ER-negative cancer and there are few publicly available ChIP-Seq data on ER-negative breast cancer cell lines. The heterogeneity of ER-negative tumors also may have limited our power. Nevertheless, we have identified 35 target genes for ER-negative likely causal variants. Some of these already had functional evidence supporting their role: including *CASP8* (ref. ⁵⁴) and *MDM4* (ref. ⁵⁵). However, most targets currently have no reported function in ER-negative breast cancer development.

Finally, we examined the Gene Ontology pathways in which target genes most often lie. Of note, 14% (25/180) of all high-confidence target genes and 19% of ER-negative target predictions are in immune system pathways. Among the significantly enriched pathways were T cell activation, interleukin signaling, Toll-like receptor cascades and I-κB kinase/NF-κB signaling, as well as processes leading to activation and perpetuation of the innate immune system. The link between immunity, inflammation and tumorigenesis has been studied extensively⁵⁶, although not primarily in the context of susceptibility. Five ER-negative high-confidence target genes (ALK, CASP8, CFLAR, ESR1 and TNFSF10) lie in the I-κB kinase/NF-κB signaling pathway. Interestingly, ER-negative cells have high levels of NF-kB activity compared with ER-positive cells⁵⁷. A recent expression-methylation analysis on breast cancer tumor tissue also identified clusters of genes correlated with DNA methylation levels: one enriched in ER signaling genes and a second in immune path-

These analyses provide strong evidence for more than 200 independent breast cancer risk signals, identify the plausible cancer variants and define likely target genes for the majority of these. However, notwithstanding the enrichment of certain pathways and transcription factors, the biological basis underlying most of these signals remains poorly understood. Our analyses provide a rational basis for such future studies into the biology underlying breast cancer susceptibility.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41588-019-0537-1.

Received: 13 December 2018; Accepted: 24 October 2019;

References

- Milne, R. L. et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat. Genet. 49, 1767–1778 (2017).
- 2. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. *Nature* 551, 92–94 (2017).
- Ghoussaini, M. et al. Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. *Nat. Commun.* 4, 4999 (2014).
- Wyszynski, A. et al. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum. Mol. Genet. 25, 3863–3876 (2016).

- Guo, X. et al. Fine-scale mapping of the 4q24 locus identifies two independent loci associated with breast cancer risk. Cancer Epidemiol. Biomark. Prev. 24, 1680–1691 (2015).
- Glubb, D. M. et al. Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. Am. J. Hum. Genet. 96, 5–20 (2015).
- Dunning, A. M. et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat. Genet. 48, 374–386 (2016).
- Shi, J. et al. Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. *Int. J. Cancer* 139, 1303–1317 (2016).
- Orr, N. et al. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Hum. Mol. Genet. 24, 2966–2984 (2015).
- Darabi, H. et al. Polymorphisms in a putative enhancer at the 10q21.2 breast cancer risk locus regulate NRBF2 expression. Am. J. Hum. Genet. 97, 22–34 (2015).
- Darabi, H. et al. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Sci. Rep. 6, 32512 (2016).
- Meyer, K. B. et al. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. Am. I. Hum. Genet. 93, 1046–1060 (2013).
- Betts, J. A. et al. Long noncoding RNAs CUPID1 and CUPID2 mediate breast cancer risk at 11q13 by modulating the response to DNA damage. Am. J. Hum. Genet. 101, 255–266 (2017).
- French, J. D. et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am. J. Hum. Genet. 92, 489–503 (2013).
- Ghoussaini, M. et al. Evidence that the 5p12 variant rs10941679 confers susceptibility to estrogen-receptor-positive breast cancer through FGF10 and MRPS30 regulation. Am. J. Hum. Genet. 99, 903–911 (2016).
- Horne, H. N. et al. Fine-mapping of the 1p11.2 breast cancer susceptibility locus. PLoS ONE 11, e0160316 (2016).
- 17. Zeng, C. et al. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. *Breast Cancer Res.* 18, 64 (2016).
- Lin, W. Y. et al. Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Hum. Mol. Genet. 24, 285–298 (2015).
- Bojesen, S. E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 45, 371–384.e2 (2013).
- Lawrenson, K. et al. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus. *Nat. Commun.* 7, 12675 (2016).
- Amos, C. I. et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. *Cancer Epidemiol. Biomark. Prev.* 26, 126–135 (2017).
- Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361.e2 (2013).
- Michailidou, K. et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat. Genet. 47, 373–380 (2015).
- Udler, M. S., Tyrer, J. & Easton, D. F. Evaluating the power to discriminate between highly correlated SNPs in genetic association studies. *Genet. Epidemiol.* 34, 463–468 (2010).
- Mavaddat, N., Antoniou, A. C., Easton, D. F. & Garcia-Closas, M. Genetic susceptibility to breast cancer. Mol. Oncol. 4, 174–191 (2010).
- Lakhani, S. R. et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin. Cancer Res. 11, 5175–5180 (2005).
- Taberlay, P. C., Statham, A. L., Kelly, T. K., Clark, S. J. & Jones, P. A. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. *Genome Res.* 24, 1421–1432 (2014).
- 28. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. *Cell* **155**, 934–947 (2013).
- Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. *Nature* 518, 337–343 (2015).
- Cowper-Sal lari, R. et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. *Nat. Genet.* 44, 1191–1198 (2012).
- Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).
- Quiroz-Zarate, A. et al. Expression quantitative trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue. PLoS ONE 12, e0170181 (2017).
- Cancer Genome Atlas Research Networket al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

- 34. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature* **486**, 346–352 (2012).
- 35. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. *Cell* **163**, 506–519 (2015).
- Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature* 534, 47–54 (2016).
- Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. *Nat. Commun.* 7, 11479 (2016).
- Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. *Nature* 490, 61–70 (2012).
- Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).
- Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).
- 41. Artero-Castro, A. et al. Disruption of the ribosomal P complex leads to stress-induced autophagy. *Autophagy* 11, 1499–1519 (2015).
- 42. Wang, X. Y. et al. Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways.

 Mol. Cell Biol. 28, 3589–3599 (2008).
- 43. Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive adenosine in cancer. *Nat. Rev. Cancer* 17, 709–724 (2017).
- Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12, 445–464 (2015).
- Thorpe, L. M., Yuzugullu, H. & Zhao, J. J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. *Nat. Rev. Cancer* 15, 7–24 (2015).
- Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. *Cell* 169, 985–999 (2017).
- Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

Α

48. Meeks, H. D. et al. BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers. J. Natl Cancer Inst. 108, djv315 (2016).

- CHEK2 Breast Cancer Case-Control Consortium CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. *Am. J. Hum. Genet.* 74, 1175–1182 (2004).
- Schmidt, M. K. et al. Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J. Clin. Oncol. 34, 2750–2760 (2016)
- Kilpivaara, O. et al. CHEK2 variant I157T may be associated with increased breast cancer risk. Int. J. Cancer 111, 543–547 (2004).
- Muranen, T. A. et al. Patient survival and tumor characteristics associated with CHEK2:p.I157T—findings from the Breast Cancer Association Consortium. Breast Cancer Res. 18, 98 (2016).
- Killedar, A. et al. A common cancer risk-associated allele in the hTERT locus encodes a dominant negative inhibitor of telomerase. PLoS Genet. 11, e1005286 (2015).
- De Basio, A. et al. Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231. Int. J. Oncol. 48, 2339–2348 (2016).
- Haupt, S. et al. Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis. 6, e1821 (2015).
- Pandya, P. H., Murray, M. E., Pollok, K. E. & Renbarger, J. L. The immune system in cancer pathogenesis: potential therapeutic approaches. *J. Immunol. Res.* 2016, 4273943 (2016).
- Gionet, N., Jansson, D., Mader, S. & Pratt, M. A. NF-κB and estrogen receptor α interactions: differential function in estrogen receptor-negative and -positive hormone-independent breast cancer cells. *J. Cell Biochem.* 107, 448–459 (2009).
- Fleischer, T. et al. DNA methylation at enhancers identifies distinct breast cancer lineages. Nat. Commun. 8, 1379 (2017).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

Laura Fachal¹, Hugues Aschard 2,3,4,458, Jonathan Beesley 5,458, Daniel R. Barnes 6, Jamie Allen6, Siddhartha Kar¹, Karen A. Pooley⁶, Joe Dennis 6, Kyriaki Michailidou 6, Constance Turman⁴, Penny Soucy⁸, Audrey Lemacon [®]8, Michael Lush⁶, Jonathan P. Tyrer¹, Maya Ghoussaini¹, Mahdi Moradi Marjaneh⁵, Xia Jiang³, Simona Agata⁹, Kristiina Aittomäki¹⁰, M. Rosario Alonso¹¹, Irene L. Andrulis 🗅 12,13, Hoda Anton-Culver 14, Natalia N. Antonenkova 15, Adalgeir Arason 🗅 16,17, Volker Arndt 18 Kristan J. Aronson 19, Banu K. Arun 20, Bernd Auber 18 21, Paul L. Auer 22,23, Jacopo Azzollini 24, Judith Balmaña 25,26, Rosa B. Barkardottir 16,17, Daniel Barrowdale 6, Alicia Beeghly-Fadiel²⁷, Javier Benitez^{28,29}, Marina Bermisheva³⁰, Katarzyna Białkowska³¹, Amie M. Blanco³², Carl Blomqvist^{33,34}, William Blot^{27,35}, Natalia V. Bogdanova^{15,36,37}, Stig E. Bojesen ^{38,39,40}, Manjeet K. Bolla⁶, Bernardo Bonanni ⁴¹, Ake Borg⁴², Kristin Bosse⁴³, Hiltrud Brauch (10 44,45,46), Hermann Brenner 18,46,47, Ignacio Briceno 48,49, Ian W. Brock 50, Angela Brooks-Wilson^{51,52}, Thomas Brüning⁵³, Barbara Burwinkel^{54,55}, Saundra S. Buys⁵⁶, Qiuyin Cai²⁷, Trinidad Caldés⁵⁷, Maria A. Caligo⁵⁸, Nicola J. Camp⁵⁹, Ian Campbell 60,61, Federico Canzian⁶², Jason S. Carroll 63, Brian D. Carter64, Jose E. Castelao65, Jocelyne Chiquette66, Hans Christiansen36, Wendy K. Chung⁶⁷, Kathleen B. M. Claes 68, Christine L. Clarke⁶⁹, GEMO Study Collaborators 460, EMBRACE Collaborators⁴⁶⁰, J. Margriet Collée ⁷⁰, Sten Cornelissen Fergus J. Couch Couch Cornelissen Fergus J. Couch Angela Cox⁵⁰, Simon S. Cross⁷³, Cezary Cybulski³¹, Kamila Czene⁷⁴, Mary B. Daly⁷⁵, Miguel de la Hoya⁵⁷, Peter Devilee ¹⁰ ^{76,77}, Orland Diez ^{78,79}, Yuan Chun Ding ⁸⁰, Gillian S. Dite ⁸¹, Susan M. Domchek⁸², Thilo Dörk ¹⁰ ³⁷, Isabel dos-Santos-Silva⁸³, Arnaud Droit ^{8,84}, Stéphane Dubois ⁸, Martine Dumont⁸, Mercedes Duran⁸⁵, Lorraine Durcan^{86,87}, Miriam Dwek^{® 88}, Diana M. Eccles⁸⁹, Christoph Engel⁹⁰, Mikael Eriksson⁷⁴, D. Gareth Evans^{91,92}, Peter A. Fasching^{93,94}, Olivia Fletcher ^{10,95}, Giuseppe Floris ^{© 96}, Henrik Flyger⁹⁷, Lenka Foretova⁹⁸, William D. Foulkes ^{© 99}, Eitan Friedman^{100,101}, Lin Fritschi¹⁰², Debra Frost⁶, Marike Gabrielson⁷⁴, Manuela Gago-Dominguez^{103,104},

В

NATURE GENETICS ARTICLES

```
Gaetana Gambino<sup>58</sup>, Patricia A. Ganz<sup>105</sup>, Susan M. Gapstur<sup>64</sup>, Judy Garber<sup>106</sup>,
José A. García-Sáenz 10 107, Mia M. Gaudet 44, Vassilios Georgoulias 108, Graham G. Giles 81,109,110,
Gord Glendon<sup>12</sup>, Andrew K. Godwin<sup>111</sup>, Mark S. Goldberg<sup>112,113</sup>, David E. Goldgar<sup>114</sup>,
Anna González-Neira<sup>29</sup>, Maria Grazia Tibiletti<sup>115</sup>, Mark H. Greene <sup>116</sup>, Mervi Grip<sup>117</sup>, Jacek Gronwald<sup>31</sup>,
Anne Grundy<sup>118</sup>, Pascal Guénel <sup>119</sup>, Eric Hahnen<sup>120,121</sup>, Christopher A. Haiman<sup>122</sup>, Niclas Håkansson<sup>123</sup>,
Per Hall<sup>74,124</sup>, Ute Hamann<sup>125</sup>, Patricia A. Harrington<sup>1</sup>, Jaana M. Hartikainen<sup>126,127,128</sup>,
Mikael Hartman<sup>129,130</sup>, Wei He<sup>74</sup>, Catherine S. Healey<sup>1</sup>, Bernadette A. M. Heemskerk-Gerritsen<sup>131</sup>,
Jane Heyworth<sup>132</sup>, Peter Hillemanns<sup>37</sup>, Frans B. L. Hogervorst<sup>133</sup>, Antoinette Hollestelle 131,
Maartje J. Hooning<sup>131</sup>, John L. Hopper<sup>81</sup>, Anthony Howell<sup>134</sup>, Guanmengqian Huang<sup>125</sup>,
Peter J. Hulick 135,136, Evgeny N. Imyanitov 137, KConFab Investigators 460, HEBON Investigators 460,
ABCTB Investigators, Claudine Isaacs<sup>138</sup>, Motoki Iwasaki<sup>139</sup>, Agnes Jager<sup>131</sup>, Milena Jakimovska <sup>140</sup>,
Anna Jakubowska (1) 31,141, Paul A. James (1) 61,142, Ramunas Janavicius 143,144, Rachel C. Jankowitz 145,
Esther M. John 146, Nichola Johnson 95, Michael E. Jones 147, Arja Jukkola-Vuorinen 148, Audrey Jung 149,
Rudolf Kaaks<sup>149</sup>, Daehee Kang<sup>150,151,152</sup>, Pooja Middha Kapoor<sup>10,149,153</sup>, Beth Y. Karlan<sup>154,155</sup>,
Renske Keeman <sup>1071</sup>, Michael J. Kerin <sup>156</sup>, Elza Khusnutdinova <sup>30,157</sup>, Johanna I. Kiiski <sup>158</sup>, Judy Kirk <sup>159</sup>,
Cari M. Kitahara<sup>160</sup>, Yon-Dschun Ko<sup>161</sup>, Irene Konstantopoulou<sup>162</sup>, Veli-Matti Kosma<sup>126,127,128</sup>,
Stella Koutros<sup>163</sup>, Katerina Kubelka-Sabit<sup>164</sup>, Ava Kwong<sup>165,166,167</sup>, Kyriacos Kyriacou<sup>7</sup>, Yael Laitman<sup>100</sup>,
Diether Lambrechts<sup>168,169</sup>, Eunjung Lee<sup>122</sup>, Goska Leslie 6, Jenny Lester<sup>154,155</sup>,
Fabienne Lesueur (10,171,171), Annika Lindblom 173,174, Wing-Yee Lo44,45, Jirong Long 27,
Artitaya Lophatananon<sup>175,176</sup>, Jennifer T. Loud<sup>116</sup>, Jan Lubiński<sup>31</sup>, Robert J. MacInnis<sup>81,109</sup>,
Tom Maishman<sup>86,87</sup>, Enes Makalic<sup>81</sup>, Arto Mannermaa<sup>126,127,128</sup>, Mehdi Manoochehri<sup>125</sup>,
Siranoush Manoukian<sup>24</sup>, Sara Margolin<sup>124,177</sup>, Maria Elena Martinez<sup>104,178</sup>, Keitaro Matsuo (10 179,180),
Tabea Maurer<sup>181</sup>, Dimitrios Mavroudis<sup>108</sup>, Rebecca Mayes<sup>1</sup>, Lesley McGuffog<sup>6</sup>, Catriona McLean <sup>182</sup>,
Noura Mebirouk 170,171,183, Alfons Meindl 184, Austin Miller 185, Nicola Miller 156, Marco Montagna 9,
Fernando Moreno<sup>107</sup>, Kenneth Muir <sup>10</sup> <sup>175,176</sup>, Anna Marie Mulligan Mulligan, Victor M. Muñoz-Garzon <sup>188</sup>,
Taru A. Muranen 158, Steven A. Narod 189, Rami Nassir 190, Katherine L. Nathanson 282,
Susan L. Neuhausen<sup>80</sup>, Heli Nevanlinna 10 158, Patrick Neven<sup>96</sup>, Finn C. Nielsen 191, Liene Nikitina-Zake 192,
Aaron Norman<sup>193</sup>, Kenneth Offit<sup>194,195</sup>, Edith Olah<sup>196</sup>, Olufunmilayo I. Olopade <sup>197</sup>, Håkan Olsson<sup>198</sup>,
Nick Orr 199, Ana Osorio 28,29, V. Shane Pankratz 20, Janos Papp 196, Sue K. Park 150,151,152,
Tjoung-Won Park-Simon<sup>37</sup>, Michael T. Parsons <sup>5</sup>, James Paul <sup>201</sup>, Inge Sokilde Pedersen<sup>202,203,204</sup>,
Bernard Peissel<sup>24</sup>, Beth Peshkin <sup>138</sup>, Paolo Peterlongo <sup>205</sup>, Julian Peto <sup>83</sup>,
Dijana Plaseska-Karanfilska 140, Karolina Prajzendanc<sup>31</sup>, Ross Prentice<sup>22</sup>, Nadege Presneau<sup>88</sup>,
Darya Prokofyeva<sup>157</sup>, Miquel Angel Pujana<sup>206</sup>, Katri Pylkäs <sup>© 207,208</sup>, Paolo Radice <sup>© 209</sup>,
Susan J. Ramus<sup>210,211</sup>, Johanna Rantala<sup>212</sup>, Rohini Rau-Murthy<sup>195</sup>, Gad Rennert<sup>10,213</sup>, Harvey A. Risch<sup>214</sup>,
Mark Robson 195, Atocha Romero 215, Caroline Maria Rossing 191, Emmanouil Saloustros 216,
Estela Sánchez-Herrero<sup>215</sup>, Dale P. Sandler<sup>217</sup>, Marta Santamariña<sup>28,218,219</sup>, Christobel Saunders<sup>220</sup>,
Elinor J. Sawyer<sup>221</sup>, Maren T. Scheuner<sup>32</sup>, Daniel F. Schmidt<sup>81,222</sup>, Rita K. Schmutzler<sup>120,121</sup>,
Andreas Schneeweiss<sup>55,223</sup>, Minouk J. Schoemaker<sup>147</sup>, Ben Schöttker<sup>18,224</sup>, Peter Schürmann<sup>37</sup>,
Christopher Scott 193, Rodney J. Scott 225,226,227, Leigha Senter 228, Caroline M. Seynaeve 31,
Mitul Shah<sup>1</sup>, Priyanka Sharma<sup>229</sup>, Chen-Yang Shen<sup>230,231</sup>, Xiao-Ou Shu<sup>27</sup>, Christian F. Singer<sup>232</sup>,
Thomas P. Slavin<sup>233</sup>, Snezhana Smichkoska<sup>234</sup>, Melissa C. Southey<sup>110,235</sup>, John J. Spinelli<sup>236,237</sup>,
Amanda B. Spurdle 5, Jennifer Stone 51,238, Dominique Stoppa-Lyonnet 183,239,240,
Christian Sutter 241, Anthony J. Swerdlow 147,242, Rulla M. Tamimi 3,4,243, Yen Yen Tan 244,
```

В

William J. Tapper⁸⁹, Jack A. Taylor^{217,245}, Manuel R. Teixeira ^{246,247}, Maria Tengström^{126,248,249}, Soo H. Teo^{250,251}, Mary Beth Terry²⁵², Alex Teulé²⁵³, Mads Thomassen²⁵⁴, Darcy L. Thull²⁵⁵, Marc Tischkowitz^{99,256}, Amanda E. Toland ²⁵⁷, Rob A. E. M. Tollenaar²⁵⁸, Ian Tomlinson ^{259,260}, Diana Torres^{48,125}, Gabriela Torres-Mejía²⁶¹, Melissa A. Troester²⁶², Thérèse Truong¹¹⁹, Nadine Tung²⁶³, Maria Tzardi²⁶⁴, Hans-Ulrich Ulmer²⁶⁵, Celine M. Vachon²⁶⁶, Christi J. van Asperen²⁶⁷, Lizet E. van der Kolk¹³³, Elizabeth J. van Rensburg²⁶⁸, Ana Vega²⁶⁹, Alessandra Viel ²⁷⁰, Joseph Vijai ^{194,195}, Maartje J. Vogel ¹³³, Qin Wang⁶, Barbara Wappenschmidt ^{120,121}, Clarice R. Weinberg²⁷¹, Jeffrey N. Weitzel²³³, Camilla Wendt¹⁷⁷, Hans Wildiers⁹⁶, Robert Winqvist^{207,208}, Alicja Wolk ^{123,272}, Anna H. Wu¹²², Drakoulis Yannoukakos ¹⁶², Yan Zhang^{18,46}, Wei Zheng²⁷, David Hunter^{3,4}, Paul D. P. Pharoah ^{16,6}, Jenny Chang-Claude ^{149,181}, Montserrat García-Closas ^{163,273}, Marjanka K. Schmidt ^{71,274}, Roger L. Milne ^{81,109,110}, Vessela N. Kristensen ^{275,276,277,278}, Juliet D. French⁵, Stacey L. Edwards ⁵, Antonis C. Antoniou⁶, Georgia Chenevix-Trench ^{5,459}, Jacques Simard ^{8,459}, Douglas F. Easton ^{16,659}, Peter Kraft ^{3,4,459*} and Alison M. Dunning ^{16,459*}

¹Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK. ²Centre de Bioinformatique Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France. 3 Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. 6Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 7Department of Electron Microscopy/Molecular Pathology and The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. 8Genomics Center, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, Québec, Canada. 9Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV), IRCCS, Padua, Italy. 10 Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland. 11 Human Genotyping-CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre, Madrid, Spain. 12 Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. 13 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. 14 Department of Epidemiology, Genetic Epidemiology Research Institute, University of California, Irvine, Irvine, CA, USA. ¹⁵N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus. ¹⁶Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland. 17BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland. 18Division of Clinical Epidemiology and Aging Research (C070), German Cancer Research Center (DKFZ), Heidelberg, Germany. 19 Department of Public Health Sciences and Cancer Research Institute, Queen's University, Kingston, Ontario, Canada. 20 Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. 21 Institute of Human Genetics, Hannover Medical School, Hannover, Germany. 22 Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 23Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 24Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy. 25 High Risk and Cancer Prevention Group, Vall Hebron Institute of Oncology, Barcelona, Spain. ²⁶Department of Medical Oncology, Vall Hebron University Hospital, Barcelona, Spain. 27 Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA. ²⁸Centro de Investigación en Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. ²⁹Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. 30 Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia. 31 Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland. 32 Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, USA. 33 Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland. 34 Department of Oncology, Örebro University Hospital, Örebro, Sweden. 35 International Epidemiology Institute, Rockville, MD, USA. 36Department of Radiation Oncology, Hannover Medical School, Hannover, Germany. 37Gynaecology Research Unit, Hannover Medical School, Hannover, Germany. 38 Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herley, Denmark. 39Department of Clinical Biochemistry, Herley and Gentofte Hospital, Copenhagen University Hospital, Herley, Denmark. ⁴⁰Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. ⁴¹Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan, Italy. 42Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden. 43Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. 44Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany. 45 FIT Cluster of Excellence, University of Tuebingen, Tuebingen, Germany. 46 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. 47Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. ⁴⁸Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia. ⁴⁹Medical Faculty, Universidad de La Sabana, Bogota, Colombia. 50 Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. 51Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada. 52Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada. 53 Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany. 54 Molecular Epidemiology Group (CO80), German Cancer Research Center (DKFZ), Heidelberg, Germany. 55 Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany. 56 Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA. 57 Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain. 58 SOD Genetica Molecolare, University Hospital, Pisa, Italy. 59 Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA. 60 Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. 61Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia. ⁶²Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. ⁶³Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK. 64Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA. 65Oncology

Α

NATURE GENETICS ARTICLES

and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain. 66 Axe Oncologie, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Québec, Canada. 67 Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA. 68 Centre for Medical Genetics, Ghent University, Ghent, Belgium. 69 Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia. 70 Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands. 71Division of Molecular Pathology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. ⁷²Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA. ⁷³Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK. 74Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 75Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA. ⁷⁶Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands. ⁷⁷Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands. ⁷⁸Oncogenetics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain. 79 Clinical and Molecular Genetics Area, Vall Hebron University Hospital, Barcelona, Spain. 80 Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA. 81Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia. 82 Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. 83Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK. 84Département de Médecine Moléculaire, Faculté de Médecine, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Laval University, Québec City, Québec, Canada. 85 Cáncer Hereditario, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid Centro Superior de Investigaciones Científicas (UVA-CSIC), Valladolid, Spain. 86 Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK. 87 Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK. 88 School of Life Sciences, University of Westminster, London, UK. 89 Faculty of Medicine, University of Southampton, Southampton, UK. 90 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany. 91Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary's Hospital, Manchester, UK. 92Genomic Medicine, North West Genomics Hub, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary's Hospital, Manchester, UK. 93 David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA. 94Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany. 95 Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK. 96 Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium. 97Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark. 98Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 99 Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, Québec, Canada. 100 The Suzanne Levy-Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel. 101 Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel. 102 School of Public Health, Curtin University, Perth, Western Australia, Australia. 103 Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain. 104 Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA. 105Schools of Medicine and Public Health, Division of Cancer Prevention and Control Research, Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA. 106 Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA. 107 Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. 108 Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece. 109 Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia. 110 Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia. ¹¹¹Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, KS, USA. 112Department of Medicine, McGill University, Montréal, Québec, Canada. 113Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada. 114 Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA. 115L'Unità Operativa di Anatomia Patologica, Ospedale di Circolo, ASST Sette Laghi, Varese, Italy. 116Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA. 17 Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland. 118 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, Québec, Canada. 119 Cancer and Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Paris, France. 120 Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. 121Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. 122 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. 123 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 124 Department of Oncology, Södersjukhuset, Stockholm, Sweden. 125 Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany. 126 Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland. 127 Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland. 128 Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland. 129 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. 130 Department of Surgery, National University Health System, Singapore, Singapore. 131 Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands. ¹³²School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia. 133 Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. 134 Division of Cancer Sciences, University of Manchester, Manchester, UK. 135 Center for Medical Genetics, North Shore University Health System, Evanston, IL, USA. 136The University of Chicago Pritzker School of Medicine, Chicago, IL, USA. 137N.N. Petrov Institute of Oncology, St. Petersburg, Russia. 138Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA. 139 Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan. 140 Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Macedonian Academy of Sciences and Arts, Skopje, Republic of North Macedonia. 141 Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland. 142 Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. 143 Hematology, Oncology and Transfusion Medicine Center, Department of Molecular and Regenerative Medicine, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania. 144State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania. 145Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 146Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. 147Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK. 148 Department of Oncology, Tampere University Hospital, Tampere University and Tampere Cancer Center, Tampere, Finland. 149 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 150 Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea. 151Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea. 152Cancer Research Institute, Seoul National University, Seoul, Korea. 153 Faculty of Medicine, University of Heidelberg, Heidelberg, Germany. 154 David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA, USA. 155Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 156Surgery, School of Medicine, National University

of Ireland, Galway, Ireland. 157Department of Genetics and Fundamental Medicine, Bashkir State Medical University, Ufa, Russia. 158Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland. 159 Familial Cancer Service, Weatmead Hospital, Sydney, New South Wales, Australia. 160 Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA. 161 Department of Internal Medicine, Evangelische Kliniken Bonn, Johanniter Krankenhaus, Bonn, Germany. 162 Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece. 163 Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. 164 Department of Histopathology and Cytology, Clinical Hospital 'Acibadem Sistina', Skopje, Republic of North Macedonia. 165 Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Centre, Happy Valley, Hong Kong, 166Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hong Kong, 167Department of Surgery, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong. 168 VIB Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium. 169 Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium. 170 Institut Curie, Paris, France. 171 Mines Paris Tech, Paris, France. 172 Genetic Epidemiology of Cancer Team, INSERM U900, Paris, France. 173 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. 174 Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden. 175 Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK. 176 Institute of Population Health, University of Manchester, Manchester, UK. 177 Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden. 178 Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA. 179 Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan. 180 Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan. 181 Cancer Epidemiology, Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 182 Anatomical Pathology, The Alfred Hospital, Melbourne, Victoria, Australia. 183 Department of Tumour Biology, INSERM U830, Paris, France. 184 Department of Gynecology and Obstetrics, University of Munich, Munich, Germany. 185NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, NY, USA. 186Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. 187 Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada. 188 Radiation Oncology, Hospital Meixoeiro-XXI de Vigo, Vigo, Spain. 189 Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada, 190 Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA, 191 Center for Genomic Medicine at Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. 192 Latvian Biomedical Research and Study Centre, Riga, Latvia. 193 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA. 194Clinical Genetics Research Laboratory, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 195 Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 196 Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary. 197 Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA. 198 Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden. 199 Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK. 200 University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA. 201 Cancer Research UK Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. 202 Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark. 203 Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark. ²⁰⁴Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. ²⁰⁵Genome Diagnostics Program, IFOM—the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy. 206Translational Research Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain. 207 Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland. 208 Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland. 209 Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy. 210 School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia. 211The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. 212Clinical Genetics, Karolinska Institutet, Stockholm, Sweden. 213 Clalit National Israeli Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel. ²¹⁴Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA. ²¹⁵Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain. 216 Department of Oncology, University Hospital of Larissa, Larissa, Greece. 217 Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA. 218 Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain. 219 Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain. 220 School of Medicine, University of Western Australia, Perth, Western Australia, Australia, 221Research Oncology, Guy's Hospital, King's College London, London, UK. 222Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia. 223 National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany. 224Network Aging Research, University of Heidelberg, Heidelberg, Germany. 225Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, New South Wales, Australia, 226 Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, New South Wales, Australia. 227 Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia. 228 Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA. 229 Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA. 230 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. 231 School of Public Health, China Medical University, Taichung, Taiwan. 232 Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria. 233 Clinical Cancer Genomics, City of Hope, Duarte, CA, USA. 234 University Clinic of Radiotherapy and Oncology, Medical Faculty, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia. 235 Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia. 236 Population Oncology, BC Cancer, Vancouver, British Columbia, Canada. 237 School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada. 238The Curtin UWA Centre for Genetic Origins of Health and Disease, Curtin University and University of Western Australia, Perth, Western Australia, Australia. 239 Service de Génétique, Institut Curie, Paris, France. 240 Université Paris Descartes, Paris, France. ²⁴¹Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany. ²⁴²Division of Breast Cancer Research, The Institute of Cancer Research, London, UK. 243 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. 244 Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria. 245 Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA. ²⁴⁶Department of Genetics, Portuguese Oncology Institute, Porto, Portugal. ²⁴⁷Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal. ²⁴⁸Cancer Center, Kuopio University Hospital, Kuopio, Finland. ²⁴⁹Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland. ²⁵⁰Breast Cancer Research Programme, Cancer Research Malaysia, Kuala Lumpur, Malaysia. ²⁵¹Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. 252 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA. 253 Hereditary Cancer Program, ONCOBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain. 254Department of Clinical Genetics, Odense University Hospital, Odence, Denmark. 255 Department of Medicine, Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. ²⁵⁶Department of Medical Genetics, University of Cambridge, Cambridge, UK. ²⁵⁷Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA. ²⁵⁸Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands. ²⁵⁹Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK. 260 Wellcome Trust Centre for Human Genetics and NIHR Oxford Biomedical Research

NATURE GENETICS ARTICLES

Centre, University of Oxford, Oxford, UK. 261 Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico. 262 Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 263 Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA. 264 Department of Pathology, University Hospital of Heraklion, Heraklion, Greece. 265 Frauenklinik der Stadtklinik Baden-Baden, Baden-Baden, Germany. 266 Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA. 267 Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands. 268 Department of Genetics, University of Pretoria, Pretoria, South Africa. 269 Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain. 270 Division of Functional Onco-genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy. 271 Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA. ²⁷²Department of Surgical Sciences, Uppsala University, Uppsala, Sweden. ²⁷³Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK. 274 Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. 275 Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway. 276 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 277 The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) Coordinating Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands. 278 Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia. 458These authors contributed equally: Hugues Aschard, Jonathan Beesley. 459These authors jointly supervised this work: Georgia Chenevix-Trench, Jacques Simard, Douglas F. Easton, Peter Kraft, Alison M. Dunning. 460 A full list of members and affiliations appears at the end of the paper. *e-mail: pkraft@hsph.harvard.edu; amd24@medschl.cam.ac.uk

GEMO Study Collaborators

Véronique Mari²⁸², Pascaline Berthet²⁸³, Laurent Castera²⁸³, Dominique Vaur²⁸³, Hakima Lallaoui²⁸⁴, Yves-Jean Bignon²⁸⁵, Nancy Uhrhammer²⁸⁵, Valérie Bonadona²⁸⁶, Christine Lasset²⁸⁶, Françoise Révillion²⁸⁷, Paul Vennin²⁸⁷, Daniele Muller²⁸⁸, Denise Molina Gomes²⁸⁹, Olivier Ingster²⁹⁰, Isabelle Coupier²⁹¹, Pascal Pujol²⁹¹, Marie-Agnès Collonge-Rame²⁹², Isabelle Mortemousque²⁹³, Odile Bera²⁹⁴, Mickaelle Rose²⁹⁴, Amandine Baurand²⁹⁵, Geoffrey Bertolone²⁹⁵, Laurence Faivre²⁹⁵, Hélène Dreyfus²⁹⁶, Dominique Leroux²⁹⁶, Laurence Venat-Bouvet²⁹⁷, Stéphane Bézieau²⁹⁸, Capucine Delnatte²⁹⁸, Jean Chiesa²⁹⁹, Brigitte Gilbert-Dussardier³⁰⁰, Paul Gesta³⁰¹, Fabienne Prieur Prieur³⁰², Myriam Bronner³⁰³, Johanna Sokolowska³⁰³, Florence Coulet³⁰⁴, Nadia Boutry-Kryza³⁰⁵, Alain Calender³⁰⁵, Sophie Giraud³⁰⁵, Mélanie Leone³⁰⁵, Sandra Fert-Ferrer³⁰⁶, Dominique Stoppa-Lyonnet³⁰⁷, Yue Jiao³⁰⁸, Fabienne Lesueur Lesueur³⁰⁸, Noura Mebirouk³⁰⁸, Emmanuelle Barouk-Simonet³⁰⁹, Virginie Bubien³⁰⁹, Michel Longy³⁰⁹, Nicolas Sevenet³⁰⁹, Laurence Gladieff³¹⁰, Christine Toulas³¹⁰, Audrey Reimineras³¹¹, Hagay Sobol³¹¹, Brigitte Bressac-de Paillerets³¹², Odile Cabaret³¹², Olivier Caron³¹², Marine Guillaud-Bataille³¹², Etienne Rouleau³¹², Muriel Belotti²⁴¹, Bruno Buecher²⁴¹, Sandrine Caputo²⁴¹, Chrystelle Colas³¹³, Antoine De Pauw²⁴¹, Emmanuelle Fourme³¹⁴, Marion Gauthier-Villars²⁴¹, Lisa Golmard²⁴¹, Virginie Moncoutier²⁴¹ and Claire Saule²⁴¹

²⁸²Centre Antoine Lacassagne, Nice, France. ²⁸³Centre François Baclesse, Caen, France. ²⁸⁴Centre Hospitalier de La Rochelle, La Rochelle, France. ²⁸⁵Centre Jean Perrin, Clermont-Ferrand, France. ²⁸⁶Centre Léon Bérard, Lyon, France. ²⁸⁷Centre Oscar Lambret, Lille, France. ²⁸⁸Centre Paul Strauss, Strasbourg, France. ²⁸⁹CHI Poissy, Poissy, France. ²⁹⁰CHU Angers, Angers, France. ²⁹¹CHU Arnaud-de-Villeneuve, Montpellier, France. ²⁹²CHU Besançon, Besançon, France. ²⁹³CHU Bretonneau, Tours and Centre Hospitalier de Bourges, Orléans, France. ²⁹⁴CHU de Martinique, Fort de France, France. ²⁹⁵CHU Dijon, Dijon, France. ²⁹⁶CHU Grenoble, Grenoble, France. ²⁹⁷CHU Limoges, Limoges, France. ²⁹⁸CHU Nantes, Nantes, France. ²⁹⁹CHU Nîmes Carémeau, Nîmes, France. ³⁰⁰CHU Poitiers, Poitiers, France. ³⁰¹CHU Poitiers, Centre Hospitalier d'Angoulême and Centre Hospitalier de Niort, Poitiers, France. ³⁰²CHU Saint Etienne, Saint Etienne, France. ³⁰³CHU Vandoeuvre-les-Nancy, Vandoeuvre-les-, Nancy, France. ³⁰⁴Groupe Hospitalier Pitié-Salpétrière, Paris, France. ³⁰⁵Centre Léon Bérard, Hospices Civils de Lyon, Lyon, France. ³⁰⁶Hôtel Dieu Centre Hospitalier, Chambéry, France. ³⁰⁷Inserm, U830, Service de Génétique, Institut Curie, Université Paris Descartes, Paris, France. ³⁰⁸Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France. ³⁰⁹Institut Bergonié, Bordeaux, France. ³¹⁰Institut Claudius Regaud, Toulouse, France. ³¹¹Service de Génétique, Institut Curie, Paris, France.

EMBRACE Collaborators

Alan Donaldson³¹⁵, Alex Murray³¹⁶, Angela Brady³¹⁷, Carole Brewer³¹⁸, Caroline Pottinger³¹⁹, Clare Miller³²⁰, David Gallagher³²¹, Helen Gregory³²², Jackie Cook³²³, Jacqueline Eason³²⁴,

ARTICLES <u>nature genetics</u>

Julian Adlard³²⁵, Julian Barwell³²⁶, Kai-Ren Ong³²⁷, Katie Snape³²⁸, Lisa Walker³²⁹, Louise Izatt³³⁰, Lucy Side³³¹, Marc Tischkowitz³³², Mark T. Rogers³³³, Mary E. Porteous³³⁴, Munaza Ahmed³³⁵, Patrick J. Morrison³³⁶, Paul Brennan³³⁷, Ros Eeles³³⁸ and Rosemarie Davidson³³⁹

³¹⁵Clinical Genetics Department, St Michael's Hospital, Bristol, UK. ³¹⁶All Wales Medical Genetics Service, Singleton Hospital, Swansea, UK. ³¹⁷North West Thames Regional Genetics Service, Kennedy Galton Centre, The North West London Hospitals NHS Trust, Harrow, UK. ³¹⁸Department of Clinical Genetics, Royal Devon and Exeter Hospital, Exeter, UK. ³¹⁹All Wales Medical Genetics Service, Glan Clwyd Hospital, Rhyl, UK. ³²⁰Department of Clinical Genetics, Alder Hey Hospital, Liverpool, UK. ³²¹Mater Private Hospital, Dublin, UK. ³²²North of Scotland Regional Genetics Service, NHS Grampian and University of Aberdeen, Aberdeen, UK. ³²³Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK. ³²⁴Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Notingham, UK. ³²⁵Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK. ³²⁶Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK. ³²⁷West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Birmingham, UK. ³²⁸Medical Genetics Unit, St George's, University of London, London, UK. ³²⁹Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK. ³³⁰Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK. ³³¹Wessex Clinical Genetics Service, The Princess Anne Hospital, Southampton, UK. ³³²Department of Medical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK. ³³³All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, UK. ³³⁴South East of Scotland Regional Genetics Service, Western General Hospital, Edinburgh, UK. ³³⁵North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, UK. ³³⁶Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK. ³³⁷Institute of General Medicine, International Centre for Life, Newcastle, UK. ³³⁸Oncogenetics Team, The Insti

KConFab Investigators

Adrienne Sexton³⁴⁰, Alice Christian³⁴¹, Alison Trainer³⁴², Allan Spigelman³⁴³, Andrew Fellows³⁴⁴, Andrew Shelling³⁴⁵, Anna De Fazio³⁴⁶, Anneke Blackburn³⁴⁷, Ashley Crook³⁴⁸, Bettina Meiser³⁴⁹, Briony Patterson³⁵⁰, Christine Clarke³⁵¹, Christobel Saunders³⁵², Clare Hunt³⁵³, Clare Scott³⁵⁴, David Amor³⁵⁵, Deb Marsh³⁵⁶, Edward Edkins³⁵⁷, Elizabeth Salisbury³⁵⁸, Eric Haan³⁵⁹, Eveline Neidermayr³⁴², Finlay Macrea³⁶⁰, Gelareh Farshid³⁶¹, Geoff Lindeman³⁶², Georgia Trench³⁶³, Graham Mann³⁶⁴, Graham Giles³⁶⁵, Grantley Gill³⁶⁶, Heather Thorne³⁴², Ian Campbell³⁶⁷, Ian Hickie³⁶⁸, Ingrid Winship³⁶⁹, James Flanagan³⁷⁰, James Kollias³⁷¹, Jane Visvader³⁷², Jennifer Stone³⁷³, Jessica Taylor³⁷⁴, Jo Burke³⁷⁵, Jodi Saunus³⁷⁶, John Forbes³⁷⁷, John Hopper³⁷⁸, Jonathan Beesley³⁷⁹, Judy Kirk³⁸⁰, Juliet French³⁸¹, Kathy Tucker³⁸², Kathy Wu³⁸³, Kelly Phillips³⁸⁴, Lara Lipton³⁸⁵, Leslie Andrews³⁸⁶, Lizz Lobb³⁸⁷, Logan Walker³⁸⁸, Maira Kentwell³⁸⁹, Mandy Spurdle³⁹⁰, Margaret Cummings³⁹¹, Margaret Gleeson³⁹², Marion Harris³⁹³, Mark Jenkins³⁹⁴, Mary Anne Young³⁹⁵, Martin Delatycki³⁵⁵, Mathew Wallis³⁹⁶, Matthew Burgess³⁹⁷, Melanie Price³⁹⁸, Melissa Brown³⁹⁹, Melissa Southey⁴⁰⁰, Michael Bogwitz⁴⁰¹, Michael Field⁴⁰², Michael Friedlander⁴⁰³, Michael Gattas⁴⁰⁴, Mona Saleh⁴⁰⁵, Nick Hayward⁴⁰⁶, Nick Pachter⁴⁰⁷, Paul Cohen⁴⁰⁸, Pascal Duijf⁴⁰⁹, Paul James⁴¹⁰, Pete Simpson⁴¹¹, Peter Fong⁴¹², Phyllis Butow⁴¹³, Rachael Williams³⁴³, Rick Kefford⁴¹⁴, Rodney Scott⁴¹⁵, Roger Milne³⁶⁵, Rosemary Balleine⁴¹⁶, Sarah-Jane Dawson³⁴⁴, Sheau Lok⁴¹⁷, Shona O'Connell⁴¹⁸, Sian Greening⁴¹⁹, Sophie Nightingale⁴²⁰, Stacey Edwards³⁷⁹, Stephen Fox⁴²¹, Sue-Anne McLachlan⁴²², Sunil Lakhani⁴²³ and Yoland Antill⁴²⁴

³⁴⁰Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia. ³⁴¹Genetics Department, Central Region Genetics Service, Wellington Hospital, Wellington, New Zealand. ³⁴²The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. ³⁴³Family Cancer Clinic, St Vincent's Hospital, Sydney, New South Wales, Australia. ³⁴⁴The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. ³⁴⁵Obstetrics and Gynaecology, University of Auckland, New Zealand. ³⁴⁶Department of Gynaecological Oncology, Westmead Institute for Cancer Research, Westmead Hospital, Sydney, New South Wales, Australia. ³⁴⁷Australian National University, Canberra, Australian Capital Territory, Australia. ³⁴⁸Department of Clinical Genetics, Royal North Shore Hospital, Sydney, New South Wales, Australia. ³⁴⁹Prince of Wales Hospital, The Uiversity of New South Wales, Sydney, New South Wales, Australia. ³⁵⁰Clinical Genetics Service, Royal Hobart Hospital, Hobart Tasmania, Australia. ³⁵¹Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia. ³⁵²School of Surgery and Pathology, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia. ³⁵³Southern Health Familial Cancer Centre, Monash Medical Centre, Melbourne, Victoria, Australia. ³⁵⁴The Walter and Eliza Hall Institute of Medical Research, c/o Royal Melbourne Hospital, Melbourne, Victoria, Australia. ³⁵⁵Genetic Health Services Victoria, Royal Children's Hospital, Melbourne, Victoria, Australia. ³⁵⁶Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia. ³⁵⁷Clinical Chemistry, Princess Margret Hospital for Children, Perth, Western Australia, Australia. ³⁵⁸Anatomical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia. ³⁵⁹Department of Medical Genetics, Women's and Children's Hospital, Adelaide, South Australia, Australia. ³⁶⁰Family Cancer Clinic, The Royal Melbourne

NATURE GENETICS ARTICLES

Hospital, Melbourne, Victoria, Australia. 361SA Tissue Pathology, IMVS, Adelaide, South Australia, Australia. 362Breast Cancer Laboratory, The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Melbourne, Victoria, Australia. 363 Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Queensland, Australia. 364 Westmead Institute for Cancer Research, Westmead Millennium Institute, Sydney, New South Wales, Australia. 365 Anti-Cancer Council of Victoria, Melbourne, Victoria, Australia. 366 Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia. 368 Brain and Mind Centre, Sydney, New South Wales, Australia. 368 Brain and Mind Centre, Sydney, New South Wales, Australia. ³⁶⁹Department of Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia. ³⁷⁰Epigenetics Unit, Department of Surgery and Oncology, Imperial College, London, England. 371 Breast Endocrine and Surgical Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia. 372 The Walter and Eliza Hall Institute of Medical Research, c/o Royal Melbourne Hospital, Melbourne, Victoria, Australia. 373 Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Western Australia, Australia. 374 Familial Cancer and Genetics Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia. 375 Royal Hobart Hospital, Hobart, Tasmania, Australia. 376 Breast Pathology, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia. 377Surgical Oncology, University of Newcastle, Newcastle Mater Hospital, Newcastle, New South Wales, Australia. 378 Centre for MEGA Epidemiology, Melbourne, Victoria, Australia. 379 Queensland Institute of Medical Research, Brisbane, Queensland, Australia. 380 Familial Cancer Service, Department of Medicine, Westmead Hospital, Sydney, New South Wales, Australia. 381 School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia. 382 Heredity Cancer Clinic, Prince of Wales Hospital, Sydney, New South Wales, Australia. 383 Family Cancer Clinic, St Vincent's Hospital, Sydney, Australia. 384 Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. 385 Medical Oncology and Clinical Haematology Unit, Western Hospital, Melbourne, Victoria, Australia. 386Hereditary Cancer Clinic, Prince of Wales Hospital, Sydney, New South Wales, Australia. 387School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia. 388 Department of Pathology, University of Otago, Christchurch, New Zealand. 389 The Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, Victoria, Australia. 390 Queensland Institute of Medical Research, Brisbane, Queensland, Australia. 391 Department of Pathology, University of Queensland Medical School, Brisbane, Queensland, Australia. 392 Hunter Family Cancer Service, Sydney, New South Wales, Australia. 393 Family Cancer Clinic, Monash Medical Centre, Melbourne, Victoria, Australia. 394 Centre for MEGA Epidemiology, The University of Melbourne, Melbourne, Victoria, Australia. 395The Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney, New South Wales, Australia. 396The Family Cancer Clinic, Austin Health, Melbourne, Victoria, Australia. 397 Clinical Genetics Service, Austin Health, Melbourne, Victoria, Australia. 398 Medical Psychology, University of Sydney, Sydney, New South Wales, Australia. 399 University of Queensland, Brisbane, Queensland, Australia. 400 Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia. 401 Familial Cancer Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia. 402 Clinical Genetics, Royal North Shore Hospital, Sydney, New South Wales, Australia. 403 Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia. 404 Queensland Clinical Genetic Service, Royal Children's Hospital, Brisbane, Queensland, Australia. 405 Centre for Genetic Education, Prince of Wales Hospital, Sydney, New South Wales, Australia. 406 Queensland Institute for Medical Research, Royal Brisbane Hospital, Brisbane, Queensland, Australia. 407 Genetic Services of WA, King Edward Memorial Hospital, Perth, Western Australia, Australia. 408 Gynaecological Cancer Research, St John of God Subiaco Hospital, Perth, Western Australia, Australia. 409 The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia. 410 Family Cancer Clinic, The Peter MacCallum Cancer Centre, Melbourne, Australia. 411 The University of Queensland, Brisbane, Queensland, Australia. 412 Regional Cancer and Blood Services Auckland City Hospital, Auckland, New Zealand. ⁴¹³Medical Psychology Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia. ⁴¹⁴Medical Oncology Department, Westmead Hospital, Sydney, New South Wales, Australia. 415 Hunter Area Pathology Service, John Hunter Hospital, Newcastle, New South Wales, Australia. 416 Department of Medical Oncology, Westmead Hospital, Sydney, New South Wales, Australia. 417 Department of Medical Oncology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia. 418 Southern Health Familial Cancer Centre, Melbourne, Victoria, Australia. 419 Illawarra Cancer Centre, Wollongong Hospital, Wollongong, New South Wales, Australia. 420 Western Health and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. 421 Pathology Department, Peter MacCallum Cancer Centre, VCCC Building, Melbourne, Victoria, Australia. 422 Department of Oncology, St Vincent's Hospital, Melbourne, Victoria, Australia. 423UQ Centre for Clinical Research, University of Queensland, The Royal Brisbane and Women's Hospital Herston, Brisbane, Queensland, Australia. 424The Family Cancer Clinic, Cabrini Hospital, Melbourne, Victoria, Australia.

HEBON Investigators

Cora Aalfs⁴²⁵, Hanne Meijers-Heijboer⁴²⁶, Klaartje van Engelen⁴²⁵, Hans Gille⁴²⁶, Ingrid Boere⁴²⁷, Margriet Collée⁴²⁸, Carolien van Deurzen⁴²⁹, Maartje Hooning⁴²⁷, Inge-Marie Obdeijn⁴³⁰, Ans van den Ouweland⁴²⁸, Caroline Seynaeve⁴²⁷, Sabine Siesling⁴³¹, Janneke Verloop⁴³¹, Christi van Asperen⁴³², Peter Devilee⁴³³, Twiggy van Cronenburg⁴³², Rien Blok⁴³⁴, Maaike de Boer⁴³⁴, Encarna Gómez Garcia⁴³⁴, Muriel Adank⁴³⁵, Frans Hogervorst⁴³⁵, Denise Jenner⁴³⁶, Flora van Leeuwen⁴³⁶, Matti Rookus⁴³⁶, Nicola Russell⁴³⁷, Marjanka Schmidt⁴³⁸, Sandra van den Belt-Dusebout⁴³⁹, Carolien Kets⁴⁴⁰, Arjen Mensenkamp⁴⁴⁰, Truuske de Bock⁴⁴¹, Annemieke van der Hout⁴⁴², Marian Mourits⁴⁴³, Jan Oosterwijk⁴⁴², Margreet Ausems⁴⁴⁴ and Marco Koudijs⁴⁴⁴

⁴²⁵Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands. ⁴²⁶Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands. ⁴²⁷Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands. ⁴²⁸Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, the Netherlands. ⁴²⁹Department of Pathology, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, the Netherlands. ⁴³⁰Department of Radiology, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, the Netherlands. ⁴³¹The Netherlands. ⁴³²Department of Radiology, Family Cancer Clinic, Erasmus University Medical Center, Leiden, the Netherlands. ⁴³³Department of Human Genetics and Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands. ⁴³⁴Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands. ⁴³⁵Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, the Netherlands. ⁴³⁶Department of Epidemiology,

ARTICLES NATURE GENETICS

Netherlands Cancer Institute, Amsterdam, the Netherlands. ⁴³⁷Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam, the Netherlands. ⁴³⁸Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands. ⁴³⁹The Nationwide Network and Registry of Histo- and Cytopathology (PALGA), Houten, the Netherlands. ⁴⁴⁰Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. ⁴⁴¹Department of Oncological Epidemiology, University Medical Center, Groningen University, Groningen, The Netherlands. ⁴⁴²Department of Genetics, University Medical Center Groningen, the Netherlands. ⁴⁴³Department of Gynaecological Oncology, University Medical Center, Groningen University, Groningen, the Netherlands. ⁴⁴⁴Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands

ABCTB Investigators

Christine Clarke⁴⁴⁵, Deborah Marsh⁴⁴⁶, Rodney Scott^{447,448}, Robert Baxter⁴⁴⁹, Desmond Yip^{450,451}, Jane Carpenter⁴⁵², Alison Davis^{453,454}, Nirmala Pathmanathan^{455,456}, Peter Simpson⁴⁵⁷, Dinny Graham⁴⁴⁵ and Mythily Sachchithananthan⁴⁴⁵

⁴⁴⁵Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia. ⁴⁴⁶University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia. ⁴⁴⁷School of Biomedical Sciences, University of Newcastle, Newcastle, UK. ⁴⁴⁸Hunter Medical Research Institute and NSW Health Pathology North, Newcastle, Australia. ⁴⁴⁹Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia. ⁴⁵⁰Epigenetics and Transcription Laboratory, Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, Australian Capital Territory, Australia. ⁴⁵¹Department of Medical Oncology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia. ⁴⁵²Scientific Platforms, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia. ⁴⁵³The Canberra Hospital, Canberra, Australian Capital Territory, Australia. ⁴⁵⁴The Australian National University, Canberra, Australian Capital Territory, Australia. ⁴⁵⁵Westmead Breast Cancer Institute, Western Sydney Local Health District, Sydney, New South Wales, Australia. ⁴⁵⁶University of Sydney, Western Clinical School, Sydney, New South Wales, Australia. ⁴⁵⁷UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.

В

NATURE GENETICS ARTICLES

Methods

Study samples. Epidemiological data for European women were obtained from 75 breast cancer case–control studies participating in the BCAC (cases: 40,285 iCOGS and 69,615 OncoArray; cases with ER status available: 29,561 iCOGS and -55,081 OncoArray; controls: 38,058 iCOGS and 50,879 OncoArray). Details of the participating studies, genotype calling and quality control are given in refs. ^{2,22,23}, respectively. Epidemiological data for *BRCA1* mutation carriers were obtained from 60 studies providing data to the CIMBA (affected: 1,591 iCOGS and 7,772 OncoArray; unaffected: 1,665 iCOGS and 7,780 OncoArray). This dataset has been described in detail previously. ^{1,59,60}. All studies provided samples of European ancestry. Any non-European samples were excluded from the analyses.

Variant selection and genotyping. Similar approaches were used to select variants for inclusion on the iCOGS and OncoArray, and these are described in detail elsewhere^{2,21}. Both arrays included a dense coverage of variants across known susceptibility regions (at the time of their design), with sparser coverage of the rest of the genome. Twenty-one known susceptibility regions were selected for dense genotyping using iCOGS and 73 regions were selected for OncoArray. These regions were 1-megabase (Mb) intervals centered on the published lead GWAS hit (combined into larger intervals where these overlapped). For iCOGS, all known variants from the March 2010 release of the 1000 Genomes Project with a MAF > 0.02 in Europeans were identified, and all those correlated with the published GWAS variants at $r^2 > 0.1$, together with a set of variants designed to tag all remaining variants at $r^2 > 0.9$, were selected to be included in the array (http:// ccge.medschl.cam.ac.uk/files/2014/03/iCOGS_detailed_lists_ALL1.pdf). For OncoArray, all designable variants correlated with the known hits at $r^2 > 0.6$, plus all variants from lists of potentially functional variants on RegulomeDB and a set of variants designed to tag all of the remaining variants at $r^2 > 0.9$, were selected. In total, across the 152 regions considered here, 26,978 iCOGS- and 58,339 OncoArray-genotyped variants passed the quality control criteria.

We imputed genotypes for all of the remaining variants using IMPUTE2 (ref. 61) and the October 2014 release of the 1000 Genomes Project as a reference. Imputation was conducted independently in the iCOGS and OncoArray subsets. To improve accuracy at low-frequency variants, we used the standard IMPUTE2 MCMC algorithm for follow-up imputation, which includes no pre-phasing of the genotypes and increasing both the buffer regions and the number of haplotypes to use as templates (a more detailed description of the parameters used can be found in ref. 21). We thus genotyped or successfully imputed 639,118 variants (all with an imputation info score ≥ 0.3 and a MAF ≥ 0.001 in both iCOGS and OncoArray datasets). Imputation summaries and coverage for each of the analyzed regions stratified by allele frequency can be found in Supplementary Table 1b.

BCAC statistical analyses. Per-allele odds ratios and standard errors were estimated for each variant using logistic regression. We ran this analysis separately for iCOGS and OncoArray, and for overall, ER-positive and ER-negative breast cancer. The association between each variant and breast cancer risk was adjusted by study (iCOGS) or country (OncoArray), and eight (iCOGS) or ten (OncoArray) ancestry-informative principal components. The statistical significance for each variant was derived using a Wald test.

Defining appropriate significance thresholds for association signals. To establish an appropriate significance threshold for independent signals, all variants evaluated in the meta-analysis were included in logistic forward selection regression analyses for overall breast cancer risk in iCOGS, run independently for each region. We evaluated five *P* value thresholds for inclusion: $<1\times10^{-4}$, $<1\times10^{-5}$, $<1\times10^{-6}$, $<1\times10^{-7}$ and $<1\times10^{-8}$. The most parsimonious iCOGS models were tested in OncoArray, and the FDR at the 1% level for each threshold was estimated using the Benjamini–Hochberg procedure. At a 1% FDR threshold, 72% of associations, significant at $P<10^{-4}$, were replicated on iCOGS, and 94% of associations, significant at $P<10^{-6}$, were replicated on OncoArray. Based on these results, two categories were defined: strong-evidence signals (conditional $P<10^{-6}$ in the final model) and moderate-evidence signals (conditional $P<10^{-6}$ in the final model).

Identification of independent signals. To identify independent signals, we ran multinomial stepwise regression analyses, separately in iCOGS and OncoArray, for all variants displaying evidence of association ($n_{\text{variants}} = 202,749$). We selected two sets of well-imputed variants (imputation info score ≥ 0.3 in both iCOGS and OncoArray): (1) common and low-frequency variants (MAF ≥ 0.01) with a logistic regression P value inclusion threshold of ≤0.05 in either the iCOGS or OncoArray datasets for at least one of the three phenotypes (overall, ER positive and ER negative breast cancer); and (2) rarer variants (MAF ≥ 0.001 and <0.01), with a logistic regression inclusion P value of ≤0.0001. The same parameters used for adjustment in logistic regression were used in the multinomial regression analysis (R function multinom). The multinomial regression estimates were combined using a fixed-effects meta-analysis weighted by the inverse variance. Variants with the lowest conditional P value from the meta-analysis of both European cohorts at each step were included in the multinomial regression model. However, if the new variant to be included in the model caused collinearity problems due to

high correlation with an already selected variant, or showed high heterogeneity $(P < 10^{-4})$ between iCOGS and OncoArray after being conditioned by the variant(s) in the model, we dropped the new variant and repeated this process.

At 105 of 152 evaluated regions, the main signal showed genome-wide significance, while 44 were marginally significant $(9.89 \times 10^{-5} \ge P > 5 \times 10^{-8})$. For two regions, there were no variants significant at $P < 10^{-4}$ (chr14:104712261-105712261; rs10623258; multinomial regression $P = 2.32 \times 10^{-4}$; chr19:10923703-11923703; rs322144; multinomial regression $P = 3.90 \times 10^{-3}$). Four main differences in the datasets used here and in the previous paper may account for this: (1) our previous paper2 included data from 11 additional GWASs (14,910 cases and 17,588 controls) that have not been included in the present analysis in order to minimize differences in array coverage, and because ER status data were substantially incomplete and individual-level data were not available for all GWASs; (2) the present analysis was based on estimating separate risks for ER-positive and ER-negative disease, whereas in our previous paper the outcome was overall breast cancer risk; ER status was available for only 73% of the iCOGS and 79% of the OncoArray breast cancer cases; (3) for the set of samples genotyped with both arrays, ref. 2 used the iCOGS genotypes, while the present study included OncoArray genotypes to maximize the number of samples genotyped with a larger coverage; and (4) the imputation procedure was modified (in particular using onestep imputation without pre-phasing) to improve the imputation accuracy of less frequent variants.

We used a forward stepwise approach to define the number of independent signals within each associated genomic region. First, we identified the index variant of the main signal in the region, and then ran multinomial logistic regression for all of the other variants, adjusted by the index variant, to identify additional variants that remained independently significant within the model. We repeated this process, adjusting for identified index variants, until no more additional variants could be added. In this way, we found from 1–11 independent signals within the 150 regions that containing a genome-wide significant main signal.

Selection of a set of CCVs. For each independently associated signal, we first defined CCVs likely to drive its association as those variants with Pvalues within two orders of magnitude of the most significant variant for that signal, after adjusting for the index variant of other signals within that region (as identified in the forward stepwise regression above; Supplementary Fig. 6a)24. For each region, we then attempted to obtain the best-fitting model by successively fitting models in which the index variant for each signal was replaced by other CCVs for that signal, adjusting for the index variants for the other signals (Supplementary Fig. 6b). Where a model with a higher chi-squared value was obtained, the index variant was replaced by the CCV in the best model (Supplementary Fig. 6c,d). This process was repeated until the model (that is, the set of index variants) did not change further (Supplementary Fig. 6g). This procedure was performed first for the set of strong signals (that is, considering models including only the strong signals). Once a final model had been obtained for the strong signals, the index variants for the strong signals were considered fixed and the process was repeated for all signals, the index variants for the weak signals (but not the strong signals) to vary. Using this procedure, we could define the best model for 140 out of 150 regions, but for ten regions this approach did not converge (chr4:175328036-176346426, chr5:55531884-56587883, chr6:151418856-152937016, chr8:75730301-76917937, chr10:80341148-81387721, chr10:122593901-123849324, chr12:115336522-116336522, chr14:36632769-37635752, chr16:3606788-4606788 and chr22:38068833-39859355). For these ten regions, we defined the best model, from among all possible combinations of credible variants, as that with the largest chi-squared value. Finally, we redefined the set of CCVs for each signal using the conditional Pvalues, after adjusting for the revised set of index variants. Again, for the strong signals, we conditioned on the index variants for the other strong signals, while for the weak signals we conditioned on the index variants for all of the other signals.

Case-only analysis. Differences in the effect size between ER-positive and ER-negative disease for each index-independent variant were assessed using a case-only analysis. We performed logistic regression with ER status as the dependent variable and the lead variant at each strong signal in the fine-mapping region as the independent variables. We used FDR (5%) to adjust for multiple testing.

OncoArray-only stepwise analysis. To evaluate whether the lower coverage in iCOGS could affect the identification of independent signals, we ran stepwise multinomial regression using only the OncoArray dataset. We identified 249 independent signals. Ninety-two signals, in 67 fine-mapping regions, achieved a genome-wide significance level (conditional $P < 5 \times 10^{-8}$). Of these, 205 signals were also identified in the meta-analysis with iCOGS. Nine independent variants across ten regions were not evaluated in the combined analysis due to their low imputation information score in iCOGS. Of these nine signals, two signals would be classified as main primary signals: rs114709821 at region chr1:145144984-146144984 (OncoArray imputation information score = 0.72); and rs540848673 at region chr1:149406413–150420734 (OncoArray imputation information score = 0.33). Given the low number of additional signals identified in the OncoArray dataset alone, all analyses were based on the combined iCOGS/OncoArray dataset.

CIMBA statistical analysis. CIMBA provided data from 60 retrospective cohort studies consisting of 9,445 unaffected and 9,363 affected female *BRCA1* mutation carriers of European ancestry. Unconditional (that is, single-variant) analyses were performed using a score test based on the retrospective likelihood of observing the genotype conditional on the disease phenotype conditional analyses, where more than one variant is analyzed simultaneously, cannot be performed in this score test framework. Therefore, conditional analyses were performed by Cox regression, allowing for adjustment of the conditionally independent variants identified by the BCAC/DRIVE analyses. All models were stratified by country and birth cohort, and adjusted for relatedness (unconditional models used kinshipadjusted standard errors based on the estimated kinship matrix; conditional models used cluster robust standard errors based on phenotypic family data).

Data from the iCOGS array and OncoArray were analyzed separately and combined to give an overall *BRCA1* association by fixed-effects meta-analysis. Variants were excluded from further analyses if they exhibited evidence of heterogeneity (heterogeneity $P < 1 \times 10^{-4}$) between iCOGS and OncoArray, had a MAF < 0.005, were poorly imputed (imputation information score < 0.3) or were imputed to iCOGS only (that is, they must have been imputed to OncoArray or iCOGS and OncoArray).

Meta-analysis of ER-negative cases in BCAC with BRCA1 mutation carriers from CIMBA. BRCA1 mutation carrier association results were combined with the BCAC multinomial regression ER-negative association results in a fixed-effects meta-analysis. Variants considered for analysis must have passed all previous quality control steps and have had MAF ≥ 0.005. All meta-analyses were performed using the METAL software⁶⁴. Instances where spurious associations might occur were investigated by assessing the linkage disequilibrium between a possible spurious association and the conditionally independent variants. High linkage disequilibrium between a variant and a conditionally independent variant within its region causes model instability through collinearity, and convergence of the model likelihood maximization may not be reliable. Where the association appeared to be driven by collinearity, the signals were excluded.

Heritability estimation. To estimate the frailty-scale heritability due to all of the given fine-mapping signals, we used the formula:

$$h^2 = 2(\gamma t^T R \gamma t - \tau t^T I \tau t)$$

Here, $\gamma' = \gamma \sqrt{\mathbf{p}(1-\mathbf{p})}$ and $\tau'^{\mathrm{T}} = \tau \sqrt{\mathbf{p}(1-\mathbf{p})}$, where \mathbf{p} is a vector of allele frequencies, γ are the estimated per-allele odds ratios, τ are the corresponding standard errors and R is the correlation matrix of genotype frequencies.

To adjust for the overestimation resulting from only including signals passing a given significance threshold, we adapted the approach of ref. 65, based on maximizing the likelihood conditional on the test statistic passing the relevant threshold. Since our analyses were based on estimating ER-negative and ER-positive odds ratios simultaneously, the method needed to be adapted to maximize a conditional bivariate normal likelihood. Following ref. 65, we then estimated mean square error estimates based on a weighted mean of the maximum likelihood estimates and the naïve estimates, which were shown to be unbiased in the 1-degree of freedom case. The estimated effect sizes for overall breast cancer were computed as a weighted mean of the ER-negative and ER-positive estimates, based on the proportions of each subtype in the whole study (weights: 0.21 and 0.79). The results were then expressed in terms of the proportion of the FRR to first-degree relatives of affected women, using the formula $h^2/(2\log[\lambda])$, where the FRR λ was assumed to be 2 (ref. 2).

eQTL analysis. Total RNA was extracted from normal breast tissue in formalin-fixed paraffin-embedded breast cancer tissue blocks from 264 NHS participants³². Transcript expression levels were measured using the Glue Grant Human Transcriptome Array version 3.0 at the Molecular Biology Core Facilities, Dana-Farber Cancer Institute. Gene expression was normalized and summarized into log₂ values using RMA (Affymetrix Power Tools version 1.18.012). Quality control was performed using GlueQC and arrayQualityMetrics version 3.24.014. Genomewide data on variants were generated using the Illumina HumanHap550 BeadChip as part of the Cancer Genetic Markers of Susceptibility initiative⁶⁶. Imputation to the 1000KGP Phase 3 version 5 ALL reference panel was performed using MACH to pre-phase measured genotypes, and minimac to impute.

Expression analyses were performed using data from the TCGA and METABRIC projects (34.38). The TCGA eQTL analysis was based on 458 breast tumors that had matched gene expression, copy number and methylation profiles, together with the corresponding germline genotypes available. All 458 individuals were of European ancestry, as ascertained using the genotype data and the Local Ancestry in Admixed Populations (LAMP) software package (LAMP estimate cut-off> 95% European) Germline genotypes were imputed into the 1000 Genomes Project reference panel (October 2014 release) using IMPUTE version 2 (refs. (68.69)). Gene expression had been measured on the Illumina HiSeq 2000 RNA sequencing (RNA-Seq) platform (gene-level RSEM normalized counts (70), copy number estimates were derived from Affymetrix SNP 6.0 (somatic copy number alteration minus germline copy number variation called using the GISTIC2

Α

algorithm⁷¹), and methylation beta values were measured on the Illumina Infinium HumanMethylation450. Expression QTL analysis focused on all variants within each of the 152 genomic intervals that had been subjected to fine-mapping for their association with breast cancer susceptibility. Each of these variants was evaluated for its association with the expression of every gene within 2 Mb that had been profiled for each of the three data types. The effects of tumor copy number and methylation on gene expression were first regressed out using a method described previously⁷². eQTL analysis was performed by linear regression, with residual gene expression as the outcome, germline SNP genotype dosage as the covariate of interest, and ESR1 expression and age as additional covariates, using the R package Matrix eQTL⁷³.

The METABRIC eQTL analysis was based on 138 normal breast tissue samples resected from patients with breast cancer of European ancestry. Germline genotyping for the METABRIC study was also done on the Affymetrix SNP 6.0 array, and gene expression in the METABRIC study was measured using the Illumina HT12 microarray platform (probe-level estimates). No adjustment was implemented for somatic copy number and methylation status since we were evaluating eQTLs in normal breast tissue. All other steps were identical to the TCGA eQTL analysis described above.

Genomic features enrichment. We explored the overlap of CCVs and excluded variants with 90 transcription factors, ten histone marks and DNase hypersensitivity sites in 15 breast cell lines and eight normal human breast tissues. We analyzed data from the Encyclopedia of DNA Elements (ENCODE) Project^{7,47,5}, Roadmap Epigenomics Projects^{7,6}, the International Human Epigenome Consortium^{27,77}, Pellacani et al.^{7,8}, TCGA^{3,3}, METABRIC^{3,4}, the ReMap database (we included 241 transcription factor annotations from ReMap (from a total of 2,825), which showed at least 2% overlap for any of the phenotype SNP sets)^{7,9} and other data obtained through the National Center for Biotechnology Information Gene Expression Omnibus. Promoters were defined following the procedure defined in ref. ^{7,8} (that is, ±2 kilobases (kb) from a gene transcription start site) using an updated version of the RefSeq genes (refGene version updated 11 April 2017)⁸⁰. Transcribed regions were defined using the same version of RefSeq genes. lncRNA annotation was obtained from GENCODE (version 19)⁸¹

To include eQTL results in the enrichment analysis we: (1) identified all of the genes for which summary statistics were available; (2) defined the most significant eQTL variant for each gene (index eQTL variant; P value threshold $\leq 5 \times 10^{-4}$); and (3) classified variants with P values within two orders of magnitude of the index expression variant as the credible set of eQTL variants (that is, the best candidates to drive expression of the gene). Variants within at least one eQTL credible set were defined as expression variants. We evaluated the overlap between eQTL credible sets and CCVs (risk variants credible set). We evaluated the enrichment of CCVs for genomic features using logistic regression, with CCV (versus non-CCV variants) being the outcome. To adjust for the correlation among variants in the same fine-mapping region, we used robust variance estimation for clustered observations (R function multiwaycov). The associated variants at an FDR of 5% were included in a stepwise forward logistic regression procedure to select the most parsimonious model. A likelihood ratio test was used to compare multinomial logistic regression models with and without equality effect constraints to evaluate whether there was heterogeneity among the effect sizes for ER positive, ER negative or signals equally associated with both phenotypes (ER neutral).

To validate the disease specificity of the regulatory regions identified through this analysis, we followed the same approach for the autoimmune-related CCVs from ref. 29 (n=4,192). Variants excluded as candidate causal variants, and within 500 kb upstream and downstream of the index variant for each signal, were classified as excluded variants (n=1,686,484). We then tested the enrichment for both the breast cancer and autoimmune CCVs with breast and T and B cell enhancers. We also evaluated the overlap of our CCVs with ENCODE enhancer-like and promoter-like regions for 111 tissues, primary cells, immortalized cell lines and in vitro-differentiated cells. Of these, 73 had available data for both enhancer-and promoter-like regions.

Transcription binding site motif analysis. We conducted a search to find motif occurrences for the transcription factors significantly enriched in the genomic featured. For this, we used two publicly available databases: Factorbook⁸² and JASPAR 2016 (ref. 83). For the search using Factorbook, we included the motifs for the transcription factors discovered in the cell lines where significant enrichment was found in our genomic features analysis. We also searched for all of the available motifs for Homo sapiens in the JASPAR database (JASPAR CORE 2016; TFBSTools⁸⁴). Using the USCS sequence (BSgenome.Hsapiens.USCS.hg19) as a reference, we created fasta sequences with the reference and alternative alleles for all of the variants included in our analysis plus 20 base pairs flanking each variant. We used FIMO (version 4.11.2; Grant et al. 85) to scan all of the fasta sequences, searching for the JASPAR and Factorbook motifs to identify any overlap of any of the alleles for each of the variants (setting the P value threshold to 10^{-3}). We subsequently determined whether our CCVs were more frequency overlapping a particular transcription factor binding motif when compared with the excluded variants. We ran these analyses for all of the strong signals, but also strong signals stratified by ER status. Also, we subset this analysis to the variants located at

NATURE GENETICS ARTICLES

regulatory regions in an ER-positive cell line (MCF-7 marked by H3K4me1; ENCODE identification: ENCFF674BKS) and evaluated whether the ER-positive CCVs overlapped any of the motifs more frequently than the excluded variants. We also evaluated the change in total binding affinity caused by the ER-positive CCCR alternative allele for all but one (2:217955891:T:<CN0>:0) of the ER-positive CCVs (MatrixRider*6).

Subsequently, we evaluated whether the MCF-7 regions demarked by H3K4me1 (ENCODE identification: ENCFF674BKS) and overlapped by ER-positive CCVs were enriched in known TFBS motifs. First, we subset the ENCODE bed file -ENCFF674BKS to identify MCF-7 H3K4me1 peaks overlapped by the ER-positive CCVs (n=107), as well as peaks only overlapped by excluded variants (n=11,099), using BEDTools⁸⁷. We created fasta format sequences using genomic coordinate data from the intersected bed files. To create a control sequence set, we used the script included with the MEME Suite (fasta-shuffle-letters) to create ten shuffled copies of each sequence overlapped by ER-positive CCVs (n = 1,070). We then -used AME88 to interrogate whether the 107 MCF-7 H3K4me1 genomic regions overlapped by ER-positive CCVs were enriched in known TFBS consensus motifs when compared with the shuffled control sequences, or with the MCF-7 H3K4me1 genomic regions overlapped only by excluded variants. We used the command line version of AME (version 4.12.0), selecting as a scoring method the total number of positions in the sequence whose motif score P value was $<10^{-3}$, and using a onetailed Fisher's exact test as the association test.

PAINTOR analysis. To further refine the set of CCVs, we performed empirical Bayes fine-mapping using PAINTOR to integrate marginal genetic association summary statistics, linkage disequilibrium patterns and biological features^{31,89}. PAINTOR derives jointly the posterior probability for causality of all variants along the respective contribution of genomic features, in order to maximize the log-likelihood of the data across all regions. PAINTOR does not assume a fixed number of causal variants in each region, although it implicitly penalizes nonparsimonious causal models. We applied PAINTOR separately to association results for overall breast cancer (in 85 regions determined to have at least one ER-neutral association or ER-positive and ER-negative association), ER-positive breast cancer (in 48 regions determined to have at least one ER-positivespecific association) and ER-negative breast cancer (in 22 regions determined to have at least one ER-negative-specific association). To avoid artefacts due to mismatches between the linkage disequilibrium in study samples and the linkage disequilibrium matrix supplied to PAINTOR, we used association logistic regression summary statistics from OncoArray data only, and estimated the linkage disequilibrium structure in the OncoArray sample. For each endpoint, we fit four models with increasing numbers of genomic features selected from the stepwise enrichment analyses described above: model 0 (with no genomic features; assumes each variant is equally likely to be causal a priori); model 1 (with those genomic features selected with the stopping rule P < 0.001); model 2 (with those genomic features selected with the stopping rule P < 0.01); and model 3 (with those genomic features selected with the stopping rule P < 0.05).

Differences between the PAINTOR and CCV outputs may be due to several factors. By considering functional enrichment and joint linkage disequilibrium among all SNPs, PAINTOR may refine the set of likely causal variants; rather than imposing a hard threshold, PAINTOR allows for a gradient of evidence supporting causality, and the two sets of calculations are based on different summary statistics. CCV analyses used both iCOGS and OncoArray genotypes, while PAINTOR used only OncoArray data (Fig. 1 and Methods).

Variant annotation. Variant genome coordinates were converted to assembly GRCh38 with liftOver and uploaded to Variant Effect Predictor⁵⁰ to determine their effect on genes, transcripts and protein sequence. The commercial software Alamut Batch version 1.6 was also used to annotate coding and splicing variants. PolyPhen-2 (ref. ⁹¹), SIFT⁹² and MAPP⁹³ were used to predict the consequences of missense coding variants. MaxEntScan⁹⁴, Splice-Site Finder and Human Splicing Finder⁹⁵ were used to predict splicing effects.

INQUISIT analysis. *Logic underlying INQUISIT predictions.* Briefly, genes were considered to be potential targets of candidate causal variants through effects on: (1) distal gene regulation; (2) proximal regulation; or (3) a gene's coding sequence.

We intersected CCV positions with multiple sources of genomic information, including chromatin interactions from capture Hi-C experiments performed in a panel of six breast cell lines⁹⁶, ChIA-PET⁹⁷ and Hi-C (Rao et al. 2014). We used computational enhancer-promoter correlations (PreSTIGE98, IM-PET (He et al. 2014), FANTOM5 (ref. 99) and super-enhancers28), results for breast tissue-specific expression variants from multiple independent studies (TCGA, METABRIC and NHS; Methods), allele-specific imbalance in gene expression100, transcription factor and histone modification ChIP-Seq from the ENCODE and Roadmap Epigenomics Projects, together with the genomic features found to be significantly enriched as described above, gene expression RNA-Seq from several breast cancer lines and normal samples, and topologically associated domain boundaries from T-47D cells (ENCODE¹⁰¹; Methods and Key Resources Table). To assess the impact of intragenic variants, we evaluated their potential to alter splicing using Alamut Batch to identify new and cryptic donors and acceptors, and several tools to predict the effects of coding sequence changes (see 'Variant annotation' section). Variants potentially affecting post-translational modifications were downloaded from the 'A Website Exhibits SNP On Modification Event' database (http://www.awesome-hust. com/)102. The output from each tool was converted to a binary measure to indicate deleterious or tolerated predictions.

Scoring hierarchy. Each target gene prediction category (distal, promoter or coding) was scored according to different criteria. Genes predicted to be distally regulated targets of CCVs were awarded points based on physical links (for example, CHi-C), computational prediction methods, allele-specific expression or expression variant associations. All CCVs and HPPVs were considered as potentially involved in distal regulation. Intersection of a putative distal enhancer with genomic features found to be significantly enriched (see 'Genomic features enrichment' for details) were further upweighted. Multiple independent interactions were awarded an additional point. CCVs and HPPVs in gene proximal regulatory regions were intersected with histone ChIP-Seq peaks characteristic of promoters and assigned to the overlapping transcription start sites (defined as $-1.0 \,\mathrm{kb}$ to $+0.1 \,\mathrm{kb}$). Further points were awarded to such genes if there was evidence of expression variant association or allele-specific expression, while a lack of expression resulted in down-weighting as potential targets. Potential coding changes, including missense, nonsense and predicted splicing alterations, resulted in the addition of one point to the encoded gene for each type of change, while lack of expression reduced the score. We added an additional point for predicted target genes that were also breast cancer drivers. For each category, scores ranged from 0-7 (distal), 0-3 (promoter) or 0-2 (coding). We converted these scores into 'confidence levels': level 1 (highest confidence; distal score > 4, promoter score ≥ 3 and coding score > 1); level 2 $(1 \le \text{distal score} \le 4, \text{ promoter score} = 1 \text{ or } 2 \text{ and coding score} = 1); \text{ and level } 3$ $(0 < distal\ score < 1, 0 < promoter\ score < 1\ and\ 0 < coding < 1)$. For genes with multiple scores (for example, those predicted as targets from multiple independent risk signals or predicted to be impacted in several categories), we recorded the highest score. Driver and transcription factor gene enrichment analysis was carried out using INQUISIT scores before adding a point for driver gene status. Modifications to the pipeline since original publication2 included:

- Topologically associated domain boundary definitions from ENCODE T-47D Hi-C analysis. Previously, we used regions from Rao, Cell 2013.
- eQTL (addition of NHS normal and tumor samples).
- Allele-specific imbalance using TCGA and Genotype-Tissue Expression RNA-Seq data¹⁰⁰.
- Capture Hi-C data from six breast cell lines¹⁰³.

В

- Additional bio-features derived from global enrichment in this study.
- Variants affecting sites of post-translational modification¹⁰².

Multi-signal targets. To test whether more genes were targeted by multiple signals than would be expected by chance, we modeled the number of signals per gene by negative binomial regression (R function glm.nb; package MASS) and Poisson regression (R function glm; package stats) with ChIA-PET interactions as a covariate, and adjusted by fine-mapping region. Likelihood ratio tests were used to compare goodness of fit. Rootograms were created using the R function rootogram (package vcd).

Pathway analysis. The pathway gene set database dated 1 September 2018 was used¹⁰⁴ (http://download.baderlab.org/EM_Genesets/current_release/Human/symbol/). This database contains pathways from Reactome¹⁰⁵, the NCI Pathway Interaction Database¹⁰⁶, Gene Ontology¹⁰⁷, HumanCyc¹⁰⁸, MSigdb¹⁰⁹, NetPath¹¹⁰ and Panther¹¹¹. All duplicated pathways, defined in two or more databases, were included. To provide more biologically meaningful results, only pathways that contained ≤200 genes were used.

We interrogated the pathway annotation sets with the list of high-confidence (level 1) INQUISIT genes. The significance of over-representation of the INQUISIT genes within each pathway was assessed with a hypergeometric test using the R function phyper as follows:

$$P(x|n, m, N) = 1 - \sum_{i=0}^{x-1} \frac{\binom{m}{i} \binom{N-m}{n-i}}{\binom{N}{n}}$$

where x is the number of level 1 genes that overlap with any of the genes in the pathway, n is the number of genes in the pathway, m is the number of level 1 genes that overlap with any of the genes in the pathway dataset ($m_{\text{strong }GO} = 145$; $m_{\text{ER-negative }GO} = 50$; $m_{\text{ER-negative }GO} = 27$; $m_{\text{ER-neutral }GO} = 73$; $m_{\text{strong pathways}} = 121$; $m_{\text{ER-nesitive }GO} = 12$; $m_{\text{ER-neutral pathways}} = 68$) and N is the number of genes in the pathway dataset ($N_{\text{genes }GO} = 14$,252; $N_{\text{genes pathways}} = 10$,915). We only included pathways that overlapped with at least two level 1 genes. We used the Benjamini-Hochberg FDR¹¹² at the 5% level.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The credible set of causal variants (determined by either multinomial stepwise regression or PAINTOR) is provided in Supplementary Table 2c. Further information and requests for resources should be directed to M.K.B. (bcac@ medschl.cam.ac.uk).

References

- Couch, F. J. et al. Genome-wide association study in *BRCA1* mutation carriers identifies novel loci associated with breast and ovarian cancer risk. *PLoS Genet.* 9, e1003212 (2013).
- Gaudet, M. M. et al. Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. PLoS Genet. 9, e1003173 (2013).
- 61. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. *Nat. Genet.* **39**, 906–913 (2007).
- Antoniou, A. C. et al. RAD51 135G→C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies.
 Am. J. Hum. Genet. 81, 1186–1200 (2007).
- Barnes, D. R. et al. Evaluation of association methods for analysing modifiers of disease risk in carriers of high-risk mutations. *Genet. Epidemiol.* 36, 274–291 (2012).
- _64. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient metaanalysis of genomewide association scans. *Bioinformatics* 26, 2190–2191 (2010).
- Zhong, H. & Prentice, R. L. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. *Biostatistics* 9, 621–634 (2008).
- Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).
- 67. Baran, Y. et al. Fast and accurate inference of local ancestry in Latino populations. *Bioinformatics* **28**, 1359–1367 (2012).
- Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. *Nat. Genet.* 44, 955–959 (2012).
- 69. Genomes Project, C. et al. An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56–65 (2012).
- Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 12, 323 (2011).
- 71. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. *Genome Biol.* 12, R41 (2011).
- Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152, 633–641 (2013).
- Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. *Bioinformatics* 28, 1353–1358 (2012).
- The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. *Nature* 489, 57–74 (2012).
- Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic Acids Res.
 44, D726–D732 (2016).
- 76. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. *Nature* 518, 317–330 (2015).
- 77. Stunnenberg, H. G., International Human Epigenome Consortium& Hirst, M. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. *Cell* **167**, 1897 (2016).
 - Pellacani, D. et al. Analysis of normal human mammary epigenomes reveals cell-specific active enhancer states and associated transcription factor networks. Cell Rep. 17, 2060–2074 (2016).
 - Cheneby, J., Gheorghe, M., Artufel, M., Mathelier, A. & Ballester, B. ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-Seq experiments. *Nucleic Acids Res.* 46, D267–D275 (2018).
 - Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2014).

- Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).
- Wang, J. et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. *Genome Res.* 22, 1798–1812 (2012).
- Mathelier, A. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. *Nucleic Acids Res.* 44, D110–D115 (2016).
- Tan, G. & Lenhard, B. TFBSTools: an R/bioconductor package for transcription factor binding site analysis. *Bioinformatics* 32, 1555–1556 (2016).
- 85. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. *Bioinformatics* 27, 1017–1018 (2011).
- Grassi, E., Zapparoli, E., Molineris, I. & Provero, P. Total binding affinity profiles of regulatory regions predict transcription factor binding and gene expression in human cells. PLoS ONE 10, e0143627 (2015).
- Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* 26, 841–842 (2010).
- McLeay, R. C. & Bailey, T. L. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11, 165 (2010).
- Kichaev, G. et al. Improved methods for multi-trait fine mapping of pleiotropic risk loci. *Bioinformatics* 33, 248–255 (2017).
- McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
- Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. *Nat. Methods* 7, 248–249 (2010).
- Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat. Protoc.* 4, 1073–1081 (2009).
- Stone, E. A. & Sidow, A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. *Genome Res.* 15, 978–986 (2005).
- Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. *J. Comput. Biol.* 11, 377–394 (2004).
- Desmet, F. O. et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. *Nucleic Acids Res.* 37, e67 (2009).
- 96. Beesley, J. et al. Chromatin interactome mapping at 141 independent breast cancer risk signals.
- 97. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. *Nature* **462**, 58–64 (2009).
- Corradin, O. et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 24, 1–13 (2014).
- 99. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. *Nature* **507**, 455–461 (2014).
- 100. Moradi Marjaneh, M. et al. High-throughput allelic expression imbalance analyses identify 14 candidate breast cancer risk genes.
- Dixon, J. R. et al. Integrative detection and analysis of structural variation in cancer genomes. *Nat. Genet.* 50, 1388–1398 (2018).
- Yang, Y. et al. AWESOME: a database of SNPs that affect protein post-translational modifications. *Nucleic Acids Res.* 47, D874–D880 (2019).
- Beesley, J. et al. Chromatin interactome mapping at 139 independent breast cancer risk signals. Preprint at bioRxiv https://www.biorxiv.org/ content/10.1101/520916v1.article-info (2019).
- Merico, D., Isserlin, R. & Bader, G. D. Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map. *Methods Mol. Biol.* 781, 257–277 (2011).
- Vastrik, I. et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 8. R39 (2007).
- Schaefer, C. F. et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 37, D674–D679 (2009).
- 107. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat. Genet.* **25**, 25–29 (2000).
- Romero, P. et al. Computational prediction of human metabolic pathways from the complete human genome. *Genome Biol.* 6, R2 (2005).
- 109. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl Acad. Sci. USA* 102, 15545–15550 (2005).
- Kandasamy, K. et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 11, R3 (2010).

В

- Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).
- 112. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. *J. R. Stat. Soc. B Stat. Methodol.* 57, 289–300 (1995).

NATURE GENETICS ARTICLES

DispatchDate: 03.12.2019 · ProofNo: 537, p.23

Acknowledgements

We thank all of the individuals who took part in these studies, as well as all of the researchers, clinicians, technicians and administrative staff who enabled this work to be carried out. This work was supported by the European Union's Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie grant agreement number 656144. Genotyping of the OncoArray was principally funded from three sources: the PERSPECTIVE project (funded by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the 'Ministère de l'Économie de la Science et de l'Innovation du Québec' (through Genome Québec) and the Quebec Breast Cancer Foundation); the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative and the Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE) project (NIH grants U19 CA148065 and X01HG007492); and Cancer Research UK (C1287/A10118 and C1287/A16563). BCAC is funded by Cancer Research UK (C1287/A16563), by the European Community's Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS) and by the European Union's Horizon 2020 Research and Innovation Programme under grant agreements 633784 (B-CAST) and 634935 (BRIDGES). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the 'CIHR Team in Familial Risks of Breast Cancer' program, and the Ministry of Economic Development, Innovation and Export Trade of Quebec (grant PSR-SIIRI-701). Combining of the GWAS data was supported in part by NIH Cancer Post-Cancer GWAS initiative grant U19 CA

Author contributions

acknowledgments, see the Supplementary Note.

L.Fa., H.A., J.Bee., D.R.B., J.Al., S.Ka., K.A.P., K.Mi., P.So., A.Le., M.Gh., P.D.P.P., J.C.C., M.G.C., M.K.S., R.L.M., V.N.K., J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., P.K. and A.M.D. conceived of the study idea. L.Fa., H.A., J.Bee., D.R.B., J.Al., J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., P.K. and A.M.D. developed the methodology. J.Bee., J.P.T. and M.L. provided software. L.Fa., H.A., J.Bee., D.R.B., J.Al., S.Ka., C.Tu., M.Mor. and X.J. performed a formal analysis. S.A., K.A., M.R.A., I.L.A., H.A.C., N.N.A., A.A., V.A., K.J.A., B.K.A., B.A., P.L.A., J.Az., J.Ba., R.B.B., D.B., A.B.F., J.Ben., M.B., K.B., A.M.B., C.B., W.B., N.V.B., S.E.B., B.Bo., A.B., H.Bra., H.Bre., I.B., I.W.B., A.B.W., T.B., B.Bu., S.S.B., Q.C., T.C., M.A.C., N.J.C., L.C., F.C., J.S.C., B.D.C., J.E.C., J.C., H.C., W.K.C., K.B.M., C.L.C., J.M.C., S.C., F.J.C., A.C., S.S.C., C.C., K.C., M.B.D., M.D.H., P.D., O.D., Y.C.D., G.S.D., S.M.D., T.D., I.D.S., A.D., S.D., M.Dum., M.Dur., L.D., M.Dw., D.M.E.,

148065 (DRIVE; part of the GAME-ON initiative). For a full description of funding and

C.E., M.E., D.G.E., P.A.F., U.F., O.F., G.F., H.F., L.Fo., W.D.F., E.F., L.Fr., D.F., M.Ga., M.G.D., G.Ga., P.A.G., S.M.G., J.Ga., J.A.G., M.M.G., V.G., G.G.G., G.Gl., A.K.G., M.S.G., D.E.G., A.G.N., M.H.G., M.Gr., J.Gr., A.G., P.G., E.H., C.A.H., N.H., P.Ha., U.H., P.A.H., J.M.H., M.H., W.H., C.S.H., B.A.M., J.H., P.Hi., F.B.L., A.H., M.J.H., J.L.H., A.Ho., G.H., P.J.H., E.N.I., C.I., M.I., A.Jag., M.J., A.Jak., P.J., R.J., R.C.J., E.M.J., N.J., M.E.J., A.Juk., A.Jun., R.Ka., D.K., B.Pes., R.Ke., M.J.K., E.K., J.I.K., J.K., C.M.K., Y.K., I.K., V.K., S.Ko., K.K.S., T.K., A.K., K.K., Y.L., D.L., E.L., G.L., J.Le., F.L., A.Li., W.L., J.Lo., A.Lo., J.T.L., J.Lu., R.J.M., T.M., E.M., A.Ma., M.Ma., S.Man., S.Mag., M.E.M., K.Ma., D.M., R.M., L.M., C.M., N.Me., A.Me., P.M., A.Mi., N.Mi., M.Mo., F.M., A.M.M., V.M.M., T.A., S.A.N., R.N., K.L.N., N.Z.N., H.N., P.N., F.C.N., L.N.Z., A.N., K.O., E.O., O.I.O., H.O., N.O., A.O., V.S.P., J.Pa., S.K.P., T.W.P.S., M.T.P., J.Pau., J.S.P., B.Pei., B.Y.K., P.P., J.Pe., D.P.K., K.Pr., R.P., N.P., D.P., M.A.P., K.Py., P.R., S.J.R., J.R., R.R.M., G.R., H.A.R., M.R., A.R., C.M.R., E.S., E.S.H., D.P.S., M.Sa., C.Sa., E.J.S., M.T.S., D.F.S., R.K.S., A.S., M.J.S., B.S., P.Sc., C.Sc., R.J.S., L.S., C.M.D., M.Sh., P.Sh., C.Y.S., X.S., C.F.S., T.P.S., S.S., M.C.S., J.J.S., A.B.S., J.St., D.S.L., C.Su., A.J.S., R.M.T., Y.Y.T., W.J.T., J.A.T., M.R.T., M.Te., S.H., M.B.T., A.T., M.Th., D.L.T., M.G.T., M.Ti., A.E.T., R.A.E., I.T., D.T., G.T.M., M.A.T., N.T., M.Tz., H.U.U., C.M.V., C.J.A., L.E.K., E.J.R., A.Ve., A.Vi., J.V., M.J.V., Q.W., B.W., C.R.W., J.N.W., C.W., H.W., R.W., A.W., A.H.W., D.Y., Y.Z. and W.Z. provided resources. K.Mi., J.D., M.K.B., Q.W., R.Ke., J.C.C. and M.K.S. curated and managed the data. L.Fa., H.A., J.Bee., G.C.T., D.F.E., P.K. and A.M.D. wrote the original draft of the manuscript. D.R.B., J.Al., P.So., A.Le., V.N.K., J.D.E., S.L.E., A.C.A. and J.Si wrote and edited the manuscript. L.Fa., H.A., J.Bee. and C.Tu visualized the results. A.C.A., G.C.T., J.Si., D.F.E., P.K. and A.M.D. supervised the project. L.Fa., P.D.P.P., J.C.C., M.G.C., M.K.S., R.L.M., V.N.K., J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., P.K. and A.M.D. acquired funding. All authors read and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

В

Supplementary information is available for this paper at https://doi.org/10.1038/ \pm 1588-019-0537-1.

Correspondence and requests for materials should be addressed to P.K. or A.M.D.

Reprints and permissions information is available at www.nature.com/reprints.

QUERY FORM

	Nature Genetics	
Manuscript ID	[Art. Id: 537]	
Author	Laura Fachal	

AUTHOR:

The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections directly in the e.proofing tool rather than marking them up on the PDF. This will ensure that your corrections are incorporated accurately and that your paper is published as quickly as possible.

Query No.	Nature of Query
Q1:	Per journal style, separate institutes/organizations should be listed as separate affiliation addresses. Please indicate whether the address 'Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK' should be split into two (i.e. 'Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester, UK' and 'Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary's Hospital, Manchester, UK').
Q2:	Please check the order of the following affiliation addresses is correct as edited (if A is part of B and B is part of C, the order should be A, B, C (separated by commas): 'Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA' and 'University Clinic of Radiotherapy and OncologyMedical Faculty, Ss. Cyril and Methodius University in SkopjeSkopjeRepublic of North Macedonia'.
Q3:	Please check your article carefully, coordinate with any co-authors and enter all final edits clearly in the eproof, remembering to save frequently. Once corrections are submitted, we cannot routinely make further changes to the article.
Q4:	Note that the eproof should be amended in only one browser window at any one time; otherwise changes will be overwritten.
Q5:	Author surnames have been highlighted. Please check these carefully and adjust if the first name or surname is marked up incorrectly. Note that changes here will affect indexing of your article in public repositories such as PubMed. Also, carefully check the spelling and numbering of all author names and affiliations, and the corresponding email address(es).
Q6:	You cannot alter accepted Supplementary Information files except for critical changes to scientific content. If you do resupply any files, please also provide a brief (but complete) list of changes.
Q7:	Please ensure that genes are correctly distinguished from gene products: for genes, official gene symbols (e.g., NCBI Gene) for the relevant species should be used and italicized; gene products such as proteins and noncoding RNAs should not be italicized.
Q8:	Your paper has been copy edited. Please review every sentence to ensure that it conveys your intended meaning; if changes are required, please provide further clarification rather than reverting to the original text. Please note that formatting (including hyphenation, Latin words, and any reference citations that might be mistaken for exponents) has been made consistent with our house style.

QUERY FORM

	Nature Genetics
Manuscript ID	[Art. Id: 537]
Author	Laura Fachal

AUTHOR:

The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections directly in the e.proofing tool rather than marking them up on the PDF. This will ensure that your corrections are incorporated accurately and that your paper is published as quickly as possible.

Query No.	Nature of Query
Q9:	Please check the footnote to Table 1 carefully to ensure that all of the edits retain the intended meaning. In addition, please check the definition of 'FP' in footnote 'j' and confirm whether the definition of 'P' is required since there are no 'P' labels in the table itself. Also, please note that the part about brackets has been removed from footnote 'k' as there are no brackets around genes.
Q10:	Since the paragraphs following the sentence 'We found significant enrichment of CCVs (FDR 5%) in four genomic features' are so long, the numerals i-iv have been replaced with level 3 headings and where required the following sentences have been reworded for clarity. Please check the meaning is retained.
Q11:	Please check that the edits to the Fig. 3 caption retain the intended meaning. In the Fig. 3a caption, please define 'Open chrom' and 'Heterochrom'. In the Fig. 3b caption, please define 'Luminal pr'.
Q12:	In the original document, Figs 4 and 5 seemed to be in the wrong order. Please check that Figs 4 and 5, their cap tions and citations are all correct now.
Q13:	Please check that the edits to the Fig. 4 caption retain the intended meaning (especially the definition of 'ChIP Seq BS'; is this correct, or does the 'BS' stand for 'binding sites'?). Also, please check the number of genes, as there appear to be 69 rather than 79 in the figure.
Q14:	Please check that the edits to the sentence 'Based on genome-wide chromosome conformation capture from retain the intended meaning.
Q15:	'Three examples of INQUISIT using genomic features to identify predict target genes' has been made into a head ing. Please check this is correct. Also, please clarify whether it should say 'predict' or 'identify'.
Q16:	Please provide a label (with units) for the colour scale bar in Fig. 5b.
Q17:	In the Fig. 5b caption, please define: cAMP, CARM1, cGMP, EGFR, FGFR, GATA, MAPK, MET, NOTCH PTEN, PTK6, RAS, ROBO, ROS, TGFBR and WNT.
Q18:	In the sentence 'We also found significant over-representation of additional' please check the following have been expanded correctly: cAMP, PI3K, FGFR, EGFR and TGFBR. Also, please expand 'NOTCH', 'RAS' and 'WNT' if appropriate.
Q19:	Please check that the edits to the sentence 'However, in other signals, we also identified four coding changes retain the intended meaning.
Q20:	In the sentence 'For iCOGS, all known variants from the March 2010' please define ' r^{2} ' at first mention (i.e. coefficient of determination).

QUERY FORM

	Nature Genetics	
Manuscript ID	[Art. Id: 537]	
Author	Laura Fachal	

AUTHOR:

The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections directly in the e.proofing tool rather than marking them up on the PDF. This will ensure that your corrections are incorporated accurately and that your paper is published as quickly as possible.

Query No.	Nature of Query
Q21:	The meaning of the sentence 'Once a final model had been obtained for the strong' is unclear. Please suggest alternative wording.
Q22:	Please check that the edits to the sentence 'High linkage disequilibrium between a variant' retain the intended meaning.
Q23:	Per journal style, variables should be in non-bold italics (unless a variable is multiple letters, in which case it is non-bold/roman). Super- or subscript labels should be roman type (unless they also represent a variable, in which case they are italic). Vectors are set in bold roman font. The magnitude of a vector is in non-bold italics, as are scalar components, tensors and matrices. Please ensure your text is consistent with this throughout.
Q24:	Please check that the edits to the sentence 'Following ref. 65, we then estimated mean' retain the intended meaning.
Q25:	In the sentence 'We conducted a search to find motif occurrences' the meaning of 'in the genomic featured.' is unclear. Please suggest alternative wording.
Q26:	Please check the equation in the sentence 'We ran PAINTOR four times to generate four independent' has been reproduced correctly.
Q27:	Please check that the edits to the text 'By considering functional enrichment and jointused only OncoArray data' retain the intended meaning.
Q28:	In the sentence 'We intersected CCV positions with multiple sources of genomic information' you cite 'Rao et al. 2014'. Please clarify which existing reference this is and add the citation number or, if this is not in the reference list, provide full reference details.
Q29:	In the sentence 'We used computational enhancer–promoter correlations' you cite 'He et al. 2014'. Please provide the reference citation number or full reference details for this source. Also, please clarify what the 'Key Resources Table' is. Cited tables should be numbered (i.e., Table 1 or Supplementary Table 1).
Q30:	The bullet point list says 'Previously, we used regions from Rao, Cell 2013'. Should 'Cell' say 'et al'? Also, please provide the reference citation number or full reference details for this source.
Q31:	The sentence 'Genotyping of the OncoArray was principally funded from three sources' has been edited to make the 'three sources clearer'. Please check the intended meaning is retained.
Q32:	Please check that all funders have been appropriately acknowledged and that all grant numbers are correct.

Corresponding author(s):	Alison Dunning, Peter Kraft
Last updated by author(s):	Aug 10, 2019

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see <u>Authors & Referees</u> and the <u>Editorial Policy Checklist</u>.

_					
\mathcal{C}	tэ	ıŧı	ist	11	rc
.)			וכו	- 11	

For	all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a	Confirmed
	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
	A description of all covariates tested
	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i>
	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated
	Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

No software was used for the data collection.

Data analysis

The software used have been described in details in Online Methods section. Softwares included: IMPUTE2, MEME Suite (FIMO, AME, fasta-shuffle-letters), Meta, R (R libraries: stats, nnet, MASS, vcd, TFBSTools, MatrixRider, multinomRob, multiwaycov), Bedtools, MACs, Variant Effect Predictor, Alamut® Batch v1.6 (tools PolyPhen-2, SIFT, MAPP, MaxEntScan, Splice-Site Finder, Human Splicing Finder), PAINTOR, liftover, RMA, GlueQC,, arrayQualityMetrics v3.24.014, MACH, Local Ancestry in admixed Populations, GISTIC2.

The custom scripts used during the study are available from the corresponding author on reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The credible set of causal variants (determined by either multinomial stepwise regression and PAINTOR) is provided in Supplementary Table S2C. Further information and requests for resources should be directed to and will be fulfilled by Manjeet Bolla (bcac@medschl.cam.ac.uk)

Etalal assa	: : :				
<u>.</u>		reporting			
	ne below tha	at is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.			
Life sciences		Behavioural & social sciences Ecological, evolutionary & environmental sciences			
For a reference copy of	the document w	vith all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>			
Life scier	nces s	tudy design			
All studies must dis	sclose on the	ese points even when the disclosure is negative.			
Sample size	controls of E	size calculation was made. We aimed to bring together the largest possible sample size (109,900 breast cancer cases and 88,937 European ancestry) with GWAS imputed up to 1000 Genomes Project Panel to study the role of genetic variants in breast cancer. size included in this study (N \sim 199,000) is 2 times larger than previous breast cancer fine-mapping studies (N \sim 100,000 samples).			
Data exclusions	Michailidou following rea with ER state	protocols were used to conduct rigorous data quality control for each GWAS at the study level (more details can be found in et al. Nature 2017 and Amos et al. Cancer Epidemiol Biomarkers Prev 2017). Imputed variants were excluded for the asons: (i) info score < 0.3 and (ii) minor allele frequencies (MAF) < 0.001 in both the iCOGS and OncoArray datasets. Only samples us were included in the multinomial regression analyses (cases with ER status available: 29,561 iCOGS, 55,081 OncoArray). More at the data exclusions can be found in the Online Methods section.			
Replication		observational study - analyses were based on all available data. All signals show no statistically significant heterogeneity between estimated in iCOGS and OncoArray cohorts.			
Randomization	Not relevant	t because the study is not experimental.			
Blinding	Not relevant	t because the study is not experimental.			
We require informati	ion from autho	specific materials, systems and methods ors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.			
Materials & ex					
n/a Involved in th	•	n/a Involved in the study			
Antibodies ChIP-seq					
Eukaryotic cell lines					
Palaeontology MRI-based neuroimaging					
Animals and other organisms					
	Human research participants				
Clinical da	ta				
Human rese	arch par	rticipants			
Policy information	about <u>studie</u>	es involving human research participants			
Population chara	acteristics	Analyses were conducted on breast cancer cases and controls of European ancestry. The association between each variant and breast cancer risk was adjusted by study (iCOGS) or country (OncoArray), and eight (iCOGS) or ten (OncoArray) ancestry-informative principal components.			
Pocruitmont		Enidemiological data for European women were obtained from 75 breast cancer case-control studies participating in the Breast			

Recruitment

Epidemiological data for European women were obtained from 75 breast cancer case-control studies participating in the Breast Cancer Association Consortium (BCAC). The majority of studies are population-based case—control studies, or case—control studies nested within population-based cohorts, but a subset of studies oversampled cases with a family history of the disease.

Subjects included from CIMBA are women of European ancestry aged 18 years or older with a pathogenic variant for BRCA1. The majority of the participants were sampled through cancer genetics clinics. Multiple members of the same family were included in some instances.

Ethics oversight

All participating studies were approved by their appropriate ethics review board and all subjects provided informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.