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Influence of fifth-order nonlinearities on the statistical fluctuations in emission intensities in a
photonic open-cavity complex system
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High-order nonlinear optical effects have become an important feature of photonic systems, both ordered and
disordered. In this work, a very large and robust set of experimental data obtained from the emission spectra
of a trivalent neodymium ion-based random laser, whose action mechanism relies upon gain and disorder, was
characterized in detail. Using an effective model, it was possible to describe how the optical nonlinearities of
the disordered gain medium affect the statistical behavior of the intensity fluctuations of the random laser for
excitations close to and well above the laser threshold. A theoretical framework is presented and, in particular, in
the regime well above threshold a nice fit to the experimental data is obtained with a distribution that incorporates
nonlinearities up to fifth order, the Izrailev distribution.
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I. INTRODUCTION

Random lasers (RLs) are fascinating open-cavity optical
sources, with several applications in photonics and complex
systems [1–10]. This type of device generates laser emission
with a cavity-free configuration, where a gain medium am-
plifies the light emitted by excited atoms, ions, or molecules,
and a disordered medium enhances the phenomenon of stim-
ulated emission by providing multiple light scattering. After
the experimental observation of Lawandy and coworkers [1],
several research groups have explored ingenious types of ran-
dom lasing architectures. A compendium incorporating the
newest ideas and the most up-to-date features can be found
in Refs. [2–7], some of which have generated important con-
tributions from science to society. For instance, Polson et al.
[8,9] and Wang et al. [10] have shown the feasibility of diag-
nosing cancerous human tissue using RL devices.

Due to the small lasing threshold and large fluorescence
efficiency of rare-earth ions hosted in dielectric structures
[11,12], RLs based on trivalent neodymium (Nd3+) crystalline
powders have become very interesting systems for appli-
cations and as test beds of new RL schemes and physical
mechanisms [2,13–19].

Despite the outstanding development in RL technology in
the past years, the fundamental physics underlying the ran-
dom fluctuations of the spectrally resolved emission intensity,
given the same initial experimental conditions of the exci-
tation beam, remains an open question, which requires full
understanding for allowing a greater application palette for
such a kind of optical source. A valid approach may be to

assume that the random fluctuations are an intrinsic feature
of trivalent rare-earth-ions-based RLs [19]. In this scenario,
statistical physics methods can provide alternatives to charac-
terize the emission intensities of RL systems.

In addition, the nonlinear optical effects associated with
RLs based on Nd3+ crystalline powders include, but are
not limited to, Stokes and anti-Stokes frequency conversion
[17,18]. It is thus a great challenge to provide a detailed fore-
cast about the influence of these effects on the RL emission
intensity as a function of the pumping power. In this sense,
studies of the random fluctuations of the emission intensity
in RL systems have so far considered up to the third-order
nonlinearity of the gain medium [17–29].

In this work, an effective model is proposed that considers
effects of higher-order nonlinearities on the probability den-
sity function (PDF) of RL emission intensities. We present
in Sec. II results of a large set of experimental data (105 RL
emission spectra) obtained from a Nd3+ crystalline powder
based RL system. The theoretical analysis of the results fol-
lows in Secs. III and IV. In particular, it is shown in the regime
well above threshold that a nice fit to the experimental data
is obtained with the Izrailev distribution, which incorporates
nonlinearities up to fifth order. At last, conclusions and final
remarks are left for Sec. V.

II. EXPERIMENTAL DETAILS

The experiments were performed using a crystalline
powder of Nd0.8Y0.2Al3(BO3)4 (NdYAB). The sample was
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FIG. 1. Characterization of the Nd3+-based random laser (RL).
(a) Experimental setup. (b) Emission spectrum of the RL below [blue
(left)] and above [red (right)] the laser threshold. (c) Intensity (black
circles) and FWHM (blue circles) as a function of the normalized
power with respect to the threshold P/Pth. The time for acquiring
each RL emission spectrum (sampling time) was 100 ms.

prepared by the polymeric precursor method (for further
details, see [12,18]), and the NdYAB nanocrystals sizes range
from 20 to 600 nm.

A scheme of the experimental setup is presented in
Fig. 1(a). The excitation source was an optical parametric
oscillator (OPO) operating at 808 nm (10-Hz repetition rate,
5-ns pulse width). The incident energy was controlled by a
half-wave plate and a polarizer, and the beam was focused by
a 15-cm focal length lens at 45◦ to the surface of the powder.
The emitted light was collected at the normal direction to the
sample surface by a set of lenses in a microscope configura-
tion, and sent to a spectrometer coupled to a CCD camera with
spectral resolution of 0.1 nm.

According to the Nd3+ energy levels in YAB, by excit-
ing the transition 4I9/2 → 4F5/2 at 808 nm one obtains RL
emission at 1064 nm (Nd3+ transition 4F3/2 → 4I11/2) [18].
Figure 1(b) shows the corresponding emission spectra for
two different excitation energies, one below the RL threshold
(excitation power normalized by the threshold value P/Pth =
0.53, left), where the spontaneous emission dominates, and
the other above threshold (P/Pth = 1.65, right), where the
narrow RL spectral emission is seen. Figure 1(c) shows the
RL emission intensity at 1064 nm and the full width at half-
maximum (FWHM) as a function of P/Pth. The abrupt change
in the slope of the lines is due to the transition from the spon-
taneous emission to the RL regime. The RL energy threshold
is 0.32 mJ, corresponding to a power of 64 kW.

To perform the statistical analysis of emitted intensities we
acquired a large series of 105 emission spectra for an exci-
tation power slightly above the RL threshold (P/Pth = 1.03)
and the other well above (P/Pth = 3.9). The acquisition time
of each spectrum was 100 ms.

In the next sections, a theoretical model that takes into
account the third- and fifth-order nonlinear susceptibilities
to describe the probability density of emission intensities is
presented and discussed.

III. STOCHASTIC MODEL AND EFFECTIVE
THIRD-ORDER SUSCEPTIBILITY CONTRIBUTION

It is well known that an intense electromagnetic wave trav-
eling through a nonlinear medium with refractive index n(r)
generates a material response modeled through Maxwell’s
equations by

∇ × H(r, t ) = ε0n2(r)∂t E(r, t ) + ∂t PNL(r, t, E),

∇ × E(r, t ) = −μ0∂t H(r, t ), (1)

in the presence of a nonlinear polarization PNL [27], whose ith
component is generally given by

PNL,i = ε0(χ (1)
i j E j + χ

(2)
i jk E jEk + χ

(3)
i jkl E jEkEl

+χ
(4)
i jklmE jEkElEm + χ

(5)
i jklmnE jEkElEmEn + · · · ).

(2)

In the expression above, χ ( f ) represents the effective nonlin-
ear susceptibility tensor of rank f + 1 (the term effective is
used here to recognize pure f + 1 nonlinear processes as well
as eventual cascade processes). In the case of the Nd3+-based
RL, the refractive index n(r) displays a random spatial profile
due to the disordered configuration of the nanocrystals in the
sample.

The electric field E(r, t ) can be written in terms of the
eigenvalues ωm and eigenvectors Em(r) associated with the
linear solutions in the form [28,29]

E(r, t ) =
∑

m

√
ωmam(t )Em(r) exp(−iωmt ). (3)

Below the approximation of slow amplitude modes
is considered, in which the phase dynamics of
am(t ) = Am(t ) exp[iφm(t )] evolves much faster than its
amplitude [28–31]. In this approach, the temporal evolution
of the optical modes can be written in terms of the nonlinear
polarization and nonlinear susceptibilities. This can be
implemented by considering random couplings (denoted by
g(2)

sp , g(4)
spqr , etc.) that incorporate the disordered feature of the

RL system with spatially random refractive index n(r). The
Langevin equation for the time evolution of the complex
amplitudes am(t ) is given by [28,29]

dam

dt
= −∂�( f )

∂a∗
m

+ ηm(t ), (4)

where ηm(t ) denotes a Gaussian white noise with null av-
erage and second-order correlation function 〈ηm(t )ηm′ (t ′)〉 =
2Qδm,m′δ(t − t ′), with Q as the noise strength. We have con-
sidered a sum of additive and multiplicative noises, though
only the latter contributes effectively to the model upon av-
eraging out the rapidly varying phases in the slow amplitude
modes approach [29]. Several sources can be associated with
multiplicative noise processes, including the coupling of the
electromagnetic field with stochastic fluctuations of the exter-
nal pump source, the finite lifetime of photons in the active
medium, inversion fluctuations, and polarization fluctuations
[32]. Furthermore, all nonlinear effects are included in �( f ).
The use of the superscript f in �( f ) is a reminder of the tensor
rank f + 1 that limits the expansion (2). In other words, �( f )

represents the interaction between the electric field and the
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nonlinear polarization expanded in terms of nonlinear suscep-
tibilities up to χ ( f ).

This approach was applied [28–31] to connect the
phenomenon of replica symmetry breaking (RSB) in pho-
tonic systems with their third-order susceptibility. Moreover,
this effective model can be also used to find the sta-
tionary distribution of emission intensities in disordered
systems such as RLs. Recently, this was shown [19,20]
by taking into account the effects of the third-order
susceptibility, for which �(3)(χ (1), χ (3) ) = ∑

sp g(2)
sp asa∗

p +
1
4

∑
spqr g(4)

spqrasapa∗
qa∗

r , with the coupling tensor g(4) related
to χ (3). The Fokker-Planck equation for the intensity Im =
cm|am|2 that follows from Eq. (4) has stationary PDF solution
with general form

P(Im; km, bm) = DmIkm−1
m exp (−bmIm), (5)

where Dm is the normalization constant, the parameters km and
bm depend on the strength Q of the multiplicative noise, and
the couplings g(2) and g(4) are associated with the disordered
active medium through

km = 1

2Q

(
γm − αm −

∑
r 	=m

Re{g(4)
mrmr + g(4)

mrrm} Ir

2cr

)
− 1,

(6)
and bm = Re{g(4)

mmmm}/(4Qcm), in which γm and αm are re-
lated to Re{g(2)

mm} and represent, respectively, the amplification
(gain) and radiation loss, whereas g(4)

mrmr and g(4)
mrrm are fourth-

order couplings between modes m and r. Depending on the
values of these parameters the PDF (5) assumes the form of a
gamma distribution or an exponentially attenuated Lévy-type
power-law distribution. For example, if km > 0 and bm > 0,
then Eq. (5) corresponds to the gamma distribution. On the
other hand, if km < 0 and bm > 0, then Eq. (5) can be conve-
niently expressed as

P(Im; μm, bm) = Dm

Iμm
m

exp (−bmIm), (7)

with μm = 1 + |km|, which takes the form of a PDF with
power-law decay that is exponentially attenuated. We also
comment that due to the central limit theorem (CLT) the sum
over modes in Eq. (6) leads to small shot-to-shot fluctuations
of km in the regime with many modes. The presence of multi-
plicative noise generally modifies the mathematical form of
the intensity distribution, which would be a Gaussian with
only additive noise taken into account [33].

Remarkably, the statistical properties of stochastic phe-
nomena described by distributions (5) and (7) are quite
distinct. On the one hand, the gamma distribution (5) is gov-
erned by the CLT, showing relatively weak (Gaussian-type)
fluctuations [34]. In the photonic RL context, intensity fluctu-
ations of this sort are characteristic of spontaneous emission
events below the lasing threshold or the self-averaged Gaus-
sian RL regime well above threshold, in which the gain is
shared among a large number of strongly coupled resonance
modes [21–26].

In contrast, the heavy-tailed PDF (7) with bm → 0 cor-
responds to the large-Im power-law behavior of the Lévy
α-stable distribution with stability index α = μm − 1 for

μm ∈ (1, 3], which is given by [34]

P(Im; α, β, c, ν) = 1

2π

∫ ∞

−∞
dk P̄(k; α, β, c, ν) exp(−ikIm),

(8)
with characteristic function

P̄(k; α, β, c, ν) = exp {−|ck|α[1 − iβ sgn(k)�] + ikν}. (9)

Above the stability Lévy index ranges in the interval α ∈
(0, 2]. The limit value α = 2 (i.e., μm = 3) corresponds to the
Gaussian distribution and CLT [34], whereas values μm > 3
also display α = 2 Gaussian statistics [35]. The other param-
eters are β ∈ [−1, 1], which describes the skewness of the
distribution, the location parameter ν ∈ (−∞,∞), the scale
parameter c ∈ (0,∞), and � = tan(πα/2) if α 	= 1, whereas
� = −(2/π ) ln |k| if α = 1.

In RL systems, once a photon is spontaneously emitted in
the disordered active medium the exponential distribution of
its path length combined with the multiple random scatter-
ings and stimulated emissions before exiting the material lead
[36,37] to a PDF similar to Eq. (7). As many of such photons
contribute to the emitted intensity, the PDF (7) converges
to the Lévy distribution (8) at least for spectrum acquisition
times not too large [21]. In fact, for arbitrarily large number
of photons and acquisition times, a crossover from the Lévy to
the Gaussian distribution of intensities takes place [21,38–40],
as stated by the CLT due to its large but finite second moment.
In this work, the strong intensity fluctuations observed near
the threshold and the good fit of the high-intensity data to the
Lévy distribution (8) (see below) indicate that such crossover
has not been reached in our experiment. Indeed, in RL systems
with similar acquisition times [18,19] Lévy distributions have
been successfully applied to describe the strong intensity fluc-
tuations in the narrow intensity peaks of the RL regime close
to the threshold.

In the last two decades, several papers [17–29,36,37,41–
47] have established the presence of Lévy-type fluctuations
near the threshold as a hallmark of RL systems. The mech-
anism underlying this behavior stems from the presence of
optical noise and disorder [19,20,36,37]. In particular, as the
excitation power P is raised km in (5) decreases and μm in (7)
increases [19,20], so that a phase diagram for the statistical
properties of the intensity fluctuations can be outlined [19,20],
with a Gaussian regime for km > 0 and P/Pth < 1 that crosses
over to the Lévy-type statistics with 1 < μm < 3 slightly
above the RL threshold, and finally to a second (self-averaged)
Gaussian regime [21–26] with μm � 3 in the RL phase well
above threshold.

From the discussion above, we have employed a statistical
mixture of a gamma and a Lévy distribution P(Im) =
pP(Im; k(1), b(1) ) + (1 − p)P(Im; α(2), β (2), c(2), ν (2) ), with
0 � p � 1, to the analysis of the histogram of emission
intensities in the RL regime close to the threshold. To do
this, we considered the data of 105 emission spectra for the
normalized excitation power P/Pth = 1.03 and generated a
large series with the set of emitted intensities at 1064 nm
(at or very near the spectrum maximum). Below, we denote
simply by I the intensity at 1064 nm of each spectrum.

The intensity of the pump laser presents shot-to-shot fluc-
tuations [48], making the response of the RL close to the
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FIG. 2. (a) Long time series of emission intensities I (t ) at or
very near the maximum of each spectrum (normalized by the mean
〈I〉) for an excitation power close to the RL threshold P/Pth = 1.03.
(b) Sorted values by crescent intensity of the series shown in (a),
with the statistical weight p = 0.904 determined from the change
of pattern in the intensity values corresponding to the amplified
spontaneous (green) and RL (blue) emission regimes. (c) Log-log
plot of the PDF P(I/〈I〉) (circles) displaying a nice fit (solid red
line) to the statistical mixture of a gamma (dashed green) and a Lévy
(dashed blue) distribution P(I ) = pP(I, k(1) = 22.0, b(1) = 57.9) +
(1 − p)P(I, α(2) = 1.8, β (2) = 1.0, c(2) = 3.4, ν (2) = 4.2). From the
fitting parameters we determine the mean of the gamma distribution
k(1)/b(1) = 0.38, which is physically consistent with the experimental
data in the low-intensity regime. The location parameter ν (2) = 4.2 is
also compatible with the maximum of the high-intensity regime. The
inset of (c) shows the decomposition of the time series in (a) into
events of spontaneous (green) and stimulated (blue) emissions with
intensity fluctuations around the means (black horizontal lines).

threshold to vary as well, from amplified spontaneous emis-
sion events to lasing peaks. The statistical mixture exhibited
by the intensity time series I (t ) normalized by the mean 〈I〉,
shown in Fig. 2(a), is a consequence of this effect, which
becomes apparent when the series is sorted by crescent inten-
sities, as seen in Fig. 2(b). In other words, to build Fig. 2(b)
we took the data of Fig. 2(a) and rearranged in crescent
order from the minimum to the maximum intensity values.
In Fig. 2(b) a remarkable change in the pattern of output
intensities separating the two types of emission can be clearly
observed. Indeed, in Fig. 2(b) and inset of Fig. 2(c) the
spontaneous emission events shown in green can be readily
distinguished from the RL intensity peak values depicted in
blue. Based on this procedure, the weights p and 1 − p of each
distribution were determined. Figure 2(c) displays in solid
red line the nice fit to the statistical mixture, with the low-
I gamma (high-I Lévy) component shown in dashed green
(blue) line.

We comment that statistical mixtures have also been re-
ported in other photonic experiments with random fiber laser

(RFL) [49–53], and they may be eventually present as well in
RLs based on dye solutions and TiO2 particles [48,54].

IV. CONTRIBUTION OF THE EFFECTIVE FIFTH-ORDER
SUSCEPTIBILITY

The set of measurements reported in this work also al-
lowed to identify for an excitation power well above threshold
P/Pth = 3.9 significant deviations from the statistical mixture
near the threshold discussed in the previous section.

In order to describe these deviations, an extension of the
previously presented effective model was developed which
also takes into account the effects of higher-order nonlinear-
ities, in particular the fifth-order susceptibility χ (5). The re-
spective contribution is considered in �(5)(χ (1), χ (3), χ (5) ) by
adding 1

(3!)2

∑
spqrtu g(6)

spqrtuasapaqa∗
r a∗

t a∗
u to �(3)(χ (1), χ (3) ). In

this case, the associated Langevin equation reads as

dIm

dt
= d̄mIm − b̄mI2

m − c̄mI3
m + 2Imη(1)

m , (10)

where d̄m (b̄m) is associated with g(2), g(4), and g(6) (g(4) and
g(6)). The coefficient c̄m, related only to g(6), emerges as an
exclusive contribution from the effective fifth-order suscep-
tibility χ (5), and modifies the stationary solution (5) of the
associated Fokker-Plack equation to the form

P(Im) = 1

Gm
Iζm−1
m exp(−ρmI2

m − νmIm), (11)

where the free parameters are given by ζm = d̄m/4Q −
1, ρm = c̄m/Q, and νm = b̄m/4Q, with the normalization
constant

Gm = (2ρm)−ζm/2�(ζm) exp

(
ν2

m

8ρm

)
D−ζm

(
νm√
2ρm

)
, (12)

and Dλ(x) representing the parabolic cylinder function [55].
The stationary solution of the model, Eq. (11), synthesizes,
through its deviations from the statistical properties discussed
in the previous section, the way that fifth-order nonlinear
effects modify the RL emission spectra.

Interestingly, by using a different approach Izrailev intro-
duced in [56] a distribution similar to Eq. (11) in a quite
distinct context, in order to characterize the eigenvalues spec-
trum of classical and quantum systems with mixed dynamics,
in which regular and chaotic behaviors may coexist [57].
As a matter of fact, the nearest-neighbor spacing distribution
(NNSD) of quantum systems with mixed dynamics interpo-
lates between the Poisson distribution of the regular regime
and the Wigner-Dyson distribution (a type of Rayleigh distri-
bution) in the chaotic regime [57,58]. Nevertheless, aside from
the peculiar NNSD, quantum systems with mixed dynamics
also exhibit other important characteristics not present in pho-
tonic RL systems, such as a power spectral density in the
power-law form f −α , with the spectral exponent in the range
1 � α � 2 [59]. Furthermore, the spectral rigidity, measured
by the Dyson-Mehta �3(L) statistics, interpolates between
�3(L) = L/15 for the regular regime and �3(L) ∼ π−2 ln L
for the chaotic regime. Therefore, although the Izrailev distri-
bution (11) might suggest a link between the PDF of emission
intensities in RLs and the NNSD of quantum systems with
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FIG. 3. (a) Long time series of emission intensities I (t ) at or very
near the maximum of each spectrum (normalized by the mean 〈I〉)
for an excitation power well above the RL threshold P/Pth = 3.9.
(b) Sorting the data in (b) by crescent intensities, the abrupt change
in Fig. 2(b) near the threshold is not observed. (c), (d) Linear and
log-log plots of the experimental distribution P(I/〈I〉) (circles), dis-
playing a nice fit to the Izrailev PDF (11) (red lines) that takes
into account nonlinear optical effects up to fifth order, with best-fit
parameters ζ = 2.6, ρ = 0.77, and ν = 0.60. The statistical mixture
of Fig. 2(c) near the threshold no longer applies well above threshold
since the contribution of the amplified spontaneous emission is neg-
ligible in this regime. Unsuccessful attempts to fit the data are also
shown using the gamma distribution (5) (black lines) with k = 4.0
and b = 4.0, which incorporates nonlinear effects only up to third
order.

mixed dynamics, we note that such connection in fact does
not represent a complete analog map between these systems.

The influence of the fifth-order nonlinear optical effects on
the statistics of intensity fluctuations can be directly inferred
from the experimental data in the regime well above the RL
threshold. Figure 3(a) shows the intensity time series for the
normalized excitation power P/Pth = 3.9, while in Fig. 3(b)
the data are sorted by crescent intensity values. Remarkably,
the abrupt change observed in Fig. 2(b) near the threshold
is no longer seen in Fig. 3(b) for P/Pth = 3.9. This result
confirms that in the regime well above threshold the contri-
bution from the amplified spontaneous emission is negligible,
so that the statistical mixture of PDFs is no longer justified.
Figures 3(c) and 3(d) display the nice fit of the experimental
data of normalized intensities (circles) to the Izrailev distri-
bution (red lines) [Eq. (11)]. Unsuccessful attempts to fit the
experimental data are also shown using the PDF (5) (black
lines) that incorporates nonlinear effects only up to third order.
At this point, we comment that the positive best-fit value

ζ = 2.6 of the Izrailev PDF (11) is also consistent with the
Gaussian-type statistics of intensity fluctuations observed well
above threshold in RL systems [21–26].

Therefore, we conclude that our model for the RL emission
intensity distributions describes nicely the whole histogram of
emission intensity values of the Nd3+-based RL system near
and well above the laser threshold.

V. FINAL REMARKS AND CONCLUSIONS

In this work, measurements producing a very large and
robust set of experimental data (105 emission spectra) were
used to characterize the distribution of intensities emitted by
the disordered Nd3+-based nanocrystalline powder random
laser. The statistical analysis of the histogram of emission
peak intensities was done focusing on the regimes near and
well above the lasing threshold, in which the effects of the
third- and fifth-order nonlinearities are predominant.

For the lasing regime near the threshold, a statistical
mixture of gamma and Lévy distributions indicates that the
response of the random laser system varies from amplified
spontaneous emission events to random lasing peaks. Based
on the experimental evidence, it was shown that it suffices
to take into account the influence of the third-order optical
nonlinearity to characterize well the distribution of emission
intensities close to the lasing threshold.

On the other hand, in the regime well above threshold the
statistical mixture is not observed since the intensity emis-
sion spectra only incorporate laser peaks. In order to suitably
describe this regime, a theoretical effective model was devel-
oped which takes into account the effects of the fifth-order
nonlinearity, expressing the distribution of emission intensi-
ties in terms of the Izrailev distribution, with a nice fit to
the experimental data. The Izrailev distribution is also found
in the context of quantum systems with mixed chaotic and
regular dynamics. We comment that our approach provides a
dynamical model that explains the emergence of the Izrailev
distribution.

Finally, we hope that this work can stimulate further ex-
perimental and theoretical studies in disordered random laser
systems, especially above the lasing threshold in which high-
order nonlinearity effects play an essential role.
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