
RESEARCH ARTICLE

COVID-19 mortality risk assessment: An

international multi-center study

Dimitris BertsimasID
1,2*, Galit Lukin2, Luca MingardiID

1,2☯, Omid Nohadani3,

Agni OrfanoudakiID
2☯, Bartolomeo Stellato1,2☯, Holly WibergID

2☯, Sara Gonzalez-Garcia4,

Carlos Luis Parra-CalderónID
4, Kenneth Robinson5, Michelle Schneider5, Barry Stein5,

Alberto Estirado6, Lia a Beccara7, Rosario Canino7, Martina Dal Bello8, Federica Pezzetti7,

Angelo Pan7, The Hellenic COVID-19 Study Group¶

1 Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, United

States of America, 2 Operations Research Center, Massachusetts Institute of Technology, Cambridge,

Massachusetts, United States of America, 3 Benefits Science Technologies, Boston, Massachusetts, United

States of America, 4 Institute of Biomedicine of Seville (IBIS), Virgen del Rocı́o University Hospital, CSIC,

University of Seville, Seville, Spain, 5 Hartford HealthCare, Hartford, Connecticut, United States of America,

6 HM Hospitals, Madrid, Spain, 7 Azienda Socio-Sanitaria Territoriale di Cremona, Cremona, Italy,

8 Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts, United

States of America

☯ These authors contributed equally to this work.

¶ Membership of the Hellenic COVID-19 Study Group is listed in the Acknowledgments.

* dbertsim@mit.edu

Abstract

Timely identification of COVID-19 patients at high risk of mortality can significantly improve

patient management and resource allocation within hospitals. This study seeks to develop

and validate a data-driven personalized mortality risk calculator for hospitalized COVID-19

patients. De-identified data was obtained for 3,927 COVID-19 positive patients from six

independent centers, comprising 33 different hospitals. Demographic, clinical, and labora-

tory variables were collected at hospital admission. The COVID-19 Mortality Risk (CMR)

tool was developed using the XGBoost algorithm to predict mortality. Its discrimination per-

formance was subsequently evaluated on three validation cohorts. The derivation cohort of

3,062 patients has an observed mortality rate of 26.84%. Increased age, decreased oxygen

saturation (� 93%), elevated levels of C-reactive protein (� 130 mg/L), blood urea nitrogen

(� 18 mg/dL), and blood creatinine (� 1.2 mg/dL) were identified as primary risk factors, val-

idating clinical findings. The model obtains out-of-sample AUCs of 0.90 (95% CI, 0.87–0.94)

on the derivation cohort. In the validation cohorts, the model obtains AUCs of 0.92 (95% CI,

0.88–0.95) on Seville patients, 0.87 (95% CI, 0.84–0.91) on Hellenic COVID-19 Study

Group patients, and 0.81 (95% CI, 0.76–0.85) on Hartford Hospital patients. The CMR tool

is available as an online application at covidanalytics.io/mortality_calculator and is currently

in clinical use. The CMR model leverages machine learning to generate accurate mortality

predictions using commonly available clinical features. This is the first risk score trained and

validated on a cohort of COVID-19 patients from Europe and the United States.
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Introduction

The ongoing coronavirus disease pandemic (COVID-19) caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has led to an alarming number of casualties across

the world [1]. As the pandemic progresses globally, much remains unknown about the disease

dynamics and risk factors. A better understanding of the clinical determinants of disease sever-

ity can improve patient management throughout the healthcare system. This task is challeng-

ing due to the rapid spread of the disease and the lack of detailed patient data.

Leveraging machine learning (ML) methods enables the rapid discovery of insights across

large populations of heterogeneous patients. An algorithmic approach provides an objective

evaluation and can often capture nonlinear interactions that are not obvious from pure obser-

vation of the population. Researchers have recognized the potential of these data-driven

approaches across various facets of the effort to combat COVID-19 [2].

In this work, we present the COVID-19 Mortality Risk (CMR) tool, a novel ML model for

predicting mortality in hospitalized COVID-19 patients. It enables physicians to better triage

patient care in a resource-constrained system through a personalized mortality risk score.

The CMR model synthesizes various clinical data elements from multiple European and US

centers, including demographics, lab test results, symptoms, and comorbidities. We use the

XGBoost algorithm [3], a leading ML method, to predict mortality probabilities. This score is

able to capture nonlinearities in risk factors, resulting in strong predictive performance with

an out-of-sample area under the receiver operating characteristic curve (AUC) of 0.90 (95%

CI, 0.87–0.94). It also validates commonly accepted risk factors, such as age and oxygen satura-

tion, while discerning novel insights.

The CMR tool leverages an international cohort from three hospital systems in Italy, Spain,

and the United States. The model is subsequently validated on hospitalized patients in a con-

sortium of six hospitals from Greece, Spain, and the United States. Each region presents a

diverse set of patient profiles and mortality rates for the model. By considering severely ill

populations from different countries and healthcare systems, the final dataset captures a wide

array of features.

In recent months, ML scores have been proposed to predict COVID-19 mortality [4, 5] as

well as disease severity [6]. Existing literature largely focuses on Chinese hospitals due to the

disease’s emergence in Wuhan [5, 6]. However, it is instrumental to understand the clinical

characteristics for more recent and diverse cases, considering that the virus strain may have

mutated since surfacing in Wuhan [7]. Pourhomayoun et al. (2020) proposed a model based

on a large international dataset, yet this model lacks comprehensive patient data and is thus

limited in its ability to derive personalized insights [4]. In this work, we study patients in

Europe and the US, offering a new lens into the clinical characteristics of this disease.

Methods

Study population

The study comprises 33 different hospitals, spanning across three countries in southern

Europe as well as the US. The collaborating institutions were split into derivation and valida-

tion cohorts, as summarized in Table 1. The derivation cohort includes the healthcare systems

of ASST Cremona (Northern Italy), HM Hospitals (Spain), and Hartford HealthCare affiliate

hospitals (United States). The broad geographic spread of data sources offers a comprehensive

sample of some of the most severely impacted regions in the world. To further validate the

results, we partnered with Hospital Universitario Virgen del Rocı́o (Spain), the Hellenic

COVID-19 Study Group (Hellenic CSG), a consortium of Greek hospitals, and Hartford
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HealthCare’s main hospital (CT, USA). The study population consists of adult patients who

were admitted to the hospital with confirmed SARS-CoV-2 infection by polymerase chain

reaction testing of nasopharyngeal samples. The time horizon of admissions is displayed in

Table 1.

All independent organizations and the Massachusetts Institute of Technology institutional

review boards approved this protocol as minimal-risk research using data collected for stan-

dard clinical practice and waived the requirement for informed consent. The survey was anon-

ymous and confidentiality of information was assured.

Clinical features

Data is collected using the electronic health record (EHR) databases and COVID-19 specific

registries of the collaborating hospitals. We compile 22 features, including patient demo-

graphic information, comorbidities, vitals upon admission, and laboratory test results. The

full set of features is outlined in Table 2. The outcome of interest, mortality during the hospital

admission, is derived from discharge records. Only the first recorded laboratory test results

are considered, typically within 24 hours of admission. Comorbidities are identified using the

International Classification of Diseases, 9th and 10th revision, codes of hospital discharges and

Table 1. Overview of participating institutions in the derivation and validation cohorts.

Organization Region Study

Dates

Hospital

Count

Description

Derivation Cohort

ASST Cremona Lombardy (Italy) 02/01–

05/08

3 Azienda Socio-Sanitaria Territoriale di Cremona (ASST Cremona) includes the

Ospedale di Cremona, Ospedale Oglio Po and other minor public hospitals in the

Province of Cremona. Cremona is one of the most hit italian provinces in

Lombardy in the Italian COVID-19 crisis with a total of 4,422 positive cases to date.

Ospedale di Cremona has around 750 beds. During the COVID-19 crisis all elective

activities and surgeries were suspended and most of the hospital was converted to

treat COVID-19.

HM Hospitals Madrid, Galicia, León,

Cataluña (Spain)

02/01–

04/20

17 HM Hospitals, a leading Hospital Group in Spain with 15 general hospitals and 21

clinical centers that cover the regions of Madrid, Galicia, and León. The group has

served more than 2,300 COVID-19 patients over the last two months. Its total

capacity includes more than 1,468 beds and 101 operating rooms.

Hartford HealthCare

(Affiliates)

Connecticut (USA) 03/18–

05/14

5 Hartford HealthCare is a major hospital network serving patients throughout

Connecticut. In addition to its primary hospital in Hartford, it operates five acute

care hospitals: Backus Hospital, Charlotte Hungerford, the Hospital of Central

Connecticut, MidState Medical Center, and Windham Hospital. These sites have a

total of 1,087 beds and nearly 2,500 physicians on staff.

Validation Cohort

Hospital Universitario

Virgen del Rocı́o

Seville, Andalusia (Spain) 03/11–

05/05

1 The Hospital serves a basic population of 557,576 users, between the districts of

Seville, Aljarafe and Seville South in the region of Andalusia. It has a provision of

1,279 beds installed, with a staff of 8,409 professionals. During the COVID-19 crisis,

elective activities and surgeries were suspended, and most of the hospital was

converted to care, COVID19 patients, it has attended approximately 320 COVID-19

positive cases discharges (exits included) until May 5th.

Hellenic COVID-19

Study Consortium

Attika, Thraki, Thessaly,

Peloponnese (Greece)

03/01–

05/15

6 This is a collection of the referral center of Greece for the management of COVID-

19 patients. It includes the Sotiria Thoracic Diseases Hospital of Athens,

Evangelismos Hospital, the University Hospitals of Alexandroupolis and Patra, the

Attikon General Hospital and the General University Hospital of Larissa. All

organizations are independent public (NHS and academic) institutions.

Hartford HealthCare

(Main Hospital)

Connecticut (USA) 03/18–

05/14

1 Hartford Hospital is an 867-bed acute care teaching hospital located in Hartford,

Connecticut. Hartford Hospital was established in 1854 and is the central campus of

the broader Hartford HealthCare organization. It employs 1,200 physicians and

dentists and has a caseload of over 100,000 annual emergency room visits.

https://doi.org/10.1371/journal.pone.0243262.t001
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are aggregated into four categories using the Clinical Classifications Software [8]. Missing val-

ues are imputed using k-nearest neighbors imputation [9] (S2 Text in S1 File). We exclude risk

factors that are not consistently recorded in the derivation cohort, thereby omitting features

whose values are more than 40% missing.

Modeling approach

We train a binary classification model in which the outcome is patient mortality: 1, if the

patient was deceased, or 0, if discharged. Specifically, we use the XGBoost algorithm [3] for the

training process, described further in the (S3 Text in S1 File). For comparison, we also present

the predictive performance of other ML methods in the (S3 Table and S4 Text in S1 File). The

derivation population is randomly divided into training (85%) and testing (15%) sets, ensuring

that mortality prevalence was consistent between the two. We tune seven model parameters by

maximizing the K-fold cross-validation AUC using the Optuna optimization framework [10]

(S5 Text in S1 File). This technique provides a more accurate parameter search compared to

grid search by efficiently pruning suboptimal parameter combinations and continuously refin-

ing the search space. We apply SHapley Additive exPlanations (SHAP) to generate importance

plots for transparency of the model predictions and risk drivers [11] (S6 Text in S1 File). All

statistical analysis is conducted using version 3.7 of the Python programming language.

Table 2. Summary statistics of all patient characteristics for the total sample, the survivor, and non-survivor cohorts.

Median (IQR)

Feature All (N = 3,062) Survivor (N = 2,302) Non-Survivor (N = 760) P-Valuea

Age 68.0 (57.0–79.0) 64.0 (54.0–74.0) 80.0 (73.0–85.0) <1.0E-04

Female� 1207.0 (39.42%) 958.0 (41.62%) 249.0 (32.76%) <1.0E-04

Heart Rate (bpm) 90.0 (80.0–102.0) 91.0 (80.0–102.0) 88.0 (79.0–100.25) 7.7E-03

Oxygen Saturation (%) 94.0 (91.0–96.0) 94.4 (92.0–96.0) 90.55 (85.5–94.0) <1.0E-04

Temperature (˚F) 98.6 (97.7–99.86) 98.42 (97.59–99.86) 98.79 (97.7–100.08) 9.3E-04

Alanine Aminotransferase (U/L) 27.0 (17.0–43.0) 27.0 (17.22–44.53) 26.0 (16.12–41.0) 7.9E-02

Aspartate Aminotransferase (U/L) 35.9 (25.3–54.5) 34.0 (24.55–50.2) 44.0 (30.0–68.0) <1.0E-04

Blood Glucose (mg/dL) 118.35 (105.0–142.0) 115.0 (103.4–134.0) 134.0 (113.0–170.55) <1.0E-04

Blood Urea Nitrogen (mg/dL) 17.0 (12.62–25.56) 15.0 (11.61–20.96) 29.0 (20.0–46.0) <1.0E-04

C-Reactive Protein (mg/L) 73.37 (28.88–146.43) 58.62 (22.74–117.83) 137.93 (69.81–214.13) <1.0E-04

Creatinine (mg/dL) 0.95 (0.77–1.22) 0.9 (0.74–1.08) 1.25 (0.95–1.75) <1.0E-04

Hemoglobin (g/dL) 13.9 (12.6–14.9) 13.9 (12.8–15.0) 13.4 (11.9–14.6) <1.0E-04

Mean Corpuscular Volume (fL) 88.0 (85.0–91.2) 87.7 (84.9–90.7) 89.4 (85.93–92.9) <1.0E-04

Platelets (103/μL) 202.0 (157.0–259.75) 205.0 (160.0–263.0) 187.0 (146.5–248.5) 2.0E-04

Potassium (mmol/L) 4.05 (3.7–4.4) 4.0 (3.7–4.4) 4.1 (3.7–4.6) <1.0E-04

Prothrombin Time (INR) 1.11 (1.02–1.25) 1.11 (1.02–1.23) 1.13 (1.02–1.31) <1.0E-04

Sodium (mmol/L) 137.1 (135.0–140.0) 137.0 (135.0–139.5) 138.0 (135.0–141.0) <1.0E-04

White Blood Cell Count (103/μL) 6.73 (5.13–9.09) 6.51 (5.05–8.59) 7.92 (5.57–11.0) <1.0E-04

Cardiac dysrhythmias� 201.0 (6.56%) 128.0 (5.56%) 73.0 (9.61%) 5.8E-04

Chronic kidney disease� 72.0 (2.35%) 40.0 (1.74%) 32.0 (4.21%) 1.5E-03

Heart disease� 125.0 (4.08%) 80.0 (3.48%) 45.0 (5.92%) 9.2E-03

Diabetes� 384.0 (12.54%) 263.0 (11.42%) 121.0 (15.92%) 2.5E-03

�Count (proportion) is reported for binary variables.
a P-value reports significance of a two-sided T-test between the survivor and non-survivor populations.

https://doi.org/10.1371/journal.pone.0243262.t002
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Performance evaluation

All predictive models are evaluated based on their ability to discriminate between outcomes

for each population. We report results for the training and testing sets of the derivation cohort,

as well as for each independent institution in the validation cohort, with the corresponding

confidence intervals (CI). The AUC, accuracy, specificity, precision, and negative predictive

value are computed for all patient subpopulations across different thresholds. Receiver operat-

ing characteristic (ROC) curves were created for each of the cohorts.

Results

Patient characteristics

The CMR model is created using a derivation population of 3,062 patients, of which 1,441 are

from ASST Cremona, 1,390 from HM Hospitals, and 231 from Hartford Affiliates. The valida-

tion population consists of 865 patients: 219 patients from Seville, 323 from the Hellenic CSG,

and 323 from Hartford Hospital. The clinical characteristics of the derivation population are

outlined in Table 2. The average observed mortality rate in this population is 26.84%. In com-

parison to survivors, non-survivors tend to be older (median age 80 vs. 64) and more com-

monly men (67.2% vs. 58.4% of cohort). Moreover, the prevalence of comorbidities such as

cardiac dysrhythmias, chronic kidney disease, and diabetes is higher in the non-survivor popu-

lation (9.61%, 4.21% and 15.92% versus 5.56%, 1.74%, and 11.42%, respectively). The clinical

characteristics for each participating study site are reported in the (S1 and S2 Tables in S1 File).

Performance metrics

The final mortality model exhibits an out-of-sample AUC of 0.90 (95% CI, 0.87–0.94) on the

derivation testing set; see Table 3. The AUC for the Seville cohort is slightly higher at 0.92

(95% CI, 0.88–0.95). For the other two validation centers, there is a decrease in AUC. In the

Hellenic CSG cohort, the model performs 0.87 (95% CI, 0.84–0.91) and in the Hartford Hospi-

tal population 0.81 (95% CI, 0.76–0.85). The corresponding ROC curves are included in the

(S1 Fig in S1 File).

A different threshold is selected for each cohort to enforce a minimum sensitivity of 80%.

Given the implications of these predictions, we report conservative risk estimates in order to

ensure that all critically ill patients are accounted for. This comes at the expense of specificity,

i.e., it increases the number of patients whom we may incorrectly flag as high risk of mortality.

For the fixed sensitivity requirement, we achieve a classification accuracy of 0.85 (95% CI,

0.81–0.89) in the testing set with specificity of 0.87 (95% CI, 0.83–0.90); see Table 3.

The model generalizes better in the Seville cohort with an accuracy of 0.87 (95% CI, 0.82–

0.91) and specificity of 0.87 (95% CI, 0.83–0.92). The necessary threshold for a sensitivity of

80% is lower for the Hellenic CSG compared to the other populations. This is due to the low

baseline incidence of mortality in this sample when compared to the derivation and other

Table 3. AUC performance (%) and threshold-based metrics for training, testing, and validation population.

Cohort N AUC Threshold Accuracy Specificity Precision Negative predictive value

Training Set 2755 94.7 (93.87,95.54) 38.44 (36.62,40.25) 89.62 (88.48,90.76) 92.76 (91.79,93.73) 78.51 (76.98,80.04) 93.39 (92.46,94.32)

Testing Set 307 90.19 (86.86,93.52) 28.3 (23.26,33.34) 85.02 (81.02,89.01) 86.58 (82.77,90.39) 66.3 (61.02,71.59) 93.02 (90.17,95.87)

Hellenic CSG 323 87.45 (83.83,91.06) 20.23 (15.85,24.61) 74.92 (70.2,79.65) 74.23 (69.46,79.0) 25.74 (20.97,30.51) 97.3 (95.53,99.07)

Seville 219 91.62 (87.95,95.29) 33.21 (26.98,39.45) 86.76 (82.27,91.25) 87.43 (83.04,91.82) 48.94 (42.32,55.56) 97.09 (94.87,99.32)

Hartford 323 80.66 (76.36,84.97) 29.74 (24.75,34.72) 61.3 (55.99,66.61) 58.12 (52.74,63.5) 24.18 (19.51,28.85) 94.71 (92.26,97.15)

https://doi.org/10.1371/journal.pone.0243262.t003
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validation cohorts. The model achieves lower performance in this set of patients, with an accu-

racy of 0.75 (95% CI, 0.7–0.8) and specificity of 0.74 (95% CI, 0.69–0.79). For Hartford Hospital,

the accuracy of CMR is 0.61 (95% CI, 0.56–0.67) with a specificity of 0.58 (95% CI, 0.53–0.64).

Model results

Through the SHAP framework, we identified the most important drivers of mortality risk and

the interplay between individual features. For a particular patient, SHAP values indicate the

feature contributions towards the risk. The patient risk normalized between 0 and 1 is the sum

of the SHAP values of all the features (S6 Text in S1 File). Fig 1a displays the risk contributions

of the 10 most important features. For example, higher values of age (red) yield higher SHAP

values, suggesting that older patients are at higher risk. In contrast, the SHAP value increases

with lower values (blue) of Oxygen Saturation, suggesting an inverse relationship with this

feature.

When BUN is below 20 mg/dL, the mortality risk decreases, particularly for ages below 55

years. On the other hand, BUN values greater than 25 mg/dL for older patients increase the

risk (Fig 1b). A C-reactive protein (CRP) between 50 and 130 mg/L does not affect the risk,

independent of age. As CRP goes below 50 mg/L, the mortality risk decreases. For a CRP

above 160 mg/L, the elevated risk does not change and is higher for older patients (Fig 1c). An

oxygen saturation below 93% increases the mortality risk rapidly and this trend is accelerated

by growing age (Fig 1d). A blood creatinine level greater than 1.2 mg/dL increases the risk

moderately, specifically for older patients. Levels above 3 mg/dL rapidly escalate the mortality

risk (Fig 1e). Fig 1f illustrates that while a blood glucose less than 130 mg/dL lowers the risk, it

can increase the risk for levels above 180 mg/dL, in particular for older patients. An aspartate

aminotransferase (AST) level above 65 U/L increases the risk, while a level below 25 U/L

sharply decreases the risk, independent of age (Fig 1g). A platelet count in 103/μL affects the

risks in 4 distinct ranges: (i) below 50 the risk is elevated, (ii) between 50 and 180 the risk is

marginally increased (more for older patients), (iii) between 180 and 330 the risk is slightly

decreased, and (iv) above 330 the risk is sizably decreased (Fig 1h). Fig 1i shows that a mean

corpuscular volume (MCV) between 90 and 94 fL increases the risk moderately, while other

values have only small effects. Lastly, an increased risk is observed when white blood cell

(WBC) count is above 10 in 103/μL, in particular for older patients (Fig 1j).

Discussion

The CMR calculator predicts mortality with high accuracy using clinical measurements col-

lected early within a patient’s hospital admission. An early risk assessment of patient mortality

allows physicians to triage patients and prioritize resources in a highly congested system. It

uses commonly available laboratory results and does not require imaging results or advanced

testing. The presented tool can be particularly useful in lower acuity facilities or remote hospi-

tals with constrained diagnostic capabilities.

Age is the most important determinant of mortality in the model: older patients have higher

mortality risk, which has been observed in retrospective patient analysis [12] and subsequently

reflected in public health guidance [13]. Predicted mortality also increases for patients with

low oxygen saturation, corroborating findings that link hypoxemia to mortality [14], as well as

the observed prevalence of shortness of breath in severe patients [15]. This measurement addi-

tionally serves as signal of respiratory distress, and respiratory failure has been found clinically

as one of the major mortality causes of COVID-19 [16]. This can also appear in cases of silent

hypoxia where shortness of breath is not observed [17].
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Fig 1. SHAP importance plots for final model. The top 10 features are displayed in panel (a), ordered by decreasing significance. For a given feature, the

corresponding row indicates the SHAP values as the feature ranges from its lowest (blue) to highest (red) value. Panel (b)-(j) display the individual feature

plots and the impact of each feature on the mortality risk (colors indicate the age here) with gray areas indicating reference ranges.

https://doi.org/10.1371/journal.pone.0243262.g001
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Our study finds that elevated BUN, CRP, creatinine, glucose, AST, and platelet counts are

highly significant laboratory features. Several of these biomarkers have been identified in

other retrospective analyses of mortality outcomes of COVID-19 [16, 18]. Prior work has also

uncovered the critical role of these biomarkers in identifying severe cases of patients with com-

munity acquired pneumonia [19]. The PSI, CURB-65, and SCAP scores are also based on simi-

lar risk factors such as glucose levels� 250 mg/dL and BUN > 19 mg/dL [20, 21]. Moreover,

CRP levels have been recognized to characterize severity for H1N1 patients [22].

CRP is a widely available inflammatory marker which has been independently observed as

a biomarker of COVID-19 severity [6, 23]. Our findings show that CRP values outside the ref-

erence ranges do not necessarily increase the risk of mortality. In fact, CRP has a negative

effect on mortality until approximately 50 mg/L, it has a negligible effect between approxi-

mately 50mg/L and 130 mg/L, and it significantly increases the mortality risk above 130mg/L.

Elevated BUN and creatinine levels are both indicative of impaired kidney function, which has

been associated with poor prognosis [24]. The individual feature plots indicate a clear transi-

tion from low to high risk when BUN exceeds approximately 18 mg/dL and creatinine exceeds

approximately 1.2 mg/dL. These values are slightly lower than reference ranges for these val-

ues, providing data-driven validation of the ranges [25] targeted for COVID-19. The increase

in mortality risk for patients with elevated glucose levels is consistent with the reports in other

studies of diabetes as a risk factor [12, 26]. Elevated AST levels have been observed due to liver

dysfunction in severe COVID-19 cases [27]. Finally, low platelets are associated with increased

risk, which match findings of thrombocytopenia in critical COVID-19 patients [28].

We recognize that the derivation populations may differ from other populations based both

on hospital conditions and inherent demographic differences. An external validation using

Seville, Greece, and US populations allows us to assess the broader clinical utility of our find-

ings. The CMR model performs well on these patients, with the strongest performance

observed in Seville. Seville consists of a South European population similar to the majority of

the derivation cohort. However, it did not face the same capacity challenges as ASST Cremona

and HM Hospitals during the study period. Greece had a significantly lower disease spread,

resulting in a lower mortality rate compared to the derivation population. Nevertheless, the

model yields comparable results in this cohort to the other European hospitals. Hartford has

the weakest validation performance, which may suggest inherent differences between Europe

and the US in disease dynamics, treatment protocols, or underlying population susceptibility.

This attests to the need for training and validation on a diverse set of populations.

We observe that the thresholds needed for obtaining 80% sensitivity differ across the exter-

nal validation cohorts. When applying the CMR tool to a new hospital, the threshold should be

calibrated to the severity of this population. A sample of historical patients at the hospital can

be used to validate the model. Using the risk predictions and true outcomes of this sample, var-

ious risk thresholds can be evaluated for sensitivity and specificity. Clinicians can determine

the relevant threshold for their hospital’s needs. For example, highly constrained systems may

employ a higher threshold (lower sensitivity) due to capacity limits, whereas other centers may

use this tool as an initial screening tool where sensitivity is required to be very high.

Risk models are most useful when they are readily available for healthcare clinicians. For

this reason, a dynamic online application has been created as the interface of the CMR model

for use by clinical providers. Fig 2 provides a visualization of the application that is available at

covidanalytics.io/mortality_calculator. After entering a patient’s clinical features, the model

returns a predicted mortality risk. It additionally produces a SHAP plot to elucidate the major

factors contributing to an individual patient’s risk score. Features in blue decrease risk from

the population baseline, whereas features in red increase risk. The contribution is proportional

to the width of the feature’s bar. In the example, we see that the patient’s age and oxygen
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Fig 2. Visualization of the calculator interface. Using the SHAP package, personalized interpretations of the

predicted score are provided to the user.

https://doi.org/10.1371/journal.pone.0243262.g002
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saturation levels increase his risk assessment, but his temperature and glucose lower his risk.

The CMR tool is currently undergoing prospective validation at two of the collaborating insti-

tutions in the study: the application is in use in the emergency room of ASST Cremona to pri-

oritize hospitalizations on higher risk patients, and the model also interoperates with the EHR

of the Virgen del Rocı́o University Hospital in Seville, Spain.

Limitations

Limited hospital capacity can impose potential biases in the training population. Only severe

patients were able to be treated, particularly in Europe, and some hospitals were forced to turn

away patients deemed too critically ill during the peak of the virus. Thus, hospital admissions

data may exclude patients on both ends of the acuity spectrum. Additionally, the scarcity of hos-

pital resources may have led patients to receive insufficient care, increasing mortality risk due

to lack of treatment. While this warrants further investigation, initial validation results suggest

that the CMR tool generalizes well to less congested systems in Greece and the United States.

The differences related to Hartford Hospital might also be related to the timing of the virus.

The virus affected Europe before the US. This provided an opportunity to learn from the expe-

rience in Europe, which may have resulted in different or more effective treatment decisions as

well as governmental policies in the US. This is an opportunity for further study through vali-

dation on additional US cohorts.

Our clinical features are limited by the data that was commonly available across all sites in

the derivation population. We expect that a more comprehensive set of clinical features such

as D-Dimer and IL-6 levels, Body Mass Index, radiographic diagnosis, symptoms, and time

elapsed between the disease and treatment onset will yield more accurate results. A broader set

of comorbidities, including hypertension, cancer, chronic obstructive pulmonary disease, and

others could be included when available. Recent reports on racial disparities and socio-eco-

nomic determinants of COVID-19 severity [29, 30] could be addressed through the incorpo-

ration of additional demographic data and external data sources.

Additionally, there is significant variability in treatment protocols across countries and

individual organizations. In future work, we hope to expand the set of captured clinical fea-

tures and incorporate treatments to disentangle some of the observed heterogeneity in out-

comes and clinical characteristics.

Conclusions

This international study provides a mortality risk calculator of high accuracy for hospitalized

patients with confirmed COVID-19. The CMR model validates several reported risk factors

and offers insights through a user-friendly interface. Validation on external data shows strong

generalization to unseen populations in both Europe and the United States and offers promise

for adoption by clinicians as a support tool.
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