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quantum jump trajectories
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We investigate theoretically the emergence of classical statistical physics in a finite quantum system that is
either totally isolated or otherwise subjected to a quantum measurement process. We show via a random matrix
theory approach to nonintegrable quantum systems that the set of outcomes of the measurement of a macroscopic
observable evolve in time like stochastic variables, whose variance satisfies the celebrated Einstein relation for
Brownian diffusion. Our results show how to extend the framework of eigenstate thermalization to the prediction
of properties of quantum measurements on an otherwise closed quantum system. We show numerically the
validity of the random matrix approach in quantum chain models.
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I. INTRODUCTION

The emergence of an effective classical statistical de-
scription of the dynamics of a closed quantum system is
an important open question at the heart of the foundation
of statistical physics [1–7]. The study of quantum nonequi-
librium dynamics has only recently become experimentally
feasible [8–13], raising questions surrounding the process and
conditions in which isolated many-body quantum systems
equilibrate to a thermal state [14–22], a process known as
quantum thermalization [23–27]. Important related questions
remain surrounding relaxation timescales and the route to
equilibrium of complex quantum systems [28–36], as well as
the emergence of thermodynamical laws [37–40]. A useful
approach to the description of generic nonintegrable quantum
systems can be developed from quantum chaos [41,42] and the
eigenstate thermalization hypothesis (ETH), which in turn can
be derived from an underlying random matrix theory (RMT)
[32,33,43–46].

Most works on quantum thermalization dynamics focus on
the evolution of expectation values of local operators 〈O(t )〉.
How and when the unitary evolution of such observables can
be shown to be described by an effective classical Markov
process is an important question in the foundation of statistical
physics. The main result of this work is to analytically derive
such an effective classical theory for quantum equilibration
dynamics. Concretely, we show that under physically reason-
able conditions the unitary quantum dynamics of a system
initialized in a pure state may be shown to be described by
an effective Brownian process at a finite temperature. Addi-
tionally, we analyze a more typical experimental protocol: a
set of quantum measurements at times t1, t2, . . . , generating
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a set of outcomes O1, O2, . . . . Here a few natural questions
arise: Do the observation outcomes have the properties of a
classical stochastic trajectory in the appropriate limit? How do
thermodynamical properties of stochastic trajectories emerge
within the RMT and ETH picture? How different are the
dynamics of expectation values 〈O(t )〉 compared to the set
of measurements obtained under continuous monitoring? An-
swering those questions is not only of fundamental interest,
but can also lead to novel ways of characterizing quantum
devices.

We address the questions above within the theoretical
framework of RMT and quantum chaotic wave functions [43].
First, we take the more conventional point of view in which
the system evolves up to a certain time t at which a quan-
tum measurement of a local operator is performed. We focus
on the variance of measured values of O after a series of
experiments σ 2

O and we show that, at long times, it satisfies
the celebrated Einstein relation σ 2

O ∝ kBT , with T the micro-
canonical temperature, provided certain conditions are met by
O. This demonstrates an effective description of the dynamics
of an observable in a closed quantum system by a classical
Ornstein-Uhlenbeck (OU) process.

An additional important result is that the Einstein relation
is observed not only for the long-time observable variance,
but also for the observable variance of a single eigenstate,
which we label the eigenstate equipartition theorem. This re-
sult establishes analytically a finite-temperature description of
individual eigenstates of closed quantum systems. This result
provides a link between the ETH picture (naively, eigenstates
behave as thermal states for realistic observables) of ther-
malization to the emergence of classical statistical physics:
Not only are eigenstate expectation values thermal expecta-
tion values (ETH), but eigenstate fluctuations fulfill classical
thermal fluctuation theorems.

We then move to continuous monitoring of a local ob-
servable during the thermalization process, yielding a set of
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FIG. 1. Diagram of the general scheme. We consider systems
with many energy levels, and thus many possible observable out-
comes [diagram of the Hamiltonian (16)]. Local system observables
may be measured via the expectation value 〈O(t )〉 or via a sequence
of projective measurements Oj .

measurement outcomes Oj at times t j = j�t . From this de-
scription we observe the independence of average dynamics
on such measurements and demonstrate that individual quan-
tum jump trajectories [47] may be described by instances of
a classical Markov process. We also show that there exists
a quantum Zeno regime for very short �t , in which equili-
bration slows down. Finally, our approach can be exploited
to measure the density of states (DOS) of the system as the
ratio between time-integrated fluctuations of 〈O(t )〉 and the
variance of quantum measurement outcomes. We numerically
check our results in quantum chain models.

This article is arranged as follows. In Sec. II we set up the
scenario under study. This is followed by Sec. III, where we
introduced the methodology by which we treat nonintegrable
quantum systems, i.e., quantum chaotic wave functions, and
their description in terms of RMT. In Sec. IV we discuss
the emergence of the Einstein relation from chaotic wave
functions and in Sec. V we extend the discussion to the case
of sequential projective measurements, obtaining a statistical
description of quantum jump trajectories of closed quantum
systems. In Sec. VI we show some numerical verifications
of the theory, before summarizing in Sec. VII. Additional
numerics and proofs are given in the Appendixes.

II. SETUP

Consider an isolated finite quantum system separated into
a (sub)system S and bath B (see Fig. 1). The system Hilbert
space is defined as the support of a local observable of inter-
est. The interacting Hamiltonian is H = H0 + V , with H0 =
HS ⊗ 1B + 1S ⊗ HB, where 1S (B) is the identity on the system
(bath) Hilbert space. Note that the system Hilbert space can
correspond to local degrees of freedom in a homogeneous
system or a system weakly coupled to a finite bath.

We define the basis of eigenstates of HS and HB,

HS|εs〉 = εs|εs〉, s = 1, . . . , dS,

HB

∣∣E (B)
β

〉 = E (B)
β

∣∣E (B)
β

〉
, β = 1, . . . , dB. (1)

The (free) eigenstates of H0 are |φα〉, with energy Eα , and
we define the index α = 1, . . . , dSdB, in order of increasing
energy (Eα+1 > Eα). Free eigenstates can be written as |φα〉 =
|εs〉|E (B)

β= f (α,s)〉, with f (α, s) defined by the energy matching

E (B)
f (α,s) = Eα − εs. The (interacting) eigenstates of the total

Hamiltonian H are written as |ψμ〉 = ∑
α cμ(α)|φα〉. The total

and bath DOSs at energy E are D(E ) and DB(E ), respectively.
In the limit of large system sizes they are related via

D(Eα ) =
∑

s

DB(Eα − εs), (2)

which essentially counts the number of states of the bath that
match the energies of the system.

Consider a local observable O = OS ⊗ 1B. We define op-
erator matrix elements in the interacting basis by subscripts
μ, ν, Oμν := 〈ψμ|O|ψν〉, and free basis by subscripts α, β,
Oαβ := 〈φα|O|φβ〉. Noninteracting matrix elements can in
turn be written in terms of local and bath degrees of freedom
like 〈φα|O|φβ〉 = (OS )s(α)s(β )δαB (α)αB (β ), where s(α) and αB(α)
are the system and bath quantum numbers, respectively, of the
free eigenstate α.

III. CHAOTIC WAVE FUNCTIONS AND RANDOM
MATRIX THEORY

Studying the local dynamics of a generic many-body sys-
tems is a challenging task, and thus in order to treat such
systems we make an ansatz on the generic structure of the
eigenstates of such systems, that is, they take the form of
quantum chaotic wave functions. This may be defined by a
probability distribution over the coefficients cμ(α) of a many-
body eigenstate |ψμ〉 = ∑

α cμ(α)|φα〉,

p(c) = 1

Z
exp

(
−

∑
μα

c2
μ(α)

2�(μ, α)

) ∏
μν

μ>ν

δ

(∑
α

cμ(α)cν (α)

)
.

(3)

This probability distribution is simply Gaussian, except for
the factor δ(

∑
α cμ(α)cν (α)), which restricts the wave func-

tions |ψμ〉 such that they are mutually orthogonal [43]. This
description can be seen to be equivalent to a coarse graining
of the eigenstates, where the function �(μ, α) describes the
envelope of the chaotic wave functions. This ansatz has been
directly studied numerically and shown to hold upon intro-
duction of a nonintegrable perturbation in realistic spin-chain
systems in Refs. [48,49]. Indeed, the transition to this Gaus-
sian behavior is seen to occur concurrently with the transition
to Wigner-Dyson statistics of energy levels, a more typical
marker of chaos in quantum systems [24].

The chaotic wave-function approach thus depends on
knowledge of the function � describing the shape of the
eigenstates of the model, which in general is not obtainable
analytically. Our approach here involves a drastic simplifica-
tion, namely, we assume that V is a real symmetric random
matrix. The coarse graining may then be taken as an av-
erage over realizations of the random perturbation (which
may be understood as equivalent to an average over nearby
energy levels [42]). This assumption directly leads to the
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ETH and also to effects that have been thoroughly checked
in numerics in a variety of nonintegrable systems [43,50–53].
Formally, we express the matrix elements of V in the free
basis as random Gaussian numbers with 〈Vαβ〉V = 0 and

〈V 2
αβ〉V = g2(1+δαβ )

N , where 〈· · · 〉V indicates an ensemble av-
erage over realizations of V . Furthermore, we assume that
(H0)αβ = αω0δαβ , with ω0 = 1/N . This last approximation
only involves neglecting the variations in the DOS within a
relevant energy width (to be properly defined below).

The eigenstates of H can be shown to follow a Lorentzian
distribution [44,54]

〈
c2
μ(α)

〉
V := �(μ, α) = ω0/π

(Eμ − Eα )2 + 2
, (4)

with  = πg2

Nω0
[43]. We note that the Lorentzian form above

is the only aspect relying on the random matrix model for an
analytical foundation. Further, we note that for the two-body
random interaction model, a more physically well justified
random matrix approach, it is known that the function � also
takes a Lorentzian form (in which case it is usually referred
to as the strength function) [52,55,56]. We outline additional
details of the chaotic wave-function approach in Appendix A
and a more thorough discussion is given in Ref. [49].

In Ref. [43] the present authors showed that this model
leads to observable matrix elements Oμν , in agreement with
the ETH ansatz [42,57]. This is achieved using a statistical
theory of eigenstate correlation functions 〈cμ(α)cν (β ) · · · 〉V .
Our model of chaotic wave functions can be shown to be
self-averaging [58], and thus taking the ensemble average to
obtain such correlation functions is justified. See Appendix A
for technical details.

Continuing, we assume that the initial state for the quantum
quench is an eigenstate of H0, |ψ (0)〉 = |φα0〉, with eigenen-
ergy Eα0 , though the formalism is easily extended to more
general cases [32]. We focus local observables that are diago-
nal in the free basis, Oαβ ∝ δαβ . Our RMT model assumes a
constant DOS 1/ω0 and coupling g leading also to a quan-
tum chaotic eigenfunction width  that is independent of
the energy. This theory can be applied to a generic quantum
many-body system by the substitution 1/ω0 → D(Eα0 ). The
RMT predictions are valid as long as variations of D(E ) over
the typical energy width  can be neglected [58].

The main result of our previous work [32] was an equation
for the thermalization dynamics of an observable O,

〈O(t )〉 = [〈O(t )〉0 − 〈O(∞)〉]e−2t + 〈O(∞)〉, (5)

with the additional equality 〈O(∞)〉 = [Oαα]α0
, and

[Oαα]α0
:=

∑
α

�(α0, α)Oαα (6)

is a microcanonical average of O around the initial state
energy α0. Here [Oαα]α0

can be physically understood as an
average over the set of free eigenstates that are involved in the
time evolution of the system. In addition, 〈O(t )〉0 represents
the free dynamics under H0.

We now wish to study the time-averaged variance, or
quantum fluctuations, of the local observable O, σ 2

O(∞) =
〈O2(∞)〉 − 〈O(∞)〉2, which can be obtained from Eq. (5)

applied to O and O2,

σ 2
O(∞) = [

�O2
αα

]
α0

, (7)

where [�O2
αα]α0

:= [O2
αα]α0

− [Oαα]
2
α0

. We recall a further
result obtained in Ref. [32]: The time fluctuations of O may
be written as

δ2
O(∞) = [�O2]α0

4πD
(
Eα0

)


. (8)

From Eqs. (7) and (8) we may already observe a remark-
able feature of fluctuations of chaotic systems, that is, their
ratio after equilibration is given by

σ 2
O(∞)

δ2
O(∞)

= 4πD
(
Eα0

)
. (9)

The relative sizes of each of the fluctuation types were previ-
ously understood from the ETH approach [59]; however, here
we obtain both the precise scaling and numerical prefactor.
Equation (9) is our first relevant result and may be understood
as a signature of quantum ergodicity in many-body systems; it
further reveals the DOS in terms of only measurable quantities
(see Appendix E 3).

IV. EINSTEIN RELATION

Now we show that Eq. (7) leads to the Einstein relation for
the diffusion constant [60] in the limit dB � dS � 1, that is,
a large system Hilbert space dimension. To observe this, we
reexpress [Oαα]α0

via

[Oαα]α0
=

dS/2∑
s=−dS/2

(OS )ss p(s), (10)

where p(s) may be written in terms of the DOS of the bath
(see Appendix B)

p(s) = DB
(
Eα0 − εs

)
∑dS/2

s=−dS/2 DB
(
Eα0 − εs

) . (11)

To obtain the Einstein relation, we write DB(E ) =
D0 exp[β(E )E ], where β(E ) is the inverse microcanonical
temperature, which we assume changes slowly over the width
. To make a connection with classical Brownian motion
we consider now OS = X , with Xss′ = sδs,s′ and εs = 1

2 ms2,
interpreting the local quantum number s as the position in a
harmonic oscillator potential. In the limit of low temperature
relative to the system bandwidth and high compared to the
system energy spacing 1 
 mβ 
 dS , we obtain

σ 2
X (∞) = [

X 2
αα

]
α0

= 1

mβ
(
Eα0

) . (12)

Since kBT (Eα0 ) = β(Eα0 )−1 is the microcanonical tempera-
ture, we recover here the linear relation between the variance
of the particle coordinate and the temperature that is found
in OU processes (see Appendix F). Further, we note that
Eq. (12) is an equipartition theorem, relating the average en-
ergy 1

2 mσ 2
X (∞) to the temperature. This occurs at the level

of individual eigenstate averages [X 2
αα]α0

, which motivates
the description as an eigenstate equipartition theorem. In this
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sense, temperature can be defined not as a property of ensem-
bles of systems, but rather as a property of individual chaotic
eigenstates [22].

We note that while they do not appear explicitly, typicality
approaches are also able to produce similar fluctuation re-
lations [61,62]; however, we stress important differences in
the application and physical interpretation of the results. First,
our approach here is a dynamical model, which allows for a
nonequilibrium initial state, and hence Eq. (12) in the form
σ 2

X (∞) = (mβ(Eα0 ))−1 is a bona fide fluctuation-dissipation
theorem relating the nonequilibrium decay rate to the equi-
librium fluctuations that may not be understood from the
typicality approach. Typicality instead describes the behav-
ior of “typical” states selected from a uniform distribution,
and relations similar to the eigenstate equipartition theorem
[X 2

αα]α0
= 1

mβ(Eα0 ) can be inferred from such an approach.

However, we here observe and justify their emergence for
eigenstates of a single realization of a closed system, rather
than typical states selected from a uniform distribution.

V. QUANTUM JUMP TRAJECTORIES

We turn now to the case in which we perform a set of
subsequent quantum measurements and assume that a nonde-
generate local operator is measured. For the sake of clarity,
we consider again the operator X defined above, an initial
state |ψ (0)〉 = |εs0〉|E (B)

β0
〉, and a set of Nm measurements sep-

arated by a time interval �t , yielding a measurement record
s1, s2, . . . , sNm . The sequence of measurement quenches
[63] is∣∣εs0

〉∣∣E (B)
β0g

〉 → ∣∣εs1

〉∣∣ψ (B)
1

〉 → ∣∣εs2

〉∣∣ψ (B)
2

〉 → · · · , (13)

where |ψ (B)
j 〉 is the state of the bath at step j. Assuming

that the total energy is not significantly perturbed by the
measurement process, the quantum dynamics is restricted to
many-body states with energies close to the initial energy
Eα0 = εs0 + E (B)

β . This assumption is valid assuming the range
of system energies is negligible in comparison to the bath (see
Appendix E for a numerical validation of this assumption).

Equation (5) is valid for any local observable and a dif-
ferent initial condition [32]. We define p(s f , si; t f , ti ) as the
probability of measuring the value s f at time t f , assuming
that a previous observation yielded a value si at time ti. Thus,
we can apply Eq. (5) to the projector Ps f = |εs f 〉S〈εs f | ⊗ 1B to
obtain

p(s f , si; t f , ti ) = [
δs f ,si − p∞(s f )

]
e−2�t + p∞(s f ), (14)

where p∞(s f ) = [(Ps f )αα]
α0

and �t = t f − ti. Here p∞(s f )
is the steady-state probability for the system to be in state
s f , which in the RMT approach can be written in terms of
a microcanonical ensemble around the initial energy Eα0 .

Equation (14) predicts that in the limit �t � 1/, the
set of values s1, . . . , sNm will be scattered with variance σ 2

X .
However, in the case �t < 1/, the measurement process
may temporally resolve the decay of the initial value of X .
Equation (14) in-fact predicts that the measurement outcomes
form a Markov chain. Furthermore, we can show that the
average over all the resulting stochastic trajectories of a mea-
surement outcome, s j at time t j , is the same as the expectation

value 〈X (t j )〉 at time t j (shown in Appendix D). In other
words, if we measure the expectation value 〈X (t j )〉, the value
is independent of whether we have subjected the systems to
a quantum measurement at times t < t j or not. This is pre-
cisely the condition of consistent histories in [6,7], which is
conjectured as a mechanism behind the effective description
of thermalization dynamics by a Markov process. Here we
derive the mechanism from a description in terms of RMT
and more generally chaotic wave functions. Finally, deviations
from Eq. (14) are expected for very short �t 
 tZ , with tZ a
typical quantum Zeno timescale.

We may connect our discussion to the emergence of
thermodynamic quantities through the nonequilibrium Gibbs
entropy

SG(t ) = −
dS/2∑

s−dS/2

p(s, si; t, t0) ln p(s, si; t, t0) (15)

and its behavior with �t . In fact, from Eq. (5) we may
show that dSG(t )

dt � 0 (see Appendix D 2). The definition of
a nonequilibrium Gibbs entropy for quantum jump trajecto-
ries makes an important connection to results in stochastic
thermodynamics [64–66]. In particular, we have seen that
p(s, si; t, t0) may be described by effective Langevin dynam-
ics, and thus Eq. (15) may be seen to parallel the classical
nonequilibrium Gibbs entropy defined in, e.g., [64]. This
construction further resembles the observational entropy in
Refs. [67,68].

We finally note that an entropy may be defined for an
individual trajectory, by taking the probability distribution of
measurement outcomes over all times. In equilibrium we have
an equivalence between the quantum fluctuations σ 2

O(∞) and
time fluctuations of a single trajectory with �t � −1, as
each projective measurement occurs with a variance σ 2

O(∞).
Thus, this entropy is equal to the maximal value of SG(t ). This
is confirmed numerically in Fig. 2(c).

VI. NUMERICAL CALCULATIONS

We have performed numerical experiments to check the
validity of the RMT model and its predictions with two basic
sets of models.

A. Coupled quantum harmonic oscillators

We consider a set of particles confined to move in a grid
of discretized positions in one-dimensional harmonic poten-
tials. The Hilbert space is formed by states |s, i〉, where s =
−S, . . . , S is the position in the ith potential,

H0 =
N∑

i=1

S∑
s=−S

εs|s, i〉〈s, i|, (16)

with εs = s2. To this we add the coupling term

V = hx

N∑
i=1

S−1∑
s=−S

(|s, i〉〈s + 1, i| + H.c.)

+ J
N−1∑
i=1

S−1∑
s=−S

(|s, i〉〈s + 1, i + 1| + |s + 1, i〉〈s, i + 1|

+ H.c.), (17)
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FIG. 2. Exact diagonalization calculations of the Hamiltonian (16) and (17). (a) Observable dynamics as obtained from 〈O(t )〉 (green solid
line), quantum jump trajectories Oj (dotted lines), and their averages over 500 realizations (dashed lines). (b) Convergence of the decay rate
as measured by quantum jump trajectories (QJ) to that of thermalization dynamics (EV). Trajectories are shown in Fig. 4. (c) Growth of the
nonequilibrium Gibbs entropy [Eq. (15)]. The solid line shows the single-trajectory entropy for �t = 4 [see below Eq. (15) for discussion].
The parameters are J = 0.8, hx = 0.7, S = 3, and N = 4.

which includes both a kinetic energy term proportional to hx

and a hopping J between adjacent sites and energy levels in
each oscillator. The observable is taken to be the oscillator
position at i = 1, O = X1 = ∑

s s|s, 1〉〈s, 1|.
Numerical results are shown in Fig. 2. In particular, in

Fig. 2(b) we see that the decay rate of averaged quantum
jump trajectories indeed converges to that of 〈O(t )〉 outside
the Zeno regime. Further, we observe in Fig. 2(c) the growth
of entropy in time to the value of the single-trajectory entropy.

B. Quantum spin chains

The second system we consider is a bilinear-biquadratic
spin chain [69–71]. Details and results are shown in
Appendix E. In this case the Hamiltonian does not have a
quadratic energy dispersion, an assumption only required for
the comparison to the OU process. Further, we consider both
a local and global observable of this model, finding that our
analysis is valid in each case; our assumptions simply require
the observable to have a sufficiently sparse structure in the
free basis [32]. Finally, the dynamics of this model shows
multiple timescales, which are resolved by the dynamics of
the quantum jump trajectories when �t is of the relevant scale.
This may allow quantum jump trajectories to resolve such
phenomena as prethermalization [26].

VII. CONCLUSION

In this work we have shown how a closed quantum
system initialized in a pure state may reproduce a clas-
sical temperature-dependent fluctuation-dissipation theorem
of Brownian motion. Specifically, we have reproduced the
Einstein relation for the Ornstein-Uhlenbeck process. This
result is a direct analytical observation of the emergence of
classical statistical physics from unitary quantum dynamics.
Indeed, we similarly observed an eigenstate equipartition the-
orem and thus saw that microcanonical temperature relations
can be seen on the level of individual eigenstates, thus ex-
tending the intuition afforded by the ETH. Our results apply
directly to quantum jump trajectories induced by repeated
quantum measurements, finding that the trajectory is similarly

described by a classical OU process. Further, we observed that
the fluctuations of chaotic quantum systems may be exploited
to accurately measure their density of states.

Our calculations are based on a random matrix theoretic
approach and build on earlier works where we obtained
an analytic description of the full time-dependent decay to
equilibrium [32]. The present work formalized an important
consequence of this approach, the emergence of a descrip-
tion of the fluctuations of local observables in terms of a
microcanonical temperature. This hints towards a quantum
foundation of classical statistical physics, as we see the im-
portant properties of this theory directly from the quantum
dynamics of pure states. We have confirmed our results by
a numerical exact diagonalization calculation on two model
systems.
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APPENDIX A: SUMMARY OF RMT FORMALISM

In this Appendix we outline in brief the RMT methodology
developed in Refs. [32,43,49,58], on which our calculations
are based. We focus here on making clear the required as-
sumptions on which the calculations rest and refer the reader
to the above references for details on the calculations them-
selves. Reference [43] provides a detailed formulation of the
RMT model and a derivation of the ETH, Ref. [32] extends
and formalizes key features of observables and describes time
evolution of observables, and Ref. [58] extends the approach
to finite temperatures and applies the method to an application
on quantum computers and other devices. Self-averaging of
chaotic wave functions is shown and discussed in the Ap-
pendixes of Ref. [58]. Reference [49] goes into more detail
regarding the assumptions on observables made below, ob-
taining physical conditions for the fulfillment of the crucial
assumptions. Each of these works includes exact numerical
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calculations of realistic quantum spin chains, which compare
very well with the RMT framework.

Our summary below is separated into two sections, the
assumptions required about chaotic wave functions and those
about observables.

1. Assumptions about chaotic wave functions

The main assumption of our RMT formalism is the ansatz
that the probability distribution on chaotic wave functions
|ψμ〉 = ∑

α cμ(α)|φα〉 is a Gaussian distribution with the con-
straint of mutual orthogonality 〈ψμ|ψν〉 = δμν ,

p(c) = 1

Z
exp

(
−

∑
μα

c2
μ(α)

2�(μ, α)

)

×
∏
μν

μ>ν

δ

(∑
α

cμ(α)cν (α)

)
. (A1)

That is, the action of the interaction causes the eigenstate |ψμ〉
to mix with sufficiently many noninteracting states |φα〉 such
that the distribution may be approximately described by a
Gaussian with some width �(μ, α), with the requirement that
the eigenstates remain orthogonal. The function � thus yields
the envelope of the random wave functions. This function is
shown to be a Lorentzian of width  for the particular RMT
model which we use for comparison to our model, though it
may be different for different models. In general, for chaotic
systems one may expect this function to be peaked around
a certain energy, with a width (E ) that may depend on the
energy of the wave function. We showed in [58] that this
change in width with energy can in fact be incorporated into
our theory.

From Eq. (A1) one can calculate arbitrary correlation func-
tions 〈cμ(α) · · · cν (β )〉V of the model [43]. We see that the
largest correlation function that does not factorize is the four-
point correlation function

〈cμ(α)cν (β )cμ(α′)cν (β ′)〉V

= �(μ, α)�(ν, β )δαα′δββ ′

− �(μ, α)�(ν, β )�(μ, α′)�(ν, β ′)∑
α �(μ, α)�(ν, α)

× (δαβδα′β ′ + δαβ ′δβα′ ). (A2)

This can be understood in terms of Gaussian and non-
Gaussian contractions, where the first term is that due to
purely Gaussian behavior (reminiscent of Wicks’s theorem,
for example) and the second term is due to the effective
interactions between chaotic wave functions due to mutual
orthogonality. We note that this term is actually crucial for a
consistent description of observable matrix elements and time
evolution. It is these correlation functions that form the basis
for calculations in our framework.

2. Assumptions about observables

For the work outlined above there are two relevant as-
sumptions to be made about the form of observables. The

(a) (b)

FIG. 3. (a) Energy level diagram. Shown are two system energy
levels Es in distinct colors, the bath energy levels Ef (α,s), and the
total system plus bath energy levels Eα , colored according to their
respective system states. (b) Illustration of the microcanonical aver-
age [Oαα]α . Each level in the average is weighted by the function �;
this average is assumed to be made up of many energy levels and to
vary smoothly with energy.

first is that we assume that in the noninteracting basis the
observable is diagonal, so Oαβ ∝ δαβ . We note that this is
not a requirement for the general framework, which can be
extended to observables that take instead a sparse structure in
this basis [32].

The second assumption can be summarized as the ability
to define a microcanonical average that does not vary patho-
logically in energy. We will detail the specific requirements
for this below, but note that this can be understood simply to
be a minimal requirement on observables in order for ther-
malization to occur, as thermalization requires that system
observables evolve to a microcanonical state that does not
depend on the particular microstate of the initial state but
rather on its energy alone.

In detail then, this assumption requires that the micro-
canonical average

[Oαα]μ :=
∑

α

�(μ, α)Oαα (A3)

is smooth over the width  of the function �. This is illus-
trated in Fig. 3. We showed in Ref. [32] that this smoothness
condition is fulfilled under the two conditions



ω0
� 1,

2

∣∣∣∣d2[Oαα]μ
dE2

μ

∣∣∣∣ 
 1.

(A4)

APPENDIX B: DERIVATION OF EQ. (9)

In this Appendix we will evaluate

[Oαα]α0
:=

∑
α

�(α0, α)Oαα. (B1)

The important point here is to realize that the � functions
in the sum in Eq. (B1), which are Lorentzian distributions
of width , can be approximated as δ functions (for small
enough values of ); explicitly selecting those values such
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that Eα = Eα0 in the summation, we obtain

[Oαα]α0
=

∑
α

Oαα

1

D
(
Eα0

) α0/π(
Eα − Eα0

)2 + 2
α0

. (B2)

Note that Eα0 and Eα can be interchanged in the definition of
�, since we require that both α and D(Eα ) vary negligibly
over energy scales of the order of α . Under this very ap-
proximation we can change the Lorentzian by a Dirac delta
function. Additionally, we work in the continuum limit such
that we may reexpress the sum over αB as an integral over the
bath eigenstates

∑
αB

→ ∫
dEαB DB(EαB ). We thus have

[Oαα]α0
=

∑
s

Oss

∑
αB

1

D
(
Eα0

)δ
(
Eα − Eα0

)

=
∑

s

Oss

∫
dEαB

DB
(
EαB

)
D

(
Eα0

) δ
(
Eα − Eα0

)

=
∑

s

Oss

∫
dEαB

DB
(
EαB

)
D

(
Eα0

) δ
(
εs + EαB − Eα0

)

=
∑

s

OssDB
(
Eα0 − εs

) 1

D
(
Eα0

)
=

∑
s

Oss p(s). (B3)

Here we have defined the probabilities

p(s) = DB
(
Eα0 − εs

)
D

(
Eα0

) = DB
(
Eα0 − εs

)
∑

s DB
(
Eα0 − εs

) . (B4)

Notably, for the special case where the bath density of states
does not change over the entire system energy spectrum, we
thus recover p(s) = 1

dS
∀s. This is a common assumption in

formulations of statistical physics: that of equal a priori prob-
abilities. We thus observe the physical requirement for this
common assumption of statistical physics to be valid within
our theory.

APPENDIX C: DERIVATION OF EQ. (11)

In this Appendix we show that

[
�O2

αα

]
α0

=
∑

s

p(s)O2
ss −

(∑
s

p(s)Oss

)2

∼ β−1 (C1)

for a system with a harmonic energy dispersion Es = 1
2 ms2. In

this case, we have the partition function

Z (β ) =
∑

s

e−βE2
s , (C2)

where s takes 2S + 1 possible values from [−S, S] (or more
generally dS values from [− dS

2 , dS
2 ]) and β = β(Eα ). This

can itself be evaluated as a Gaussian integral
∑

s → ∫ ∞
−∞ ds

such that

Z (β ′) =
∫ ∞

−∞
ds e−β ′s2/2

=
√

2π

β ′ , (C3)

where we have defined β ′ := mβ. Now the first term in
Eq. (C1) can be written as[

O2
αα

]
α0

=
∑

s

p(s)o2
ss

= 1

Z (β ′)

∑
s

s2e−β ′s2/2

= 1

Z (β ′)

∫ ∞

−∞
ds s2e−β ′s2/2

= 1

β ′ . (C4)

The second term in Eq. (C1) can be seen along the same lines
to be trivially zero; we thus have[

O2
αα

]
α0

= 1

mβ
. (C5)

APPENDIX D: QUANTUM JUMP TRAJECTORIES

1. Thermalization of quantum jump trajectories

We can show that, according to the expression (13), the
probability distribution of measurement outcomes at a given
time t is independent of measurements having been performed
at times between 0 and t . This implies that the average over
quantum jump trajectories of the measurement outcome of an
observable O at some time t is the same as the expectation
value 〈O(t )〉 in the absence of previous quantum measure-
ments.

This can be shown with the following relation. Assume that
a measurement yields a value si at time ti and a future observa-
tion yields the value s f at time t f . At some intermediate time,
an observation is performed a time ti < t ′ < t f , with outcome
s′. From simple algebra it follows that the conditioned proba-
bility distribution in (13) satisfies∑

sm

p(s f , sm; t f , tm)p(sm, si; tm, ti )

=
∑

sm

{[
δs f ,sm − p∞(s f )

]
e−2(t f −tm ) + p∞(s f )

}
× {[

δsm,si − p∞(sm)
]
e−2(tm−ti ) + p∞(sm)

}
= [

δs f ,si − p∞(s f )
]
e−2(t f −ti ) + p∞(s f )

= p(s f , si; t f , ti ). (D1)

By induction Eq. (D1) can be extended to the case where
an average is taken over a set of intermediate measurement
outcomes, yielding the result that the average distribution
probability at some time is independent of whether the system
was monitored or not. This result is of course not valid in the
Zeno regime, where the exponential decay assumption is not
valid.
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FIG. 4. Average quantum jump trajectories of the O = X1 quantum harmonic oscillator Hamiltonian (16) and (17) of the main text for
increasing �t with (a)–(j). Here we see that as �t is increased the decay rate of the average jump trajectory decays at the same rate as the
expectation value (green dashed line). The orange dashed line shows a fit to exponential decay used to obtain QJ in Fig. 2(b). For small �t ,
the decay is slowed due to proximity to the Zeno regime of completely frozen dynamics at �t → 0. Averages were taken over 500 realizations
of quantum trajectories (100 realizations for �t = 0.1, 0.5). The parameters are J = 0.8, hx = 0.7, S = 3, N = 4, and (a) �t = 0.1, (b) 0.5,
(c) 1, (d) 1.5, (e) 2.0, (f) 2.5, (g) 3, (h) 3.5, (i) 4, and (j) 4.5.

We show examples of the decay of average quantum jump
trajectories in Fig. 4. These are the same trajectories used to
obtain the decay rates in Fig. 2(b).

2. Derivation of the second law

In this section we will bound the derivative of the
nonequilibrium Gibbs entropy. To simplify notation, we write
p(s f , si; t f , t0) = p(s f ; t ) such that

SG(t ) = −
dS/2∑

s=−dS/2

p(s, t ) ln p(s, t ) (D2)

for

p(s, t ) = p(s, 0)e−2t + (1 − e−2t )p∞(s), (D3)

where p∞(s) is the equilibrium probability of obtaining the
outcome s from a measurement of O. We have then that
dSG(t )

dt
= −

∑
s

{2e−2t [p∞(s) − p(s, 0)][ln p(s, t ) + 1]},
(D4)

which, using that 1 − 1
x � ln x � x − 1, leads to

dSG(t )

dt
� 2e−2t

{∑
s

[
p(s, 0)p(s, t ) − p∞(s)

(
2 − 1

p(s, t )

)]}

� 2e−2t

(
p(s0, t ) − 2 +

∑
s

1

p(s, t )

)
, (D5)

where in the second line we have used that p(s, 0) = δs,s0 ,
where s0 is the initial value of OS . Now we can thus see
that at t → 0, the factor

∑
s

1
p(s,t ) → ∞. This indicates that

at early times the entropy grows faster for smaller �t , as
observed in Fig. 2(c). For t > 0, we can note that 1

p(s,t ) � 1
and p(s0, t ) � 0, so

dSG(t )

dt
� 2e−2t [ds − 2] > 0 (D6)

for observables with more than one possible outcome ds � 2.
Interpreting this result, we note that SG(t ) is defined

for quantum jump trajectories only at times j�t and we
have that p(s, t ) follows the RMT result between successive
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FIG. 5. Exact diagonalization calculations of the spin-chain Hamiltonian of Eq. (E1) for O = S1
z . (a) Examples of observable dynamics as

obtained from 〈O(t )〉, quantum jump trajectories Oj , and their averages over 100 realizations (dashed lines). (b) Convergence of the decay rate
as measured by quantum jump trajectories to that of thermalization dynamics. Trajectories are shown in Fig. 6. (c) Growth of the nonequilibrium
Gibbs entropy. The solid line shows the single-trajectory entropy for �t = 0.5. The parameters are N = 4, S = 3, hz = 1, hx = 0.2, J = 0.8,
� = 0.3, and q = 1.5.

measurements. We thus see that, averaged over trajectories,
the Gibbs entropy can be seen to increase between successive
measurements.

APPENDIX E: ADDITIONAL NUMERICAL RESULTS

In this Appendix we present some numerical results com-
plementary to the results of the main text. First, we present
in Fig. 4 the corresponding quantum jump trajectories to the
decay rate plot of Fig. 2(b). These show the decay of the
expectation value, as well as the quantum jump trajectories
for different values of �t , to which we perform a fit. Notice
that for �t outside the Zeno regime, we observe the quantum
jump trajectories thermalize at approximately the same rate as
the expectation value.

In each case, we initialize the system as a midenergy eigen-
state of the noninteracting Hamiltonian H0, choosing such that
〈O(0)〉 = max(O), and obtain  from a fit to Eq. (5).

1. Quantum spin-chain results

In Fig. 5 we show results complementary to Fig. 2 for the
large-S spin chain given by the Hamiltonian

H0 =
N∑
j

[
hzS

j
z + hxS j

x

]
, (E1)

where j = 1 is the system spin. The coupling Hamiltonian is

V = 1

2
J

N−1∑
i

{
Si

xSi+1
x + Si

ySi+1
y + �Si

zS
i+1
z

+ q
[(

Si
xSi+1

x

)2 + (
Si

ySi+1
y

)2 + �
(
Si

zS
i+1
z

)2] + H.c.
}
,

(E2)

where Si
x,y,z are spin operators on site i. Notice that this

Hamiltonian does not have a quadratic energy dispersion of
the system at i = 1; this is required only to obtain the Einstein
relation in the form of the OU process.

The contributing thermalization dynamics of both the ex-
pectation values and quantum jump trajectories, used to obtain
Fig. 5(b), are shown in Fig. 6. Here we have used the observ-
able O = S1

z .

Interestingly, we observe that the expectation value dynam-
ics consists of two separate timescales. At very short times,
the decay is fast; however, after some time, a slower decay
dominates. Notice that this more complicated dynamics is
mirrored in the quantum jump trajectories. In Fig. 5(b), unlike
the harmonic oscillator chain, the quantum jump trajectory
decay rate is actually faster than the expectation value decay
for a range of �t . For this intermediate range of �t values, the
quantum jump trajectories decay at the same rate as the short-
time dynamics of the expectation value. As �t is increased,
the decay rate slows to that of a fit to the whole dynamics of
the trajectory.

We thus see that more complex dynamics may also be re-
solved in the quantum jump framework. Indeed, the approach
from quantum chaos, employing Eq. (A1), is more general
than the specific RMT model applied in the main text and
may describe systems where � is of a form different from
a Lorentzian. In such cases, the decay deviates from a purely
exponential form.

Global observables

The theory developed in the main text does not require that
the observable is strictly local, rather that it is diagonal in the
basis of eigenstates of the noninteracting Hamiltonian. In fact,
even this requirement is not necessary in our RMT framework;
rather the observable must be sufficiently sparse and may be
formulated in terms of sums of local observables O = ∑

i Oi

that are not necessarily diagonal [32].
We can thus apply this approach to global observables of

the system. Here we use the spin-chain system of Eq. (E1) and
choose as our observable O = ∑

j S j
z . We see in Figs. 7 and 8

that out analysis of the main text still holds in this case.

2. Total energy

Here we give some additional numerical results in order
to verify the results of the main text. First, we note that an
assumption made above is that the energy does not change
in time significantly due to the action of measurements in a
quantum jump trajectory. This is a reasonable assumption in
the limit of a very large bath, where the system contributes
little to the total energy. We confirm this assumption for the
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FIG. 6. Average quantum jump trajectories of O = S1
z of the spin-chain Hamiltonian of Eq. (E1) for increasing �t with (a)–(j). Here we

see that as �t is increased the decay rate of the average jump trajectory decays at the same rate as the expectation value (green dashed line).
The orange dashed line shows the fit to exponential decay used to obtain QJ in Fig. 5(b). For small �t , the decay is slowed due to proximity to
the Zeno regime of completely frozen dynamics at �t → 0. Averages were taken over 100 realizations of quantum trajectories. The parameters
are N = 4, S = 3, hz = 1, hx = 0.2, J = 0.8, � = 0.3, q = 1.5, and (a) �t = 0.005, (b) 0.01, (c) 0.05, (d) 0.1, (e) 0.2, (f) 0.3, (g) 0.4, (h) 0.5,
(i) 0.6, and (j) 0.7.

numerical models studied, where the bath is of a modest size,
in Fig. 9.

3. Measurement of the density of states

In the main text we obtained the fluctuation relation

σ 2
O(∞)

δ2
O(∞)

= 4πD(E ), (E3)

which we show in this Appendix via numerical exact diago-
nalizations may be exploited to measure the density of states
of a quantum system. We show this for two models. The first
is the quantum harmonic oscillator model of the main text.
The second model we use is a chain of spin- 1

2 particles, which
more closely resembles an ion chain or another system of
qubits. Equation (E3) applies to such models, as this relation
does not require any assumptions about the system observable

FIG. 7. Exact diagonalization calculations of the spin-chain Hamiltonian of Eq. (E1) for the global observable O = ∑N
i Si

z. (a) Examples
of observable dynamics as obtained from 〈O(t )〉, quantum jump trajectories Oj , and their averages over 100 realizations, indicated by 〈Oj〉
(dotted lines). (b) Convergence of the decay rate as measured by quantum jump trajectories to that of thermalization dynamics. Trajectories
are shown in Fig. 8. (c) Growth of the nonequilibrium Gibbs entropy. The solid line shows the single-trajectory entropy for �t = 0.7. The
parameters are N = 4, S = 3, hz = 1, hx = 0.2, J = 0.8, � = 0.3, and q = 1.5.
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FIG. 8. Average quantum jump trajectories of O = ∑
i Si

z of the spin-chain Hamiltonian of Eq. (E1) for increasing �t with (a)–(j). Here
we see that as �t is increased the decay rate of the average jump trajectory decays at the same rate as the expectation value (green dashed
line). The orange dashed line shows the fit to exponential decay used to obtain QJ in Fig. 7(b). For small �t , the decay is slowed due to
proximity to the Zeno regime of completely frozen dynamics at �t → 0. Averages were taken over 100 realizations of quantum trajectories.
The parameters are N = 4, S = 3, hz = 1, hx = 0.2, J = 0.8, � = 0.3, q = 1.5, and (a) �t = 0.005, (b) 0.01, (c) 0.05, (d) 0.1, (e) 0.2, (f) 0.3,
(g) 0.4, (h) 0.5, (i) 0.6, and (j) 0.7.

other than the requirement that it is diagonal in the noninter-
acting eigenbasis, and thus a large system dimension is not
required.

The spin- 1
2 chain is described by a Hamiltonian of the form

H = HS + HB + HSB, (E4)

where HS describes a single spin in a Bz field

HS = B(S)
z σ (1)

z . (E5)

Here {σ ( j)
i }, i = x, y, z, are the Pauli operators acting on site

j. We take the system as site j = 1. The bath Hamiltonian is
a spin chain of length N − 1, with nearest-neighbor Ising and

FIG. 9. Change of total energy E (t ) = 〈H (t )〉 in time due to the action of repeated projective measurements (blue solid line). Variance
of energy σE (t ) is shown in the shaded area. Dashed lines show time fluctuations of energy δE (∞). Here �E = Emax − Emin. (a) Quantum
harmonic oscillator chain of the main text. The parameters are J = 0.8, hx = 0.7, S = 3, and N = 4. The time average variance σE (t ) is of
order σE (t )

�E ≈ 0.05. Also shown is the spin chain of Eq. (E1) under the action of (b) the local observable S1
z and (c) the global observable∑

i Si
z. Here σE (t )

�E ≈ 0.015, 0.009 for local and global observables, respectively. The parameters are N = 4, S = 3, hz = 1, hx = 0.2, J = 0.8,
� = 0.3, and q = 1.5.
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FIG. 10. Comparison of density of states as inferred from the fluctuation theorem of Eq. (E3) (yellow squares) with the exact value
(blue circles) for (a) the system of coupled quantum harmonic oscillators described in the main text, with the parameters J = 1.2, hx = 0.8,
and S = 2, and (b) the chain of spin- 1

2 particles with the Hamiltonian (E4), with the parameters B(S)
x = 0, B(B)

z = 0, B(B)
x = 0.3, J (S)

x = 0.4,
J (S)

z = 0.2, J (B)
z = 0.1, J (B)

x = 1, and B(S)
z = 0.8.

XX interactions subjected to both Bz and Bx fields

HB =
N∑

j>1

(
B(B)

z σ ( j)
z + B(B)

x σ ( j)
x

)

+
N−1∑
j>1

[Jzσ
( j)
z σ ( j+1)

z + Jx(σ ( j)
+ σ

( j+1)
− + σ

( j)
− σ

( j+1)
+ )].

(E6)

The interaction Hamiltonian describes the coupling of the
system spin to a single central bath ion of index Nm = 3,

HSB = J (SB)
z σ (1)

z σ (Nm )
z + J (SB)

x (σ (1)
+ σ

(Nm )
− + σ

(1)
− σ

(Nm )
+ ). (E7)

For the initial state of the spin- 1
2 system we choose a randomly

selected eigenstate of H0 = HS + HB, ensuring only that the
initial system state is |↑〉 and that the initial energy is in the
central 1

2 of the total energy spectrum (guaranteeing that it is
not too close to the ground state).

Numerics confirming Eq. (E3) are shown for both the quan-
tum harmonic oscillator of the main text and the above spin- 1

2
chain in Figs. 10(a) and 10(b), respectively. In the exact
diagonalization calculations in Fig. 10 we have calculated
D(E ) in two ways. The first is the exact value obtained numer-
ically and the second is a numerical experiment performed by
calculating the σ 2

O and δ2
O and  from the expectation value

dynamics 〈O(t )〉 of a local observable (σz for the chain of
spin- 1

2 particles, the same as in the main text for the remaining
models). Each of these three quantities is obtainable in a
realistic experimental scenario, and thus this approach may
be exploited in order to measure the DOS of a many-body
quantum system.

APPENDIX F: ORNSTEIN-UHLENBECK PROCESS

In the main text we made comparisons of the results to
the classical dynamics of the Ornstein-Uhlenbeck process,
describing the Brownian motion [72] of the position x(t ) of
a particle in a medium subjected to random collisions with

its environment. We summarize the relevant results here and
show a modification that reproduces the same finite-size time
fluctuations as the RMT model of the main text.

The OU process is described by the Langevin equation

dx(t )

dt
= − k

γ
[x(t ) − x] + ξ (t ), (F1)

where γ and x are constants and ξ (t ) is a stochastic random
variable fulfilling 〈ξ (t )〉ξ = 0 and 〈ξ (t )ξ (t ′)〉ξ = 2Dδ(t − t ′),
where 〈· · · 〉ξ indicates an average over stochastic trajectories
and D is the diffusion constant. The OU process describes
the motion of an overdamped harmonic oscillator driven
by white noise, with an oscillator potential V (x) = k

2 x2.
This is easily solved [73,74] to find (setting x = 0) x(t ) =
x(0)e−(k/γ )t and 〈x2(t )〉ξ = 〈x(t )〉2

ξ + Dγ

k (1 − e−2(k/γ )t ). The
long-time observable variance may be written as σ 2

x (∞) =
Dγ

k . For a system in thermal equilibrium, the time-average en-
ergy is 〈E〉 = 1

2 kBT by the equipartition theorem. We then see
that the long-time average energy gives 〈V 〉 = 1

2 Dγ such that
D = kBT

γ
. This is the celebrated Einstein relation of Brownian

motion, a manifestation of the fluctuation-dissipation theorem
[60]. Note that in the case of the OU process the equipartition
theorem is invoked in order to obtain the Einstein relation,
whereas for our description in terms of chaotic wave func-
tions both can be observed to emerge simultaneously and are
encompassed in Eq. (11).

We further note that if one modifies the stochastic noise
ξ (t ) such that 〈ξ (t )〉ξ = v(s), with v a random variable itself,
with v(s) = 0 and v(s)v(s′) = v2δ(s − s′), we obtain

δ2
x (∞) = v2γ 2

k2
. (F2)

Note that the physical interpretation of this modification is a
shaking of the harmonic trap with white noise at a random
velocity v for any given realization of the random force ξ . In
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this case, we can make the association

v2 ⇒ [�O2]α0


4πD(E )
= kBT 

4πD(E )m
. (F3)

The modified time fluctuation can be thought of as an equiv-
alent of the Einstein relation for time fluctuations of finite
classical systems.

[1] C. Bartsch and J. Gemmer, Europhys. Lett. 96, 60008 (2011).
[2] C. Ates, J. P. Garrahan, and I. Lesanovsky, Phys. Rev. Lett. 108,

110603 (2012).
[3] I. Tikhonenkov, A. Vardi, J. R. Anglin, and D. Cohen, Phys.

Rev. Lett. 110, 050401 (2013).
[4] H. Niemeyer, D. Schmidtke, and J. Gemmer, Europhys. Lett.

101, 10010 (2013).
[5] H. Niemeyer, K. Michielsen, H. De Raedt, and J. Gemmer,

Phys. Rev. E 89, 012131 (2014).
[6] J. Gemmer and R. Steinigeweg, Phys. Rev. E 89, 042113

(2014).
[7] D. Schmidtke and J. Gemmer, Phys. Rev. E 93, 012125

(2016).
[8] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.

Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch,
Science 349, 842 (2015).

[9] G. Clos, D. Porras, U. Warring, and T. Schaetz, Phys. Rev. Lett.
117, 170401 (2016).

[10] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Science 353, 794 (2016).

[11] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z.
Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro et al.,
Nat. Phys. 12, 1037 (2016).

[12] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V.
Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya
et al., Science 360, 195 (2018).

[13] H. Kim, Y. J. Park, K. Kim, H. S. Sim, and J. Ahn, Phys. Rev.
Lett. 120, 180502 (2018).

[14] J. Gemmer, A. Otte, and G. Mahler, Phys. Rev. Lett. 86, 1927
(2001).

[15] P. Reimann, Phys. Rev. Lett. 99, 160404 (2007).
[16] P. Reimann, New J. Phys. 12, 055027 (2010).
[17] J. M. Deutsch, New J. Phys. 12, 075021 (2010).
[18] A. J. Short, New J. Phys. 13, 053009 (2011).
[19] T. N. Ikeda, Y. Watanabe, and M. Ueda, Phys. Rev. E 84, 021130

(2011).
[20] M. Gluza, C. Krumnow, M. Friesdorf, C. Gogolin, and J. Eisert,

Phys. Rev. Lett. 117, 190602 (2016).
[21] T. Farrelly, F. G. S. L. Brandão, and M. Cramer, Phys. Rev. Lett.

118, 140601 (2017).
[22] F. Borgonovi, F. Mattiotti, and F. M. Izrailev, Phys. Rev. E 95,

042135 (2017).
[23] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,

854 (2008).
[24] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.

Phys. 65, 239 (2016).
[25] C. Gogolin and J. Eisert, Rep. Prog. Phys. 79, 056001

(2016).
[26] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, J. Phys. B 51,

112001 (2018).
[27] J. M. Deutsch, Rep. Prog. Phys. 81, 082001 (2018).
[28] L. P. García-Pintos, N. Linden, A. S. L. Malabarba, A. J. Short,

and A. Winter, Phys. Rev. X 7, 031027 (2017).

[29] J. Richter, J. Gemmer, and R. Steinigeweg, Phys. Rev. E 99,
050104(R) (2019).

[30] M. Schiulaz, E. J. Torres-Herrera, and L. F. Santos, Phys. Rev.
B 99, 174313 (2019).

[31] Á. M. Alhambra, J. Riddell, and L. P. García-Pintos, Phys. Rev.
Lett. 124, 110605 (2020).

[32] C. Nation and D. Porras, Phys. Rev. E 99, 052139 (2019).
[33] L. Dabelow and P. Reimann, Phys. Rev. Lett. 124, 120602

(2020).
[34] F. Borgonovi, F. M. Izrailev, and L. F. Santos, Phys. Rev. E 99,

010101(R) (2019).
[35] D. Nickelsen and M. Kastner, Phys. Rev. Lett. 122, 180602

(2019).
[36] D. Nickelsen and M. Kastner, Quantum 4, 273 (2020).
[37] H. Hinrichsen, C. Gogolin, and P. Janotta, J. Phys.: Conf. Ser.

297, 012011 (2011).
[38] R. Ziener, A. Maritan, and H. Hinrichsen, J. Stat. Mech. (2015)

P08014.
[39] G. Bisker, M. Polettini, T. R. Gingrich, and J. M. Horowitz, J.

Stat. Mech. (2017) 093210.
[40] G. Manzano, R. Fazio, and E. Roldán, Phys. Rev. Lett. 122,

220602 (2019).
[41] M. V. Berry, J. Phys. A: Math. Gen. 10, 2083 (1977).
[42] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[43] C. Nation and D. Porras, New J. Phys. 20, 103003 (2018).
[44] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[45] P. Reimann, New J. Phys. 17, 055025 (2015).
[46] G. Ithier and S. Ascroft, J. Phys. A: Math. Theor. 51, 48LT01

(2018).
[47] J. P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 104, 160601

(2010).
[48] Y. Y. Atas and E. Bogomolny, J. Phys. A: Math. Theor. 50,

385102 (2017).
[49] C. Nation, Quantum chaos and the emergence of statistical

physics, Ph.D. thesis, University of Sussex, 2020.
[50] L. F. Santos and M. Rigol, Phys. Rev. E 81, 036206 (2010).
[51] E. J. Torres-Herrera, J. Karp, M. Tavora, and L. F. Santos,

Entropy 18, 359 (2016).
[52] F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G. Zelevinsky,

Phys. Rep. 626, 1 (2016).
[53] P. Reimann, Nat. Commun. 7, 10821 (2016).
[54] J. M. Deutsch (unpublished), https://deutsch.physics.ucsc.edu/

pdf/quantumstat.pdf.
[55] V. V. Flambaum and F. M. Izrailev, Phys. Rev. E 61, 2539

(2000).
[56] E. J. Torres-Herrera, D. Kollmar, and L. F. Santos, Phys. Scr.

T165, 014018 (2015).
[57] M. Srednicki, J. Phys. A: Math. Gen. 29, L75 (1996).
[58] C. Nation and D. Porras, Quantum 3, 207 (2019).
[59] M. Srednicki, J. Phys. A: Math. Gen. 32, 1163 (1999).
[60] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[61] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì, Phys.

Rev. Lett. 96, 050403 (2006).

042115-13

https://doi.org/10.1209/0295-5075/96/60008
https://doi.org/10.1103/PhysRevLett.108.110603
https://doi.org/10.1103/PhysRevLett.110.050401
https://doi.org/10.1209/0295-5075/101/10010
https://doi.org/10.1103/PhysRevE.89.012131
https://doi.org/10.1103/PhysRevE.89.042113
https://doi.org/10.1103/PhysRevE.93.012125
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevLett.117.170401
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1038/nphys3830
https://doi.org/10.1126/science.aao4309
https://doi.org/10.1103/PhysRevLett.120.180502
https://doi.org/10.1103/PhysRevLett.86.1927
https://doi.org/10.1103/PhysRevLett.99.160404
https://doi.org/10.1088/1367-2630/12/5/055027
https://doi.org/10.1088/1367-2630/12/7/075021
https://doi.org/10.1088/1367-2630/13/5/053009
https://doi.org/10.1103/PhysRevE.84.021130
https://doi.org/10.1103/PhysRevLett.117.190602
https://doi.org/10.1103/PhysRevLett.118.140601
https://doi.org/10.1103/PhysRevE.95.042135
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1103/PhysRevX.7.031027
https://doi.org/10.1103/PhysRevE.99.050104
https://doi.org/10.1103/PhysRevB.99.174313
https://doi.org/10.1103/PhysRevLett.124.110605
https://doi.org/10.1103/PhysRevE.99.052139
https://doi.org/10.1103/PhysRevLett.124.120602
https://doi.org/10.1103/PhysRevE.99.010101
https://doi.org/10.1103/PhysRevLett.122.180602
https://doi.org/10.22331/q-2020-05-28-273
https://doi.org/10.1088/1742-6596/297/1/012011
https://doi.org/10.1088/1742-5468/2015/08/P08014
https://doi.org/10.1088/1742-5468/aa8c0d
https://doi.org/10.1103/PhysRevLett.122.220602
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/1367-2630/aae28f
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1088/1367-2630/17/5/055025
https://doi.org/10.1088/1751-8121/aae800
https://doi.org/10.1103/PhysRevLett.104.160601
https://doi.org/10.1088/1751-8121/aa81f6
https://doi.org/10.1103/PhysRevE.81.036206
https://doi.org/10.3390/e18100359
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1038/ncomms10821
https://deutsch.physics.ucsc.edu/pdf/quantumstat.pdf
https://doi.org/10.1103/PhysRevE.61.2539
https://doi.org/10.1088/0031-8949/2015/T165/014018
https://doi.org/10.1088/0305-4470/29/4/003
https://doi.org/10.22331/q-2019-12-02-207
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRevLett.96.050403


CHARLIE NATION AND DIEGO PORRAS PHYSICAL REVIEW E 102, 042115 (2020)

[62] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2, 754
(2006).

[63] A. Bayat, B. Alkurtass, P. Sodano, H. Johannesson, and S. Bose,
Phys. Rev. Lett. 121, 030601 (2018).

[64] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[65] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[66] J. M. Parrondo, J. M. Horowitz, and T. Sagawa, Nat. Phys. 11,

131 (2015).
[67] D. Šafránek, J. M. Deutsch, and A. Aguirre, Phys. Rev. A 99,

012103 (2019).

[68] D. Šafránek, A. Aguirre, J. Schindler, and J. M. Deutsch,
arXiv:2008.04409.

[69] A. V. Chubukov, Phys. Rev. B 43, 3337 (1991).
[70] J. J. García-Ripoll, M. A. Martin-Delgado, and J. I. Cirac, Phys.

Rev. Lett. 93, 250405 (2004).
[71] A. Läuchli, G. Schmid, and S. Trebst, Phys. Rev. B 74, 144426

(2006).
[72] A. Einstein, Ann. Phys. (Leipzig) 322, 549 (1905).
[73] G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
[74] J. L. Doob, Ann. Math. 43, 351 (1942).

042115-14

https://doi.org/10.1038/nphys444
https://doi.org/10.1103/PhysRevLett.121.030601
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1038/nphys3230
https://doi.org/10.1103/PhysRevA.99.012103
http://arxiv.org/abs/arXiv:2008.04409
https://doi.org/10.1103/PhysRevB.43.3337
https://doi.org/10.1103/PhysRevLett.93.250405
https://doi.org/10.1103/PhysRevB.74.144426
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.2307/1968873

