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Relaxation of excited electrons in a paramagnetic electron gas: The role of spins in screening
and scattering
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The scattering lifetime of excited electrons close enough to the Fermi surface is investigated using the
standard kinetic framework. This framework is implemented by effective, spin-dependent interactions and
numerical phase-shift calculations. The nontrivial interplay between wave-mechanical interference effects in
scattering and correlations in screening and dressing is discussed. Their role and relative importance are
quantified via a comparative theoretical study.
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I. INTRODUCTION AND MOTIVATIONS

Many of the laws of quantum theory have been disc
ered by watching the behavior ofsingleparticles being scat
tered, making allowed transitions and passing through dif
ent fields. Nevertheless, in condensed-matter physics,
must apply these laws to the calculation of the properties
many-body quantum systems. The model of an interac
electron gas, i.e., a system of identical fermion particles,
localized in space and in interaction with one another, rep
sents a genuinely important problem. The understanding
the dynamics ofexcitedelectrons in this system, and thus
get a physical insight into nontrivial correlation effects, is
great theoretical and experimental interest currently. Fo
recent review on this field, see Ref. 1.

Consider an excited particle lying above the Fermi s
face. Such a particle, the state of which is classified by
momentum distribution function, will not remain there in
definitely. It will scatter against the particles in the Fer
sphere, makingreal transitions and so tend to lower it
energy.2 The excited state therefore has a finite scatter
lifetime (t).3,4 When the energy~E! of an excited electron is
close enough to the Fermi surface (EF) the relaxation pro-
cess is mediated by electron-hole pair excitations carry
energy (v) and momentum (q). Due to the fundamental role
of the Pauli exclusion principle for energetically allowed e
citations, max(v)5E2EF . This is a phase-space constrain
it is essentially independent of the details of interactions
tween particles of a normal Fermi system. The physical
laxation process is inelastic and its characteristic time s
should depend on the details of those scatterings that
real transitions. The process is an irreversible, dissipative
in the thermodynamical sense. In other word
v Im x0(q,v)>0 by causality, where the complexx0(q,v)
is the response function of a system of independent cons
ents and the equality holds only for quasistatic process5

The factor Imx0(q,v), the spectral function, measures t
dynamical width of particle states.6

The theoretical description of scattering of two identic
0163-1829/2001/64~7!/075101~6!/$20.00 64 0751
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fermions ~not necessarily electrons, i.e., nucleons! interact-
ing through central forces is well-known,7,8 The description
is based on the free-space Schro¨dinger equation. We may
suppose—and this will be the actual case in this work—t
the spin-dependent part of the two-body effective interact
is proportional to the products1•s2 of two Pauli spin
operators.3,4,8 Generally, the scattering state function must
antisymmetric when all the coordinates of the two fermio
~spatial and spin! are interchanged. The rate of scattering
related9 to the differential cross section (ds) which is de-
fined in terms ofproperly determined singlet and triplet am
plitudes. At these above circumstances the role of excha
appears as an interference effect in the differential cr
section.8

In the present work we shall investigate in detail t
physical aspects of the effective interaction required in
implementation of the kinetic treatment of the relaxati
process.2 The influence of the fermion many-body enviro
ment ‘‘around’’ our two-particle subsystem results in a sho
range effective interaction between them. The scatter
should be described, therefore, at least via an in-med
Schrödinger equation. The effective interaction must inclu
electrostatic screening and exchange-correlation-medi
dressing, due to the Coulomb and Pauli correlations. Th
may affect the scattering characteristics (ds) in a nontrivial
manner in combination with the above-mentioned wa
interference effect.

This paper is organized as follows. In Sec. II, we pres
the theoretical framework for the scattering lifetime, t
models for the effective interaction, and the obtained resu
These latter are given analytically and numerically in t
form of illustrative figures. The results, based on differe
approximations, are discussed in a comparative way. The
section, Sec. III, is devoted to the conclusions. We shall
atomic unitse25\5me51 throughout this work.

II. THEORY AND RESULTS

The evaluation of the kinetic model for the scattering lif
time results in the following expression:2,3
©2001 The American Physical Society01-1
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t
5a~r s!~E2EF!2, ~1!

in which the prefactora(r s) depends, generally in a compl
cated way, on the densityn053/(4pr s

3) of the electron sys-
tem. This factor is determined~for a recent implementation
see, i.e., Ref. 10! from

a~r s!5
1

~2p!4

1

2pE0

p

duE
0

p

da sina
w~a,u!

cos~a/2!
, ~2!

wherea is defined via cosa512(Ec /EF), Ec is the scatter-
ing energyEcP@0,2EF# in the center-of-mass~c.m.! system,
andu is the usual scattering angle. The functionw(a,u) is
given by the differential cross sectionds(Ec ,u)[ds as

w~a,u!52pF2p

m G2 1

2
ds, ~3!

in which m51/2 is the reduced mass in c.m. system. T
factor of (1/2) in front ofds takes care of the proper no
malization of the integrated cross sections for identical p
ticles.

Supposing an effective interaction energy to our~in-
medium! scattering Schro¨dinger equation of the form

Ve f f~r !5V1~r !2s1•s2J~r !, ~4!

whereV1(r ) andJ(r ) are regular functions and will be give
below, for unpolarized scattering one can write:7,8

ds5
1

4
dss1

3

4
ds tr . ~5!

The singlet~s! and triplet (tr ) differential cross sections ar
related to the standard scattering amplitudesf i(u) as fol-
lows:

dss5u f s~u!1 f s~p2u!u2, ~6!

ds tr5u f tr~u!2 f tr~p2u!u2. ~7!

These amplitudes are calculated by using Eq.~4! properly,
i.e., Ve f f(r )5V1(r )13J(r ) and Ve f f(r )5V1(r )2J(r ) for
the singlet and triplet channels, respectively.8,11

The explicit implementation of the present formalis
needs, in the spirit of Sec. I, physically reasonable forms
V1(r ) and J(r ) to Eq. ~4!. More precisely, one has to con
sider the electrostatic screening and exchange-correla
~between the scattering pair and system particles! mediated
dressing. Here we follow an inherently natural and appea
way of sorting out the role of charge-induced~Coulomb! and
spin-induced~Pauli! correlations. First, we discuss the for
of J(r ) to be used here.

According to physically motivated12,13 and
diagrammatical14 approaches, the spin-mediated part of t
effective electron-electron interaction, Eq.~4!, has the fol-
lowing form in momentum~q! space:

J~q!5@v~q!Ga~q!#2
x0~q!

12v~q!Ga~q!x0~q!
. ~8!
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In this equation v(q)54p/q2, Ga(q) is the spin-
antisymmetric static local-field correction,15 andx0(q) is the
Lindhard function.4,6 The second term in the product of Eq
~8! is the so-called spin-incoherent response function.15 Mul-
tiplying this spin response function bymB

2 ~wheremB is the
Bohr magneton! one gets the Pauli spin susceptibility.12,16 It
measures the sensitivity of the paramagnetic system to s
related perturbations and is a very important quantity, i.e.
the interpretation of experimental Knight-shift data.15,17 By
tuning its denominator one can model~in an average man
ner! the susceptibility enhancement~around 10! observed in
the so-called nearly ferromagnetic Pd metal.18

Here we adopt the parametrization given by Iwamoto a
Pines for theGa(q) function:15,19

Ga~q!5
1

2 S q2

q21a↑↑
2

2
q2

q21a↑↓
2 D , ~9!

in their polarization-pseudopotential treatment. The para
etersa↑↑ and a↑↓ are determined by requiring that in th
limit q→0 one obtain correct compressibility and parama
netic spin susceptibility; for further details, see Ref. 15. W
use the complete equation~9! in the first~square! term of Eq.
~8! and the usual small-q limit in the spin-response function
to perform an inverse Fourier transformation. The obtain
result is the following:

J~r !5J0F 1

a↑↑
e2a↑↑r1

1

a↑↓
e2a↑↓r2

4

r

e2a↑↑r2e2a↑↓r

a↑↓
2 2a↑↑

2 G ,

~10!

where the Stoner-like prefactor has the form of

J05S kF

2p D S 12
2kF

p

a↑↓
2 2a↑↑

2

a↑↑
2 a↑↓

2 D 21

. ~11!

Note, in passing, that the formala↑↓→` corresponds to the
so-called exchange-only, additional, approximation. Furh
more,J(r ) is a regular ‘‘potential energy’’ with a finite value
at the originr 50.

Next, in order to compare our numerical results w
simple and frequently used ones1,20–24and thus to get clea
links, we outline these latter. Performing a first-order Bo
@ f (q)5(m/2p)Ve f f(q) and q52AEcsin(u/2)# calculation
with V1(r )5(1/r )exp(2br) andJ(r )50 in a classical treat-
ment, i.e., neglecting the interference terms in Eqs.~6! and
~7!, one can obtain

a~r s!5
1

pvF

1

b3 S arctang1
g

g211
D , ~12!

as was shown earlier,20,21 g5(2vF)/b. Using the same ap
proximation but with perturbative interference terms~ex-
change in scattering!, the result becomes22–24
1-2
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a~r s!5
1

pvF

1

b3 Farctang1
g

g211

2
1

Ag212
arctan~gAg212!G . ~13!

In standard evaluations of Eqs.~12! and ~13!, the usual
Thomas-Fermi screening parameterb25(4vF)/p is em-
ployed. Both expressions show their special sensitivity10 to
the precise form of screening (b). Note that in a recent the
oretical interpretation of nonequilibrium electron dynamic25

in noble metals areduced(b r) static screening was predicte
with b r50.73b. At metallic densities (r s.2), Eq. ~13!
gives, roughly, about a 40% decrease ina(r s) with respect to
Eq. ~12!, if we use the Thomas-Fermi value forb. The in-
terference term may be, therefore, an important ingredien
quantitative predictions for the scattering lifetimet in an
electron gas.

We have performed numerical calculations with thea pri-
ori given Thomas-Fermi potential energyVe f f(r )5V1(r ) us-
ing standard partial-wave expansions for the scattering
plitudes:

f ~u!5
1

AEc
(
l 50

`

~2l 11!eid lsind l Pl~cosu!, ~14!

in which d l(Ec) are the usual phase shifts. The solid a
dashed curves in Fig. 1 are the so-called phase-shift-b
equivalents of Eqs.~12! and ~13!, respectively. Both curves
give, in comparison with the above perturbative predictio
reductions of about 50% at metallic densities. Therefore,
level of scattering treatments is an important ingredient, t

The role of the wave-mechanical interference term in f
mion scattering is, similarly to the above-discussed pertur
tive estimation, quite notable. The other two curves of Fig
refer to numerical phase-shift calculations~with the interfer-

FIG. 1. Numerically determineda(r s) functions to Eq.~1!. All
the curves are based on the same linear Thomas-Fermi termV1(r )
in the effective interaction; see Eq.~4!. The solid and dashed curve
are obtained withJ(r )50 in Eq. ~4! and refer to classical~no
interference in scattering! and exchange-mediated~interference in
scattering! approximations. The dotted and dash-dotted curves
obtained withJ(r )Þ0 in Eq. ~4!, and include the correspondin
interference terms. The dotted curve refers to the exchange-
approximation; see Eq.~11!.
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ence terms! and are obtained by using different approxim
tions to theJ(r ) function in Eq. ~4!. The dotted curve is
based on the exchange-only while the dash-dotted one on
complete form ofJ(r ); see Eqs.~10! and~11!. The nontrivial
role of correlation effects in scatterings and screenings
clearly visible. The exchange-only approximation, with t
Thomas-Fermi form forV1(r ), lifts the dotted curve close to
~or above! the values of the solid one at metallic densitie
Therefore, the linear-response-based observation
Kleinman26 on the twofold~compensating! role of exchanges
is verified in this case, although with systematically reduc
values for the inverse scattering lifetime@cf. Eqs. ~12! and
~13!#.

We have discussed, in this section, analytical and num
cal results, presupposing a simple Thomas-Fermi form
V1(r ). This corresponds to a quasiclassical, linear respo
approximation. Recently, we have developed a parame
nonlinear treatment to describe the screening of a lightm
5me negative charge (Z521) in an electron gas.10 This
Hartree-type treatment gave the following form forV1(r ):

V1~r !52
Z

r

1

4a1a2
e2a1r@~a11a2!2ea2r

2~a12a2!2e2a2r #, ~15!

in which the factorsa1 anda2 are given by (vp
254pn0)

a15F b

2l
1

vp

Al
G 1/2

,

a25F b

2l
2

vp

Al
G 1/2

.

The parametersb andl were fixed and determined, respe
tively, via the average dynamics of electrons at the Fe
level @b5(4/3)vF

2 # and the electronic cusp condition (m
51/2) for the induced hole density at zero (r 50) separation
@l5l(r s)#. The potential, described in such a way, w
compared10 with the Thomas-Fermi form and an essent
reductionof screening at short distances was established~cf.
Ref. 25!. Furthermore, an electrostatic energy, defined
@V1(r )2(1/r )#(r 50) with Z521, has a very reasonable
Wigner-like, character at low densities in our nonlinear tre
ment. In fact, it is easy to show that it scales as2r s

21 .
Without the cusp constraint~namely, with constantl) one
would get the usual2r s

23/4-like asymptotic behavior of the
random-phase approximation.27 Note that at low densities
Ga(q)→0 @see Eqs.~8! and~9!# according to Ref. 15. Physi
cally, the Coulomb correlations are expected to domin
Pauli correlations. The Wigner limit is governed by
statistics-independent, classical electrostatics.3

On the other hand, as our kinetic model for 1/t is based
on the concept of an embedded ‘‘two-particle-subsystem
any construction for screened interactions using the ‘‘pro
particle plus environment’’ picture is not obviousa priori.
Consider the interaction energy@defined asE(r )# between
two point charges of a dimer (Z15Z2) immersed statically
in an electron gas. In the perturbative, linear-response

re

ly
1-3
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proximationE(r ) is equal~at a given intercharge distancer
in the dimer! with the electrostatic energy of one char
sitting in the electrostatic~linearly screened! potential of the
second charge.28 Clearly, the nonlinearity problem inE(r )
needs investigation.

Two close repulsive particles will strongly repel the su
rounding electrons, and they will tend to polarize the m
dium quite symmetrically.29 In order to get a quantitative
insight into this problem, and thus a further justification
Eq. ~15!, we apply an auxiliary example: namely, a dim
consisting of two antiprotons (Z15Z2521). Due to an ef-
ficient numerical method, established recently for dimers
using30 density functional theory, we can calculate theE(r )
5(1/r )1Eem( p̄p̄)22Eem( p̄) quantity. Here,Eem( p̄p̄) and
Eem( p̄) are the embedding (em) energies for a dimer (p̄p̄)
and a single antiproton (p̄). The result obtained forrE(r ) by
the nonlinear, self-consistent calculation~performed at the
Hartree level, forr s52) is exhibited in Fig. 2, by a solid
curve. The other curves are based on nonlinear~Hartree!
screening calculations for an antiproton and a negative a
(Z1522) particle. In both cases,m51, of course. The
curves~dashed and dotted! refer to the potential energies of
negativeunit and a negativeone-half probe charge in the
obtained screened fields, respectively.

The comparison shows that the elementary line
response prediction~see above, Ref. 28! is applicable with an
acceptable rigor even to nonlinearly screened interaction
least in the case of repulsive embedded charges. This g
further support to use Eq.~15! in electron-electron interac
tions. The nonlinear result@obtained via Eq.~15!# for our
rV1(r ) is plotted in Fig. 2, by a dash-dotted curve. T
reduced-mass effect and the average dynamics result
notable change, in comparison with the static-charge scr
ing. The usual, linear-response-based Thomas-Fermi
proximation for rV1(r ) would be belowall the curves of

FIG. 2. The interaction energy@denoted asrE(r ) and plotted by
a solid curve# between static antiprotons of an embedded dime
an electron gas ofr s52. The dashed and dotted curves refer
potential energies@plotted asrV1(r )# of a unit and a one-half nega
tive charge in the screened field of an antiproton and a nega
alpha (Z1522) particle, respectively. The dash-dotted curve ref
to Eq. ~15!, for the nonlinear electron-electron interaction.
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Fig. 2. A more rigorous treatment for this effective intera
tion would require a Bethe-Salpeter-type4,31 consideration, in
a restricted phase space aroundvF , and is out of the scope o
the present paper.

After these clarifications of the nontrivial role of the sca
tering descriptions, the physically reasonable forms of n
linear effective screenings, the special influence of aver
dynamics, and spin-mediated dressing, we present our
sistent results. The calculations for the scattering lifetim
Eq. ~1!, have been performed by using Eq.~4! with Eqs.~10!
and~15! together with Eqs.~6! and~7!. Figure 3, similarly to
Fig. 1, contains four curves. The solid and dashed curves
based on Eq.~15! with J(r )50 in Eq. ~4!, without and with
the wave-mechanical interference terms, respectively. T
interference effect turns out to be important, but with r
duced effectiveness~see Fig. 1!. This is due to the stronge
repulsive nature of Eq.~15! in comparison with a Thomas
Fermi estimation forV1(r ).

The other two curves are based on Eq.~4! with the inclu-
sion of J(r ). The dotted curve refers to the so-calle
exchange-only, additional, approximation, while the da
dotted curve to the complete form ofJ(r ). The differences
between these last results are small; compare them with
corresponding ones in Fig. 1. The intricate interplay betwe
proper scattering and screening and dressing is establis
Note, however, that all the curves of Fig. 3 giveessential
reductions in lifetimes, in comparison with those of Fig. 1

Finally, as we already mentioned after Eq.~8!, by tuning
the spin susceptibility one can model~in an average manner!
the influence of its enhancements. Illustrative results of t
tuning are exhibited in Fig. 3 atr s52, r s53, andr s54. The
black dots refer to simple multiplication of Eq.~11! ~and in
such a way that they become the enhanced equivalents o
dash-dotted curve! by a factor of 10. These results of Fig.
show that, although the precise form of the electrosta
screening is a strongly determining factor10,25 in scattering-
lifetime calculations for a paramagnetic electron gas, a qu
titative prediction must rest on the details. In this respec
scattering-lifetime measurement for the nea
ferromagnetic18,32 Pd metal could help to substract inform

n

ve
s

FIG. 3. The same as in Fig. 1, butV1(r ) from Eq. ~15! is used
in every case, systematically. The black dots refer to numer
results obtained via an enhanced spin susceptibility in the s
dependent partJ(r ).
1-4
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RELAXATION OF EXCITED ELECTRONS IN A . . . PHYSICAL REVIEW B64 075101
tion on the possible role of susceptibility-enhancement
fects in the relaxation process.

The curves in Fig. 3 show a noticable reduction of t
lifetime ~around a factor of 2! compared with the commonly
used perturbative result, Eq.~12!. Recent experimental re
sults, obtained for the low-energy rangeE2EF,1 eV,
seem to show this kind of tendency.33,34 These experimenta
predictions were based on time-resolved two-photon ph
emission measurement33 for an Al target and on a space
resolving technique34 for noble metals~Cu, Ag!, respectively
~see also Ref. 25!. Notable reductions in the lifetime, in com
parison with the perturbative result of Eq.~12!, have been
deduced,using Eq. ~1! in order to interpret the measure
data. On the other hand, for the noble metals the influenc
d-band electrons can be important, as was shown~using a
self-energy method! for higher energies.1 Additional lifetime
experiments, for the important low-energy~Fermi liquid!
range and free-electron-like metals~Al, Mg, and alkalis!,
would help to understand those theoretical details that
related to the dynamics of correlated fermions.

III. CONCLUSIONS

We have investigated the details of scattering and scre
ing and dressing approximations required in a pract
implementation of the standard theoretical framework for
scattering lifetime of excited electrons. The relative imp
tance of these ingredients and their interplay are clarifi
The twofold role of spins in effective interactions and wav
mechanical interference terms is quantified. The theoret
results are discussed in a comparative way. Comparing
commonly applied perturbative results for the electron g
notable reductions in the lifetime were found in a nonline
construction for screening. Agreement with experimen
lifetime predictions from different sources are establish
The possible role of the spin-susceptibility enhancemen
pointed out.

The developed practical implementation may have a
ther application, in combination with the density-of-state
fects, in scattering-lifetime calculations for ferromagne
m

,

-

-

07510
f-

o-

of

re

n-
l

e
-
d.
-
al
th
s,
r
l
.

is

r-
-

metals.35 It was pointed out that despite the qualitative su
cess of the single-particle picture, one ought to consi
many-body effects carefully36,37 for these important targets
Furthermore, recent theoretical studies on spin-polari
electron energy loss spectroscopy signal the importanc
spin-related inelastic exchange effects to thecompletede-
scription of the relaxation process.38,39 The spin-dependen
electron scattering dynamics is the basic theoretical ingr
ent to understand information obtained by electron-p
emission techniques for ferromagnets.40

On the other hand, in an initially spin-polarized electr
gas~e.g., a ferromagnetic metal! the response to an electro
magnetic perturbation consists of coupled charge and
fluctuations. The theoretical attempts, based on extension
the concept of Kukkonen and Overhauser12 to
infinitesimally41 or strongly polarized42–44 systems, revealed
the importance of a unified treatment for the coupled pr
lem. Clearly, the susceptibilities should depend, throu
spin-dependent local-field factors, on the degree of ini
polarizations. This fact may provide an interesting proble
to the physical process examined.

The many-body problem is a topic in its own right, wit
its own characteristic methods. Here we used physical
proximations to treat the actual physical phenomenon,
scattering lifetime of excited electrons in a paramagne
electron gas. As we already mentioned, a more formal fie
theoretical attempt would require the application of the tw
particle Green function, i.e., a careful investigation of t
Bethe-Salpeter equation in a fermion medium with inher
charge and spin degrees of freedom.
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