- 1 Temperature increase prevails over acidification in gene expression
- 2 modulation of amastigote differentiation in *Leishmania infantum*.
- 3
- 4 Pedro J. Alcolea¹ (pjalcolea@cib.csic.es)
- 5 Ana Alonso¹ (<u>amalonso@cib.csic.es</u>)
- 6 Manuel J. Gómez² (<u>gomezrmj@inta.es</u>)
- 7 Alicia Sánchez-Gorostiaga¹ (<u>asanchez@cnb.csic.es</u>)
- 8 Mercedes Moreno-Paz² (<u>morenopm@inta.es</u>)
- 9 Eduardo González-Pastor² (gonzalezpje@inta.es)
- 10 Alfredo Toraño³ (<u>atorano@isciii.es</u>)
- 11 Víctor Parro² (parrogv@inta.es)
- 12 Vicente Larraga^{1*} (<u>vlarraga@cib.csic.es</u>)
- 13

Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones
 Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9,
 28040, Madrid, Spain.

17

Laboratorio de Ecología Molecular and Unidad de Secuenciación y Bioinformática, Centro de
 Astrobiología, Instituto Nacional de Técnica Aeroespacial "Esteban Terradas" (INTA) and CSIC,

- 20 carretera de Ajalvir, Km 4, 28850, Torrejón de Ardoz, Spain.
- 21
- 22 3. Servicio de Inmunología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias,
- 23 Instituto de Salud Carlos III (ISCIII), carretera Majadahonda-Pozuelo, Km 2, Majadahonda, Spain.

24

- 25 *Corresponding author. Tel.: +34 918373112. Fax: +34 915360432. Email: vlarraga@cib.csic.es
- 26
- 27

28

1 ABSTRACT

2

3 Background. Extracellular promastigote and intracellular amastigote stages alternate in the digenetic 4 life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous 5 vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. 6 Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process 7 of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture-8 and lesion-derived amastigotes have already been reported, the specific influence of temperature 9 increase and acidification of the environment on developmental regulation of genes has not been 10 previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to 11 compare the isolated and the combined effects of both factors on the transcriptome. Results. 12 Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation 13 analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature 14 increase and acidification leads to amastigote-like forms. The temperature-induced gene expression 15 profile in the absence of pH variation resembles the profile obtained under combined exposure to both 16 factors unlike under that obtained for exposure to acidification alone. In fact, the subsequent fold 17 change-based global iterative hierarchical clustering analysis supports these findings. Conclusions. 18 The specific influence of temperature and pH on the differential regulation of genes described in this 19 study and the evidence provided by clustering analysis is consistent with the predominant role of 20 temperature increase over extracellular pH decrease in the amastigote differentiation process, which 21 provides new insights into Leishmania physiology.

22

23 BACKGROUND

24

The life cycle of the trypanosomatid parasite *Leishmania* is digenetic because it is developed in two distinct hosts. Promastigote is the extracellular stage and differentiates inside the gut of female phlebotominae sand-fly vectors, which then transmit the parasite to the definitive mammalian host during blood meal intakes [1]. Once inside the dermis, some promastigotes interact with phagocytes and are internalised in parasitophorous vacuoles (phagolysosomes), where they differentiate into the
intracellular amastigote stage and multiply [2, 3]. Amastigotes are released and infect other phagocytes
when the host cell collapses. Remarkable features of the new harsh environment are acidic pH (4.55.5) and the physiological temperature of the mammalian host (32-37 °C).

5 Phagolysosomal conditions can be mimicked in vitro to grow axenic cultures of the amastigote 6 stage. However, there is not agreement about the equivalence of these forms to amastigotes obtained 7 from their natural environment. In fact, axenic amastigotes are considered as amastigote-like forms 8 (AL) by several authors (e.g. [4, 5]), as they show slightly different features from those of amastigotes 9 obtained from host cells. In vitro research supported that concomitant exposure to elevated 10 temperatures and acidic pH triggers differentiation of promastigotes to amastigotes [6, 7]. Specifically, 11 this could be achieved by combining pH 5.5 and 37 °C in the presence of 5-7% CO₂ [6] or at pH 4.5 12 and 37 °C [8] in a host-free medium. Leishmania promastigotes also cope with temperature increase in 13 the absence of pH variation and vice versa [9]. The isolated effects of each factor also induce 14 developmentally regulated changes in the shape and gene expression of promastigotes, but neither of 15 these environmental conditions alone leads to a complete differentiation of promastigotes to 16 amastigotes. Moreover, there is no agreement about the effect of temperature increase. On the one 17 hand, it has been reported that this factor stimulates the entry of promastigotes into stationary phase 18 [10], whereas Shapira et al. [9] on the other hand, observed a different effect with both light and 19 scanning electron microscopy: cell shape was round resembling amastigotes but the flagellum still 20 clearly emerged from the cellular body. Regarding the effect of extracellular pH decrease in the 21 absence of temperature variation, it has been stated that generation time increases and a specific 22 protein of the amastigote stage is expressed under these conditions [11] and that acidification itself 23 leads to the differentiation of promastigotes to metacyclic forms in 48 h; these cells then differentiate 24 to amastigotes but only when the temperature is increased [12].

A descriptive differentiation sequence of promastigotes to amastigotes has been proposed: (1) differentiation signal, 0-4 h; (2) disappearance of cell motility, G1 arrest and aggregation, 5-9 h; (3) change of shape, 10-24 h; and (4) completion of subsequent differentiation processes, 25-120 h. The adaptations necessary for survival in the new harsh conditions inside the host cell are mainly due to

1 gene expression modulation. The expression profiles of several genes during this complex 2 differentiation process have been studied. For instance, the A2 gene is up-regulated in the first step, as 3 well as an amastigote-specific proline transporter in the last step. In contrast, 3'-nucleotidase/nuclease 4 (3'NT/Nase) is down-regulated and pentavalent antimonial resistance decreases, presumably due to 5 sodium stibogluconate-resistance protein (SbGRP) expression down-regulation in the same step 6 (reviewed in [6, 7, 11, 13, 14]. In addition, partial gene expression profiling of L. major, L. mexicana, 7 L. infantum and L. donovani amastigotes (axenic and lesion-derived) with respect to promastigotes has 8 been reported [15-19]. However, the effects on the transcriptome of particular factors that influence 9 differentiation in vivo (mainly temperature increase and pH decrease) have not been studied to date. So 10 in this study we have analysed, for the first time, the concomitant (TPS) and the isolated effects of 11 temperature and pH shift (respectively, TS and PS) relative to control promastigote culture conditions 12 (CC) on the transcriptome of *L. infantum* by custom genomic DNA microarrays.

13 TPS-treated promastigotes differentiate to AL with regard to the up-regulation of the 14 amastigote-specific A2 gene and the absence of promastigote-specific glycoprotein 46 (gp46) 15 expression as verified by indirect immunofluorescence assay (IFA). In addition, the up-regulation of 16 several amastin genes and the down-regulation of 3'NT/Nase and SbGRP genes under TPS and TS is 17 in agreement with previous data (reviewed in [13]). None of these genes have been found to be 18 differentially regulated under PS. As a consequence, TPS-treated cells are AL and TS-treated ones are 19 also progressing towards amastigote differentiation but PS-treated cells do not seem to undergo the 20 same differentiation process. After performing IFA, transcriptome analysis was carried out and a large 21 set of genes differentially regulated by the effect of both factors was found. A broader analysis of their 22 influence on differentiation at the gene expression modulation level by multi-experimental Serial 23 Analysis of Microarrays (SAM) and iterative hierarchical clustering analysis (HCL-ST) of genes with 24 respect to their expression modulation has led us to conclude that temperature increase has a greater 25 influence than pH decrease on the differentiation process of promastigotes to amastigotes.

26

27 RESULTS AND DISCUSSION

28

1 Cell growth, gp46-IFA and microarray hybridisation analysis and validation.

2 Growth curves of promastigotes cultured under CC (from the mid-logarithmic to the early 3 stationary phase), TPS, TS and PS conditions are represented in Fig. 1. Proliferation decrease is more 4 noticeable under PS conditions than under TPS and TS. Therefore, pH decrease inhibits proliferation 5 of parasites at both 37 °C and 27 °C, which is in agreement with previous findings [11]. Consequently, 6 TPS-treated promastigotes show more pronounced proliferation detention than TS due to the effect of 7 acidification (Fig. 1). Taken together, these data are consistent with cell proliferation arrest during the 8 differentiation process leading up to the amastigote stage, after which mature amastigotes are able to 9 multiply.

Surface glycoprotein gp46 is known to be promastigote stage-specific. In fact, it is also called promastigote surface antigen 2 (PSA2) [20]. This glycoprotein has not been detected in amastigotes, although transcripts have been detected at this stage [21]. We have used a specific monoclonal antibody against gp46 in IFA to assess its expression under CC, TPS, TS and PS conditions, and the absence of gp46 expression can only be observed in the case of TPS (Fig. 2). These findings provide evidence for an AL stage after 4 days of TPS exposure. Consequently, TPS-treated cells undergo a more intensive differentiation process leading up to AL than TS and PS-treated cells.

17 Total RNA was extracted and its integrity and absence of DNA contamination were checked 18 by capillary electrophoresis in samples obtained on day 4 (additional file 1). After mRNA 19 amplification, cDNA was synthesised and labelled with Cy3 for CC and with Cy5 for each of the 20 conditions assayed. DNA microarray hybridisations with these cDNA samples (TPS vs. CC, TS vs. 21 CC and PS vs. CC) were carried out in triplicate. Subsequently, local background was substracted and 22 raw data were normalized and t-test performed for three replicates. A total of 225 spots for TPS, 102 23 for TS and 117 for PS vs. CC were selected as they fulfilled the following selection criteria: (i) $F \ge 1.7$ 24 $(Cy5/Cy3 \text{ ratio if } Cy5 > Cy3) \text{ or } \le -1.7 (-Cy3/Cy5 \text{ ratio if } Cy3 > Cy5), (ii) total relative fluorescence)$ 25 intensity value > 5000 FU and (iii) p < 0.05 (additional file 2). Clones corresponding to selected spots 26 had their insert ends sequenced and were mapped against the L. infantum genome to identify 27 overlapping genes. Normalized and contrasted microarray hybridisation results of those clones that 28 contain known annotated genes are described in tables 1 and 2 for TPS, 3 and 4 for TS and 5 for PS.

1 Hypothetical and unknown genes found to be regulated differentially are described in additional file 3 2 (additional tables 1-6), as well as clones that map against minicircle sequences. Gene expression data 3 obtained by microarray hybridisation assays were validated by relative quantitative real time PCR 4 (qRT-PCR) in 15% clones (12% genes excluding redundancy expected in a shotgun microarray 5 strategy). Molecular function GO annotations are indicated in tables 1-5 in order to relate differentially 6 regulated genes with direct acyclic graphs (DAGs) (additional file 5) and molecular function 7 multilevel sector charts (Fig. 4). Once the individual effect of each factor on the transcriptome was 8 analysed, a multi-experiment comparison (SAM) was performed to determine if there were statistically 9 significant differences between PS, TS and TPS expression profiles for each of the differentially 10 regulated genes found. Finally, an HCL-ST analysis including control spots allowed us to determine 11 the relative distance between the experimental groups: TS is closer than PS to the TPS profile (Fig. 3).

12

13 Concomitant temperature increase and acidification (TPS) leads promastigotes toward AL.

It has been stated that acidification and the simultaneous effect of temperature increase induce the differentiation of promastigotes to amastigotes [6, 7]. In spite of the amastigote-like round cell morphology induced under these conditions, we have observed that in a fraction of the population flagella are not hidden (Fig. 2). Nevertheless, it is important to take into account that we have performed the assays in standard medium in which promastigotes are cultured (RPMI supplemented with HIFBS) instead of media used for axenic amastigote culture such as Schneider's medium in order to avoid the effect of this factor and focus this study on pH and temperature influence.

We have observed that TPS-treated cells differentiate into AL after 4 days of stimulation (Fig. 2), when control promastigotes are reaching the stationary-phase (Fig. 1). As mentioned before, TPStreated cells proliferate to a lesser extent than TS-treated ones due to the effect of pH decrease. Expression profiling by DNA microarrays has revealed a set of up- and down-regulated genes (tables 1 and 2; additional tables 1 and 2 in additional file 3) that are fully discussed below in the TPS expression profile section and illustrated in Figs. 4 and 5. Taken as a whole, TPS induces promastigote differentiation to AL, as indicated by gp46 IFA and agreement with previous reports on the differential

- 1 expression regulation of the following genes [13]: A2 gene and a set of amastin genes (up-regulated);
- 2 3'NT/Nase cluster and SbGRP encoding gene (down-regulated).
- 3

4 TS alone leads to a TPS-like expression profile.

5 TS-stimulated differentiation processes have been studied only from a morphological point of 6 view in L. infantum, but not at the differential gene expression level. For the first time, we have 7 described in this research the influence of TS on the whole transcriptome of the parasite (tables 3 and 8 4; additional tables 3 and 4 in additional file 3). Analogies between TPS and TS expression profiles 9 have been observed, namely in the differential regulation of the following genes (tables 1-4, in bold): 10 up-regulation of 3'a2rel-related protein, some amastin superfamily genes (see Fig. 6 and Amastin 11 Superfamily subsection below), ribosome biogenesis regulatory protein (RRS1), myo-inositol-1-12 phosphate synthase (INO1), amino acid transporter aATP11, three conserved hypothetical protein 13 genes and eight clones that do not map with any annotated genic sequence; and down-regulation of 14 3'NT/Nase, pteridine transporter (PT) LinJ06 V3.1320, glucose transporters (GT), paraflagellar rod 15 protein 1D (PFR1D), superoxide dismutase (SOD), phosphatidylinositol-3-kinase (tor2)-like (PI3K), 16 peptidyl-prolyl cis-trans isomerase (FKBP) LinJ36 V3.0250, calmodulin, lathosterol oxidase, one 17 hypothetical protein of unknown function, six conserved hypothetical proteins and seven clones that 18 do not map with any annotated gene. These clones unmapped with genes strongly suggest that gene 19 annotations on the L. infantum genomic sequence are incomplete, thus highlighting the advantages of 20 using shotgun genomic DNA microarrays and the subsequent genomic library. As pointed out above, 21 TPS-induced *in vitro* stimulation results in a differentiation process that resembles the differentiation 22 of promastigotes to amastigotes inside the phagocytes of the mammalian host. Despite TS itself 23 inducing analogous differentiation events and TS-treated cells being called AL [9], the A2 gene is not 24 up-regulated (table 3), all cells show a large flagellum and gp46 IFA is positive under TS (Fig.2). 25 Nevertheless, SAM and the subsequent HCL-ST analysis of clones with regard to their fold-change 26 values have revealed significant similarities between the transcriptome under TPS and TS (Fig. 3). 27 Genes of known function with the same expression pattern under TPS and TS are highlighted in bold 28 in tables 1-4 (those of unknown function in additional file 3). The specific regulation of these genes by temperature increase is directly correlated to the differentiation to the amastigote stage. To sum up,
even though TS-treated cells are not differentiated to the same extent as TPS, the similarities found
between TPS and TS expression profiles when contrasted with the PS profile have led us to conclude
that temperature has a greater influence than pH on the differentiation process leading up to the
amastigote stage.

6

7 Acidification (PS) contributes little to the differentiation process.

8 Some authors have considered that the induction of metacyclogenesis in promastigotes by 9 acidic pH is a response common to a variety of *Leishmania* species [21, 22]. Although there is no 10 evidence concerning the metacyclic status of such promastigotes except for morphological 11 considerations, proliferation seems to be inhibited by the single effect of acidification (pH 4.5-5.5) 12 after 48 h according to [5] and our own observations. Fig. 1 shows that promastigote growth is limited 13 under these conditions, which is consistent with the generation time increase previously observed at 14 pH 4.5 [11]. After an intermediate-term exposure to PS (day 4), two cell morphologies were observed: 15 round and promastigote-like, both with emerging flagellum (Fig. 2). Moreover, lack of A2 gene up-16 regulation (control gene spotted in each microarray) and an atypical gene expression profile have been 17 found. There are some similarities in the expression profiles of TPS-obtained AL and PS-treated cells: 18 up-regulation of triacylglycerol (TAG) lipase (TGL), translation factor SUI (TFSUI1)-also up-19 regulated under TS-, ubiquitin conjugating enzyme-like and five clones that do not map with any 20 annotated gene; down-regulation of a conserved hypothetical protein and a gene still to be annotated; 21 and the previous finding of an amastigote-specific protein induced by pH decrease [11]. In addition, 22 60S acidic ribosomal protein P2, 60S ribosomal protein L31 [23], ribosomal protein S29 and RNA 23 binding protein rggm [24] are up-regulated in intracellular amastigotes according to Serial Analysis of 24 Gene Expression (SAGE), which is due to PS (Table 5). In spite of this, the vast majority of 25 differentially regulated genes under PS (table 5; additional tables 5 and 6 in additional file 3) have not 26 been found to match up with those of the TPS and TS profiles. In fact, SAM output of differentially 27 modulated genes between PS, TS and TPS was analysed by HCL-ST, which revealed that the most 28 distant experimental group is PS (Fig. 3). Moreover, there are opposite gene expression regulation

1 events between TPS and PS: down-regulation under TPS and up-regulation under PS of glucose-6-2 phosphate N-acetyltransferase gene (GNAT), sphingolipid Δ 4-desaturase, prostaglandin F synthetase 3 (PGFS), eukaryotic translation initiation factor 5a (eIF5a) and two clones that do not map with any 4 annotated sequence. Furthermore, there is also a lack of resemblance with the metacyclic promastigote 5 profile [25], except for the up-regulation of 60S acidic ribosomal protein LinJ27_V3.1300 and some 6 clones probably containing contig 957 guide RNA (gRNA) sequence (additional tables 7 and 8 in 7 additional file 3). Considered together with the HCL-ST analysis of gene expression, these data 8 suggest that intermediate-term exposure of promastigotes to PS leads to forms with features that do 9 not match with any of the stages of the parasite's biological cycle (Fig. 3) except for explained 10 coincidences. Consequently, although pH has a role in differentiation, temperature is more relevant.

11

12 **TPS-induced expression profile.**

13 Overview: Gene Ontology term annotations. All genes identified as potentially regulated 14 under these conditions were re-annotated with BLAST2GO to describe globally the influence of TPS 15 on the L. infantum transcriptome. Despite the useful overview provided by this analysis, which has 16 revealed the functions of some hypothetical proteins, specific genes of trypanosomatid parasites like 17 amastins or A2 cannot be correlated to any of the terms included in the database, as they do not show 18 any known activity. The analysis of GO molecular function terms associated with a TPS-induced 19 profile (Fig. 4A and B) indicates an increase in galactosyltransferase (also observed by SAGE [24]), 20 nucleoside triphosphatase activity and amine transmembrane transporter activities and a decrease in 21 transcripts with associated GO molecular function term annotations such as cyclase, protein kinase and 22 calcium-related cysteine peptidase (all related to signal transduction processes), translation initiation 23 and elongation factor and oxidoreductase activities related to electron transport. These findings at 24 molecular function level can be clearly described at the biological process GO term level (Fig. 4C and 25 D): the down-regulation of several genes related to the regulation of translational initiation, elongation and post-translational modification indicates that protein biosynthesis and modification is more active 26 27 in stationary-phase promastigotes rather than in AL. The same occurs with signal transduction, 28 prostaglandin F and porphyrin biosynthesis. Genes related to biopolymer and lipid metabolic

1 processes, glycosylation of proteins and regulation of cellular processes are up-regulated in TPS-2 induced AL. Nevertheless, there are some common biological process GO terms that are up- and 3 down-regulated simultaneously, but this refers to different genes in each case: electron transport 4 activity is referred mainly to cytochrome b5 reductase at CC (it is involved in electron transport to the 5 sphingolipid- $\Delta 4$ -desaturase reaction), while trypanothione reductase (TR) and the ABC transporter 6 subfamily E (ribonuclease L-inhibitor) gene (ABCE) are both related to the same term; the amino acid 7 transport term is also present at both stages, but nucleotide sequences of the corresponding aminoacid 8 permeases are different, which suggests that a different transporter is used in each stage.

9 The resulting microarray data for the TPS-induced AL expression profile analysis is discussed 10 in the next subsections according to the iterative HCL-ST (Fig. 3) and BLAST2GO-based analyses 11 (Fig. 4 and additional file 5). Moreover, it is illustrated schematically in Fig. 5 with regard to the 12 leishmanial surface, cytoskeleton, secretory pathway, metabolic and signalling processes. Direct 13 acyclic graphs (DAGs) (additional file 5) have been associated with genes shown in tables 1-5 by 14 means of custom codes assigned in brackets after the name of each gene annotation.

15 Amastin superfamily. Several proteins from the uncharacterised surface amastin superfamily 16 have been shown to be up-regulated basically in the amastigote stage of Trypanosoma cruzi, L. major 17 and L. infantum [26, 27]. The microarray-based transcriptome analysis contained in this study has 18 revealed that eleven amastin genes are up-regulated under TPS, ten out of these under TS but none 19 under PS. In fact, SAM highlights significant differences in the expression pattern of the eleven 20 amastin genes and the subsequent amastin HCL-ST analysis supports the same expression pattern 21 except for LinJ34_V3.2660 (Fig. 6A). Furthermore, these amastin genes have been reported to be up-22 regulated in intracellular and axenic amastigotes by microarrays [28] and SAGE [24]. According to 23 TMHMM predictions, these amastins contain 4 transmembrane, 3 inner and 2 outer domains, except 24 for LinJ34_V3.1720, which contains a 300 amino acid long N-terminal (N-ter) region followed by an 25 additional short transmembrane domain. Outer domains are variable among amastin superfamily members, although they are very similar in a given amastin group or class (Fig. 6B and C). Amastins 26 27 LinJ08_V3.0680/0690 and LinJ08_V3.0700/0710 were previously found to be up-regulated in metacyclic promastigotes [25], which supports that amastin genes are not amastigote markers. The
 expression rate of these genes increases as the life cycle progresses.

3 A2-A2rel cluster. A2 gene cluster was first identified in L. donovani, where A2 transcripts are 4 abundant in amastigotes but hardly detectable in promastigotes [29]. These molecules were proposed 5 as virulence factors that enhance survival of the amastigote inside the macrophage [30]. It has been 6 suggested that a balance between A2 and A2rel proteins is required for the parasite's survival [31]. L. 7 donovani and L. infantum A2 genes were spotted onto the microarrays as amastigote-specific control 8 genes. We have observed an increase in the corresponding transcript levels under TPS in the 9 hybridisation analysis (Table 3). In addition, our results indicate that TPS and TS elicit the up-10 regulation of 3'a2rel-related transcripts in L. infantum.

11 *DNA repair and replication, gene expression and secretory pathway.* A member of 12 minichromosome maintenance complex protein (*mmc*) 2/3/5 family (PFAM annotation PF00493) is 13 down-regulated and an RNA binding protein (RNAbp) up-regulated in TPS-induced AL. *mmc* and 14 RNAbp are involved in DNA replication according to GO biological process annotation. The histone 15 H3 gene is up-regulated under TPS, as well as in intracellular amastigotes according to SAGE [23]. It 16 is also involved in nucleosome assembly and DNA repair according to GO annotation.

17 With regards to gene expression and protein processing, a hypothetical transcription regulator 18 gene (HTreg) and RRS1 are up-regulated under TPS, while nucleolar fibrillarin is down-regulated. 19 RRS1 is also up-regulated under TS. TFSUI1 is up-regulated under TPS, TS and PS (see above). The 20 elongation factor 1 α (EF1 α) is down-regulated in both TPS-induced AL and in intracellular L. major 21 promastigotes as previously reported [32] and IF5a is also down-regulated by TPS, suggesting a 22 different translation regulation mechanism under TPS selective pressure. Peptidyl-prolyl cis-trans 23 isomerases FKBP and cyclophilin (Cph) are also down-regulated in TPS-generated AL and FKBP 24 under TS. FKBP and Cph are involved in protein folding inside the endoplasmic reticulum (ER) and 25 we had already found the down-regulation of both genes in metacyclic peanut lectin non-agglutinating 26 promastigotes [25]. As a consequence, Cph and FKBP gene expression decreases throughout the 27 parasite's life cycle. In addition, a hypothetical protein related to calcium ion and protein binding GO 28 molecular functions (α GII-HPB) localises to the dimeric α -glucosidase-II complex according to GO

1 cellular component analysis and is down-regulated at the level of transcript under TPS. GNAT is also 2 down-regulated and is involved in protein oligosaccharide biosynthesis inside the ER lumen, possibly 3 in the glucosylation/deglucosylation cycle. We have found that a Rab GTPase regulator protein 4 (RABreg, see further explanation in the Cytoskeleton remodelling subsection) is up-regulated under 5 TPS, probably promoting vesicle transport from Golgi apparatus. In addition, β -1,3-6 galactosyltransferase-5/6 carries out galactosylation of proteophosphoglycan and lypophosphoglycan 7 if required. These genes have been found to be up-regulated under TPS, as was also reported for 8 metacyclic peanut lectin non-agglutinating promastigotes [25] and intracellular amastigotes according 9 to SAGE [24].

10 Energetic metabolism. TPS-obtained AL down-regulate transcript levels of two glycolitic 11 genes: fructose-1,6-bisphosphate aldolase (ALD) and 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (PGM^{BPI}). This agrees with the down-regulation of PGM^{BPI} protein in L. 12 13 donovani [33] and transcripts in L. infantum (unpublished data) mature intracellular amastigotes. The 14 ALD gene was also found to be down-regulated at the post-transcriptional level in L. mexicana mature 15 amastigotes [17] and at the protein level in immature L. donovani amastigotes. By contrast, ALD 16 protein is up-regulated in L. donovani mature intracellular amastigotes [33], which differs from TPS-17 induced AL. Down-regulation of both genes is consistent with high energy requirements in the promastigote stage. ALD and PGM^{BPI} are independent of catabolite regulation and are located in the 18 19 glycosome and the cytosol respectively. Inhibition of glycolysis by ALD and PGM^{BPI} down-regulation 20 is consistent with the down-regulation of two GTs under TPS and TS. Both genes are located in 21 tandem in chromosome 36 and custom CLUSTALW2 alignments (additional file 6) illustrate that their 22 sequences are identical except for N-terminal regions (N-ter) of coded peptides. qRT-PCR analysis is 23 consistent with the up-regulation of both GT, as well as the up-regulation of GT *lmgt2* in *L. mexicana* 24 [17] and L. major [32] intracellular amastigotes. NAD⁺ supply for glyceraldehyde-3-phosphate 25 dehydrogenase (GAPDH) reaction is assured by the up-regulation of the glycosomal malate 26 dehydrogenase (gMDH) gene at CC with respect to TPS. The mitochondrial precursor of acyl-CoA 27 dehydrogenase LinJ07_V3.0150 gene (mACDH) is also down-regulated under TPS, which suggests

1 that β -oxidation (β -ox) of fatty acids (FA) is activated under such conditions, as well as glucose 2 uptake and glycolysis.

3 ABCE is up-regulated under TPS and is involved in electron transport. In fact, the only ABCE 4 family member studied to date is a multifunctional protein that includes a metal-binding domain 5 (PF04068) adjacent to the 4Fe-4S binding domain (PF00037), as well as two ATP-binding 6 sites/ATPase domains typical of ABC proteins (PF00005) but it lacks transporter domains. This kind 7 of protein has been found in pluricellular eukaryotes but not in yeast and binds directly to RNase L to 8 prevent it from binding 5'-phosphorylated 2',5'-linked oligo-adenylates [34]. The biological role of 9 ABC and the meaning of its up-regulation at the level of transcript in TPS-obtained AL are still 10 unknown in Leishmania spp. ABCE localises to the kinetoplast according to GO cellular component 11 annotation.

12 Lipid metabolism. TGL is post-transcriptionally up-regulated under TPS and is involved in sn-13 2 and sn-3 hydrolysis of TAGs. CoA can be incorporated in the released FA and enter β -ox, where 14 mACDH and 3-ketoacyl-CoA thiolase (thiolase I) are down-regulated. On the other hand, 15 monoglyceride lipase (MGL) is down-regulated under TPS. Another gene with the same regulation 16 pattern is a hypothetical protein with a glycerolphosphodiester phosphodiesterase (GPDE) function 17 (GO molecular function analysis), which is related to glycerol derivative metabolism. An additional 18 destination for FA is the sphingolipid biosynthesis pathway, in which sphingolipid- $\Delta 4$ -desaturase 19 oxidises dihydroceramide is oxidised to ceramide in the presence of O_2 and Fe as cofactor (Fe³⁺ 20 reduced to Fe^{2+} [35]. The sphingolipid- Δ 4-desaturase gene is down-regulated under TPS and is 21 located in the ER membrane (GO cellular component analysis), as well as the cytochrome b5 22 reductase gene (cyt b5 reductase), which provides reduction power for desaturases. through cytb5. 23 After ceramide biosynthesis, a molecule of phosphoinositol can be added inside the Golgi apparatus 24 resulting in inositol phosphoceramide (IPC) for anchoring inositol derivatives. Saturated acyl groups 25 are also the precursors of polyinsaturated fatty acids like arachidonic acid, from which prostaglandins 26 are derived. PGFS is down-regulated under TPS, while TR is up-regulated. The reaction prior to PGFS 27 is catalysed by prostaglandin peroxide synthase (PES) and requires trypanothione in its reduced state. 28 TR regenerates reduced molecules for PES reaction, as well as for many other redox processes. Thus,

13

1 increases in PGFS and TR at different stages is not a contradictory fact, given the wide functional 2 spectrum of the latter. PGFS is also up-regulated in procyclic promastigotes with respect to 3 metacyclics [25] and has been associated with vector competence of procyclic promastigotes. Taken 4 together, these confirm that PGFS levels diminish throughout differentiation. Finally, 1,2-DAG can 5 enter inositolphospholypid metabolism, where PI3K is down-regulated under TPS and TS. As PGFS, 6 mACDH, thiolase I, sphingolipid Δ 4-desaturase and PI3K are down-regulated, the destination of 1,2-7 DAG and FA excess generated by gene up-regulation of TAG lipase remains unclear.

8 The gene coding for 3-hydroxymethylglutaryl-CoA (HMG-CoA) reductase (HMGCR) is up-9 regulated under TPS. This is the rate-limiting step of sterol and isoprenoid biosynthesis. In view of 10 this result, ergosterol biosynthesis may be increased in AL. HMGCR localises to the glycosome in 11 Leishmania spp., where leucine (in trypanosomatids [36]) must be carried for priming steroid 12 biosynthesis (reviewed in [37]). In spite of HMGCR increase in TPS-induced AL, the lathosterol 13 oxidase gene has been found previously to be down-regulated in intracellular amastigotes ([28] and 14 unpublished custom data) and the analysis reported in this study has revealed that the down-regulation 15 of this gene is due to the specific influence of TPS and TS. Lathosterol oxidase yields 7-16 dehydrocholesterol. Leishmania parasites lack the enzyme cholesterol:NADP⁺ Δ^7 -oxidoreductase, that 17 catalyses the conversion of 7-dehydrocholesterol into cholesterol (KEGG database for L. major [38]). 18 Cholesterol functions are performed by ergosterol in these organisms. A question arises about the 19 destination of 7-dehydrocholesterol in promastigotes (CC). Vitamin D3 (cholecalciferol) is 20 synthesised by exciting 7-dehydrocholesterol with a photon (hv), that according to our gene expression 21 results may occur inside the insect vector's gut, where promastigotes are undergoing a developmental 22 process. Obviously, the biological meaning of this fact still remains unclear.

Porphyrin biosynthesis. The prosthetic heme group is required for many electron transport chain proteins (cytochromes), including cyt b5. *Leishmania* spp. does not have the ability to perform porphyrin biosynthesis *de novo*, because it lacks δ-aminolevulinate synthase, porphobilinogen synthase and deaminase and uroporphyrinogen decarboxylase. These parasites are able to acquire protophorphyrinogen IX or heme group directly from the mammalian host. Moreover, coproporphyrinogen III, protoporphyrinogen oxidases (C(III)O, PO) and a ferrochelatase-like protein

1 are annotated in the genome of the parasite, which highlights its ability to perform heme group 2 biosynthesis from the substrate coproporphyrinogen III. Interestingly, C(III)O and PO are located in 3 tandem in chromosome 6 and are down-regulated under TPS according to our microarray 4 hybridisation results. In fact, CC mimic the environment inside the gut of the phlebotominae sand-fly, 5 where the parasites cannot acquire heme or protoporphyrin IX. In spite of this, we have not found 6 ferrochelatase gene (located in chromosome 17) to be differentially regulated under the experimental 7 conditions assayed. This observation is additional evidence backing the hypothesis of gene 8 organization in DGCs depending on the post-transcriptional regulation in *Leishmania* spp (reviewed in 9 [39]).

10 Redox homeostasis and oxidative stress. TR catalyses the reduction of reactive oxygen radical 11 superoxide anion to hydrogen peroxide and is responsible for maintaining the glutathione orthologue 12 trypanothione in its reduced form, essential for redox defence systems in trypanosomatids. For this 13 reason, TR would be a useful chemotherapeutic target [40]. TRs are members of the NADPH-14 dependent flavoprotein oxidoreductase family and are structurally and mechanistically related to 15 gluthathione reductase [41]. The disruption of the TR gene in Leishmania decreases the ability to 16 survive oxidative stress inside macrophages [41]. The up-regulation of this gene detected under TPS is 17 further evidence for TR demand in the amastigote stage.

18 Transport. Two different genes coding for 3'NT/Nase are located in tandem in chromosome 19 31 and are down-regulated under TPS and TS, as well as in intracellular amastigotes according to 20 unpublished custom data and previous analyses (reviewed in [13]). CLUSTAL alignments show exact 21 identity in the central region, and differences between N-ter and C-ter domains. 3'-NT/Nase is 22 essential for *Leishmania* parasites because they are not able to synthesise purines *de novo*. It localizes 23 to the plasma membrane, may play a role in purine acquisition and its substrates are 3'-ribonucleotides 24 (3'AMP and 3'-IMP) and nucleic acids [42-44]. According to previous observations [45], these genes 25 are up-regulated in promastigotes in the logarithmic phase of axenic culture and absence of expression 26 is shown in the amastigote stage. Interestingly, we have found down-regulation of these genes under 27 TPS and TS with respect to CC. Consequently, temperature down-regulates 3'-NT/Nase expression.

1 Apart from the GT genes already mentioned, aquaporin (AQ) and Zn transporter (ZnT) genes 2 are down-regulated under TPS. The AQ gene is related to changes in cell volume and shape during the 3 life cycle of the parasite and it also acts both as an osmotic sensor and in passive transport of solutes. 4 It may be related to the osmotactic response shown by the promatigote stage inside the insect vector 5 for migration to the foregut [46]. In addition, four different aminoacid permeases are differentially 6 regulated: two are up-regulated (LinJ31_V3.0590 and LinJ31_V3.1580) and two down-regulated 7 (LinJ27_V3.0530 and LinJ31_V3.0610). Furthermore, three different pteridine transporter genes are 8 differentially regulated by the effect of temperature and pH: PT3 LinJ10_V3.0410 and PT 9 LinJ14 V3.1440 are up-regulated under TPS, while PT LinJ06 V3.1320 is down-regulated, and this 10 pattern is repeated under TS except for PT3. Trypanosomatids are auxotrophes for pteridines and 11 therefore they depend on exogenous sources of these compounds. Finally, the vacuolar type proton-12 translocating pyrophosphatase gene (vH⁺-PPi) is down-regulated under TPS.

13 Signal transduction and cell cycle regulation. Protein kinase and cAMP signalling pathways 14 have not been elucidated in Leishmania to date. A first approach is to find the TPS-generated down-15 regulation of a receptor-type adenylate cyclase-like (ACR), a serine/threonine protein phosphatase 16 (Ser/Thr PPase) and three non-ligated cysteine peptidase/calpain C2 family (C2cp) genes. C2cp genes 17 are also involved in cytoskeleton remodelling (see further explanation in the following section). The 18 down-regulation under TPS of a serine/threonine protein kinase (Ser/Thr PK) may be related to the 19 down-regulation of calmodulin, which binds calcium divalent cations after its activation by PK 20 phosphorylation. Ser/Thr PK is also down-regulated under TS. The exact physiological functions of 21 the calcium-calmodulin pathway have not been described in Leishmania either and the 22 inositolphospholipid regulator pathway also remains uncharacterised. For this reason, there is no 23 known biological meaning for the down-regulation of PI3K and the up-regulation of INO1 under TPS 24 and TS found in the microarray hybridisation analysis. INO1 down-regulation has been observed in L. 25 infantum axenic and intracellular amastigotes [28]. Apart from this, a cyclin dependent kinase binding 26 protein (Cdkbp) and a serine peptidase E from the S51 family (S51) are also down-regulated and 27 might be involved in S-phase or mytosis entry.

1 Cytoskeleton and flagellum. Several genes associated with the flagellar and paraflagellar rod 2 structure are down-regulated under TPS: coronin, dynein heavy chain LinJ36_V3.2010 and 3 LinJ26 V3.1000 and PFR1D, the latter also being up-regulated under TS. Dynein heavy chain 4 LinJ26_V3.1000 down-regulation has also been described in AL [28] and intracellular amastigotes 5 (unpublished data). Apart from that, we have found that an unknown tubulin-associated GTPase is up-6 regulated under TPS, as well as RABreg, an activator of prenylated RAB GTPases. An analogue of a 7 RAB small GTPase is up-regulated in L. major amastigotes and may be related with pathogeny, as 8 vesicle transport is essential for extracellular nutrient acquisition, release of virulence factors, 9 microbicidal resistance and evasion of host immune responses [47]. In addition, calpains are involved 10 in cytoskelleton remodelling and signal transduction in kinetoplastic parasites (reviewed in [48]). μ -11 calpain C2cp LinJ20_V3.1230 (see also the Signal transduction and cell cycle regulation subsection) 12 is down-regulated under TPS and up-regulated in metacyclic promastigotes [25]. Moreover, L. 13 mexicana [17] and L. donovani [33] mature intracellular amastigotes also down-regulate this gene. As 14 a consequence, the greatest transcript levels of μ -calpain are reached in metacyclic promastigotes.

15 gRNAs. According to BLAST outcome mapping against GenBank database, 19 clones map 16 against 4 different minicircle sequences (contig 200, 692, 878 and 957) (additional table 7 in 17 additional file 3) and according to the microarray hybridisation analysis, they must contain an up-18 regulated gene under TPS. Provided that each minicircle contains only a single gRNA gene for site-19 specific uridine insertion/deletion type RNA editing, 4 gRNA genes with unknown target are 20 presumably up-regulated under TPS. The gRNA genes corresponding to contigs 878 (1 clone) and 957 21 (16 clones) have also been found to be up-regulated under PS (additional table 8 in additional file 3) 22 and were previously found as up-regulated in metacyclic promastigotes [25].

Other genes. Leishmania promastigotes use chitinase to break the chitinous peritrophic membrane inside the gut of the sand-fly vector [49]. Chitinase gene is up-regulated in TPS-induced AL, which is consistent with chitinase overexpression reported in amastigotes, as well as the associated enhanced lesion development observed in mice [50], suggesting an additional or different function for this gene. The microarray hybridisation analysis has also revealed that SbGRP is downregulated in TPS-induced AL forms, as well as in *L. mexicana* [17], *L. major* [32] and *L. infantum* (unpublished data) intracellular amastigotes. In fact, a decrease in pentavalent antimonial resistance is
 a feature of AL, together with round morphology typical of amastigotes, the up-regulation of A2
 cluster and the down-regulation of 3'NT/Nase, as reviewed previously [13].

4

4 The membrane bound acid phosphatase gene (MBAP) is down-regulated under TPS as 5 revealed by microarray analysis. There is evidence to confirm that it is essential for cell survival, 6 because it plays a critical role in nutrition. It is located in small vesicles between the Golgi apparatus 7 and the flagellar pocket (secretory pathway) Katakura et al. [51]. MBAP levels have been described as 8 being higher in procyclic promastigotes rather than in metacyclics. It was reported that its activity is 9 higher in virulent clones and consequently, it was supposed that it was involved in virulence in spite of 10 the higher levels of MBAP protein found in logarithmic phase promastigotes according to [52], but 11 further experiments have demonstrated the opposite. L. mexicana MBAP knockout parasites show that 12 it is neither involved in the infection process nor required for amastigote survival in the infected host 13 cell [51]. This supports our results concerning MBAP gene down-regulation in TPS-induced AL 14 forms.

15 Hybridisation analysis has revealed the down-regulation of a hypothetical protein (CoB) with 16 copper ion binding/transport and chaperone GO molecular functions under TPS. CoB is located in the 17 mitochondrial lumen according to GO cellular component term analysis. Two genes from the 18 HASP/SHERP cluster are differentially regulated by TPS: a small hydrophilic ER-associated protein 19 (SHERP) is down-regulated by TPS; and hydrophilic surface protein (HASPB) is up-regulated under 20 TPS, as well as in intracellular L. donovani promastigotes at the post-translational level [33]. In 21 contrast, down-regulation was reported in L. major [16]. Despite these genes being previously 22 presumed to be metacyclic promastigote-specific in L. major [16], we have reported a different pattern 23 for HASPB in L. infantum. Finally, this analysis also revealed the up-regulation of an esterase-like 24 protein, carbamoyl-phosphate synthetase (CPS), a short chain dehydrogenase and ubiquitin-25 conjugating enzyme-like proteins in TPS-induced AL, and the latter also under TS.

26

27 CONCLUSIONS

28

1 Absence of gp46 expression observed by means of IFA and up-regulation of the amastigote-2 specific A2 gene has been found in TPS-treated cells. As a consequence, we know that TPS leads to 3 differentiation into AL. The up-regulation of several amastin genes and the down-regulation of 4 3'NT/Nase and SbGRP genes under TPS and TS point to a developmental process towards amastigote 5 differentiation by the combined effect of temperature increase and acidification and the single effect of 6 temperature. By contrast, none of these genes have been found to be differentially regulated under PS, 7 which suggests that pH decrease itself does not prompt amastigote differentiation in the parasite. A 8 wider analysis of TPS-, TS- and PS-induced expression profiles throughout HCL-ST clustering 9 analysis of gene expression supports temperature shift alone or combined with acidification as 10 triggering differentiation towards the amastigote stage whereas acidification itself does not. In fact, we 11 have described examples of known annotated genes taken directly from the microarray output, namely 12 the up-regulation of RRS1, INO1 and aATP11 and the down-regulation of 3'NT/Nase, PT, GT, SOD, 13 PI3K, FKBP, calmodulin and lathosterol oxidase. These observations have led us to conclude that 14 temperature increase is more relevant than pH decrease in the differentiation process to the amastigote 15 stage with regard to transcriptome variation in L. infantum. In addition, we have provided the first 16 description of transcriptome variation induced by the specific influence of temperature increase and 17 acidification.

18

19 METHODS

20

21 Parasite cultures and RNA isolation.

Cultures of *L. infantum* isolate M/CAN/ES/98/10445 (zymodeme MON-1) were grown at a starting density of 4 x 10^6 mid-logarithmic phase promastigotes/ml in RPMI 1640 medium supplemented with L-glutamine (Cambrex, Karlskoga, Sweden), 10% heat inactivated foetal bovine serum (HIFBS) (Cambrex) and 100 µg/ml streptomycin – 100 IU/ml penicillin (Cambrex) at 27 °C/pH7.2 (CC), 37 °C/pH4.5 (TPS), 37 °C/pH7.2 (TS) or 27 °C/pH4.5 (PS). Cell density was counted daily and promastigotes were harvested at 2000g for 10 min on day 4. RNA isolations were performed from 2 x 10^8 cells/ml of TRIzol® reagent (Invitrogen, La Jolla, CA) following the manufacturer's instructions. Three biological replicates of the cultures were carried out for each of the conditions
 described.

3

4 gp46 IFA.

5 Cells were fixed with acetone:methanol (1:1) at -20 °C for 10 min at a density of 2 x $10^{6}/5 \,\mu$ l 6 drop. Then, they were incubated with purified anti-gp46 monoclonal IgG antibody at 37 °C for 30 min 7 in a hydration chamber, washed three times with phosphate buffered saline (PBS) by mild agitation for 8 10 min, incubated with fluorescein isotiocyanate (FITC)-conjugated goat anti-mouse IgG antibody 9 (Serotec, Raleigh, NC) and 0.1% Evans' Blue (Fisher, Pittsburgh, PA). Washes were repeated and 10 preparations mounted with 90% glycerol. Negative control of the primary antibody was anti-rabbit 11 complement factor H monoclonal IgG and the first incubation was carried out with PBS for the 12 negative control of the secondary antibody. SIM 110 monoclonal IgG antibody against soluble 13 leishmanial antigens (SLA) was used as a positive control. Anti-gp46, anti-rabbit factor H and SIM110 14 antibodies were kindly provided by Mercedes Domínguez (Centro Nacional de Microbiología, 15 Virología e Inmunología Sanitarias, Instituto de Salud Carlos III, Majadahonda, Spain).

16

17 L. infantum DNA microarray construction and hybridisation.

18 L. infantum DNA microarray construction and hybridisation assays were carried out as 19 described previously [25]. To summarize, microarrays were generated by long template PCR 20 amplification from a complete shotgun DNA-pUC18 genomic library with m13-pUC18 primers and 21 spotting onto epoxy-coated slides. RNA quality was assessed by capillary electrophoresis, mRNA was 22 amplified, cDNA was synthesised and indirectly labelled and L. infantum DNA microarrays blocked, 23 hybridised and washed as detailed in [25]. Hybridisation assays were performed as follows: 37 24 °C/pH4.5 vs. 27 °C/pH7.2 (TPS vs. CC), 37 °C/pH7.2 vs. 27 °C/pH7.2 (TS vs. CC) and 27 °C/pH4.5 25 vs. 27 °C/pH7.2 (PS vs. CC). Hybridised microarrays were scanned and fluorescence intensity was 26 analysed for Cy3 (532 nm) and Cy5 (635 nm) with local feature background subtraction (GenePix 27 4100A scanner and software, Axon Instruments, Foster City, CA). LOWESS per pin algorithm was 28 used to normalise raw data (AlmaZen software, BioAlma, Tres Cantos, Spain). After that, comparative analysis of the replicates by paired t-test and selection of spots with meaningful values of stage specific regulation were performed as described [25].

3

4 DNA sequencing and analysis.

5 Clones corresponding to selected spots were sequenced and mapped following a strategy that 6 has already been described in detail [25]. Briefly, insert ends were dideoxi-sequenced with m13-7 pUC18 primers and aligned against the L. infantum genome project sequence in General Feature 8 Format (GFF) deposited in a GBrowse database. Forward and reverse reads were mapped to define the 9 boundaries of the clones in the genome of L. infantum. Depending upon the insert length, the success 10 of sequencing reactions of both ends and genome sequence complexity, three possibilities arose: when 11 one pair of convergently oriented alignments separated by up to 11 Kbp were found, the clone 12 mapping outcome was defined as type a; when more than one pair of alignments fulfilled those 13 conditions, the best pair of alignments was used to define the boundaries of the clone, resulting in a 14 type b outcome; and when those requirements were not fulfilled (incongruent pair of alignments or 15 unpaired alignments), the outcome was defined as type c. Some of the clones were annotated by a 16 custom Glimmer 3.0 analysis because they did not map against genes previously annotated on the L. 17 infantum genome project sequence. Stage-specifically regulated genes were re-annotated and analysed 18 with BLAST2GO to establish molecular function and biological process GO term distribution among 19 them based on α -scores [53].

20 Multi-experiment SAM and the subsequent iterative hierarchical clustering-support tree 21 analysis (HCL-ST) were carried out with TIGR's MultiExperiment Viewer 4.3 (MEV) by introducing 22 normalised microarray hybridisation data matrixes (including medians and standard deviations of 23 intensity and F values) of clones with significant differential regulation in each individual experiment. 24 SAM p-value cutoff was 0.05, the same as for the previous independent t-tests for each experiment. 25 HCL-ST was performed independently for significant and non-significant genes. ST algorithm with a 26 jackknifing resampling option and 100 iterations for the construction and clustering of the gene 27 expression matrix were applied in HCL-ST analysis. CLUSTALW2 was used for sequence alignments 28 of amastin, glucose transporter and 3'-nucleotidase/nuclease genes differentially regulated by the

effect of pH and/or temperature and CBS's TMHMM 2.0 for the prediction of transmembrane helices
 in these proteins.

3

4 qRT-PCR.

qRT-PCR reactions were performed to determine whether a gene overlapping with a type c sequence end is developmentally regulated or to ascertain which gene is developmentally regulated in the clones overlapping more than one gene. We described previously the procedure applied [25]. The reference gene was 18S rRNA. When there were two copies of a gene in tandem in a given clone but one of the copies lacked a segment of the 5' end or differed in a specific sequence (glucose transporter and 3'NT/Nase genes), two pairs of primers were designed for qRT-PCR. A complete list of primers used for qRT-PCR is provided in additional file 6.

12

13 LIST OF ABBREVIATIONS USED.

14

15 aap, amino acid permease; aATP11, amino acid transporter 11; ABCE, ABC transporter subfamily E 16 (ribonuclease L-inhibitor) gene; ACR, receptor-type adenylate cyclase; ACT, acyl-CoA transferase; 17 AL, amastigote-like; ALD, fructose-1,6-bisphosphate aldolase; AQ, aquaporin; CC, culture control 18 conditions; C2cp, cysteine protease family C2; cdkbp, cyclin-dependent kinase binding protein; 19 C(III)O, coproporphyrinogen oxidase; CoA, coenzyme A; CoB, cofactor binding protein; Cph, 20 cyclophilin; CPS, carbamoyl phosphate synthetase; Cy, cyanin; cyt b5, cytochrome b5; DAG, direct 21 acyclic graph; 1,2-DAG, 1,2-diacylglycerol; DGC, directional gene cluster; DHAP, dihydroxyacetone 22 phosphate; EF1 α , elongation factor 1 α ; eIF5 α , eukaryotic translation initiation factor 5 α ; ER, 23 endoplasmic reticulum; ETCH, electron transport chain; F, Fold change; FA, fatty acid; FITC, 24 fluorescein isotiocyanate; FKBP, FK506-binding protein; FU, Fluorescence Units; GAPDH, 25 glyceraldehyde-3-phosphate dehydrogenase; aGII-HPB, hypothetical calcium ion binding protein 26 from α-glycosidase II complex; gMDH, glycosomal malate dehydrogenase; GNAT, glucose-6-27 phosphate N-acetyltransferase; GO, Gene Ontology; gp46, 46 KDa surface glycoprotein; GPDE, 28 glycerolphosphodiester phosphodiesterase; gRNA, guide RNA; GT, glucose transporter; H3, histone

22

1 H3; HASPB, hydrophilic surface protein B; HCL-ST, Hierarchical clustering-Support Tree; HIFBS, 2 heat inactivated foetal bovine serum; HMG-CoA, 3-hydroxymethylglutaryl-CoA; HMGCR, HMG-3 CoA reductase; HPT, hypothetical protein transport protein; HTreg, hypothetical transcription 4 regulator; IFA, immunofluorescence analysis; IPC, inositol phosphoceramide; INO1, myo-inositol-1-5 phosphate synthase; LOWESS, Locally Weighted Scatter Plot Smoothing algorithm; LPG, 6 lypophosphoglycan; mACDH, mitochondrial acyl-CoA dehydrogenase; MBAP, membrane bound acid 7 phosphatase; MEV, Multi Experiment Viewer; MGL, monoglyceride lipase; mmc, minichromosome 8 maintenance complex protein; MRP, multidrug resistance protein; NPC, nuclear pore complex; 9 3'NT/Nase, 3'-nucleotidase/nuclease; β -ox, β -oxidation of FA; PES, prostaglandin peroxide synthase 10 complex; PFR1D, paraflagellar rod protein 1D; PG, phosphoglycerate; PGFS, prostaglandin F 11 synthase; PGM^{BPI}, bisphosphoglycerate-independent phosphoglycerate mutase; PI3K. 12 phosphatidylinositol triphosphate kinase; PO. protoporphyrinogen oxidase; PPG, 13 proteophosphoglycan; PS, pH shift; PSA2, promastigote-specific surface antigen 2; PT, pteridine 14 transporter; qRT-PCR, relative quantitative real time PCR; R, set of ribosomal proteins; RABreg, Rab 15 GTPase regulator; RNAbp, RNA-binding protein; RRS1, ribosome assembly protein; S51, serine 16 peptidase A family S51; SAGE, Serial Analysis of Gene Expression; SAM, Serial Analysis of 17 Microarrays; Ser/Thr PK, serine/threonine protein kinase; SbGRP, sodium stibogluconate resistance protein; Ser/Thr PPase, Ser/Thr protein phosphatase; SHERP, small hydrophilic ER-associated 18 19 protein; SLA, soluble leishmanial antigen; SOD, superoxide dismutase; TAG, triacylglycerol; TCA, 20 tricarboxylic acid cycle; TFSUI1, translation factor SUI1; TGL, TAG lipase; TPS, temperature-pH 21 shift; TS, temperature shift; TR, trypanothione reductase; vH⁺-PPi, vacuolar-type proton-translocating 22 pyrophosphatase; ZnT, Zn transporter.

23

24 AUTHORS' CONTRIBUTIONS.

25

PJA, AA, ASG, MM, VP and VL contributed to the design of shotgun genomic DNA microarrays. PJA and ASG constructed the genomic library and PJA, AA, ASG and MM contributed to the microarray construction. PJA, AA, MM and EG contributed to the optimisation of the

1 hybridisation procedure. The experimental design of biological sample preparation and expression 2 profile analysis of temperature and acidification was carried out by PJA, AT and VL. PJA and AT 3 contributed to gp46 IFA. Microarray hybridisation data acquisition and analysis was performed by 4 PJA and AA with the assistance of MM, EG and VP. Sequence analysis, clone assembly and mapping 5 against L. infantum genome, gene annotations with Glimmer software, minicircle sequence analyses, 6 GO annotations and BLAST2GO analysis were performed by MJG. qRT-PCR analyses were 7 performed by PJA with the assistance of AT. PJA, AA and VL contributed to the interpretation of 8 data. The manuscript was drafted by PJA, AA and VL. All authors revised the manuscript thoroughly 9 and made important contributions to the intellectual content of this manuscript. VP and AL approved 10 the version to be published.

11

12 ACKNOWLEDGEMENTS

13

We thank Juan Pérez Mercader, Merecedes Domínguez, Rafael Giraldo and Francisco Ferrezuelo for their unconditional support and Marina Postigo, Marta Godoy and Eduardo Gil for their excellent technical assistance. This work has been supported by the Ministerio de Educación y Ciencia (MEC) project AGL2003–06152-C02–01 and the internal budget of the Centro de Astrobiología. PJA thanks Consejo Superior de Investigaciones Científicas (CSIC) for I3P-BPD2003–1 grant and AA thanks CSIC for the JAE-Doc027 (2008) contract.

21 **REFERENCES**

- Sacks DL, Perkins PV: Identification of an infective stage of Leishmania
 promastigotes. Science 1984, 223(4643):1417-1419.
- Chang KP, Dwyer DM: Multiplication of a human parasite (Leishmania donovani) in phagolysosomes of hamster macrophages in vitro. Science 1976, 193(4254):678-680.
- Alexander J, Russell DG: The interaction of Leishmania species with
 macrophages. Advances in parasitology 1992, 31:175-254.
- Pral EM, da Moitinho ML, Balanco JM, Teixeira VR, Milder RV, Alfieri SC:
 Growth phase and medium ph modulate the expression of proteinase activities and the development of megasomes in axenically cultivated Leishmania (Leishmania) amazonensis amastigote-like organisms. J
 Parasitol 2003, 89(1):35-43.

- Somanna A, Mundodi V, Gedamu L: In vitro cultivation and characterization
 of Leishmania chagasi amastigote-like forms. *Acta Trop* 2002, 83(1):37-42.
- 3 6. Debrabant A, Joshi MB, Pimenta PF, Dwyer DM: Generation of Leishmania
 4 donovani axenic amastigotes: their growth and biological characteristics.
 5 International journal for parasitology 2004, 34(2):205-217.
- Saar Y, Ransford A, Waldman E, Mazareb S, Amin-Spector S, Plumblee J,
 Turco SJ, Zilberstein D: Characterization of developmentally-regulated
 activities in axenic amastigotes of Leishmania donovani. Molecular and
 biochemical parasitology 1998, 95(1):9-20.
- 8. Antoine JC, Prina E, Lang T, Courret N: The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. *Trends Microbiol* 1998, 6(10):392-401.
- 13 9. Shapira M, McEwen JG, Jaffe CL: Temperature effects on molecular
 processes which lead to stage differentiation in Leishmania. *Embo J* 1988,
 7(9):2895-2901.
- 1610.Raina P, Kaur S: Chronic heat-shock treatment driven differentiation17induces apoptosis in Leishmania donovani. Mol Cell Biochem 2006, 289(1-182):83-90.
- Zilberstein D, Blumenfeld N, Liveanu V, Gepstein A, Jaffe CL: Growth at
 acidic pH induces an amastigote stage-specific protein in Leishmania
 promastigotes. *Molecular and biochemical parasitology* 1991, 45(1):175-178.
- Abou el Naga IF, el Moneim Sharaf IA: Metacyclogenesis of Leishmania
 major in an acidic medium. *J Egypt Soc Parasitol* 2000, 30(2):431-440.
- 24 13. Zilberstein D: Physiological and Biochemical Aspects of Leishmania
 25 Development. In: Leishmania after the genome. Edited by Myler PJ, Fassel N.
 26 Norfolk: Caister Academic Press; 2008.
- Zilberstein D, Shapira M: The role of pH and temperature in the
 development of Leishmania parasites. *Annu Rev Microbiol* 1994, 48:449-470.
- Almeida R, Gilmartin BJ, McCann SH, Norrish A, Ivens AC, Lawson D, Levick
 MP, Smith DF, Dyall SD, Vetrie D *et al*: Expression profiling of the
 Leishmania life cycle: cDNA arrays identify developmentally regulated
 genes present but not annotated in the genome. *Mol Biochem Parasitol* 2004,
 136(1):87-100.
- Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo
 GD, Beverley SM: Expression profiling using random genomic DNA
 microarrays identifies differentially expressed genes associated with three
 major developmental stages of the protozoan parasite Leishmania major.
 Mol Biochem Parasitol 2004, 136(1):71-86.
- Holzer TR, McMaster WR, Forney JD: Expression profiling by whole-genome
 interspecies microarray hybridization reveals differential gene expression
 in procyclic promastigotes, lesion-derived amastigotes, and axenic
 amastigotes in Leishmania mexicana. Mol Biochem Parasitol 2006,
 146(2):198-218.
- Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H,
 Myler PJ, Zilberstein D: Analysis of the Leishmania donovani transcriptome
 reveals an ordered progression of transient and permanent changes in gene
 expression during differentiation. *Mol Biochem Parasitol* 2007, 152(1):53-65.
- 48 19. McNicoll F, Drummelsmith J, Muller M, Madore E, Boilard N, Ouellette M,
 49 Papadopoulou B: A combined proteomic and transcriptomic approach to the
 50 study of stage differentiation in Leishmania infantum. *Proteomics* 2006,
 51 6(12):3567-3581.

- Kahl LP, McMahon-Pratt D: Structural and antigenic characterization of a
 species- and promastigote-specific Leishmania mexicana amazonensis
 membrane protein. *J Immunol* 1987, **138**(5):1587-1595.
- 4 21. Handman E, Osborn AH, Symons F, van Driel R, Cappai R: The Leishmania
 5 promastigote surface antigen 2 complex is differentially expressed during
 6 the parasite life cycle. *Mol Biochem Parasitol* 1995, 74(2):189-200.
- Zakai HA, Chance ML, Bates PA: In vitro stimulation of metacyclogenesis in
 Leishmania braziliensis, L. donovani, L. major and L. mexicana. *Parasitology* 1998, 116 (Pt 4):305-309.
- Li Q, Zhao Y, Ni B, Yao C, Zhou Y, Xu W, Wang Z, Qiao Z: Comparison of
 the expression profiles of promastigotes and axenic amastigotes in
 Leishmania donovani using serial analysis of gene expression. *Parasitol Res*2008, 103(4):821-828.
- Guerfali FZ, Laouini D, Guizani-Tabbane L, Ottones F, Ben-Aissa K, Benkahla
 A, Manchon L, Piquemal D, Smandi S, Mghirbi O *et al*: Simultaneous gene **expression profiling in human macrophages infected with Leishmania major parasites using SAGE**. *BMC Genomics* 2008, 9:238.
- Alcolea PJ, Alonso A, Sanchez-Gorostiaga A, Moreno-Paz M, Gomez MJ,
 Ramos I, Parro V, Larraga V: Genome-wide analysis reveals increased levels
 of transcripts related with infectivity in peanut lectin non-agglutinated
 promastigotes of Leishmania infantum. *Genomics* 2009, 93(6):551-564.
- 22 26. Teixeira SM, Russell DG, Kirchhoff LV, Donelson JE: A differentially
 23 expressed gene family encoding "amastin," a surface protein of
 24 Trypanosoma cruzi amastigotes. The Journal of biological chemistry 1994,
 25 269(32):20509-20516.
- 26 27. Rochette A, McNicoll F, Girard J, Breton M, Leblanc E, Bergeron MG,
 27 Papadopoulou B: Characterization and developmental gene regulation of a
 28 large gene family encoding amastin surface proteins in Leishmania spp. Mol
 29 Biochem Parasitol 2005, 140(2):205-220.
- Rochette A, Raymond F, Corbeil J, Ouellette M, Papadopoulou B: Wholegenome comparative RNA expression profiling of axenic and intracellular
 amastigote forms of Leishmania infantum. *Mol Biochem Parasitol* 2009, 165(1):32-47.
- Charest H, Matlashewski G: Developmental gene expression in Leishmania
 donovani: differential cloning and analysis of an amastigote-stage-specific
 gene. *Mol Cell Biol* 1994, 14(5):2975-2984.
- 37 30. Zhang WW, Matlashewski G: Loss of virulence in Leishmania donovani
 38 deficient in an amastigote-specific protein, A2. Proc Natl Acad Sci U S A
 39 1997, 94(16):8807-8811.
- 40 31. Zhang WW, Matlashewski G: Characterization of the A2-A2rel gene cluster
 41 in Leishmania donovani: involvement of A2 in visceralization during
 42 infection. *Mol Microbiol* 2001, **39**(4):935-948.
- 43 32. Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR: Genomic and
 44 proteomic expression analysis of Leishmania promastigote and amastigote
 45 life stages: the Leishmania genome is constitutively expressed. *Mol Biochem*46 *Parasitol* 2007, 152(1):35-46.
- 47 33. Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D:
 48 Retooling Leishmania metabolism: from sand fly gut to human 49 macrophage. *Faseb J* 2008, 22(2):590-602.

- 34. Bisbal C, Salehzada T, Silhol M, Martinand C, Le Roy F, Lebleu B: The 2 5A/RNase L pathway and inhibition by RNase L inhibitor (RLI). *Methods Mol Biol* 2001, 160:183-198.
- 4 35. Ternes P, Franke S, Zahringer U, Sperling P, Heinz E: Identification and characterization of a sphingolipid delta 4-desaturase family. *J Biol Chem* 2002, 277(28):25512-25518.
- Ginger ML, Chance ML, Goad LJ: Elucidation of carbon sources used for the
 biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania
 mexicana. *Biochem J* 1999, 342 (Pt 2):397-405.
- McConville MJ, De Souza DP, Saunders EC, Pyke J, Naderer T, Ellis MA,
 Sernee FM, Ralton JE, Likic VA: Analysis of the Leishmania Metabolome. In: *Leishmania after the genome*. Edited by Myler PJ, Fassel N. Norfolk: Caister
 Academic Press; 2008.
- 14 38. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
 15 Nucleic Acids Res 2000, 28(1):27-30.
- 16 39. Clayton C, Shapira M: Post-transcriptional regulation of gene expression in 17 trypanosomes and leishmanias. *Molec Biochem Parasitol* 2007, 156(2):93-18 101.
- 40. Steenkamp DJ: Thiol metabolism of the trypanosomatids as potential drug
 targets. *IUBMB Life* 2002, 53(4-5):243-248.
- 41. Dumas C, Ouellette M, Tovar J, Cunningham ML, Fairlamb AH, Tamar S,
 Olivier M, Papadopoulou B: Disruption of the trypanothione reductase gene
 of Leishmania decreases its ability to survive oxidative stress in
 macrophages. *The EMBO journal* 1997, 16(10):2590-2598.
- 42. Sacci JB, Jr., Campbell TA, Gottlieb M: Leishmania donovani: regulated
 changes in the level of expression of the surface 3'-nucleotidase/nuclease. *Exp Parasitol* 1990, 71(2):158-168.
- 43. Gbenle GO: Characterization of a filtrable 3'-nucleotidase of Leishmania
 donovani. *Biochim Biophys Acta* 1993, 1203(1):162-167.
- 30 44. Debrabant A, Bastien P, Dwyer DM: A unique surface membrane anchored
 31 purine-salvage enzyme is conserved among a group of primitive eukaryotic
 32 human pathogens. *Mol Cell Biochem* 2001, 220(1-2):109-116.
- 33 45. Sopwith WF, Debrabant A, Yamage M, Dwyer DM, Bates PA:
 34 Developmentally regulated expression of a cell surface class I nuclease in 35 Leishmania mexicana. Int J Parasitol 2002, 32(4):449-459.
- Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, Ouelette M, Bhattacharjee H,
 Mukhopadhyay R: Biochemical characterization of *Leishmania major*aquaglyceroporin LmAQP1: possible role in volume regulation and
 osmotaxis. *Molecular Microbiology* 2007, 65(4):1006-1017.
- 40 47. Chenik M, Chaabouni N, Ben Achour-Chenik Y, Ouakad M, Lakhal-Naouar I,
 41 Louzir H, Dellagi K: Identification of a new developmentally regulated
 42 Leishmania major large RAB GTPase. Biochem Biophys Res Commun 2006,
 43 341(2):541-548.
- 44 48. Ersfeld K, Barraclough H, Gull K: Evolutionary relationships and protein
 45 domain architecture in an expanded calpain superfamily in kinetoplastid
 46 parasites. Journal of molecular evolution 2005, 61(6):742-757.
- 47 49. Schlein Y, Jacobson RL, Shlomai J: Chitinase secreted by Leishmania
 48 functions in the sandfly vector. *Proc Biol Sci* 1991, 245(1313):121-126.
- 49 50. Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA,
 50 Dwyer DM: Molecular characterization, expression, and in vivo analysis of

1		LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J
2	51	Biol Chem 2005, 280 (5):3847-3861.
3 4	51.	acid phosphatase of Leishmania mexicana Mol Riochem Parasitol 2000
5		111 (1):77-86.
6 7	52.	Katakura K, Kobayashi A: Acid phosphatase activity of virulent and avirulent clones of Leishmania donovani promastigotes. Infect Immun 1988,
8	50	56 (11):2856-2860.
9 10	53.	Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO:
11		genomics research. Bioinformatics (Oxford, England) 2005, 21(18):3674-3676.
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		

Fig. 1. Average growth curves of control and temperature/pH-treated *L. infantum*promastigotes. Three replicates of the cultures were performed for each of the conditions assayed.
RNA samples were extracted and processed for transcriptome analysis on day 4. Growth arrest is
induced by pH decrease.

7

Fig. 2. gp46 IFA. Samples of all the experimental conditions described in this article were collected
on day 4 for IFA analysis. (A-D) CC; (E-H) TPS; (I-L) TS; and (M-P) PS. Incubations were
performed with: PBS as negative control for the FITC-conjugated anti-mouse IgG secondary antibody
(A, E, I, M); monoclonal anti-rabbit complement factor H primary antibody negative control (B, F, J,
N); SIM110 monoclonal anti-SLA as positive control (C, G, K, O); and monoclonal anti-gp46 (D, H,
L, P). As a summary, gp46 is expressed under CC, TS and PS but not in TPS-treated AL.

14

15 Fig. 3. HCL-ST of genes differentially modulated under TPS, TS and /or PS. After performing 16 SAM for all experimental groups, HCL-ST analysis was performed independently for (A) genes with 17 (B) and without significant differences between groups according to SAM. Support Tree algorithm 18 with a jackknifing resampling option and 100 iterations for the construction and clustering of gene 19 expression matrix were applied in HCL-ST. Clones in (A) were grouped into 26 clusters and clones in 20 (B) in two clusters depending on differential regulation. This analysis confirms that expression profile 21 similarity is higher between TPS and TS than between TPS or TS and PS. Control spots LiA2, LdoA2, 22 Lip36, Lipolb, Lihsp70, Ldohsp70 and Lmahsp70 show significant differences in gene expression 23 between the experimental groups (A2 gene is up-regulated under TPS and hsp70 under PS) and 24 LiTopoII LiDNAg, Lamhsp70, LiGAPDH, LdoGAPDH and herring DNA do not. Clones with 25 significant differences between the experimental conditions are identified in additional file 4.

26

Fig. 4. Multilevel sector charts of α-scores for GO molecular functions annotated on
differentially regulated genes under TPS. (A) Molecular function GO terms annotated on down-

1	regulated genes under TPS. (B) Molecular function GO terms annotated on up-regulated genes under
2	TPS. (C) Biological process GO terms annotated on down-regulated genes under TPS. (D). Biological
3	process GO terms annotated on up-regulated genes under TPS.

5 Fig. 5. Scheme representing differentially regulated genes under TPS and their subcellular 6 localisation and/or functional relations. Up-regulated genes are represented in red colour (Cy5) and 7 down-regulated in green (Cy3). Further explanations in the *TPS expression profile* subsection, which 8 is included in the *Results and Discussion section*.

Fig. 6. Amino acid sequence and domain analysis of amastin genes found to be differentially regulated under TPS and TS. (A) MEV comparison of differential regulation under TPS, TS and PS. (B) Sequence similarity tree representing distances between amastin genes found to be up-regulated under TPS and TS. (C) Amino acid sequences were aligned with CLUSTALW2 software. The darker the position is highlighted the more conserved the residue is. The boundaries of inner, transmembrane and outer domain sequences predicted with TMHMM 2.0 software are represented below sequence alignments.

2

Table 1. Up-regulated genes after 37 °C/pH4.5 treatment (day 4) in *L. infantum*. This table contains clones that map against up-regulated genes (not
 hypothetical or unknown) with the combined effect of temperature increase and pH decrease (TPS). The features described are: clone number; F; base-two
 logarithmic scale F and SD values; *p*; GenBank GSS accession numbers; e-values; Def. according to mapping outcomes *a*, *b* or *c* (see brief explanation in
 the text); Id.; annotated gene function (codes for additional figure 4, additional file 5); qRT-PCR. When a given clone overlaps with more than one
 annotation, stage-specific regulation is only demonstrated if the qRT-PCR result is positive (+). Genes in bold are also up-regulated under TS.

Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function (GO terms in additional Fig 4.,	ql	RT-PCR
		-		GSS	Fw	Rv	-		additional file 5)	+/-	$F\pm SD$
Lin11D7	4.78	2.3 ± 0.2	0.002	GS598854	6e-118	0	b	LinJ31_V3.0460	Amastin, putative (uTPS0)	+	7.8 ± 0.2
Lin19D1	1.88	0.9 ± 0.3	0.028	GS598855	3e-18	0	b	LinJ08_V3.0680	Amastin-like protein (uTPS0)	N.D.	
								LinJ08_V3.0690	Amastin-like protein (uTPS0)	N.D.	
Lin22E12	2.79	1.5 ± 0.1	0.001	GS598856	0	0	b	LinJ31_V3.1850	Amino acid permease (uTPS13)	N.D.	
Lin33G2	4.01	2.0 ± 0.8	0.044	GS598857	6e-118	6e-118	b	LinJ34_V3.4370	Amastin-like surface protein, putative (uTPS0)	N.D.	
Lin34G1	1.81	0.9 ± 0.1	0.008	GS598858	0	0	а	LinJ16_V3.0790	Chitinase (uTPS18, uTPS8)	N.D.	
Lin36B8	1.99	1.0 ± 0.2	0.015	GS598859	0	0	b	LinJ30_V3.3230	3-hydroxy-3-methyglutaryl-CoA reductase, putative (uTPS21, uTPS12)	N.D.	
Lin50G2	3.38	1.8 ± 0.1	0.000	GS598860	0	4e-153	b	LinJ34_V3.2660	Amastin-like surface protein (uTPS0)	+	1.8 ± 0.0
Lin54G3	1.84	0.9 ± 0.3	0.027	GS598861	0	0	b	LinJ24_V3.1230	Hypothetical protein, conserved	N.D.	
								LinJ24_V3.1240	Translation factor SUI1, putative (uTPS0)	+	3.1 ± 0.1
Lin62D3	1.92	0.9 ± 0.4	0.040	GS598862	0	0	b	LinJ05_V3.0340	Hypothetical protein, conserved	N.D.	
								LinJ05_V3.0350	Trypanothione reductase (uTPS10, uTPS14, uTPS20)	+	3.8 ± 0.4
Lin62D10	1.76	0.8 ± 0.3	0.051	GS598863	0	0	b	LinJ17_V3.1150	Esterase-like protein (uTPS5)	+	18.5 ± 1.5
Lin66A8	3.59	1.8 ± 0.4	0.013	GS598864	0	0	b	LinJ22_V3.0470	Hypothetical protein, conserved	N.D.	
								LinJ22_V3.0480	Ubiquitin-conjugating enzyme-like protein (uTPS0)	+	2.3 ± 0.2
Lin66F8	1.92	0.9 ± 0.2	0.017	GS598865	0	3e-132	а	LinJ33_V3.2470	Succinyl-CoA:3-ketoacid-CoA transferase, mitochondrial	-	-1.3 ± 0.3
								Lin 122 V2 2480	Hypothetical protein, concerved/PAProg (uTPS17)	ND	
Lin77H8	5.63	25 ± 0.5	0.016	G\$598866	0	0	h	Linj 35_ V 3.2480	Amestin-like protein (uTPS0)	ND.	
Lin86H7	3.06	2.5 ± 0.5 1.6 ± 0.2	0.004	GS598867	0	2e-101	h	Lin 108 V3 0700	Amastin-like protein (uTPS0)	+	95 ± 03
Lin87H2	4 20	1.0 ± 0.2 2.1 ± 0.3	0.004	GS598868	3e-15	36-33	h	Lin 108 V3.0690	Amastin-like protein (uTPS0)	ND	<i>).5</i> ± 0.5
Lin89D9	1.71	0.8 ± 0.3	0.043	G\$598869	0	0	h	Lin J00_ V3.0070	ATP-hinding cossette sub-family F nutative (uTPS0	N D	
LINOVEV	1.71	0.8 ± 0.5	0.045	0000000	0	0	U	Em321_45.0770	uTPS11, uTPS24, uTPS28)	п.р.	
Lin90B6	1.71	0.8 ± 0.3	0.040	GS598870	0	0	b	LinJ30_V3.0640	Ribosome biogenesis regulatory protein (RRS1), putative (uTPS0)	+	16.4 ± 0.2
								LinJ30_V3.0650	Histidyl-tRNA synthetase, putative	N.D.	
								LinJ30_V3.0660	Hypothetical protein, conserved	N.D.	
Lin90H2	1.76	0.8 ± 0.1	0.005	GS598871	0	0	b	LinJ30_V3.2200	RNA-binding protein (uTPS3, uTPS6, uTPS15, uTPS16)	N.D.	
Lin91B12	5.24	2.4 ± 0.3	0.004	GS598872	0	0	b	LinJ34_V3.2660	Amastin-like surface protein (uTPS0)	+	1.8 ± 0.0
Lin92H5	2.48	1.3 ± 0.5	0.041	GS598873	0	0	b	LinJ28 V3.2060	Zinc transporter, putative (uTPS23)	+	45.7 ± 0.5

								LinJ28_V3.2070	Hypothetical protein, conserved	N.D.	
Lin93E3	1.83	0.9 ± 0.4	0.033		0	0	b	LinJ10_V3.0410	Pteridine transporter ft3, putative (uTPS0)	N.D.	
Lin104C10	6.68	2.7 ± 0.1	0.001	GS598874	0	0	b	LinJ08_V3.1320	Amastin-like protein (uTPS0)	N.D.	
Lin106A1	2.43	1.3 ± 0.0	0.000	GS598875	0	0	с	LinJ06_V3.1200	Hypothetical protein, conserved	N.D.	
								LinJ31_V3.0590	Amino acid transporter aATP11, putative (uTPS13)	+	2.6 ± 0.0
Lin113C3	1.87	0.9 ± 0.1	0.040	GS598876	3e-74	0	а	LinJ14_V3.1440	Pteridine transporter (uTPS0)	+	1.9 ± 0.0
								LinJ14_V3.1450	Myo-inositol-1-phosphate synthase (uTPS0)	+	2.1 ± 0.3
Lin118A11	2.90	1.5 ± 0.3	0.010	GS598877	0	7e-28	с	LinJ30_V3.0630	Nitrate reductase, putative (uTPS0)	+	3.7 ± 0.3
								LinJ36_V3.2480	Glyceraldehyde-3-phosphate dehydrogenase, putative	N.D.	
Lin119F3	3.40	1.8 ± 0.2	0.005	GS598878	0	0	b	LinJ25_V3.2570	Phosphoglycan beta-1,3-galactosyltransferase 6 (uTPS22)	N.D.	
Lin123D6	2.91	1.5 ± 0.1	0.002	GS598879	-	0	с	LinJ34_V3.2660	Amastin-like surface protein (uTPS0)	+	1.8 ± 0.0
Lin137A10	1.98	1.0 ± 0.3	0.039	GS598880	0	0	b	LinJ24_V3.1230	Hypothetical protein, conserved	N.D.	
								LinJ24_V3.1240	Translation factor SUI1, putative (uTPS0)	+	3.1 ± 0.1
Lin142H9	1.74	0.8 ± 0.1	0.004	GS598881	0	0	b	LinJ31_V3.0460	Amastin, putative (uTPS0)	+	7.8 ± 0.2
Lin146E3	2.35	1.2 ± 0.4	0.038	GS598882	0	0	b	LinJ31_V3.0590	Amino acid transporter aATP11, putative (uTPS13)	+	2.6 ± 0.0
Lin156B2	1.82	0.9 ± 0.2	0.025	GS598883	0	0	b	LinJ33_V3.2960	Hypothetical protein, conserved/Transcription regulator	N.D.	
									(uTPS 1, uTPS4, uTPS7)		
Lin162A9	4.29	2.1 ± 0.2	0.004	GS598884	0	0	b	LinJ22_V3.0470	Hypothetical protein, conserved	N.D.	
								LinJ22_V3.0480	Ubiquitin-conjugating enzyme-like protein (uTPS0)	+	2.3 ± 0.2
Lin165E2	3.48	1.8 ± 0.2	0.004	GS598885	0	0	b	LinJ22_V3.0680	3'a2rel-related protein (uTPS0)	+	4.0 ± 0.4
Lin183A3	1.75	0.8 ± 0.1	0.010	GS598886	0	0	b	LinJ24_V3.2250	Hypothetical protein, conserved/GPDE (uTPS26)	N.D.	
Lin185A12	4.53	2.2 ± 0.2	0.002	GS598887	0	0	b	LinJ34_V3.2660	Amastin-like surface protein, putative (uTPS0)	+	1.8 ± 0.0
Lin188H2	3.20	1.7 ± 0.6	0.042	GS598888	0	0	с	LinJ08_V3.0680	Amastin-like protein (uTPS0)	N.D.	
Lin194E2	3.22	1.7 ± 0.4	0.023	GS598889	7e-56	4e-153	b	LinJ08_V3.0710	Amastin-like protein (uTPS0)	+	9.5 ± 0.3
Lin197A12	1.95	1.0 ± 0.2	0.016	GS598890	0	0	а	LinJ31_V3.2540	Lipase, putative (uTPS19)	N.D.	
Lin201F8	2.00	1.0 ± 0.4	0.041	GS598891	0	0	b	LinJ31_V3.3330	Phosphoglycan beta-1,3-galactosyltransferase 5 (uTPS22)	N.D.	
Lin206B6	5.40	2.4 ± 0.5	0.012	GS598892	7e-133	0	b	LinJ22_V3.0680	3'a2rel-related protein (uTPS0)	+	4.0 ± 0.4
Lin210C4	2.77	1.5 ± 0.1	0.003	GS598893	0	0	b	LinJ08_V3.0690	Amastin-like protein (uTPS0)	N.D.	
Lin223F2	1.73	0.8 ± 0.3	0.044	GS598894	0	0	b	LinJ13_V3.0330	Unknown/Tubulin associated GTPase (uTPS2, uTPS25, uTPS27)	N.D.	
Lin224G2	2.20	1.1 ± 0.2	0.023	GS598895	0	0	b	LinJ08_V3.0720	Amastin-like protein (uTPS0)0	N.D.	
Lin235G8	3.16	1.7 ± 0.2	0.003	GS598896	0	0	b	LinJ08 V3.1320	Amastin-like protein (uTPS0)	N.D.	
Lin245E2	2.61	1.4 ± 0.4	0.040	GS598897	0	0	b	LinJ22 V3.0680	3'a2rel-related protein (uTPS0)	+	4.0 ± 0.4
Lin267D9	2.06	1.0 ± 0.2	0.010	GS598898	9e-111	0	b	LinJ16 V3.0590	Carbamoyl-phosphate synthetase, putative (uTPS0)	+	2.9 ± 0.4
								LinJ16 V3.0600	Histone H3, putative	-	1.3 ± 0.2
Lin274G6	5.77	2.5 ± 0.2	0.003	GS598899	0	0	b	LinJ08 V3.0680	Amastin-like protein (uTPS0)	N.D.	
								LinJ08 V3.0690	Amastin-like protein (uTPS0)	N.D.	
Lin275A8	2.72	1.4 ± 0.2	0.006	GS598900	0	4e-168	b	LinJ08_V3.0720	Amastin-like protein (uTPS0)	N.D.	
Lin276B6	1.76	0.8 ± 0.3	0.041	GS598901	0	0	b	LinJ31_V3.2540	Lipase, putative (uTPS19)	N.D.	
Lin294A11	4.86	2.3 ± 0.1	0.001	GS598902	0	0	b	LinJ08 V3.1320	Amastin-like protein (uTPS0)	N.D.	
Lin295D9	4.40	2.1 ± 0.1	0.000	GS598903	0	0	b	LinJ34 V3.1720	Amastin-like surface protein, putative (uTPS0)	N.D.	
Lin310F2	2.34	1.2 ± 0.5	0.046	GS598904	0	0	b	LinJ23 V3.1220	Hydrophilic surface protein (HASPB) (uTPS0)	N.D.	
cLinA2	6.45	2.7 ± 0.1	0.000	S69693	-	-	-		L. infantum A2 gene - DNA microarray control spot		
cLdoA2	2.51	1.3 ± 0.3	0.021	-	-	-	-	-	L. donovani A2 gene – DNA microarray control spot		

1	Table 2. Down-regulated genes after 37 °C/pH4.5 treatment (day 4) in L. infantum. This table contains clones that map against down-regulated genes
2	(not hypothetical or unknown) with the combined effect of temperature increase and pH decrease (TPS). The features described are: clone number; F;
3	base-two logarithmic scale F and SD values; p; GenBank GSS accession numbers; e-values; Def. according to mapping outcomes a, b or c (see brief
4	explanation in the text); Id.; annotated gene function (codes for additional figure 5, additional file 5); qRT-PCR. When a given clone overlaps with more
5	than one annotation, stage-specific regulation is only demonstrated if the qRT-PCR result is positive (+). Genes in bold are also down-regulated under TS.

Clone	F	$Log_2F \neq SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function (GO terms in additional Fig. 5.	6	RT-PCR
		20821 2 02	P	GSS	Fw	Rv	- 191		additional file 5)	+/-	F±SD
Lin1G8	-1.80	-0.8 ± 0.1	0.009	GS598905	5e-35	8e-31	b	LinJ22_V3.1340	Serine/threonine protein phosphatase, putative (dTPS6)	N.D.	
Lin4F4	-2.27	-1.2 ± 0.3	0.016	GS598906	0	0	а	LinJ31_V3.0430	Cysteine peptidase, Clan CA, family C2, putative (dTPS0)	+	-3.3 ± 0.1
Lin9B9	-1.71	-0.8 ± 0.2	0.015	GS598907	5e-26	0	а	LinJ36 V3.1010	Dynein heavy chain, putative (dTPS0)	N.D.	
Lin15D6	-2.05	-1.0 ± 0.2	0.042	GS598908	0	0	а	LinJ31_V3.0610	Amino acid transporter aATP11, putative (dTPS0)	N.D.	
Lin22B1	-2.03	-1.0 ± 0.2	0.016	GS598909	0	0	а	LinJ23_V3.1390	Hypothetical protein, conserved	N.D.	
								LinJ23_V3.1400	Coronin, putative (dTPS0)	+	-4.9 ± 0.7
Lin21H10	-1.90	-0.9 ± 0.1	0.001	GS598910	0	0	b	LinJ26_V3.1670	Sphingolipid delta-4 desaturase, putative (dTPS22)	N.D.	
Lin24E10	-1.80	-0.8 ± 0.3	0.038	GS598911	0	0	b	LinJ22_V3.1310	I/6 autoantigen-like protein (dTPS0)	+	-6.7 ± 0.9
								LinJ22_V3.1320	Hypothetical protein, conserved	N.D.	
Lin27B2	-1.80	-0.8 ± 0.3	0.034	GS598912	0	-	с	LinJ35_V3.1230	Short chain dehydrogenase, putative (dTPS1, dTPS7)	+	-3.2 ± 0.7
Lin28C5	-1.81	-0.9 ± 0.1	0.005	GS598913	0	2e-154	b	LinJ26_V3.1670	Sphingolipid delta-4 desaturase, putative (dTPS22)	N.D.	
Lin31H9	-1.94	-1.0 ± 0.1	0.006	GS598914	0	0	b	LinJ26_V3.0980	Hypothetical protein, conserved	N.D.	
								LinJ26_V3.0990	Hypothetical protein	N.D.	
								LinJ26_V3.1000	Dynein heavy chain, putative (dTPS0)	+	-6.2 ± 0.8
Lin36A9	-2.15	-1.1 ± 0.2	0.009	GS598915	0	0	b	LinJ26_V3.0980	Hypothetical protein, conserved	N.D.	
								LinJ26_V3.0990	Hypothetical protein	N.D.	
								LinJ26_V3.1000	Dynein heavy chain, putative (dTPS0)	+	-6.2 ± 0.8
Lin40G12	-1.92	-0.9 ± 0.2	0.013	GS598916	2e-161	0	b	LinJ23_V3.1550	Hypothetical protein, unknown function	N.D.	
								LinJ23_V3.1560	Lathosterol oxidase-like protein (dTPS28, dTPS30)	+	-14.3 ± 1.7
Lin47D8	-4.00	-2.0 ± 0.5	0.023	GS598917	0	0	а	LinJ06_V3.1330	Coproporphyrinogen III oxidase, putative (dTPS33)	+	-5.8 ± 0.1
								LinJ06_V3.1340	Protoporphyrinogen oxidase-like protein (dTPS13, dTPS32)	+	-2.2 ± 0.4
Lin49B7	-4.38	-2.1 ± 0.0	0.000	GS598918	0	4e-64	а	LinJ34_V3.4160	Phosphatidylinositol-3-kinase (tor2)-like protein (dTPS0)	N.D.	
Lin50H7	-2.32	-1.2 ± 0.1	0.005	GS598919	7e-164	0	b	LinJ28_V3.2380	2,3-bisphosphoglycerate-independent phosphoglycerate mutase-like protein (dTPS9, dTPS35)	+	-3.4 ± 0.3
								LinJ28_V3.2390	Cyclin dependent kinase-binding protein, putative (dTPS0)	+	-127.4 ± 7.4
Lin60B1	-3.84	-1.9 ± 0.1	0.001	GS598920	0	0	с	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative (dTPS4, dTPS29)	+	-4.6 ± 0.4
								LinJ36_V3.7040	Hypothetical protein, conserved	N.D.	
Lin60E5	-1.80	-0.8 ± 0.3	0.035	GS598921	0	0	b	LinJ26_V3.0970	Hypothetical protein, conserved/HPB (dTPS5, dTPS16)	N.D.	
Lin63F3	-2.95	-1.6 ± 0.4	0.018	GS598922	0	0	b	LinJ36_V3.6550	Glucose transporter lmgt2, putative (dTPS47)	+	-8.1 ± 1.1
								LinJ36_V3.6560	Glucose transporter, putative (dTPS47)	+	-6.3 ± 1.4
Lin66F10	-2.18	-1.1 ± 0.0	0.000	GS598923	0	0	b	LinJ36_V3.6550	Glucose transporter lmgt2, putative (dTPS47)	+	-8.1 ± 1.1
								LinJ36_V3.6560	Glucose transporter, putative (dTPS47)	+	-6.3 ± 1.4
Lin80B3	-2.06	-1.0 ± 0.3	0.024	GS598924	0	0	b	LinJ28_V3.3250	Glucose-6-phosphate-N-acetyltransferase, putative (dTPS46)	N.D.	
Lin82C6	-1.74	-0.8 ± 0.3	0.038	GS598925	0	-	с	LinJ31_V3.0440	Cysteine peptidase, Clan CA, family C2, putative (dTPS0)	+	-3.3 ± 0.1
Lin84E8	-2.26	-1.2 ± 0.2	0.007	GS598926	0	0	а	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative (dTPS4, dTPS29)	+	-4.6 ± 0.4
								LinJ31_V3.2380	3'-nucleotidase/nuclease precursor, putative (dTPS4, dTPS29)	+	-2.7 ± 0.6
Lin86H3	-2.17	-1.1 ± 0.1	0.004	GS598927	0	8e-130	b	LinJ31_V3.0950	Sodium stibogluconate-resistance protein, putative (dTPS)	N.D.	
Lin89F9	-2.93	-1.6 ± 0.4	0.026	GS598928	0	0	b	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative (dTPS4, dTPS29)	+	-4.6 ± 0.4

								LinJ31_V3.2380	3'nucleotidase/nuclease precursor, putative (dTPS4, dTPS29)	+	-2.7 ± 0.6
								Lin131 V3 2390	Helicase-like protein	ND	
Lin92D7	-2.27	-12 ± 02	0.005	GS598929	0	0	b	Lin.I31 V3.2370	3'-nucleotidase/nuclease, putative (dTPS4, dTPS29)	+	-4.6 ± 0.4
		112 - 012			-		-	LinJ31_V3.2380	3'-nucleotidase/nuclease precursor, putative (dTPS4, dTPS29)	+	-2.7 ± 0.6
								LinJ31 V3.2390	Helicase-like protein	N.D.	
Lin92G9	-2.29	-1.2 ± 0.1	0.004	GS598930	0	0	а	LinJ06_V3.1320	Pteridine transporter, putative (dTPS0)	+	-2.1 ± 0.3
								LinJ06 V3.1330	Coproporphyrinogen III oxidase, putative (dTPS33)	+	-5.8 ± 0.1
Lin97D1	-11.57	-35 ± 02	0.001	GS598931	0	0	а	LinJ06 V3.1320	Pteridine transporter, putative (dTPS0)	+	-2.1 ± 0.3
Lin97E6	-1.80	-0.8 ± 0.2	0.029	G\$598932	õ	0	h	Lin I26 V3 0460	Hypothetical protein conserved	ND	2.1 = 0.5
Lin08C7	2.12	-0.0 ± 0.5	0.044	G\$508022	0	0	b	Lin 121 V2 2270	3' nucleotidese/nucleose nutative (dTPS4_dTPS20)	I.D.	16 ± 0.4
Liiffeer	-2.12	-1.1±0.5	0.044	03576755	0	0	U	LinJ31_V3.2380	3'nucleotidase/nuclease precursor, putative (dTPS4,	+	-4.0 ± 0.4 -2.7 ± 0.6
								L - 121 V2 2200	d1PS29)	ND	
L:-09E0	2.42	12.02	0.016	CE500024	2. 100	1. 101	1.	LIIJ 51_V 5.2590	Menicalse-like protein	N.D.	
Lin98F9	-2.43	-1.3 ± 0.3	0.016	GS598934	2e-190	1e-101	D	Linj 32_V 3.3120	putative (dTPS8, dTPS38, dTPS48)	N.D.	
Lin98G10	-2.13	-1.1 ± 0.2	0.015	G\$598935	0	0	ь	LinJ30_V3.2770	Hypothetical protein, conserved	N.D.	
								LinJ30_V3.2780	Superoxide dismutase, putative (dTPS0)	+	-3.7 ± 0.1
Lin101B5	-2.62	-1.4 ± 0.3	0.011	GS598936	0	0	b	LinJ09_V3.0650	Serine peptidase family S51, peptidase E, putative (dTPS19)	N.D.	
Lin105A3	-2.22	-1.1 ± 0.1	0.005	GS598937	0	0	b	LinJ36_V3.1320	Fructose-1,6-bisphosphate aldolase (dTPS37)	N.D.	
Lin105B9	-6.13	-2.6 ± 0.2	0.001	GS598938	0	0	а	LinJ06_V3.1320	Pteridine transporter, putative (dTPS0)	+	-2.1 ± 0.3
Lin109F4	-3.16	-1.7 ± 0.5	0.024	GS598939	0	0	а	LinJ06_V3.1330	Coproporphyrinogen III oxidase, putative (dTPS33)	+	-5.8 ± 0.1
								LinJ06_V3.1340	Protoporphyrinogen oxidase-like protein (dTPS13, dTPS32)	+	-2.2 ± 0.4
Lin111C2	-3.14	$\textbf{-1.7}\pm0.1$	0.001	GS598940	0	0	b	LinJ09_V3.0650	Serine peptidase family S51, peptidase E, putative (dTPS19)	N.D.	
Lin111F3	-2.09	-1.1 ± 0.4	0.035	GS598941	0	0	а	LinJ31 V3.2210	Prostaglandin $F^2\alpha$ synthetase (dTPS31)	N.D.	
Lin125H5	-1.95	-1.0 ± 0.2	0.022	GS598942	0	0	b	Lin136_V3 1590	Serine/threonine protein kinase, putative (dTPS43)	ND	
Lin144F11	-2.28	-1.2 ± 0.2	0.004	G\$598943	Ő	0	a	Lin I31 V3 2210	Prostaglandin E2 (conthetase (dTPS31)	N D	
Lin144H10	-1.85	-1.2 ± 0.1	0.007	G\$598944	0	Ő	- u - a	LinJ31_V3.12210	Cyclophilin, putative (dTPS0)	та. 	4.1 ± 0.6
1.111441110	-1.05	-0.9 ± 0.1	0.007	03378744	0	0	a	LinJ10 V2 1210	I/6 autoantigan like protein (dTPS0)	ND	-4.1 ± 0.0
L == 1.44TT11	2.22	1.2 ± 0.1	0.002	C 9509045	0	0	b	Linj19_V3.1310	Mamhanna haund acid nhaanhataan maauraan (dTDS 42)	N.D.	
LIII1440111	-2.52	-1.2 ± 0.1	0.005	GS398943	0	0	5	LIIJ 50_V 5.2700	G L L L L C C C C C C C C C C C C C C C	N.D.	
LIIII JOE4	-1.80	-0.9 ± 0.4	0.048	03398940	0	0		Linj15_V5.1000	Caimodulin, putative (d1PS16)	N.D.	
Lin153D1	-1.80	-0.8 ± 0.1	0.002	GS598947	0	0	Б	LinJ2/_V3.0530	Amino acid permease, putative (d1PS26)	N.D.	
Lin155H12	-2.52	-1.3 ± 0.4	0.024	GS598948	0	0	а	LinJ36_V3.0250	Peptidyl-prolyl cis-trans isomerase, putative (dTPS18, dTPS25)	N.D.	
Lin157D8	-2.78	-1.5 ± 0.2	0.005	GS598949	0	0	b	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative (dTPS4, dTPS29)	+	-4.6 ± 0.4
Lin158A10	-2.40	-1.3 ± 0.2	0.008	GS598950	0	0	b	LinJ23_V3.0870	Hypothetical protein, conserved	N.D.	
Lin177E10	-1.72	-0.8 ± 0.3	0.042	GS598951	7e-167	0	b	LinJ16_V3.0600	Histone H3, putative (dTPS8)	N.D.	
								LinJ16_V3.0610	Histone H3, putative (dTPS8)	N.D.	
Lin182F2	-2.18	-1.1 ± 0.3	0.022	GS598952	0	0	b	LinJ25_V3.0740	Eukaryotic initiation factor 5a, putative (dTPS15)	N.D.	
								LinJ25_V3.0750	Eukaryotic initiation factor 5a, putative (dTPS15)	N.D.	
Lin187C10	-4.02	-2.0 ± 0.3	0.003	GS598953	0	0	b	LinJ06_V3.1320	Pteridine transporter, putative (dTPS0)	+	-2.1 ± 0.3
Lin193E6	-2.00	-1.0 ± 0.4	0.040	GS598954	0	0	b	LinJ23_V3.1230	SHERP (dTPS0)	N.D.	
Lin194A4	-1.70	-0.8 ± 0.2	0.016	GS598955	0	1e-11	b	LinJ22_V3.1270	Aquaporin, putative (dTPS3)	N.D.	
Lin197D2	-3.32	$\textbf{-1.7}\pm0.3$	0.007	GS598956	0	0	b	LinJ07_V3.0150	Acyl-CoA dehydrogenase, mitochondrial precursor, putative (dTPS21, dTPS27)	+	-2.4 ± 0.2
								LinJ07 V3.0160	Hypothetical protein, conserved	N.D.	
								LinJ07_V3.0170	Maoc family protein	-	-1.1 ± 0.3
Lin206C10	-1.99	-1.0 ± 0.3	0.032	GS598957	6e-69	1e-82	b	LinJ07 V.0930	N-acetylglucosamine phosphate mutase, putative	N.D.	
		1.0 - 0.0					-	LinJ07 V3.0940	Cytochrome b5-like protein (dTPS0)	+	-1.7 ± 0.0
Lin206H7	-1.90	$\textbf{-0.9}\pm0.2$	0.015	GS598958	0	0	b	LinJ31_V3.1240	Vacuolar-type proton translocating pyrophosphatase 1, putative (dTPS0)	+	-3.4 ± 0.7
								LinJ31 V3 1250	Hypothetical protein, unknown function	ND	
Lin208F2	-2.10	$\textbf{-1.1}\pm0.3$	0.026	GS598959	2e-86	3e-64	b	LinJ31_V3.1240	Vacuolar-type proton-translocating pyrophosphatase 1, putative (dTPS0)	+	-3.4 ± 0.7
								LinJ31_V3.1250	Hypothetical protein, unknown function	N.D.	
Lin208H10	-2.68	-1.4 ± 0.4	0.010	GS598960	0	0	a	LinJ18_V3.1070	Cysteine peptidase, Clan CA, family C2, putative (dTPS0)	+	-3.3 ± 0.1

								LinJ18_V3.1080	Vacuolar protein sorting complex subunit, putative (dTPS 0)	-	-1.2 ± 0.3
Lin219A10	-1.89	-0.9 ± 0.1	0.004	GS598961	0	0	b	LinJ19_V3.0710	Glycosomal malate dehydrogenase (dTPS1, dTPS30)	+	-2.3 ± 0.0
								LinJ19_V3.0720	Hypothetical protein, conserved	N.D.	
Lin228D4	-1.86	-0.9 ± 0.2	0.014	GS598962	0	0	а	LinJ19_V3.0080	Hypothetical protein, conserved	N.D.	
								LinJ19_V3.0090	Fibrillarin, putative (dTPS0)	+	-4.1 ± 0.8
Lin229E6	-9.63	-3.3 ± 0.2	0.002	GS598963	0	0	а	LinJ06_V3.1320	Pteridine transporter, putative (dTPS0)	+	-2.1 ± 0.3
								LinJ06_V3.1330	Coproporphyrinogen III oxidase, putative (dTPS33)	+	-5.8 ± 0.1
Lin231G4	-1.73	$\textbf{-0.8}\pm0.2$	0.013	GS598964	0	0	b	LinJ31_V3.1240	Vacuolar-type proton translocating pyrophosphatase 1, putative (dTPS0)	+	
								LinJ31_V3.1250	Hypothetical protein, unknown function	N.D.	
Lin234C9	-1.77	-0.8 ± 0.3	0.038	GS598965	0	0	b	LinJ20_V3.1220	Cysteine peptidase, Clan CA, family C2, putative (dTPS41)	+	-3.3 ± 0.1
Lin242E2	-2.85	-1.5 ± 0.4	0.025	GS598966	0	0	b	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative (dTPS4, dTPS29)	+	-4.6 ± 0.4
								LinJ31_V3.2380	3'-nucleotidase/nuclease precursor, putative (dTPS4, dTPS29)	+	-2.7 ± 0.6
Lin252B11	-2.12	-1.1 ± 0.3	0.028	GS598967	0	0	b	LinJ17_V3.0170	Elongation factor 1α (dTPS14, dTPS39, dTPS44)	N.D.	
								LinJ17_V3.0180	Elongation factor 1 a (dTPS14, dTPS39, dTPS44)	N.D.	
								LinJ17_V3.0190	Elongation factor 1α (dTPS14, dTPS39, dTPS44)	N.D.	
								LinJ17_V3.0200	Elongation factor 1α (dTPS14, dTPS39, dTPS44)	N.D.	
Lin265E2	-1.89	-0.9 ± 0.3	0.042	GS598968	1e-165	0	b	LinJ29_V3.1880	Paraflagellar rod protein 1D, putative (dTPS0)	N.D.	
Lin270H10	-1.96	-1.0 ± 0.2	0.010	GS598969	0	0	b	LinJ31_V3.1130	N-acyl-L-amino acid amidohydrolase, putative	N.D.	
								LinJ31_V3.1140	N-acyl-L-amino acid amidohydrolase, putative	N.D.	
								LinJ31_V3.1150	Monoglyceride lipase, putative (dTPS0)	+	-1.9 ± 0.0
Lin271C2	-1.9	$\textbf{-0.9}\pm0.3$	0.043	GS598970	0	0	b	LinJ28_V3.0090	Adenylate cyclase-like protein (dTPS9, dTPS12, dTPS23, dTPS24)	+	-2.3 ± 0.0
								LinJ28_V3.0100	Hypothetical protein, conserved	N.D.	
Lin285H1	-2.12	-1.1 ± 0.2	0.012	GS598971	0	0	b	LinJ36_V3.6550	Glucose transporter lmgt2, putative (dTPS47)	+	-8.1 ± 1.1
								LinJ36_V3.6560	Glucose transporter, putative (dTPS47)	+	-6.3 ± 1.4
Lin294G4	-2.00	-1.0 ± 0.2	0.013	GS598972	0	0	b	LinJ31_V3.1640	Dipthine synthase, putative	-	
								LinJ31_V3.1650	Hypothetical protein, conserved	N.D.	
								LinJ31_V3.1660	Putative 3-ketoacyl-CoA thiolase-like protein (dTPS0)	+	-3.6 ± 0.5

1

Table 3. Up-regulated genes after temperature increase up to 37 °C (day 4) in L. infantum. This table describes clones that contain up-regulated genes under the sole influence of temperature increase (TS) that do not map with hypothetical or unknown genes. The features described are: clone number; fold change (F); base-two logarithmic scale F and standard deviation (SD) values; p-value (p); GenBank GSS accession numbers; e-values of forward (Fw) and reverse (Rv) end mappings against BLAST; clone definition (Def.) according to mapping outcomes a, b or c (see brief explanation in the text); GeneDB 6 identifiers (Id.), the corresponding annotated gene functions; qRT-PCR results. When a given clone overlaps with more than one annotation, stage-specific 7 8 regulation is only demonstrated if the qRT-PCR result is positive (+). Genes in bold are also up-regulated under TPS.

Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	q	RT-PCR
				GSS	Fw	Rv				+/-	$F \pm SD$
Lin11D7	2.37	1.2 ± 0.1	0.004	GS598854	-	0	с	LinJ31 V3.0460	Amastin, putative	+	4.7 ± 1.2
Lin17C6	1.92	0.9 ± 0.1	0.006	GS598973	0	0	b	LinJ36_V3.0640	Delta-8 fatty acid desaturase-like protein	N.D.	
Lin19D1	1.88	0.9 ± 0.3	0.028	GS598855	3e-18	0	b	LinJ08 V3.0680	Amastin-like protein	N.D.	
								LinJ08_V3.0690	Amastin-like protein	N.D.	
Lin33G2	2.29	1.2 ± 0.8	0.046	GS598857	6e-118	6e-118	b	LinJ34_V3.4370	Amastin-like surface protein, putative	N.D.	
Lin70F5	2.03	1.0 ± 0.4	0.045	GS598974	0	0	b	LinJ36_V3.7290	Delta-8 fatty acid desaturase-like protein	N.D.	
Lin77H8	2.89	1.5 ± 0.4	0.022	GS598975	3e-175	0	b	LinJ08_V3.0690	Amastin-like protein	N.D.	
Lin86H7	2.03	1.0 ± 0.2	0.005	GS598867	0	2e-101	b	LinJ08_V3.0700	Amastin-like protein	+	6.8 ± 0.9
Lin87H2	1.89	0.9 ± 0.1	0.007	GS598868	3e-15	3e-33	b	LinJ08_V3.0690	Amastin-like protein	N.D.	
Lin89D9	1.70	0.8 ± 0.3	0.040	GS598869	0	0	b	LinJ21_V3.0770	ATP-binding cassette sub-family E, putative	N.D.	
Lin90B6	1.95	1.0 ± 0.3	0.032	GS598976	0	0	а	LinJ30_V3.0640	Ribosome biogenesis regulatoy protein (RRS1), putative	+	1.9 ± 0.2
								LinJ30 V3.0650	Histidyl-tRNA synthetase, putative	N.D.	
								LinJ30_V3.0660	Hypothetical protein, conserved	N.D.	
Lin91B12	1.75	0.8 ± 0.1	0.003	GS598872	0	0	b	LinJ34_V3.2660	Amastin-like surface protein	N.D.	
Lin100B2	1.84	0.9 ± 0.3	0.034	GS598977	0	9e-27	b	LinJ27_V3.2500	Glycosomal phosphoenolpyruvate carboxykinase	N.D.	
Lin104B11	1.77	0.8 ± 0.2	0.022	GS598978	0	0	b	LinJ04_V3.0570	Spermidine synthase 1, putative	N.D.	
Lin104C10	1.82	0.9 ± 0.2	0.015	GS598979	0	0	b	LinJ08 V3.1320	Amastin-like protein	N.D.	
Lin106A1	2.43	1.3 ± 0.0	0.000	GS598980	0	0	с	LinJ06 V3.1200	Hypothetical protein, conserved	N.D.	
								LinJ31_V3.0590	Amino acid transporter aATP11, putative	+	2.4 ± 0.3
Lin109B3	1.89	0.9 ± 0.2	0.024	GS598981	0	0	b	LinJ21_V3.2130	Centromere/microtubule binding protein (cbf5), putative	N.D.	
Lin113C3	2.99	1.6 ± 0.3	0.010	GS598876	3e-74	0	а	LinJ14 V3.1440	Pteridine transporter	+	2.5 ± 0.3
								LinJ14 V3.1450	Myo-inositol-1-phosphate synthase	+	4.2 ± 0.1
Lin137A10	1.98	1.0 ± 0.3	0.039	GS598982	0	0	b	LinJ24 V3.1230	Hypothetical protein, conserved	N.D.	
								LinJ24 V3.1240	Translation factor SUI1, putative	+	1.8 ± 0.1
Lin146E3	2.52	1.3 ± 0.3	0.043	GS598882	0	0	b	LinJ31_V3.0590	Amino acid transporter aATP11, putative	+	2.4 ± 0.3
Lin162E6	1.92	0.9 ± 0.3	0.044	GS598983	0	0	а	LinJ14_V3.1430	Hypothetical protein, conserved	N.D.	
								LinJ14_V3.1440	Pteridine transporter	+	2.5 ± 0.3
								LinJ14_V3.1450	Myo-inositol-1-phosphate synthase	+	4.2 ± 0.1
Lin168A2	1.87	0.9 ± 0.2	0.017	GS598984	1e-78	0	b	LinJ22_V3.0670	Hypothetical protein	N.D.	
								LinJ22_V3.0680	3'a2rel-related protein	+	3.5 ± 0.6
Lin175D6	2.20	1.2 ± 0.4	0.023	GS598985	0	0	b	LinJ31_V3.0460	Amastin, putative	+	4.7 ± 1.2
Lin185A10	2.04	1.0 ± 0.3	0.036	GS598986	0	0	а	LinJ28_V3.0620	MAP kinase, putative	N.D.	
Lin185D7	1.75	0.0 ± 0.2	0.020	GS598987	2e-161	0	b	LinJ17_V3.0200	Elongation factor 1-alpha	N.D.	
Lin188H2	3.20	1.7 ± 0.6	0.042	GS598988	0	0	с	LinJ08_V3.0680	Amastin-like protein	N.D.	
Lin194E2	1.79	0.8 ± 0.2	0.025	GS598989	-	0	с	LinJ08 V3.0710	Amastin-like protein	+	6.8 ± 0.9
Lin206B6	2.08	1.0 ± 0.3	0.035	GS598990	7e-19	0	b	LinJ22_V3.0680	3'a2rel-related protein	+	3.5 ± 0.6
Lin207A1	1.84	0.9 ± 0.2	0.015	GS598991	0	0	b	LinJ17 V3.0170	Elongation factor 1-alpha	N.D.	
								LinJ17_V3.0180	Elongation factor 1-alpha	N.D.	
Lin210C4	1.71	1.8 ± 0.1	0.030	GS598893	0	0	b	LinJ08_V3.0690	Amastin-like protein	N.D.	
Lin224G2	1.70	0.8 ± 0.2	0.014	GS598895	0	0	b	LinJ08 V3.0720	Amastin-like protein	N.D.	
Lin235G8	2.20	1.1 ± 0.2	0.002	GS598896	0	0	b	LinJ08 V3.1320	Amastin-like protein	N.D.	
Lin245E2	2.05	1.0 ± 0.3	0.032	GS598897	0	0	b	LinJ22_V3.0680	3'a2rel-related protein	+	3.5 ± 0.6
Lin274G6	1.84	0.9 ± 0.2	0.012	GS598992	0	0	b	LinJ08 V3.0680	Amastin-like protein	N.D.	
								LinJ08_V3.0690	Amastin-like protein	N.D.	
Lin275A8	2.10	1.1 ± 0.1	0.003	GS598900	0	4e-168	b	LinJ08_V3.0720	Amastin-like protein	N.D.	
Lin282B6	2.08	1.0 ± 0.4	0.042	GS598993	0	0	b	LinJ03_V3.0960	Elongation initiation factor 2 alpha subunit, putative	N.D.	
Lin294A11	1.72	0.8 ± 0.1	0.001	GS598902	0	0	b	LinJ08_V3.1320	Amastin-like protein	N.D.	
Lin295D9	2.99	1.6 ± 0.4	0.020	GS598903	0	0	b	LinJ34_V3.1720	Amastin-like surface protein, putative	N.D.	

Table 4. Down-regulated genes after temperature increase up to 37 °C (day 4) in *L. infantum*. This table contains clones that map against down-2regulated genes (not hypothetical or unknown) with the single effect of temperature increase (TS). The features described are: clone number; F; base-two3logarithmic scale F and SD values; p; GenBank GSS accession numbers; e-values; Def. according to mapping outcomes a, b or c (see brief explanation in4the text); Id.; annotated gene function; qRT-PCR. When a given clone overlaps with more than one annotation, stage-specific regulation is only5demonstrated if the qRT-PCR result is positive (+). Genes in bold are also down-regulated under TPS.

Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	q	RT-PCR
		-		GSS	Fw	Rv				+/-	$F \pm SD$
Lin9E5	-1.77	-0.8 ± 0.3	0.033	GS598994	4e-131	0	b	LinJ35_V3.1150	Oligosaccharyl transferase-like protein	N.D.	
Lin40G12	-1.97	-1.0 ± 0.2	0.008	GS598916	2e-161	0	b	LinJ23_V3.1550	Hypothetical protein, unknown function	N.D.	
								LinJ23_V3.1560	Lathosterol oxidase-like protein	+	5.0 ± 0.7
Lin49B7	-4.38	-2.1 ± 0.0	0.000	GS598995	0	4e-64	a	LinJ34_V3.4160	Phosphatidylinositol-3-kinase (tor2)-like protein	N.D.	
Lin 60B1	-2.41	-1.3 ± 0.4	0.025	GS598996	0	4e-162	с	LinJ36_V3.7040	Hypothetical protein, conserved	N.D.	
								LinJ31_V3.2370	3'-nucleotidase/nuclease, putative	+	7.2 ± 1.0
Lin63F3	-2.23	-1.2 ± 0.4	0.043	GS598997	0	0	а	LinJ36_V3.6550	Glucose transporter lmgt2, putative	+	6.1 ± 0.8
								LinJ36_V3.6560	Glucose transporter, putative	+	6.1 ± 0.8
Lin84E8	-2.26	-1.2 ± 0.2	0.007	GS598998	0	0	a	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative	+	7.2 ± 1.0
								LinJ31_V3.2380	3'-nucleotidase/nuclease precursor, putative	+	7.2 ± 1.0
Lin85H1	-1.74	-0.8 ± 0.2	0.025	GS598999	1e-57	1e-20	b	LinJ30_V3.3440	CAS/CSE importin domain protein, putative	N.D.	
Lin93H3	-2.26	-1.2 ± 04	0.030	GS599000	0	0	а	LinJ31_V3.2370	3'-nucleotidase/nuclease, putative	+	7.2 ± 1.0
								LinJ31_V3.2380	3'-nucleotidase/nuclease precursor, putative	+	7.2 ± 1.0
Lin97D1	-3.41	-1.7 ± 0.3	0.001	GS598931	0	0	а	LinJ06_V3.1320	Pteridine transporter, putative	+	2.3 ± 0.3
Lin98G10	-2.13	-1.1 ± 0.2	0.015	GS599001	0	0	b	LinJ30_V3.2770	Hypothetical protein, conserved	N.D.	
								LinJ30_V3.2780	Superoxide dismutase, putative	+	3.7 ± 0.0
Lin111C2	-2.74	-1.5 ± 0.1	0.002	GS599002	0	0	а	LinJ09_V3.0650	Serine peptidase family S51, peptidase E, putative	N.D.	
Lin150E4	-1.86	-0.9 ± 0.3	0.036	GS599003	0	8e-22	b	LinJ13_V3.1060	Calmodulin, putative	N.D.	
Lin155H12	-2.34	-1.2 ± 0.3	0.018	GS599004	0	0	а	LinJ36_V3.0250	Peptidyl-prolyl cis-trans isomerase, putative	N.D.	
Lin157D8	-2.27	-1.2 ± 0.1	0.002	GS599005	0	-	с	LinJ31_V3.2380	3'-nucleotidase/nuclease precursor, putative	+	7.2 ± 1.0
Lin179B4	-1.76	-0.8 ± 0.1	0.004	GS599006	0	0	b	LinJ07_V3.0030	Hypothetical protein, conserved	N.D.	
								LinJ07_V3.0040	Hypothetical protein, conserved	N.D.	
								LinJ07_V3.0050	Hypothetical protein, conserved	N.D.	
								LinJ0/_V3.0060	Alpha-adaptin-like protein	+	5.3 ± 0.4
Lin182F2	-2.23	-1.2 ± 0.1	0.008	G\$598952	0	0	в	LinJ25_V3.0740	Eukaryotic initiation factor 5a, putative	N.D.	
L:=197C10	4 72	22104	0.012	C 5509052	0	0	L	LinJ25_V3.0750	Eukaryotic initiation factor 5a, putative	N.D.	22102
Lin204A11	-4.72	-2.2 ± 0.4	0.015	G\$590907	0	10,165	0	LIIIJ00_V3.1320	Fieriune transporter, putative	+ ND	2.3 ± 0.3
Lin210D7	-1.70	-0.8 ± 0.3	0.038	CS500009	-	0	c	Lin 122 V2 2600	DEAD/DEAL have believed any sol, peptidase E, putative	N.D.	22100
LIII210B/	-1./4	-0.8 ± 0.2	0.010	03399008	0	0	a	Linj32_V3.3090	Usuathatical protain concerned		5.5 ± 0.8
Lin220E6	-3 30	1.7 ± 0.2	0.005	G\$508063	0	0		Lin 106 V3 1320	Pteridine transporter putative	N.D.	22 ± 02
LIII227E0	-5.50	-1.7 ± 0.3	0.005	03578705	0	0	a	Lin 106 V3 1330	Conconorphyringgen III gyldase, putative	+	2.3 ± 0.3
Lin242E2	-2 37	-12 ± 04	0.039	GS599009	1e-137	0	а	Lin I31 V3 2370	3'-nucleotidase/nuclease nutative	+	72 ± 10
	2.57	1.2 ± 0.4	0.009	36677607		~		LinJ31 V3.2380	3'-nucleotidase/nuclease precursor, putative	+	7.2 ± 1.0 7.2 ± 1.0
Lin255E12	-2.54	-13 ± 03	0.011	GS599010	0	0	b	LinJ28 V3.0210	Histone H2B variant	N.D.	<u>2</u> ± 1.0

Table 5. Differentially regulated genes after pH4.5 treatment (day 4) in *L. infantum*. This table contains clones that map against up- and down-regulated genes (not hypothetical or unknown) under pH decrease (PS). The features described are: clone number; F; base-two logarithmic scale F and SD values; *p*; GenBank GSS accession numbers; e-values; Def. according to mapping outcomes *a*, *b* or *c* (see brief explanation in the text); Id.; annotated gene function; qRT-PCR. When a given clone overlaps with more than one annotation, stage-specific regulation is only demonstrated if the qRT-PCR result is positive (+).Genes in bold are also up-regulated under TPS.

Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	q	RT-PCR
		õ	·	GSS	Fw	Rv	÷			+/-	$F \pm SD$
Lin9E8	2.03	1.0 ± 0.1	0.003	GS599011	0	0	а	LinJ24_V3.0020	Clathin coat assembly protein. putative	+	7.6 ± 0.4
								LinJ24_V3.0030	Hypothetical protein. conserved	N.D.	
								LinJ24_V3.0040	60S ribosomal protein L17. putative	N.D.	
Lin10H12	2.26	1.2 ± 0.1	0.001	GS599012	0	0	а	LinJ31_V3.0860	Triacylglycerol lipase-like protein	N.D.	
								LinJ31_V3.0870	Lipase precursor-like protein	N.D.	
Lin21H10	2.46	1.3 ± 0.1	0.001	GS598910	0	0	b	LinJ26_v3.1670	Sphingolipid delta-4 desaturase. putative	N.D.	
Lin33G5	1.76	0.8 ± 0.0	0.000	GS599013				LinJ27_V3.1300	60S acidic ribosomal protein. putative	N.D.	
Lin37C10	2.74	1.5 ± 0.2	0.006	GS599014	0	0	b	LinJ33_V3.0280	RNA binding protein rggm. putative	N.D.	
Lin58C1	2.32	1.2 ± 0.2	0.001	GS599015	0	0	b	LinJ22_V3.1360	Hypothetical protein. unknown fuction	N.D.	
								LinJ22_V3.1370	60S ribosomal protein L14	N.D.	
								LinJ22_V3.1380	Dephospho-CoA kinase. Putative	+	-2.9 ± 0.3
Lin63B7	1.83	0.9 ± 0.1	0.002	GS599016	1e-100	1e-103	b	LinJ15_V3.1200	60S acidic ribosomal protein P2	N.D.	
Lin66A8	2.28	1.2 ± 0.1	0.006	GS599017	0	0	а	LinJ22_V3.0470	Hypothetical protein. conserved	N.D.	
								LinJ22_V3.0480	Ubiquitin-conjugating enzyme-like protein	+	-3.1 ± 0.8
Lin80C3	3.15	1.7 ± 0.3	0.004	GS599018	0	0	b	LinJ28_V3.3250	Glucose-6-phosphate N-acetyltransferase	N.D.	
Lin 95F10	2.26	1.2 ± 0.1	0.002	GS599019	0	0	а	LinJ28_V3.2360	Ribosomal protein S29. putative	N.D.	
Lin100F8	2.12	1.1 ± 0.2	0.007	GS599020	0	2e-161	b	LinJ35_V3.3330	60S ribosomal protein L31. putative	N.D.	
								LinJ35_V3.3340	60S ribosomal protein L31. putative	N.D.	
Lin107C12	2.90	1.5 ± 0.2	0.001	GS599021	7e-130	5e-134	а	LinJ11_V3.1180	40S ribosomal protein S15a. putative	N.D.	
Lin122C5	1.93	0.9 ± 0.1	0.005	GS599022	0	0	b	LinJ30_V3.3770	CPSF-domain protein. putative	N.D.	
								LinJ30_V3.3780	60S acidic ribosomal protein P2. putative	N.D.	
								LinJ30_V3.3790	60S acidic ribosomal protein P2. putative	N.D.	
Lin135F6	2.63	1.4 ± 0.3	0.036	GS599023	0	0	b	LinJ29_V3.1920	40S ribosomal protein S15a. putative	N.D.	
								LinJ29_V3.1930	Hypothetical protein. conserved	N.D.	
Lin137A10	2.00	1.0 ± 0.2	0.019	GS599024	0	0	b	LinJ24_V3.1230	Hypothetical protein. conserved	N.D.	
								LinJ24_V3.1240	Translation factor SUI1. putative	+	-5.0 ± 0.6
Lin144F11	1.72	0.8 ± 0.2	0.032	GS599025	0	0	а	LinJ31_V3.2210	Prostaglandin F2α synthetase	N.D.	
Lin161C9	2.54	1.3 ± 0.1	0.003	GS599026	0	1e-177	b	LinJ26_V3.1670	Sphingolipid delta-4 desaturase. putative	N.D.	
Lin162A9	1.97	1.0 ± 0.2	0.024	GS599027	0	0	b	LinJ22_V3.0470	Hypothetical protein. conserved	N.D.	
								LinJ22_V3.0480	Ubiquitin-conjugating enzyme-like protein	+	-3.1 ± 0.8
Lin182F2	3.27	1.7 ± 0.2	0.009	GS599028	0	0	b	LinJ25_V3.0740	Eukaryotic initiation factor 5a. putative	N.D.	
								LinJ25_V3.0750	Eukaryotic initiation factor 5a. putative	N.D.	
Lin200H12	2.54	1.3 ± 0.1	0.005	GS599029	0	0	а	LinJ14_V3.1340	Hypothetical protein. unknown function	N.D.	
								LinJ14_V3.1350	Ubiquitin/ribosomal protein S27a. putative	+	-4.8 ± 0.4
								LinJ14_V3.1360	Hypothetical protein. conserved	N.D.	
Lin218E3	1.82	0.9 ± 0.1	0.001	GS599030	0	0	b	LinJ31_V3.2210	Prostaglandin F2α synthase	N.D.	
Lin247D7	2.41	1.3 ± 0.4	0.018	GS599031	5e-109	0	а	LinJ28_V3.0090	Adenylate cyclase-like protein	+	-3.5 ± 0.6
								LinJ28_V3.0100	Hypothetical protein. conserved	N.D.	
								LinJ28 V3.0110	Proteasome beta 3 subunit, putative	N.D.	

Lin254A4	1.93	0.9 ± 0.2	0.009	GS599032	0	0	b	LinJ04_V3.1250	Actin	N.D.	
Lin254H7	1.73	0.8 ± 0.1	0.004	GS599033	0	0	b	LinJ04_V3.1250	Actin	N.D.	
Lin261F8	2.84	1.5 ± 0.2	0.007	GS599034	0	0	b	LinJ21_V3.1310	40S ribosomal protein S23. putative	N.D.	
Lin266F6	1.79	0.8 ± 0.1	0.009	GS599035	0	0	b	LinJ27_V3.0300	Acyl carrier protein. putative	N.D.	
Lin267B9	1.74	0.8 ± 0.2	0.010	GS599036	0	0	b	LinJ36_V3.0580	Hypothetical protein. conserved	N.D.	
								LinJ36_V3.0590	Ubiquitin-like protein. putative	+	-2.3 ± 0.0
								LinJ36_V3.0600	Cdc2-related kinase	N.D.	
Lin269B5	2.75	1.5 ± 0.2	0.002	GS599037	0	0	b	LinJ29_V3.2970	40S ribosomal protein S19-like protein	N.D.	
Lin282B6	2.44	1.3 ± 0.2	0.009	GS599038	0	0	а	LinJ03_V3.0960	Elongation initiation factor 2a subunit. putative	N.D.	
Lin290G8	1.80	0.8 ± 0.1	0.003	GS599039	0	0	а	LinJ17_V3.1520	Otubain cysteine peptidase. Clan CA. family C65. putative	N.D.	
Lin43G10	-5.36	-2.4 ± 0.3	0.007	GS599040	0	0	с	LinJ28_V3.3060	Heat-shock protein hsp70. putative	+	-2.1 ± 0.2
Lin130C5	-4.71	-2.2 ± 0.3	0.041	GS599041	0	0	b	LinJ36_V3.3170	Exosome complex exonuclease RRP41. putative	N.D.	
								LinJ36_V3.3180	Clathrin coat assembly protein-like protein	N.D.	
								LinJ36_V3.3190	Pre-mRNA branch-site protein p14	+	-4.7 ± 2.3
								LinJ36_V3.3200	Hypothetical protein. conserved	N.D.	
Lin173E11	-7.74	-3.0 ± 0.4	0.002	GS599042	6e-44	3e-147	b	LinJ36_V3.2280	ER-golgi transport protein erv25 precursor. putative	N.D.	
Lin177H3	-5.08	-2.3 ± 0.2	0.001	GS599043	0	4e-60	b	LinJ28_V3.3060	Heat shock protein hsp70. Putative	+	-2.1 ± 0.2
Lin197E1	-2.53	-1.3 ± 0.1	0.007	GS599044	0	0	с	LinJ18_V3.0830	Periodic tryptophan protein 2-like protein	-	1.4 ± 0.4
								LinJ23_V3.1610	Acetyltransferase-like protein	+	-2.1 ± 0.2
Lin228H5	-7.90	-3.0 ± 0.4	0.012	GS599045	7e-196	0	b	LinJ21_V3.0310	Hexokinase. Putative	N.D.	
Lin281H8	-2.01	-1.0 ± 0.1	0.001	GS599046	8e-136	2e-102	b	LinJ35_V3.1580	Metacaspase. Putative	N.D.	
Lihsp70	-4.21	-2.0 ± 0.2	0.004	XM001470292	-	-	-	-	L. infantum hsp70 – DNA microarray control spot	+	-2.1 ± 0.2
Ldohsp70	-4.57	-2.2 ± 0.1	0.028	-	-	-	-	-	L. donovani hsp70 – DNA microarray control spot	N.D.	
Lmahsp70	-3.85	-1.9 ± 0.2	0.017	-	-	-	-	-	L. major hsp70 - DNA microarray control spot	N.D.	

1	ADDITIONAL FILES.
2	
3	Additional file 1.
4	Format: PDF
5	Title: Electropherograms of total RNA samples.
6	Description of data: Additional Fig. 1. 18S, $23S\alpha$ and $23S\beta$ spikes, absence of DNA contamination
7	and RNA degradation.
8	
9	Additional file 2.
10	Format: PDF
11	Title: Scatter plots of normalised and contrasted microarray hybridisation data.
12	Description of data: Additional Fig. 2. Spots that fulfill criteria to be considered as differentially
13	regulated are highlighted.
14	
15	Additional file 3.
16	Format: PDF
17	Title: Differentially regulated hypothetical and unknown genes and unresolved clones.
18	Description of data: Additional tables 1-8. Additional tables 7 and 8 describe clones containing
19	minicircle sequences.
20	
21	Additional file 4.
22	Format: PDF
23	Title: Fold change clusters of differentially regulated genes including clone names.
24	Description of data: Additional Fig. 3. Supplementary information for Fig. 3 identifying the profiles
25	with the clone numbers.
26	
27	Additional file 5
20	Formati DDE

28 Format: PDF

1 Title: DAGs (BLAST2GO output).

2 Description of data: Additional Figs. 4 and 5. GO codes for functions directly annotated on

- differentially regulated genes found in this study. Each GO code is associated to a custom code to find
 annotations on genes in tables 1-5.
- 5

6	Additional	file	6
0	Auununai	m	v

7 Format: PDF

- 8 Title: 3'NT/Nase and GT alignments and oligonucleotides for qRT-PCR.
- 9 Description of data: Additional Fig. 6 (GT and 3'NT/Nase alignments) and Additional table 9
- 10 (oligonucleotides for qRT-PCR).

А В Molecular functions of up-regulated genes Molecular functions of down-regulated genes Phosphorus-oxigen lyase activity Endonuclease activity Cyclase activity ATP binding 1,0 1,2 1,2 1,2 1,2 2 4,0 - Coenzyme binding 1,7 1,2 Oxidoreductase activity on CH-CH group of donors, NAD(P) as acceptor Protein kinase activity Nucleotide binding 2,0 Amine transmembrane transporter activity Translation elongation factor activity Structure-specific DNA binding 3,0 Sugar:hydrogen simporter activity 1,2 Hydrolase activity GTPase activity Nucleoside triphosphatase activity Calcium-dependent cysteine-type endopeptidase activity Calcium inclusion binding DNA binding Oxidoreductase activity on CH-OH group of donors, NAD(P) as acceptor Electron carrier activity 1.6 1,2 Galactosyltransferase activity Protein binding Translation initiation factor activity Transporter activity GTP binding Peptidase activity Coenzyme binding

С **Biological processes of down-regulated genes**

Gluco	neogenesis
Prote	olysis
Regul	ation of translational elongation
Carbo	n utilization
DNAn	epair
Electr	on transport
Porph	yrin biosynthetic process
Nucle	osome assembly
DNAc	atabolic process
Post-t	ranslational protein modification
Cyclic	nucleotide biosynthetic process
Glycol	lisis
Carbo	hydrate transport
Cellul	ar lipid metabolic process
Phosp	horylation
Regula	ation of translational initiation

D Biological processes of up-regulated genes

Electron transport Protein amino acid glycosylation

Glycerolipid metabolic process

Amino acid transport

Regulation of cellular process

Lipid catabolic process

PS	TS	ΤР	S
			LinJ08 V3.0460 Amastin, putative LinJ08 V3.0460 Amastin-like protein LinJ08 V3.0450 Amastin-like protein LinJ08 V3.0710 Amastin-like protein LinJ08 V3.0720 Amastin-like protein LinJ08 V3.0720 Amastin-like protein LinJ08 V3.0720 Amastin-like protein LinJ34 V3.0720 Amastin-like protein LinJ34 V3.0720 Amastin-like surface glycoprotein, putative LinJ34 V3.1720 Amastin-like surface protein LinJ34 V3.1720 Amastin-like surface protein LinJ34 V3.1720 Amastin-like surface protein
С			
LinJ34_	_V3.1720	1	
LinJ34_	_V3.1720	121	HRHTRAEGPLSHPPPAPCAHAARAAWHRRAYRAPRLGEGVHGRREGQRVRGVPEGGIXKCPPPLLPPSSXXLXPSPALPCLPRCRCGPSLASAGRTPAYVPANGPCAPAVHAPQCHLPVS
LinJ34_	_V3,2660	1	MHAYICICVYLCVRVRCQEALLGSLPFAALRPPLQLCRAISTPLWFALLCTSASPFSAFRREV
LinJ34_	_V3.1720	241	SPLPPPPVSPRLSVPLFSPLHTAAHAAHPSSAPHTTPAHNNTPNNNACARTPPQHRHRVATPRLSSALPSDPPPAYRLLSPRPPCCVISLSSITAYSAAPLPFLLFSMSPFPLSTSYCYF
LinJ08 LinJ08 LinJ08 LinJ31 LinJ08 LinJ08 LinJ08 LinJ08 LinJ34 LinJ34	_V3.0680 _V3.0690 _V3.0720 _V3.1320 _V3.0460 _V3.0700 _V3.0710 _V3.1330 _V3.2660 _V3.4370 _V3.1720	1 1 1 1 1 64 361	. MACKLGVIIYVULOFIAFFSVLIGTGVDMFYIKPEHSFGARVLITLMGGKTD CRKAKVTITPGVRWKFCPIRINNFRIGEAFAVISIFVYGAAFLFGFLLLYCCAGFRWLCLALNI . MACKLGVIIYVULOFIAFFSVLIGTGVDMFYIKPEHSFGARVLITLWGGKTD CRKAKVTITPGVRWKFCPIRLNNFRIGEAFAVISIFVYGAAFLFGFLLYCCAGFRWLCLALNI . MACKLGVIIYVULOFIAFFSVLIGTGVDMFYIKPEHSFGARVLITLWGGKTD CRKAKVTITPGVRWKFCPIRLNNFRIGEAFAVISIFVYGAAFLFGFLLYCCAGFRWLCLALNI . MACKLGVIIYVULOFIAFFSVLIGTGVDMFYIKPEHSFGARVLITLWGGKTD CRKAKVTITPGVRWKFCPIRLNNFRIGEAFAVISIFVYGAAFLFGFLLYCCAGFRWLCLALNI . MACKLGVIIYVULOFIALCOMIGTGVDMFYIKPEHSFGARVLITLWGGTD CRKAKVTITPGVRWKFCPIRLNNFRIGEAFAVISIFVYGAAFLFGFLLYCCAGFRWLCLALNI . MACKLGVIIYVULOFIALCOMIGTGVDMFYIKPEHSFGARVUTLWGGTD CRAKKVTNFSDTRWANPPIRRNFRIGGAFAITFVYGLAFFLGFLLYCCSGFRWLCLALNI . MACYGVIIYVULOFIALCOMIGTGVDMFYIKPEHSFGARVVTLWGAKSJ CRAFKVTNFSDTRWANPPIRRNFRIGGAFAVITFVYGLAFFLGFLLYCCSGFRWLCLALNI . MAYPYGIIYALLOFIAFLFVLVGTPIDHFCRTTKDLFNSLCITLWGSKFE NNIMYAMPTDDGWKFCPTRLGAFRIGGISISIFVYGAAFLGFIMLCCSLLRWLCVFNI . MAYPYGIIYALLOFIAFLFVLVGTPIDHFCRTTKDLFNSLCITLWGSKFE NNIMYAMPTDDGWKFCPTRLGAFRIGGISISIFVYGALAALGFIMLCCCSLLRWLCVFNI SKMGCKFTFLVYALLOFIAFLFVLVGTPIDHFCRTTKDLFNSLCITLWGFKFT. CNRAMFVTDDGWRAFTTRGAFRAMGGFWISILYALAALGFIMLCCCSLLRWLCVFNI SKMGCKFTFLVYALUOLIAFLFVLVGTPIDHFCRTTKDLFNSLCITLWGFKYT. CRSSDYLLFIMMWRDDGRRAFTRAAFRAAGGVYISILYALAALGFIMLCCSLLRWLCLVFNI ROKKYNVSLVYVLAFFALFLVVGTPIDHFCGTTRDFNVSLCITLWGFKYT. SSSDYLLFIMMYWSDGRGFWARAGGGAISVFYAGAALIAGLTLFCCSLRWLCLRWAF
LinJ08 LinJ08 LinJ08 LinJ31 LinJ08 LinJ08 LinJ08 LinJ34 LinJ34 LinJ34	_V3.0680 _V3.0690 _V3.0720 _V3.1320 _V3.0460 _V3.0700 _V3.0710 _V3.1330 _V3.2660 _V3.4370 _V3.4370	117 117 117 117 117 117 117 117 117 184 116 477	VGAVTACVVUAVHVYTYRLPERKCLELSDG, DDFGTEFGLEVLAUILDIIDITFLMLPMIDGEFGEGDERNGGEEEEEEVVOSKKATEE 204 VGAVTACVVUAVHVYTYRLPERKCLELSDG, VDFGTGFGLEVLAUILDIIDITFLMLPMIDGEFGEGDERNGGEEEEEEVVOSKKATEE 204 VGAVTACVVUAVHVYTYRLPERKCLELSDG, VDFGTGFGLEVLAUILDIIDITFLMLPMIDGEFGEGDERNGGEEEEEVVOSKKATEE 203 VGAVTACVVUAVHVYTYRLPERKCLELSDG, VDFGTGFGLEVLAUILDIIDITFLMLPMIDGEFGEGDERNGGEEEEEVVOSKKATEE 201 VGAPAACVVUAVHVYTYRLPERKCLELSDG, VDFGTGFGLEVLAUILDIIDITFLMLPMIDGEFGEGDERNGGEEEEVVOSKKATEE 201 VGAPAACVVUAVHVYTYRLPERKCLELSDG, VDFGTGFGLEVLAUILDIIDITFLMLPMIDGEFGEGDERNGGEEEEVVOSKKATEE 201 VGAPAACVVUAVHVYTYRLPERKCLELSDG, VDFGTGFGLEVLAUILDIIDITFLMLPMIDGEFGEGDERNGGEEEEVS VGAPAACVVUAVHVYTYRLPERKCLESSTOPTIGETGEFFANIGELEVSKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITFLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITFLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITFLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITFLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITFLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITITLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITTLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITITLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGIVTLGINGFMVVEYGRNESRFCPPLRKDYKRGVGFALFNYAVUNLINITITLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGINTLGINGFMVYEYGFANSSFCPPLRKDYKRGVGFALFNYAVUNLINITITLMLPMIDGESKGDEPDGGEEESKKATEE 200 AGINTLGINGFMVYEYGFANSSFCPPLRKDYKRGVGFALFNYAVUNLINITITLMLPMIDGESKGGEPGGESKGDEFGGEESSVG0E 200 260

ADDITIONAL FILE 1

Figure S1. Electropherograms of total RNA samples obtained after TPS, TS and PS treatments. Fluorescence units (FU) are given on y axis and time in seconds on abscissa. The first spike corresponds to RNA 6000 Nano Marker (Agilent Technologies) and 18S and 23S (α , β) spikes to ribosomal RNAs. (A) 27 °C/pH7.2 (CC). (B) 37 °C/pH7.2 (TS). (C) 27 °C/pH4.5 (PS). (D) 37 °C/pH4.5 (TPS).

ADDITIONAL FILE 2

Figure S2. Average M/A scatter plots of three replicate microarray hybridisation analyses for each of the conditions assayed (TPS, TS and PS). $M=(\log_2 Ri-\log_2 Gi)$ and $A=[(\log_2 Ri+\log_2 Gi)/2]$, where R and G are respectively red (Cy5) and green (Cy3) intensity values. Red spots correspond to selected DNA fragments containing a gene up-regulated at least 1.7 times and green spots represent those down-regulated at least 1.7 times in each condition referred to control promastigotes (CC). Further criteria for spot selection are detailed in Results and Discussion section.

A. TPS vs. CC

ADDITIONAL FILE 3.

Table S1. Genes coding for hypothetical and unknown proteins that are differentially regulated under TPS. F < -1.7 indicates gene down-regulation and F > 1.7 up-regulation.

Clone	F	$Log_2F \pm SD$	р	GenBank	e-ve	alue	Def.	Id.	Annotated Gene Function	qì	RT-PCR
					Fw	Rv				+/-	$F \pm SD$
Lin21E6	2.91	1.5 ± 0.0	0.000	GS599047	0	0	b	LinJ20_V3.1060	Hypothetical protein, unknown function	N.D.	
Lin44H5	1.71	0.8 ± 0.2	0.023	GS599048	0	0	b	LinJ31_V3.0090	Hypothetical protein, conserved	N.D.	
								LinJ31_V3.0100	Hypothetical protein, conserved	N.D.	
Lin45D9	1.83	0.9 ± 0.2	0.020	GS599049	0	0	b	LinJ20_V3.0430	Hypothetical protein, conserved	N.D.	
Lin56E9	2.74	1.5 ± 0.1	0.001	GS599050	3e-52	2e-120	b	LinJ06_V3.0830	Hypothetical protein, conserved	N.D.	
Lin59C10	1.80	0.8 ± 0.20	0.018	GS599051	0	1e-180	b	LinJ36_V3.2950	Hypothetical protein, conserved	N.D.	
								LinJ36 V3.2960	Hypothetical protein, conserved	N.D.	
Lin66F8	1.92	0.9 ± 0.2	0.017	GS598865	0	3e-132	а	LinJ33 V3.2470	Succinvl-CoA;3-ketoacid-CoA transferase, mitochondrial		1.4 ± 0.2
								-	precursor, putative (3-oxoacid-CoA transferase)		
								LinJ33_V3.2480	Hypothetical protein, conserved	N.D.	
Lin71E8	1.82	0.9 ± 0.3	0.032	GS599052	0	0	b	LinJ26_V3.1780	Hypothetical protein	N.D.	
Lin76G6	1.97	1.0 ± 0.1	0.005	GS599053	0	0	b	LinJ31 V3.2730	Hypothetical protein, unknown function	N.D.	
Lin77G12	1.82	0.9 ± 0.3	0.042	GS599054	0	0	b	LinJ32 V3.1720	Hypothetical protein, conserved	N.D.	
Lin99C10	1.99	10 ± 0.3	0.023	GS599055	0	0	b	LinJ02_V3.0470	Hypothetical protein, conserved	N.D.	
Lin103F2	3 30	1.0 ± 0.3 1.7 ± 0.2	0.004	G\$599056	0	0	h	LinI32 V3 2450	Hypothetical protein unknown function	ND	
Lin106B1	1.77	0.8 ± 0.2	0.015	GS599057	0	0	h	LinI36 V3 5150	Hypothetical protein conserved	ND	
Lin134A3	2.40	1.2 ± 0.2	0.013	G\$599059	0	0	h	LinJ04_V3.0630	Hypothetical protein, conserved	ND.	
Lints	2.40	1.5 ± 0.5	0.015	00077007	0	0	0	LinJ04_V3.0640	Hypothetical protein	ND.	
Lin135E9	1 77	0.8 ± 0.3	0.042	G\$599060	0	0	h	Lin I34 V3 0060	Hypothetical protein conserved	ND.	
Linitoolly	1.77	0.0 ± 0.5	0.042	00077000	0	0	0	LinI34_V3.0070	Ascorbate-dependent peroxidase putative	11.12.	-1.2 ± 0.3
Lin151D0	1.76	0.8 ± 0.2	0.011	G\$500061	0	16-102	h	LinJ34_V3.3210	Hypothetical protein conserved	ND	-1.2 ± 0.5
LIIISID	1.70	0.8 ± 0.2	0.011	03377001	0	10-102	0	LinJ30_V3.3210	Hypothetical protein, conserved	ND.	
								LinJ30_V3.3220	Hypothetical protein, conserved	N.D.	
Lin154G1	1.80	0.9 ± 0.2	0.013	G\$599062	0	3e-120	þ	LinI30_V3 3210	Hypothetical protein, conserved	ND	
2.013401	1.00	0.7 ± 0.2	0.015	35577002	0	50 120	5	LinI30_V3 3220	Hypothetical protein, conserved	ND	
					1			LinJ30_V3 3230	Hypothetical protein, conserved	ND.	
Lin156R2	1.82	0.9 ± 0.2	0.025	GS598883	0	0	b	LinJ33 V3 2960	Hypothetical protein, conserved	ND	
Lin181E2	1.02	0.7 ± 0.2 1.0 + 0.2	0.025	G\$599063	0	0	c	LinI22 V3 1460	Hypothetical protein, conserved	ND	
Lin182A2	1.77	1.0 ± 0.5	0.035	G\$509994	0	0	L L	Lin124_V2 2250	Hypothetical protein, conserved	ND.	l
Lin200D12	1.73	0.0 ± 0.1	0.010	GS500044	0	0	U F	Lin125 V2.0650	Hypothetical protein, conserved	N.D.	l
Lin200D12	1.80	0.8 ± 0.2	0.021	GS599064	0	0	D	LinJ25_V3.0650	Hypothetical protein, conserved	N.D.	l
1:-220116	1.95	00101	0.007	CS500065	0	0		LinJ25_V 3.0000	Hypothetical protein, conserved	N.D.	
LIII220H0	1.85	0.9 ± 0.1	0.007	GS399003	0	0	a L	LIIJ51_V5.2540	Hypothetical protein, conserved	N.D.	l
Lin223F2	1.75	0.8 ± 0.3	0.044	G\$598894	0	0	D	LinJ15_V 5.0530	Unknown	N.D.	
Lin232F6	1.83	0.9 ± 0.1	0.006	G\$599066	0	0	в	LinJ17_V3.0020	Hypothetical protein, conserved	N.D.	
								LinJ1/_V3.0030	Hypothetical protein, conserved	N.D.	l
L := 254D10	2.24	1.0.0.0	0.045	005000/7	0	0	L	LinJ1/_V3.0040	Hypothetical protein, conserved	N.D.	l
L1n254B10	2.24	1.2 ± 0.5	0.045	GS599067	0	0	D	Linj19_V3.1200	Hypothetical protein, conserved	N.D.	l
			0.01#	66.6 000.00				Linj19_V3.1210	Hypothetical protein, conserved	N.D.	
Lin6A1	-1.74	-0.8 ± 0.2	0.015	GS599068	0	2e-130	b	LinJ18_V3.0810	Hypothetical protein, conserved	N.D.	L
Lin3H4	-1.98	-1.0 ± 0.0	0.001	GS599069	5e-72	1e-125	b	LinJ23_V3.0420	Hypothetical protein, conserved	N.D.	L
Lin11F2	-2.07	-1.1 ± 0.2	0.013	GS599070	0	0	b	LinJ25_V3.2090	Hypothetical protein, conserved	N.D.	L
Lin13F5	-1.77	-0.8 ± 0.3	0.031	GS599071	0	0	ь	LinJ09_V3.1540	Hypothetical protein, conserved	N.D.	L
								LinJ09_V3.1550	Hypothetical protein, conserved	N.D.	L
								LinJ09_V3.1560	Hypothetical protein, conserved	N.D.	ļ
Lin15G8	-1.92	-0.9 ± 0.3	0.024	GS599072	4e-76	3e-86	b	LinJ23_V3.0420	Hypothetical protein, conserved	N.D.	ļ
Lin16F5	-1.84	-0.9 ± 0.2	0.011	GS599073	1e-180	0	b	LinJ24_V3.0590	Hypothetical predicted transmembrane protein	N.D.	
Lin31E6	-1.72	-0.8 ± 0.3	0.035	GS599074	0	3e-120	b	LinJ25_V3.0790	Hypothetical protein, conserved	N.D.	
Lin58A11	-2.00	-1.0 ± 0.4	0.043	GS599075	8e-176	0	b	LinJ35_V3.3190	Hypothetical protein, conserved	N.D.	
Lin60E5	-1.80	-0.8 ± 0.3	0.035	GS598921	0	0	b	LinJ26_V3.0970	Hypothetical protein, conserved	N.D.	
Lin61D3	-1.92	-0.9 ± 0.1	0.005	GS599076	0	0	b	LinJ31_V3.0330	Hypothetical protein, conserved	N.D.	
Lin70D3	-2.07	-1.0 ± 0.4	0.042	GS599077	0	0	а	LinJ31_V3.1210	Hypothetical protein, unknown function	N.D.	
Lin74F6	-1.88	-0.9 ± 0.1	0.005	GS599078	0	0	а	LinJ29_V3.1820	Hypothetical protein, conserved	N.D.	
								LinJ29_V3.1830	Hypothetical protein, conserved	N.D.	
Lin78F3	-3.15	-1.7 ± 0.1	0.002	GS599079	0	0	b	LinJ26_V3.0970	Hypothetical protein, conserved	N.D.	
	L							LinJ26_V3.0980	Hypothetical protein, conserved	N.D.	
Lin97F6	-1.80	-0.8 ± 0.3	0.029	GS598932	0	0	b	LinJ26_V3.0460	Hypothetical protein, conserved	N.D.	
Lin105B4	-2.39	-1.3 ± 0.2	0.009	GS599080	0	0	b	LinJ14_V3.1110	Unknown	N.D.	
								LinJ14_V3.1120	Hypothetical protein, conserved	N.D.	
Lin105B8	-5.59	-2.5 ± 0.4	0.010	GS599081	0	0	b	LinJ14_V3.1110	Unknown	N.D.	
								LinJ14_V3.1120	Hypothetical protein, conserved	N.D.	
Lin112D11	-1.94	-1.0 ± 0.2	0.021	GS599082	1e-54	0	b	LinJ31_V3.2430	Hypothetical protein, conserved	N.D.	
Lin122H8	-1.74	-0.8 ± 0.3	0.036	GS599083	0	0	b	LinJ32_V3.1600	Hypothetical protein, conserved	N.D.	
1	1				1			LinJ32_V3.1610	Hypothetical protein, conserved	N.D.	
								LinJ32_V3.1620	Hypothetical protein, unknown function	N.D.	
Lin124H4	-2.89	-1.5 ± 0.5	0.001	GS599084	0	0	b	LinJ23_V3.0700	Hypothetical protein, conserved	N.D.	
Lin128A3	-1.71	-0.8 ± 0.2	0.013	GS599085	0	0	b	LinJ08_V3.0430	Hypothetical protein, conserved	N.D.	
Lin148G1	-1.70	-0.8 ± 0.1	0.002	GS599086	0	0	b	LinJ30_V3.2310	Hypothetical protein, conserved	N.D.	1
1								LinJ30_V3.2320	Hypothetical protein, conserved	N.D.	
								LinJ30_V3.2330	Hypothetical protein, conserved	N.D.	
Lin155G1	-2.81	-1.5 ± 0.2	0.004	GS599087	7e-133	2e-19	а	LinJ35_V3.3770	Hypothetical protein, conserved	N.D.	
2							L	LinJ35_V3.3780	Hypothetical protein, conserved	N.D.	
Lin158A10	-2.40	-1.3 ± 0.2	0.008	GS598950	0	0	b	LinJ23_V3.0870	Hypothetical protein, conserved	N.D.	
Lin167B9	-2.70	-1.4 ± 0.5	0.040	GS599088	1e-60	1e-14	а	LinJ30_V3.2310	Hypothetical protein, conserved	N.D.	
					1			LinJ30_V .2320	Hypothetical protein, conserved	N.D.	
							L	LinJ30_V3.2330	Hypothetical protein, conserved	N.D.	
Lin169B8	-2.79	-1.5 ± 0.2	0.009	GS599089	0	0	b	LinJ24_V3.2320	Hypothetical predicted multi-pass transmembrane protein	N.D.	
							L	LinJ24_V3.2330	Hypothetical protein, conserved	N.D.	
Lin186A8	-2.63	-1.4 ± 0.1	0.003	GS599090	0	0	b	LinJ25_V3.2090	Hypothetical protein, conserved	N.D.	
Lin193H8	-2.71	-1.4 ± 0.4	0.024	GS599091	0	0	b	LinJ06_V3.1350	Hypothetical protein, unknown function	N.D.	
											•
Lin194B7	-1.80	-0.8 + 0.2	0,016	GS599092	0	0	b	LinJ23 V3.1830	Hypothetical protein, unknown function	N.D	
Lin194B7 Lin202H7	-1.80	-0.8 ± 0.2	0.016	GS599092 GS599093	0 1e-97	0 5e-106	b	LinJ23_V3.1830	Hypothetical protein, unknown function	N.D.	

Lin209B12	-2.07	-1.1 ± 0.2	0.013	GS599094	0	0	а	LinJ35_V3.4170	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.4180	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.4190	Hypothetical protein, conserved	N.D.	
Lin230F8	-3.72	-1.9 ± 0.7	0.038	GS599095	0	0	b	LinJ06_V3.1350	Hypothetical protein, unknown function	N.D.	
Lin243B8	-1.80	-0.8 ± 0.1	0.010	GS599096	0	0	b	LinJ06_V3.1350	Hypothetical protein, unknown function	N.D.	
Lin244F12	-2.16	-1.1 ± 0.3	0.021	GS599097	0	0	b	LinJ17_V3.0970	Hypothetical protein, conserved	N.D.	
Lin273D8	-2.16	-1.1 ± 0.2	0.013	GS599098	0	0	b	LinJ33_V3.1070	Hypothetical protein, conserved	N.D.	
								LinJ33_V3.1080	Hypothetical protein, conserved	N.D.	
Lin280B2	-1.81	-0.9 ± 0.2	0.018	GS599099	0	0	b	LinJ32_V3.0360	Hypothetical protein, conserved	N.D.	
								LinJ32_V3.0370	Hypothetical protein, conserved	N.D.	
Lin294B2	-1.73	-0.8 ± 0.2	0.024	GS599058	0	0	b	LinJ29_V3.2200	Hypothetical protein, conserved	N.D.	

Table S2. Unresolved clones for TPS. These clones fulfil spot selection requirements (see Materials and methods section in the article) but correspond to minicircle sequences. They do not map against already annotated genes in the *L. infantum* genome project sequence (custom Glimmer annotations are indicated whenever predicted) or clone sequence assembly outcome is *c* and no qRT-PCR assay has been performed to find out which gene(s) are differentially regulated. F < -1.7 indicates gene down-regulation and F > 1.7 up-regulation.

Clone	F	$Log_2F \neq SD$	p	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	qRT-PCR		
	-	10821 ± 510	r		Fw	Rv				+/-	F + SD	
Lin8C12	2.30	12 ± 04	0.044	GS599100	0	-	с			N.D.	1 _ 00	
Lin10E6	1.76	0.8 ± 0.2	0.018	GS599101	3e-101	-	с			N.D.	1	
Lin13C3	1.78	0.8±0.0	0.000	GS599102	0	-	с	LinJ18 V3.1050	5-oxoprolinase, putative	N.D.	1	
Lin19B1	2.56	1.4 ± 0.4	0.026	GS599103	0	0	с	LinJ02 V3.0580	Hypothetical protein, conserved	N.D.		
Lin49H10	1.71	0.8 ± 0.1	0.008	GS599104	0	-	с	LinJ28 V3.1590	Target SNARE, putative	N.D.		
Lin77H11	1.71	0.8 ± 0.3	0.050	GS599105	0	0	с			N.D.		
Lin82G7	2.40	1.3 ± 0.4	0.035	GS599106	0	0	b	LinJ24 V3.0410	Hypothetical protein, conserved	N.D.		
								LinJ24_V3.0420	Cysteine peptidase, Clan CA, family C12, putative	N.D.		
								LinJ24_V3.0430	Hypothetical protein, conserved	N.D.	1	
Lin102C9	2.09	1.1 ± 0.2	0.013	GS599107	0	0	b	LinJ35_V3.0580	SNF-7-like protein, conserved	N.D.	1	
								LinJ35_V3.0590	Hypothetical protein, conserved	N.D.		
Lin128A4	1.96	1.0 ± 0.4	0.042	GS599108	0	0	b	LinJ12_V3.0840	Hypothetical protein, conserved	N.D.	l	
								LinJ12_V3.0850	Arginine N-methyltransferase-like protein	N.D.		
Lin137D12	1.73	0.8 ± 0.1	0.009	GS599109	-	0	с	LinJ14_V3.0380	Hypothetical protein, conserved	N.D.		
Lin139F3	1.75	0.8 ± 0.3	0.031	GS599110	-	0	с	LinJ29_V3.2450	Hypothetical protein, conserved	N.D.		
Lin201H8	2.83	1.5 ± 0.1	0.001	GS599111	0	-	с	LinJ36_V3.3410	Hypothetical protein, conserved	N.D.	i	
Lin212H6	2.18	1.1 ± 0.2	0.016	GS599112	0	0	b	LinJ28_V3.1290	Hypothetical protein, conserved	N.D.	1	
								LinJ28_V3.1300	Copine-i-like protein	N.D.		
Lin228C8	1.94	1.0 ± 0.1	0.006	GS599113	0	-	с	LinJ33_V3.0850	Hypothetical protein, conserved	N.D.	1	
Lin279H12	2.07	1.0 ± 0.2	0.012	GS599114	0	-	с			N.D.		
Lin20E9	-2.33	-1.2 ± 0.1	0.004	GS599115	0	0	с			N.D.		
Lin26A9	-1.84	-0.9 ± 0.1	0.005	GS599116	9e-65	3e-163	а	LinJ26_V3.2290	Nitrilase, putative	N.D.		
								LinJ26_V3.2300	Hypothetical protein, conserved	N.D.		
Lin46H3	-2.16	-1.1 ± 0.2	0.014	GS599117	5e-137	0	с	LinJ27_V3.1950	Branched-chain amino acid aminotransferase, putative	N.D.	i	
								LinJ27_V3.1960	Hypothetical protein, conserved	N.D.		
								LinJ35_V3.3620	Hypothetical protein, conserved	N.D.		
Lin66G1	-2.05	-1.0 ± 0.3	0.025	GS599118	0	-	с	LinJ34_V3.0820	Serine/theonine-protein phosphatase PP1, putative	N.D.		
Lin87D5	-1.88	-0.9 ± 0.0	0.000		3e-52	7e-93	а	LinJ33_V3.3350	Cation transporter, putative	N.D.	1	
								LinJ33_V3.3360	Beta prime cop protein, putative	N.D.	1	
Lin97D2	-2.53	-1.3 ± 0.2	0.010	GS599119	0	1e-153	с	LinJ31_V3.1560	Protein kinase, putative	N.D.		
Lin102E2	-2.05	-1.0 ± 0.2	0.014	GS599120	3e-166	0	с	LinJ18_V3.0720	Hypothetical protein, conserved	N.D.		
Lin113B12	-1.81	-0.9 ± 0.1	0.005	GS599121	0	0	b	LinJ27_V3.0560	Hypothetical protein, conserved	N.D.		
								LinJ27_V3.0570	Hypothetical protein, conserved	N.D.		
								LinJ27_V3.0580	Reductase, putative	N.D.		
Lin122B2	-2.78	-1.5 ± 0.3	0.018	GS599122	0	0	b	LinJ19_V3.1490	Oxidoreductase-like protein	N.D.	ļ	
								LinJ19_V3.1500	Hypothetical protein, conserved	N.D.	1	
Lin126F1	-1.71	-0.8 ± 0.3	0.042	GS599123	0	0	b	LinJ35_V3.2030	Ankyrin repeat protein, putative	N.D.	ļ	
								LinJ35_V3.2040	60S ribosomal protein L32	N.D.	l	
Lin288D2	-2.06	-1.0 ± 0.1	0.001	GS599124	0	0	с	LinJ24_V3.1470	Kinesin, putative	N.D.	l	
	1			1		I	1	LinJ31_V3.3250	Phosphatidylethanolaminen-methyltransferase-like protein	N.D.	1	

10	rguia	ieu unu		• 1 < -1.7	mult	ales ge		10wn-regula	and r > 1.7 up-regulation.		
Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	ql	RT-PCR
					Fw	Rv				+/-	$F \pm SD$
Lin21C1	1.87	0.9 ± 0.1	0.009	GS599125	0	0	b	LinJ23_V3.0100	Hypothetical protein, conserved	N.D.	
								LinJ23_V3.0110	Hypothetical protein, unknown function	N.D.	
Lin38F6	1.94	1.0 ± 0.3	0.031	GS599126	0	0	а	LinJ20_V3.0850	Cytochrome c oxydase assembly factor-like protein	-	1.2 ± 0.3
								LinJ20_V3.0860	Hypothetical protein, conserved	N.D.	
Lin44H5	2.18	1.1 ± 0.1	0.005	GS599127	0	0	b	LinJ31_V3.0090	Hypothetical protein, conserved	N.D.	
								LinJ31_V3.0100	Hypothetical protein, conserved	N.D.	
Lin49G11	1.84	0.9 ± 0.1	0.002	GS599128	0	0	b	LinJ18_V3.0030	Hypothetical protein, conserved	N.D.	
								LinJ18_V3.0040	Major facilitator superfamily protein, putative	-	-1.3 ± 0.1
								LinJ18_V3.0050	Hypothetical protein, conserved	N.D.	
Lin59F12	1.81	0.9 ± 0.3	0.045	GS599129	0	0	а	LinJ12_V3.0500	Hypothetical protein, conserved	N.D.	
Lin70H12	1.70	0.8 ± 0.3	0.048	GS599130	7e-16	7e-24	а	LinJ31_V3.1110	Hypothetical protein, conserved	N.D.	
Lin77G12	1.87	0.9± 0.0	0.001	GS599131	0	0	b	LinJ32 V3.1720	Hypothetical protein, conserved	N.D.	
Lin78F3	-3.15	-1.7 ± 0.1	0.002	GS599078	0	0	b	LinJ26 V3.0970	Hypothetical protein, conserved	N.D.	
					-			LinJ26 V3.0980	Hypothetical protein, conserved	N.D.	
Lin89A11	2.00	1.0 ± 0.3	0.022	GS599132	0	0	а	LinJ15 V3.0340	Hypothetical protein, conserved	N.D.	
Lin93A7	2.36	12 ± 0.5	0.043	GS599133	3e-67	3e-104	b	LinJ21 V3.0790	Hypothetical protein, conserved	N.D.	
Lin95A3	2.24	1.2 ± 0.0	0.038	GS599134	3e-64	2e-74	b	LinI21_V3.0790	Hypothetical protein, conserved	ND	
Lin111C6	1.74	0.8 ± 0.4	0.034	G\$599135	0	0	h	LinJ08_V3 1010	Hypothetical protein, conserved	N D	
Lin112B12	2.08	0.8 ± 0.3	0.004	G\$500136	0	0	h	LinJ00_V3.1010	Hypothetical protein, conserved	N.D.	
LIIIIIZDIZ	2.98	1.0 ± 0.2	0.004	03577150	0	0	U	LinJ29_V3.0540	Hypothetical protein, conserved	N.D.	
Lin135E7	1.77	0.8 ± 0.1	0.010		0	0		LinJ13_V3.0250	Hypothetical protein, conserved	N.D.	
LIIIIJJLI	1.//	0.8 ± 0.1	0.010		0	0	a	LinJ13_V3.0250	N-acetyltransferase subunit ARD1 putative	IN.D.	1.4 ± 0.1
Lin125E0	1.81	0.0 ± 0.2	0.026	G\$500137	0	0		Lin 13_ V3.0200	Hymothetical protein concerned	ND	-1.4 ± 0.1
LIIII33E3	1.01	0.9 ± 0.2	0.020	03377137	0	0	a	Lin134_V3.0000	Ascorbate-dependent peroxidase_putative	R.D.	1.0 ± 0.2
Lin152D8	2.20	1.2 ± 0.4	0.027	C\$500128	0	0	h	LinJ34_V3.0070	Ribulosa 5 phosphate 2 apimoresa, putativa		1.0 ± 0.3
LIII132D8	2.29	1.2 ± 0.4	0.027	03339138	0	0	U	LinJ33_V3.1000	Kibulose-5-phosphate 5-ephiletase, putative	-	1.1 ± 0.0
1:00500	1.01	00100	0.019	C6500120	0	0		LinJ35_V3.16/0	Hypothetical protein, conserved	N.D.	
LIII225C2	1.91	0.9 ± 0.2	0.018	03399139	0	0	а	LinJ26_V3.1010	Hypothetical protein, conserved	N.D.	
L:=272C6	1.02	00100	0.011	CS500140	0	0		LinJ26_V3.1020	Surf an DND ages complex material mutative	N.D.	1.4.1.0.2
LIII2/300	1.92	0.9 ± 0.2	0.011	03399140	0	0	а	LIIIJ55_V5.4550	June shaking core complex protein, putative	-	1.4 ± 0.3
L := 20.4E10	2.00	10:00	0.012	C0500141	0	0	1.	LinJ35_V3.4540	Hypothetical protein, conserved	N.D.	
Lin284F10	2.00	1.0 ± 0.2	0.013	G\$599141	0	0	D	Linj15_V3.1570	Hypothetical protein, conserved	N.D.	
Lin312C2	1./1	0.8 ± 0.2	0.028	G\$599142	0	0	b	LinJ2/_V3.0120	Hypothetical protein, conserved	N.D.	
								LinJ2/_V3.0130	Hypothetical protein, conserved	N.D.	
Lin16H8	-1.82	-0.9 ± 0.3	0.048	GS599143	0	0	а	LinJ34_V3.1740	Hypothetical protein, conserved	N.D.	
Lin43F3	-2.66	-1.4 ± 0.3	0.015	GS599144	2e-105	2e-105	а	LinJ32_V3.0500	Hypothetical protein, conserved	N.D.	
Lin58A11	-1.78	-0.8 ± 0.2	0.017	GS599145	8e-176	5e-165	b	LinJ35_V3.3190	Hypothetical protein, conserved	N.D.	
Lin74F6	-1.75	-0.8 ± 0.2	0.027	GS599146	0	1e-134	а	LinJ29_V3.1820	Hypothetical protein, conserved	N.D.	
								LinJ29_V3.1830	Hypothetical protein, conserved	N.D.	
Lin155G12	-2.20	-1.1 ± 0.2	0.012	GS599087	2e-154	3e-12	b	LinJ35_V3.3770	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.3780	Hypothetical protein, conserved	N.D.	
Lin169B8	-2.69	-1.4 ± 0.2	0.008	GS599147	0	2e-145	b	LinJ24_V3.2320	Hypothetical multi-pass transmembrane protein	N.D.	ļ
								LinJ24_V3.2330	Hypothetical protein, conserved	N.D.	
Lin170G5	-1.76	-0.8 ± 0.3	0.050	GS599148	8e-139	1e-100	b	LinJ36_V3.0380	Hypothetical protein, conserved	N.D.	
								LinJ36_V3.0390	Hypothetical protein, conserved	N.D.	
Lin193H8	-2.17	-1.1 ± 0.1	0.001	GS599149	0	0	а	LinJ06_V3.1350	Hypothetical protein, unknown function	N.D.	
Lin198G3	-2.58	-1.4 ± 0.1	0.003	GS599150	0	0	а	LinJ18_V3.1640	Hypothetical protein, conserved	N.D.	
Lin209B12	-2.07	-1.1 ± 0.2	0.013	GS599151	0	0	а	LinJ35_V3.4170	Hypothetical protein, conserved	N.D.	
							1	LinJ35_V3.4180	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.4190	Hypothetical protein, conserved	N.D.	
Lin212A4	-1.74	-0.8 ± 0.0	0.000	GS599152	0	0	a	LinJ30_V3.2770	Hypothetical protein, conserved	N.D.	
Lin296C4	-1.72	-0.8 ± 0.2	0.022	GS599153	0	0	b	LinJ29_V3.0630	Hypothetical protein, conserved	N.D.	1

Table S3. Genes coding for hypothetical and unknown proteins that are differentially regulated under TS E < 1.7 indicates gene down-regulation and E > 1.7 un-regulation

Table S4. Unresolved clones for TS. These clones fulfil spot selection requirements (see Materials and methods section in the article) but correspond to minicircle sequences. They do not map against already annotated genes in the L. infantum genome project sequence (custom Glimmer annotations are indicated whenever predicted) or clone sequence assembly outcome is c and no qRT-PCR assay has been performed to find out which gene(s) are differentially regulated. F < -1.7 indicate gene down-regulation and F > 1.7 up-regulation.

Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	q	RT-PCR
		-			Fw	Rv				+/-	$F \pm SD$
Lin13C3	1.78	0.8 ± 0.0	0.000	GS599154	0	-	с	LinJ18_V3.1050	5-oxoprolinase, putative	N.D.	
Lin32E6	1.76	0.8 ± 0.1	0.008	GS599155	0	0	с	LinJ31_V3.3250	Phosphatidylethanolaminen-methyltransferase-like protein	N.D.	
								LinJ14_V3.1430	Hypothetical protein, conserved	N.D.	
Lin93A7	2.36	1.2 ± 0.5	0.043	GS599133	2e-102	3e-104	с			N.D.	
										N.D.	
Lin101D5	1.94	$1.0\pm~0.2$	0.010	GS599156	0	7e-167	с			N.D.	
										N.D.	
Lin279H12	2.07	$1.0\pm~0.2$	0.012	GS599157	0	-	с			N.D.	
Lin298F2	1.74	$0.8\pm~0.3$	0.032	GS599158	1e-106	-	с	LinJ32_V3.1440	Hypothetical protein, conserved	N.D.	
Lin2G12	-1.85	-0.9 ± 0.0	0.001	GS599159	6e-140	-	с	LinJ28_V3.1590	Target SNARE, putative	N.D.	
								LinJ28_V3.1600	Target SNARE, putative	N.D.	
								LinJ28_V3.1610	Hypothetical protein, conserved	N.D.	
Lin10D9	-1.72	-0.8 ± 0.0	0.001	GS599160	0	0	с	LinJ36_V3.0890	Hypothetical protein, conserved	N.D.	
Lin17D4	-1.79	-0.8 ± 0.3	0.039	GS599161	2e-117	-	с	LinJ09_V3.0070	Endonuclease III, putative	N.D.	
Lin22D12	-1.83	-0.9 ±0.3	0.037	GS599162	-	0	с			N.D.	
Lin35A12	-2.10	-1.1 ± 0.4	0.043	GS599163	0	0	а	LinJ30_V3.2370	Zinc-finger protein, conserved	N.D.	
								LinJ30_V3.2380	ADP-ribosylation factor-like protein	N.D.	
Lin99G11	-2.54	-1.3 ± 0.0	0.000	GS599164	-	0	с	LinJ30_V3.2380	ADP-ribosylation factor-like protein	N.D.	
Lin102E2	-1.96	-1.0 ± 0.2	0.018	GS599165	0	0	с	LinJ18_V3.0720	Hypothetical protein, conserved	N.D.	
Lin163F5	-1.99	-1.0 ± 0.3	0.022	GS599166	0	0	b	LinJ30_V3.2380	ADP-ribosylation factor-like protein	N.D.	
								LinJ30_V3.2390	Hypothetical protein, conserved	N.D.	

Clone	F	$Log_2F \neq SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	ai	RT-PCR
		20821 - 00	,		Fw	Rv				+/-	F±SD
Lin56D12	2.97	1.6 ± 0.3	0.003	GS599167	0	0	а	LinJ07_V3.0140	Hypothetical protein, conserved	N.D.	
Lin61C12	1.71	0.8 ± 0.0	0.004	GS599168	0	0	b	LinJ35_V3.0190	Hypothetical protein, conserved	N.D.	
Lin62D4	2.19	1.1 ± 0.1	0.009	GS599169	0	0	b	LinJ29_V3.1940	Hypothetical protein, conserved	N.D.	
Lin83E8	2.04	1.0 ± 0.0	0.001	GS599170	0	0	а	LinJ35_V3.0140	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.0150	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.0160	Hypothetical protein, conserved	N.D.	
Lin84E12	2.29	1.2 ± 0.2	0.019	GS599171	0	0	а	LinJ35_V3.0140	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.0150	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.0160	Hypothetical protein, conserved	N.D.	
Lin87A10	2.28	1.2 ± 0.1	0.003	GS599172	0	0	а	LinJ29_V3.2870	Hypothetical protein, conserved	N.D.	
Lin92D4	2.20	1.1 ± 0.1	0.006	GS599173	0	0	а	LinJ26_V3.1140	Hypothetical protein, conserved	N.D.	
								LinJ26_V3.1150	Hypothetical protein, conserved	N.D.	
Lin96H11	1.89	0.9 ± 0.1	0.001	GS599174	2e-151	1e-137	а	LinJ26_V3.1570	Hypothetical protein, unknown function	N.D.	
Lin100C10	1.72	0.8 ± 0.0	0.003	GS599175	0	0	b	LinJ10_V3.1350	Hypothetical protein	N.D.	
								LinJ10_V3.1360	Hypothetical protein, conserved	N.D.	
								LinJ10_V3.1370	Hypothetical protein, conserved	N.D.	
Lin105C1	1.89	0.9 ± 0.1	0.025	GS599176	0	0	а	LinJ22_V3.0610	Hypothetical protein, conserved	N.D.	
Lin117G9	1.88	0.9 ± 0.1	0.006	GS599177	0	0	а	LinJ26_V3.1720	Hypothetical protein, conserved	N.D.	
Lin155H9	1.88	0.9 ± 0.1	0.008	GS599178	0	1e-72	b	LinJ28_V3.1140	Hypothetical protein, conserved	N.D.	
Lin194A1	1.93	0.9 ± 0.0	0.001	GS599179	0	0	b	LinJ35_V3.5110	Hypothetical protein, unknown function	N.D.	
Lin206E10	1.70	0.8 ± 0.1	0.024	GS599180	0	0	а	LinJ07_V3.0020	Hypothetical protein, conserved	N.D.	
Lin240C7	1.90	0.9 ± 0.0	0.001	GS599181	6e-124	2e-130	b	LinJ26_V3.2200	Hypothetical protein, conserved	N.D.	
Lin244H6	2.26	1.2 ± 0.0	0.003	GS599182	0	0	b	LinJ22_V3.0620	Hypothetical protein, conserved	N.D.	
Lin255B11	1.91	0.9 ± 0.1	0.002	GS599183	4e-97	7e-93	а	LinJ31_V3.2830	Hypothetical protein, conserved	N.D.	
Lin267H4	1.73	0.8 ± 0.1	0.003	GS599184	0	0	b	LinJ17_V3.0280	Hypothetical protein, conserved	N.D.	
								LinJ17_V3.0290	Hypothetical protein, conserved	N.D.	
Lin268E7	1.91	0.9 ± 0.1	0.004	GS599185	0	0	b	LinJ26_V3.2300	Hypothetical protein, conserved	N.D.	
Lin270A3	2.19	1.1 ± 0.1	0.036	GS599186	0	0	b	LinJ09_V3.0020	Hypothetical protein, conserved	N.D.	
								LinJ09_V3.0030	Hypothetical protein, conserved	N.D.	
Lin276F12	2.45	1.3 ± 0.1	0.004	GS599187	0	0	b	LinJ34_V3.0730	Hypothetical protein, conserved	N.D.	
								LinJ34_V3.0740	Hypothetical protein, conserved	N.D.	
Lin284D12	2.48	1.3 ± 0.1	0.001	GS599188	0	0	b	LinJ27_V3.0130	Hypothetical protein, conserved	N.D.	
								LinJ27_V3.0140	Hypothetical protein, conserved	N.D.	
Lin88A1	-3.51	1.8 ± 0.1	0.004	GS599189	0	2e-176	b	LinJ27_V3.2470	Hypothetical protein, conserved	N.D.	
Lin95D8	-5.40	2.4 ± 0.2	0.010	GS599190	4e-165	2e-105	b	LinJ27_V3.2470	Hypothetical protein, conserved	N.D.	
Lin181H11	-3.18	1.7 ± 0.1	0.001	GS599191	0	0	b	LinJ18_V3.0720	Hypothetical protein, conserved	N.D.	
Lin201C8	-2.14	1.1 ± 0.1	0.006	GS599192	0	0	а	LinJ30_V3.1540	Hypothetical protein, conserved	N.D.	

Table S5. Genes coding for hypothetical and unknown proteins that are differentially regulated under PS. E < -1.7 indicates gene down-regulation and E > 1.7 up-regulation

Table S6. Unresolved clones for PS. These clones fulfil spot selection requirements (see Materials and methods section in the article) but correspond to minicircle sequences. They do not map against already annotated genes in the *L. infantum* genome project sequence (custom Glimmer annotations are indicated whenever predicted) or clone sequence assembly outcome is *c* and no qRT-PCR assay has been performed to find out which gene(s) are differentially regulated. F < -1.7 indicates gene down-regulation and F > 1.7 up-regulation.

r	<u> </u>	1		U			<u> </u>	-			
Clone	F	$Log_2F \pm SD$	р	GenBank	e-v	alue	Def.	Id.	Annotated Gene Function	q	RT-PCR
					Fw	Rv				+/-	$F \pm SD$
Lin10A7	1.70	0.8 ± 0.0	0.002	GS599193	0	0	b	LinJ28_V3.0050	Dual-specificity protein phosphatase, putative	N.D.	1
								LinJ28_V3.0060	Calmodulin-like protein	N.D.	1
								LinJ28_V3.0070	RNA polymerase B subunit RPB8, putative	N.D.	1
Lin13G4	1.92	0.9 ± 0.1	0.009	GS599194	0	0	с	LinJ36_V3.0350	Hypothetical protein, conserved	N.D.	
								LinJ29_V3.0990	Aspartic peptidase, Clan AD, family A22B, putative	N.D.	ĺ
Lin16E1	1.77	0.8 ± 0.1	0.050	GS599195	-	0	с	LinJ35_V3.0180	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.0190	Hypothetical protein, conserved	N.D.	
Lin21D12	1.96	0.9 ± 0.1	0.001	GS599196	0	0	b	LinJ29_V3.2450	Hypothetical protein, conserved	N.D.	ĺ
								LinJ29_V3.2460	Hypothetical protein, conserved	N.D.	
								LinJ29_V3.2470	Metallo-peptidase, Clan-MH, family M20	N.D.	
Lin24H3	1.84	0.9 ± 0.1	0.024	GS599197	0	-	с	LinJ29_V3.2310	GTP-binding protein, putative	N.D.	
Lin33C4	2.54	1.3 ± 0.1	0.002	GS599198	0	0	с	LinJ22_V3.0340	40S ribosomal protein S15, putative	N.D.	
Lin34D12	1.84	0.9 ± 0.1	0.003	GS599199	0	0	а	LinJ33_V3.0940	dnaJ chaperone-like protein	N.D.	[
								LinJ33 V3.0950	Hypothetical protein, conserved	N.D.	[
								LinJ33 V3.0960	40S ribosomal protein S3, putative	N.D.	
Lin37A10	4.84	2.3 ± 0.1	0.004	GS599200	0	-	с	LinJ32_V3.3560	Hypothetical protein, conserved	N.D.	
Lin45E7	2.28	1.2 ± 0.2	0.006	GS599201	0	0	b	LinJ30_V3.3380	Hypothetical protein, conserved	N.D.	[
								LinJ30_V3.3390	60S ribosomal protein L9, putative	N.D.	[
Lin48E3	1.93	0.9 ± 0.1	0.008	GS599202	0	0	а	LinJ28_V3.1030	Oxidoreductase-like protein	N.D.	
								LinJ28_V3.1040	Hypothetical protein, conserved	N.D.	
								LinJ28_V3.1050	40S ribosomal protein S14	N.D.	
Lin50E2	2.34	1.2 ± 0.2	0.002	GS599203	5e-20	0	b	LinJ07_V3.0540	Hypothetical protein, conserved	N.D.	
								LinJ07_V3.0550	60S ribosomal protein L7a, putative	N.D.	
Lin53D8	1.94	0.9 ± 0.1	0.005	GS599204	0	0	b	LinJ30_V3.3700	Hypothetical protein, conserved	N.D.	
								LinJ30_V3.3710	60S ribosomal protein L15	N.D.	
Lin54C2	2.07	1.0 ± 0.0	0.001	GS599205	0	0	а	LinJ24_V3.2410	Mitogen-activated protein kinase	N.D.	
								LinJ24_V3.2420	Hypothetical protein, conserved	N.D.	ĺ
								LinJ24_V3.2430	Hypothetical protein, conserved	N.D.	
Lin61F2	1.74	0.8 ± 0.0	0.003	GS599206	0	0	b	LinJ15_V3.0220	60S ribosomal protein L13a	N.D.	
								LinJ15_V3.0230	Hypothetical protein, conserved	N.D.	[
								LinJ15_V3.0240	Protein phosphatase 1, catalytic subunit, putative	N.D.	
Lin93D4	2.00	1.0 ± 0.1	0.008	GS599207	4e-165	0	b	LinJ29_V3.0950	ADP-ribosylation factor 3	N.D.	
	1				1		1	LinJ29 V3.0960	Hypothetical protein, conserved	N.D.	Í

Lin96H7	1.91	0.9 ± 0.0	0.001	GS599208	0	0	b	LinJ31_V3.3310	Hypothetical protein, unknown function	N.D.	
								LinJ31_V3.3320	Histone H4	N.D.	
Lin100E4	1.70	0.8 ± 0.1	0.005	GS599209	0	0	а	LinJ28_V3.2280	Dynein light chain lc6, flagellar outer arm, putative	N.D.	
								LinJ28_V3.2290	A/G-specific adenine glycosylase, putative	N.D.	
Lin117A9	3.54	1.8 ± 0.4	0.042	GS599210	0	-	с			N.D.	
Lin135B3	1.92	0.9 ± 0.1	0.004	GS599211	0	0	b	LinJ30_V3.0750	Hypothetical protein, conserved	N.D.	
								LinJ30_V3.0760	Co-chaperone GrpE, putative	N.D.	
								LinJ30_V3.0770	Unknown	N.D.	
Lin178D3	2.28	1.2 ± 0.2	0.006	GS599212	0	0	с	LinJ06_V3.1240	Hypothetical protein, conserved	N.D.	
								LinJ29_V3.2470	Aspartyl aminopeptidase metallo-peptidase, Clan MH, family M20	N.D.	
Lin181G9	1.89	0.9 ± 0.0	0.001	GS599213	0	0	с	LinJ06_V3.1240	Hypothetical protein, conserved	N.D.	
								LinJ29_V3.2450	Hypothetical protein, conserved	N.D.	
								LinJ29_V3.2460	Hypothetical protein, conserved	N.D.	
Lin231C8	1.82	0.9 ± 0.1	0.004	GS599214	0	0	а	LinJ36_V3.3920	Hypothetical protein, conserved	N.D.	
								LinJ36_V3.3930	60S ribosomal protein L34, putative	N.D.	
Lin238F10	2.43	1.3 ± 0.0	0.003	GS599215	0	0	b	LinJ33_V3.1410	Cysteine conjugate beta-lyase, aminotransferase-like protein	N.D.	
								LinJ33_V3.1420	Syntaxin-like protein	N.D.	
								LinJ33_V3.1430	Hypothetical protein, conserved	N.D.	
Lin239C6	2.33	1.2 ± 0.3	0.046	GS599216	1e-128	0	b	LinJ35_V3.1540	Reiske iron-sulfur protein precursor, putative	N.D.	
								LinJ35_V3.1550	Hypothetical protein, conserved	N.D.	
Lin248E6	1.98	1.0 ± 0.1	0.001	GS599217	0	0	с	LinJ02_V3.0270	ABC1 transporter, putative	N.D.	
								LinJ09_V3.1400	Hypothetical protein, conserved	N.D.	
Lin265C7	1.85	0.9 ± 0.1	0.008	GS599218	0	0	а	LinJ35_V3.3840	60S ribosomal protein L23, putative	N.D.	
								LinJ35_V3.3850	Hypothetical protein, conserved	N.D.	
								LinJ35_V3.3860	Hypothetical protein, conserved	N.D.	
Lin276E12	1.76	0.8 ± 0.0	0.001	GS599219	6e-161	0	а	LinJ36_V3.0550	Hypothetical protein, conserved	N.D.	
								LinJ36_V3.0560	Protein phosphatase 2C-like protein	N.D.	
								LinJ36_V3.0570	Small nuclear ribonucleoprotein	N.D.	
Lin284F11	1.77	0.8 ± 0.1	0.009	GS599220	1e-165	0	b	LinJ35_V3.1540	Reiske iron-sulfur protein precursor, putative	N.D.	
								LinJ35_V3.1550	Hypothetical protein, conserved	N.D.	
Lin288C8	1.94	0.9 ± 0.1	0.007	GS599221	0	1e-122	b	LinJ27_V3.1120	Histone H1, putative	N.D.	
								LinJ27_V3.1130	Carboxypeptidase, putative	N.D.	
Lin298H9	2.59	1.4 ± 0.1	0.013	GS599222	0	0	а	LinJ35_V3.3960	Hypothetical protein, conserved	N.D.	
Lin303D2	2.62	1.4 ± 0.1	0.006	GS599223	0	0	b	LinJ07 V3.0420	Homoserine dehydrogenase-like protein	N.D.	
								LinJ07 V3.0430	Acetylornithine deacetylase-like protein	N.D.	
Lin308A8	2.64	1.4 ± 0.2	0.036	GS599224	0	0	b	LinJ30 V3.0700	40S ribosomal protein S30, putative	N.D.	
								LinJ30 V3.0710	40S ribosomal protein S30, putative	N.D.	
								LinJ30 V3.0720	NUDC-like protein	N.D.	
								LinJ30_V3.0730	Hypothetical protein, conserved	N.D.	
								LinJ30 V3.0740	CDC16, putative	N.D.	
Lin102G3	-3.15	1.7 ± 0.1	0.001	GS599225	0	0	b	LinI24 V3 0200	Transcription elongation factor putative	ND	
		= 0.1				, , , , , , , , , , , , , , , , , , ,	1	LinJ24 V3.0210	Hypothetical protein, unknown function	N.D.	
Lin198B2	-1.92	0.9 ± 0.1	0.008	GS599226	-	5e-171	с	LinJ11 V3.0200	Hypothetical protein, conserved	N.D.	
Lin228F6	-3.47	1.8 ± 0.2	0.036	GS599227	0	0	a	LinJ32 V3.1740	Hypothetical protein, conserved	N.D.	
Lin228H3	-1.84	0.9 ± 0.2	0.024	GS599228	3e-163	0		LinI31_V3 3250	Phosphatidylethanolaminen-methyltransferase-like protein	ND	
2.11220115	1.04	0.7 ± 0.2	0.024	33377220	50 105	v	, "	LinI31_V3 3260	Methylcrotonyl-CoA carboxylase biotinylated subunit	ND.	
L:-200D 1	2.40	12+61	0.002	C8500220	0	6. 104		Lings1_13.5200	protein-like protein	N.D.	
L1n290B4	-2.40	1.3 ± 0.1	0.002	GS599229	0	6e-124	С	LinJ2/_V3.2470	Hypothetical protein, conserved	N.D.	

Table S7. Clones that probably contain up-regulated gRNA genes from minicircle sequences under TPS.

Clone	F	$Log_2F \pm SD$	р	GenBank	Content
Lin13F11	1.87	0.9 ± 0.3	0.044	GS599230	Contig 957. Possible minicircle sequence.
Lin100B6	1.80	0.8 ± 0.2	0.024	GS599231	Contig 692. Possible minicircle sequence.
Lin133H11	1.79	0.8 ± 0.3	0.048	GS599232	Contig 200. Possible minicircle sequence.
Lin129G10	1.75	0.8 ± 0.3	0.031	GS599233	Contig 957. Possible minicircle sequence.
Lin199G2	1.95	1.0 ± 0.2	0.016	GS599234	Contig 957. Possible minicircle sequence.
Lin228A8	1.77	0.8 ± 0.2	0.026	GS599235	Contig 957. Possible minicircle sequence.
Lin233A12	1.77	0.8 ± 0.2	0.045	GS599236	Contig 957. Possible minicircle sequence.
Lin243H9	1.79	0.8 ± 0.4	0.048	GS599237	Contig 957. Possible minicircle sequence.
Lin245A6	1.99	1.0 ± 0.0	0.000	GS599238	Contig 957. Possible minicircle sequence.
Lin245C8	1.73	0.8 ± 0.2	0.028	GS599239	Contig 957. Possible minicircle sequence.
Lin248E7	1.82	0.9 ± 0.3	0.048	GS599240	Contig 957. Possible minicircle sequence.
Lin251A4	1.71	0.8 ± 0.2	0.026	GS599241	Contig 878. Possible minicircle sequence.
Lin266B7	1.71	0.8 ± 0.3	0.040	GS599242	Contig 957. Possible minicircle sequence.
Lin269A8	2.31	1.2 ± 0.1	0.003	GS599243	Contig 957. Possible minicircle sequence.
Lin276A11	1.73	0.8 ± 0.2	0.019	GS599244	Contig 957. Possible minicircle sequence.
Lin276B2	1.78	0.8 ± 0.2	0.014	GS599245	Contig 957. Possible minicircle sequence.
Lin276C2	1.75	0.8 ± 0.3	0.047	GS599246	Contig 957. Possible minicircle sequence.
Lin278E6	2.10	1.1 ± 0.3	0.022	GS599247	Contig 878. Possible minicircle sequence.
Lin310H6	1.95	1.0 ± 0.4	0.049	GS599248	Contig 692. Possible minicircle sequence.

Table S8. Clones that probably contain up-regulated gRNA genes from minicircle sequences under PS.

Clone	F	$Log_2F \pm SD$	Р	GenBank	Content
Lin24H3	6.28	2.7 ± 0.4	0.021	GS599197	Contig 957. Possible minicircle sequence.
Lin91D8	2.18	1.1 ± 0.0	0.000	GS599249	Contig 957. Possible minicircle sequence.
Lin137H1	2.70	$1.4 \pm 0,1$	0.002	GS599250	Contig 957. Possible minicircle sequence.
Lin166C12	3.24	1.7 ± 0.1	0.001	GS599251	Contig 957. Possible minicircle sequence.
Lin210F10	12.41	3.6 ± 0.3	0.002	GS599252	Contig 957. Possible minicircle sequence.
Lin233A12	7.58	2.9 ± 0.2	0.001	GS599253	Contig 957. Possible minicircle sequence.
Lin239F3	8.92	3.2 ± 0.2	0.005	GS599254	Contig 878. Possible minicircle sequence.
Lin245F3	4.41	2.1 ± 0.1	0.001	GS599255	Contig 957. Possible minicircle sequence.
Lin269A8	4.69	2.2 ± 0.1	0.003	GS599256	Contig 957. Possible minicircle sequence.
Lin274D10	3.98	2.0 ± 0.3	0.014	GS599257	Contig 957. Possible minicircle sequence.
Lin276A11	1.81	0.9 ± 0.1	0.002	GS599258	Contig 957. Possible minicircle sequence.
Lin280H3	2.68	1.4 ± 0.2	0.003	GS599259	Contig 957. Possible minicircle sequence.
Lin285B2	1.76	0.8 ± 0.0	0.000	GS599260	Contig 957. Possible minicircle sequence.
Lin287B7	2.04	1.0 ± 0.1	0.001	GS599261	Contig 957. Possible minicircle sequence.
Lin305B6	6.36	2.7 ± 0.2	0.004	GS599262	Contig 957. Possible minicircle sequence.
Lin310D6	3.85	1.8 ± 0.0	0.000	GS599263	Contig 957. Possible minicircle sequence.
Lin312F1	3.08	1.5 ± 0.2	0.017	GS599264	Contig 957. Possible minicircle sequence.

ADDITIONAL FILE 4

Figure S3. GO combined molecular function DAG of genes up-regulated under TPS. Adapted from the corresponding DAG created with BLAST2GO. In this graph, each node represents a GO molecular function with an alpha score, both inside a box. Thick-lined boxes represent GO terms directly associated with the analysed set of genes, while thin-lined boxes correspond to GO terms that are not directly annotated for any of the genes but are parents in the ontology of the specific GO terms annotated for them. Each GO number appears above the thick-lined boxes to the right of a code preceded by uTPS, which relates the node with gene annotations in Table 1.

DAG OF UP-REGULATED MOLECULAR FUNCTIONS UNDER TPS

Figure S4. GO combined molecular function DAG of genes down-regulated under TPS. Adapted from the corresponding DAG created with BLAST2GO. In this graph, each node represents a GO molecular function with an alpha score, both inside a box. Thick-lined boxes represent GO terms directly associated with the analysed set of genes, while thin-lined boxes correspond to GO terms that are not directly annotated for any of the genes but are parents in the ontology of the specific GO terms annotated for them. Each GO number appears above the thick-lined boxes to the right of a code preceded by dTPS, which relates the node with gene annotations in Table 2.

ADDITIONAL FILE 5

Figure S5. Clusters of genes differentially regulated under TPS, TS and PS. Fourteen clusters have been observed according to the gene expression profile. In this additional figure, clone identification has been included for each box. Differential regulation of genes corresponding to these clones are described in tables 1, 2 and 3, and in the additional file 3.

Clones without significant differences between experimental groups (SAM)

	Lin137110
	Lin166C12
	Linl88B6
	Lin206E10
	Lin235B7
	Lin267B9
	Lin117C12
	Lin109B3
	Lin298F2
	Lin49611
	Lin70H12
	Lin156B2
	Lin10E8
	Lin17D1
	Lin90B6
	Lin38F6
	Lin21D12

ADDITIONAL FILE 6

Figure S6. Amino acid sequence alignments of gene copies in tandem that differ in the N-terminus or internal regions. (A) Glucose transporters. (B) 3' nucleotidase/nuclease.

B

Table S9. Primers for qRT-PCR reactions for TPS, TS, PS. Annealing temperature for each oligonucleotide pair was optimized by temperature gradients checked by agarose gel electrophoresis, ensuring the absence of primer dimmers and unspecific sequences together with melting curve analysis. Sequence specificity was checked by product sequencing. Thermal cycling was: 95 °C for 5' + 40x (95 °C for 30'' + 50-60°C for 30'' + 72°C for 30'' data acquisition) + 72 °C for 5' + melting curve [95 °C for 1' + 80x (55 \rightarrow 95 °C for 10'' (+0.5 °C/step) with data acquisition)].

Annotation	Annotated gene function
LinJ31_V3.0460	Amastin, putative
LinJ24_V3.1240	Translation factor SUI1, putative
LinJ22_V3.0480	Ubiquitin-conjugating enzyme-like protein
LinJ33_V3.2470	Succinyl-CoA:3-ketoacid-CoA transferase, mitochondrial precursor, putative
LinJ05_V3.0350	Trypanothione reductase
LinJ17_V3.1150	Esterase-like protein
LinJ08_V3.0700/10	Amastin-like protein
LinI30 V3.0640	Ribosome biogenesis regulatory protein (RRS1), putative
LinI28 V3.2060	Zinc transporter, putative
LinI31 V3.0590	Amino acid transporter aATP11, putative
LinI14 V3 1440	Pteridine transporter
LinJ14_V3 1450	Myo-inositol-1-phosphate synthase
LinJ30 V3 0630	Nitrate reductase nutative
Lin122 V3.0680	3'a2rel-related protein
LinJ22_V3.0000	Custoine pontidace Clan CA family C2 nutative
Linj31_V3.0430	Coronin putativo
Linj25_V5.1400	L(Contraction libraretain
Linj22_V3.1310	1/0 autoantigen-inke protein
LIIIJ35_V3.1230	Short chain denydrogenase, putative
Linj26_V3.1000	Dynein neavy chain, putative
Linj23_V3.1560	Latnosteroi oxidase-like protein
LinJ06_V3.1330	Coproporphyrinogen III oxidase, putative
LinJ06_V3.1340	Protoporphyrinogen oxidase-like protein
LinJ28_V3.2380	2,3-bisphosphoglycerate-independent phosphoglycerate mutase-like protein
LinJ28_V3.2390	Cyclin dependent kinase-binding protein, putative
LinJ31_V3.2370	3'-nucleotidase/nuclease, putative
LinJ31_V3.2380	3'nucleotidase/nuclease precursor, putative
LinJ36_V3.6550	Glucose transporter lmgt2, putative
LinJ36_V3.6560	Glucose transporter, putative
LinJ06_V3.1320	Pteridine transporter, putative
LinJ30_V3.2780	Superoxide dismutase, putative
LinJ09_V3.0650	Serine peptidase family S51, peptidase E, putative
LinJ07_V3.0150	Acyl-CoA dehydrogenase, mitochondrial precursor, putative
LinJ07_V3.0170	Maoc family protein
Lin[07_V3.0940	Cytochrome b5-like protein
Lin[31_V3.1240	Vacuolar-type proton translocating pyrophosphatase 1, putative
Lin118 V3.1080	Vacuolar protein sorting complex subunit, putative
LinI19 V3.0710	Glycosomal malate dehydrogenase
LinI19 V3 0090	Fibrillarin nutative
LinJ31 V3 1640	Dinthine synthese nutative
LinJ31_V3.1660	Putative 3-ketoacyl-CoA thiolase-like protein
LinJ31_V3.1000	DEAD /DEAH box belicase nutative
LinJ32_V3.3070	Clathin coat assembly protein putative
Linj24_V3.0020	Denhospho-CoA kinasa Butative
Linj22_V3.1300	Ilbiquitin /ribosomal protein \$27a, putative
Linj14_V3.1330	Adamilate melane like metain
Linj26_V3.0090	Ubiautia liba antein autotia
Linj30_V3.0370	Uset shash astria has 70 sutation
Linj20_V3.3000	Process protein hsp/o. putative
LIIIJ30_V3.3190	Pre-mknA branch-site protein p14
Linj18_V3.0830	Periodic tryptopnan protein 2-like protein
LinJ23_V3.1610	Acetyltransferase-like protein
LinJ32_V3.0460	40S ribosomal subunit protein S2
LinJ32_V3.0470	Prostaglandin F synthase, putative
LinJ15_V3.0170	Protein phosphatase 2C
LinJ15_V3.0180	Serine/Threonine protein kinase, putative
LinJ24_V3.1510	Multi drug resistance protein-like
LinJ24_V3.1380	Translation initiation factor IF2, putative
LinJ21_V3.0800	60S ribosomal protein L36
LinJ32_V3.3110	Nucleoside diphosphatase kinase b
LinJ32_V3.3120	DNA replication licensing factor
LinJ32_V3.3130	ATP-binding protein-like protein
LinJ30_V3.0550	Glycosyltransferase family 28 protein, putative
LinJ30_V3.0560	Nuclear cap binding protein
Lin[30_V3.0570	Hypothetical protein, conserved
Lin[35_V3.2030	Ankyrin repeat protein, putative
Lin135 V3.2040	60S ribosomal subunit protein L32
Lin119 V3.0170	Mitogen activated protein kinase
LinI30 V3.0790	Hypothetical protein, conserved
LinI30 V3 0800	4-methyl-5-(hetahydroxyethyl)thiazole mononhosphate synthesis protein
LinI13 V3 1450	Alpha tubulin nutative
Lin127 V3 0950	Hypothetical protein-similar to OGIcNac transforase
LinI34 V3 1150	Amostin-like surface protein
Lin122 V2 1400	Cleavers and polyadenylation energificity for the liber and the
LIIIJ32_V3.1400	Describe and polyadenyiation specificity factor-like protein
LIIIJ14_V3.1500	r nosphogiycan beta-1,3-galactosyltransferase
LIIIJ31_V3.1980	ABC transcription-like protein nupm1, putative
LIIIJ25_V5.0230/40	Abu transporter, putative
LinJ25_V3.2570	Phosphogiycan beta-1,3-galactosyltransferase 4
LinJ34_V3.2190	Glycosyltransferase-like protein
LinJ34_V3.2200	DnaJ-like protein
LinJ29_V3.2420	Enoyl-CoA hydratase/isomerase-like protein
	INA polymorase theta polymorase domain putative

Annotation

Annotated game function

Forward (5'-3') GCATTTCCGCATAGGCCAGA GTTGATGCGGCGGAAGTTAA GACGAAGAGCTGGCCGAGAT CGGCCACATGAACCTGACGAT ACGGCGAGGTTCTGGGTGTT TCGGCAGCTTCACCGATGGT GGTCAGGCGTTCGCTGTCAT CGAGGTGAAGCCTGGGTACA GAGCTTGCGCTGATGCTTGT GCTTTTTGTGCCGAACGTGAA GCCGCTGACGAAGCCACTGA CGCCTCACAGCGCATTTGTCT GGCCGCACGTCTGGGTACTT ACGCGGTACAGCGAAAGGT TTGCCCAATACCCGCATTTT CACAGCGGTGCATCTGGTGT CGAGGAGGTGGACGCTCTC CACCAAGTCCGCTGTCAACAT TCTTTCCGCAAGGGTTTCTCA TCCACCACGAACTGTCCAACT CCGGCGCAAGAACACACCATA GAAGGCGAATGCAGCAGAGAA GCTACAGGCGGGACGCATAAT ATCGACCCGACAGAGCTGCAT GGCTGAGGTGCACAACCACT CAACACCACCATTGGGCACA TGACGATCCTGCTTGGGATT CGGCAAGGCTCCCTCATAAT CTGGGTGACGCGATTGTGTA CCCTATCGGCAGCGACTTGA GCAATACCTCGCCCACTTCA GGGGGAACCGTTAGCTTTGA GATTGCCGAAGTCACCCAGTT TGCACAACCTCGTGCTGGAT ATGGCTATCTCGGCCTCCAA AGATTGAGACGCGGATGGAAT ACGGGTAAACCGCTGGTGTA ATCAAGGCGAACTGCATCGA CCTGGAGGTGGAGGGCTACA GGCTGAAAAGGCGGGGTACT AACGTGCGTGGACTGGATCT GGGCGTGGCAAGGCTAATTA GCAGCGTATCGGTAGCCAGA ACGCAGGGCAACCTCTTCTT TACCTCTTCCGCAGCGTTGA AGCAACCCCCAGTTTATGCA GAGGCGGCGAAGGAGGAGTA GGGTCATCCTCCATCACGAA CTCCTGCTCCACTCCAACGA CACGGTGCCCTTCACCAAAA CGGCTACTGGGGCAACAAGA GAGCCGCACCACCTTGATGA GAGGTAGCGCAGCAGCTTGT CCGAAGCCCAGAGGTGATACT CGGCGAGGCGGACCTTTATA CGACTCGCTTGAATGCCAACT CGCGCTGTGAAGGCTATCAT GACTCACAGCCTGGCACGAT GGAGCGCGATGCTGAGCTTT CTAGAGGTTGCGGAGCCAAA CCGTGTGGTCGAAGCGTTGT CACGGACTCGACGGGTCACT ATGCCGCTGTGCTTCAACTT GCCCCGTCCTCATCGAGGTA CCGATCCAAAACGTGCAGGA CCTGCAGCACCCGTATTTCA CCGAGCCACCAACAAGCGTCA ATGCCAGGAGCCGTCCATCT ACGTACCGCCAGCTGTTCAA GATCGGGGCTGCTCGAAGGAT GCGTCGGCTGTCATCTCCAT CAGGAGGAGCTGAACGCCAT TCCGCGCCTCTTCTTCCTTT TCGAGCGCAGCAATCTGGAA GGGAGCGGGTTCATCCTGAT TAGACCGTCGCCTCATCCAA TGGCGTACTCGAAGCCGGTT AACACCTCGGCGACCACTTT GTGGGTTCTCTTGGGCAACA AAGTCCCTCATCGCCGAGAA

Reverse (5'-3') CAGAGCCAGCGGAGCAAAGA ACCGTCGAGGCCATTGTGAA TTCAGCAGCGCCACGATCAT GCGAACACCTCTCCACAAGCT TCCGATGGTGCTGTGGAAGT TGACTCACCATGCGCTGCTT CGGAAGCCAGAGCAGCAGTA CGCTTGTTGTGCTCCTCCTT GTGCAGGTCGTGCGAGAAGT CCACCCTCCAGCGTACATCA TCGCGCTTCGTGTCGTTGAA ACCGGGACAACCGAGGAAGA CGCGTCAGAGGAGATGGAGT CAGCGTCGAGGTTCAGCCAA TGTACGCCACATCCGAGGAA GACTGAGTAGGGCCTTTCCA CGCACACCCAGGTCACCATA TGCCTCCGTAGATTGAGCA TCCTCCGGCAGCTCCTAACA CTCGTACACGGGGTCCACATA GACTGGAGGCCGAACTTCGT GCCGCTGACATGCCGACTAT GAGTGGAATGATCCGCGATGA CGTCTCGGCGTTGTTGAAACT GGGCGACGTGCTCATAGGAA TAAATCCAGTGCGATCGGCT CAGGCCAAGACTGCCCATGA CGAGGAATCTGGTGCGGTGT GCTGTTGAAGCCAGCCAAGA GCCGCAAGTGGGTAGTCGTA CAAACGGATCCAGCACCACT GGCCGCGTAGACGTACTGCT TCGCTCGGGTTCTTAGGGTCT GCCGGCGTAGTCAAAGATGA GCCGGGCCTGAGGTATCCT CGTTAGCAAATCGGGGTCGTT ACTCGCTGCCCTTCACGATA AGAAGCTGAAGGATTCCGGC GTAGCAGGGGGGGATGGTGAA CTTTTTGCCCGAACTCCGAA ATGCCGCTTCTCCACACGAA GGCGGATCTCTGCGAAGAAA CAACACACGCGCACACAACT TTCGTGAAGATGCGCTTCTT CAGGCCGACATCGCTCACTA AGCTTCCCATCATTGCCATT CCGCCCATGCTCTGGTACAT GTGCGCCGACTGCATTATTT ATGAAAGAGGCTGCGGTGAA CGGGCAGTGCTCCATGATGT ACGGCGACGGAACCACACTT GCGCCTTCTGCTGGAAGTGA GGCCTTTCGCTTTCTTGTCGT CCCGAGAGTGGCTTCGATCT CGGCGACCTCACATTCTTGA GCGAGGTACGCACCAATGGA CTTGCCGACACGCAGAAACT CTCATCCGCCTTGAACCAAAA TGGGTCAACGTAGGGGTGAA AGTAACTTGCCGTAGACGCG CACCGTGTGGTCGAAGCGTT GCAGCCCACATCCCAGCTAA GGCGATGAAGGGAATCATGA CCTCGCCCATCAGCAGCAGT ACGATGGCCTTGCGAGACCT GCCCACATTCGACATCGACT TGATGCCCCAACTGTCCGAAT CAGCAGCCCCATAGGAGCAA CTGGAGACCCGTGCAGTTGT GATCCACGAGGGCGACGCTA GCCCAAGGTGAAGATGCCAA GCACCGCAAAGAGAATGGAA CCTTCACGGCCTCCGCATA TCCACCACGGACGGCATATT TGCAGCCGGTGCGCGATCGT TGCATGAGCAAGCTCGCATA GCCGCACTTTGACGGGTCTT GCGAGAGACACCTAATTGAA CGGCATCAGCTCCTCGTGTT

AGCAGGGAGGTAAGGCAGAA