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A B S T R A C T   

The present study evaluated the efficiency of a semi-closed, tubular, horizontal photobioreactor (PBR) to treat a 
mixture of irrigation and rural drainage water, focusing in the removal of different contaminants of emerging 
concern (CECs), and evaluating the environmental impact of the resulting effluent. Target CECs included 
pharmaceuticals, personal care products and flame retardants. Of the 13 compounds evaluated, 11 were detected 
in the feed water entering the PBR, and diclofenac (DCF) (1107 ng L− 1) and N,N-diethyl-toluamide (DEET) (699 
ng L− 1) were those present at the greatest concentrations. The best removal efficiencies were achieved for the 
pharmaceuticals diazepam (94%), lorazepam (LZP) (83%) and oxazepam (OXA) (71%), and also for ibuprofen 
(IBU) (70%). For the rest of the CECs evaluated, attenuation was similar to that obtained after conventional 
wastewater treatment, ranging from basically no elimination (carbamazepine (CBZ) and tris-(2-chloroethyl) 
phosphate (TCEP)) to medium efficiencies (DCF and tributyl phosphate (TBP) (50%)). Environmental risk 
assessment based on hazard quotients (HQs) resulted in HQ values < 0.1 (no risk associated) for most of the 
compounds and most of the trophic levels considered. Values between 1 and 10 (moderate risk) were obtained 
for tonalide (AHTN) (fish) and CBZ (invertebrates). The most sensitive trophic level was green algae, whereas 
fish and aquatic plants were the most resilient. Our results suggest that microalgae-based treatments could 
become a green, cost-effective alternative to conventional wastewater treatment regarding the efficient elimi-
nation of these contaminants.   

1. Introduction 

Agricultural activities and animal feeding operations (without 
regulated slurry or manure pits) are becoming more intensive in order to 
satisfy the also increasing food demand, leading to a constant raise in the 
use of veterinary pharmaceuticals in cattle farming activities, and 
inorganic fertilizers and/or synthetic pesticides in agriculture (Oerke, 
2006; Popp et al., 2013). This results in relevant amounts of diffuse 
pollution affecting both surface and groundwater systems (Dolliver and 
Gupta, 2008; García-Galán et al., 2010; Sabourin et al., 2009). 
Furthermore, crops irrigation with reclaimed wastewater has become a 
common practice in countries under a significant water scarcity (such as 
those in the Mediterranean area). Wastewater effluents are considered 
as one of the main entrance pathways for a broad variety of organic 

micropollutants into the aquatic environment, as these are not fully 
removed even after tertiary and/or advanced treatments such as UV 
radiation, membrane bioreactors (MBR), reverse osmosis (RO) or 
nanofiltration (NF) (Biel-Maeso et al., 2018; Mamo et al., 2018; Racar 
et al., 2020). In consequence, this practice can only contribute to in-
crease the environmental occurrence of the so-called contaminants of 
emerging concern (CECs), which include compounds such as pharma-
ceuticals and personal care products (PPCPs), fundamental in our daily 
routine, but also high production volume chemicals such as plasticizers, 
preservatives or flame retardants, which are frequently used in indus-
trial processes (Krzeminski et al., 2017; Loos et al., 2009; van Wezel 
et al., 2018). Currently, there is no European legislation regarding 
reclaimed water quality and CECs. Spain is the European country with 
the highest volume of wastewater reuse, and this practice is regulated by 
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the RD1620/2007, describing the water quality required depending on 
its final use. Nevertheless, CECs are not included. Last of all, the appli-
cation of cattle manure or biosolids from urban wastewater treatment 
plants (WWTPs) as organic amendment should not be neglected, as these 
may still contain residues of non-polar CECs (Langdon et al., 2010; 
Sabourin et al., 2009). Overall, depending on the polarity of these pol-
lutants, irrigation or storm events can lead to the translocation of these 
CECs from the crop fields (Ccanccapa et al., 2016; Langdon et al., 2010; 
Postigo et al., 2016). Drainage channels (and also open irrigation 
channels) can receive a large amount of this rural run-off; these channels 
usually discharge into rivers, as their diversion into main collectors to-
wards WWTPs is usually unfeasible. Thus, these pollutants eventually 
spread in aquatic ecosystems and may indirectly affect a huge variety of 
non-target species, endangering the natural equilibrium of river and 
streams (García-Galan et al., 2017; Proia et al., 2013). For instance, 
bioaccumulation of anti-inflammatories such as diclofenac (DCF) and 
ibuprofen (IBU) has been observed in larvae of caddisflies and leeches at 
concentrations up to 183 ng g− 1 (Huerta et al., 2015), and the bio-
accumulation of the anxiolytic oxazepam (OXA) in the freshwater 
shrimp Gammarus fossarum was also recently demonstrated (Maria Jesus 
García-Galan et al., 2017). Furthermore, the corroborated spread of 
antibiotic resistance genes and the endrocrine disruption caused by the 
plasticizer bisphenol A and other synthetic hormones in certain fish 
species are amongst the most critical environmental issues to tackle 
nowadays (Cacace et al., 2019; Huerta et al., 2016). 

Nature-based, low-cost treatment systems, such as constructed wet-
lands (CWs) or microalgae-based treatments, are gradually becoming a 
feasible and more appropriate alternative to conventional WWTPs for 

small populations in rural areas. These alternative technologies are 
being intensively investigated and, so far, promising results regarding 
CECs removal have been observed, performing both as secondary and 
tertiary treatments (Ávila et al., 2014; García-Galán et al., 2018; Mata-
moros et al., 2015; Vassalle et al., 2020a). Specifically, microalgae-based 
treatments have received a renewed consideration due to their high 
efficiency removing nutrients and organic matter within a more sus-
tainable operation than conventional wastewater treatments. Micro-
algae biomass grows fixating CO2 and assimilating the nutrients (mostly 
nitrogen (N) and phosphorus (P)) present in the influent wastewater. 
Oxygen is generated through photosynthesis and used up by heterotro-
phic aerobic bacteria to degrade the organic matter present in the water 
(including CECs). Microalgae systems have the dual capacity of treating 
wastewater efficiently and producing microalgae biomass which, after 
an appropriate harvesting/separation technique from the aqueous 
phase, can be further profited to produce bioenergy (biogas) (Zhu, 2015) 
or other added-value products such as pigments, biofertilizers or even 
bioplastics (Arashiro et al., 2020; Khan et al., 2019; Rueda et al., 2020). 
In consequence, if this biomass is managed properly, the waste gener-
ated during microalgae treatment is considerably reduced, as well as the 
operation and maintenance (O&M) costs when compared to conven-
tional systems, as external aeration is no required due to photosynthesis. 

There are two basic types of microalgae treatment systems, open and 
closed reactors. Open systems or high rate algal ponds (HRAPs) are the 
most frequently used systems, mainly due to their lower O&M costs, but 
cultures are more exposed to external contamination, and the different 
growth and environmental parameters (temperature, sunlight) can 
hardly be regulated (Park and Craggs, 2010). Closed systems are 

Fig. 1. Location of the province of Barcelona (1), the Llobregat River (2), and the Baix Llobregat Agricultural Park (3) (highlighted in red). Agròpolis (UPC 
experimental campus) approximated location is pointed by the red star. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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presented as horizontal tubular photobioreactors (PBRs), as vertical 
cylinders (column PBRs) or flat plate PBRs (consisting of flat, thin 
panels). They are mostly used for commercial production of microalgae 
biomass (growing single, pure cultures), as the biomass yields are 
typically higher, microalgae cultures are more protected against 
external contamination and control of the operation parameters is bet-
ter. Yet, the costs of O&M are higher (higher energy requirements for 
mixing), dissolved oxygen (DO) may accumulate within the tubes to 
toxic levels and biofouling may also appear in their inner walls. 
Recently, an innovative design of a hybrid or semi-closed PBR 
(combining the advantages and avoiding the limitations of both open 
and closed systems) has been tested, evaluating its efficiency in waste-
water bioremediation and biomass yield (Díez-Montero et al., 2020) and 
also in the removal of different antibiotics, sunscreens, plasticizers and 
pesticides (García-Galán et al., 2020b, 2018; Vassalle et al., 2020b), with 
favorable outcomes. To the author’s knowledge, the use of closed or 
semi-closed PBRs is not frequent, as HRAPs are predominant in waste-
water treatment systems. 

The present study aims to investigate the capacity of a semi-closed, 
horizontal tubular PBR, acting as a tertiary treatment and operating at 
full-scale, to remove 13 different CECs from irrigation water, including 6 
pharmaceuticals, 4 personal care products, 2 flame retardants and one 
surfactant. The different removal pathways within the PBR have been 
discussed, and the potential ecotoxicity of the PBR effluent has been 
evaluated, estimating the risk quotients associated to the CECs and 
ensuring a safe reclaimed wastewater reuse in irrigation or final 
discharge in receiving, natural water bodies. 

2. MATERIALS and methods 

2.1. Description and operation of the semi-closed tubular horizontal PBR 

An innovative, new prototype of a semi-closed tubular horizontal 
PBR was conceived, deployed and validated within the framework of the 
H2020 EU project INCOVER “Innovative Eco-technologies for Resource 
Recovery from Wastewater” (http://incover-project.eu/GA 689242). 
Three PBRs were the core of a more complex pilot plant at demonstrative 
scale, which main objective was to use agricultural drainage water and 
domestic wastewater as a valuable resource to produce different added- 
value products. The plant was located in the Agròpolis experimental 
campus of the Universitat Politècnica de Catalunya-BarcelonaTech 
(UPC), next to the agricultural area of the Llobregat Delta that belongs 
to the Baix Llobregat Agrarian Park (Fig. 1). The park comprises 2900 Ha 
of fruit and vegetable crops located in the alluvial plains of the Llobregat 
Delta and the lower valley of the Llobregat River (Montasell i Dorda and 
Callau i Berenguer, 2008). 

A detailed description of the PBRs, the start-up of the plant and the 
main outcomes regarding wastewater treatment can be found elsewhere 
(García et al., 2018; Uggetti et al., 2018). Briefly, each PBR consisted of 
two open tanks of polypropylene connected by 16 horizontal tubes 
(Fig. 2). The useful volume of each PBR was 11.7 m3. Paddlewheels were 
installed in the middle of each open tank to promote and favor the ho-
mogeneous distribution and mixing of the liquor and also the release of 
the excess DO accumulated along the closed tubes. They also contrib-
uted to create a water level difference (0.2 m) between both tanks, 
which made the mixed liquor flow by gravity from one tank to the 
opposite one (Fig. 2). The PBRs operated under a hydraulic residence 
time (HRT) regime of 5 d (feeding of 2.3 m3 d− 1 approximately). Online 
sensors of pH (Hach Lange Spain S.L.), DO (Neurtek, Spain) and tem-
perature (Campbell Scientific Inc., USA) were installed in one of the two 
open tanks of the PBR. 

2.2. Sampling strategy 

The three PBRs were fed daily with water from an open channel near 
the facilities, which carried both reclaimed wastewater from an urban 

WWTP nearby and agricultural run-off from the surrounding agricul-
tural land (from now on, irrigation water). The WWTP serves 375,000 
PE and has been designed to treat 64,000 m3 d− 1. Wastewater treatment 
consisted of a primary physicochemical treatment, followed by MBR and 
disinfection by means of UV and chloration. Biosolids are not applied in 
the crop fields of this area. The water collected from the channel was 
mixed with domestic wastewater from a septic tank (7:1, v:v), in order to 
provide more nutrients for biomass growth. This feed water was mixed 
in a homogenization tank with constant stirring, right before the feeding 
operation (it was filled up anew every day). Sampling was carried out 
during two consecutive weeks during summer (July), three days per 
week and always at the same time, 10 a.m. Feed water of the PBR (PBR 
influent) and effluent mixed liquor were taken in one of the PBRs (n = 12 
samples). For physicochemical characterization of the samples, these 
were taken in PVC bottles and directly analyzed in the laboratory. For 
CECs analyses, samples were collected in amber glass bottles and 
immediately filtered through 0.45 μm PVDF membrane filters (Milli-
pore, USA) and frozen upon arrival to the laboratory (amber glass 
bottles). 

2.3. Analytical methodologies 

2.3.1. Samples characterization 
Both influent and effluent samples were analyzed on the following 

wastewater quality parameters: DO and temperature (EcoScan DO 6, 
ThermoFisher Scientific, USA) and pH (Crison 506, Spain) which were 
also measured on-site; turbidity (Hanna HI 93703, USA); total sus-
pended solids (TSS), volatile suspended solids (VSS), alkalinity, chemi-
cal oxygen demand (COD) following Standard Methods 
(APHA-AWWA-WEF, 2012); NH4

+-N according to Solórzano method 
(Solórzano, 1969). The ions NO2

− -N, NO3
− -N and PO4

3–P were measured 
by ion chromatography (ICS-1000, Dionex Corporation, USA). Total 
carbon (TC), total phosphorus (TP) and total nitrogen (TN) were 
measured by a TOC analyzer (multi N/C 2100S, Analytik Jena, Ger-
many). All the analyses were done in triplicate and results are given as 
average values. Mixed liquor samples were examined under an optic 
microscope (Motic, China) for qualitative evaluation of microalgae 
populations, employing taxonomic books and databases for their 
identification. 

2.3.2. CECs analysis 
Thirteen target compounds were selected based on their occurrence 

in WWTP effluents and surface water bodies (Couto et al., 2019; Loos 
et al., 2013; Margenat et al., 2017; Serra-Roig et al., 2016). These 

Fig. 2. Scheme of the semi-closed tubular closed photobioreactor used in this 
study. 1:inflow from the homogenization tank; 2: paddle wheel; 3: direction of 
the flow within the tubes; 4: outflow to the storage tanks. samples were taken in 
the inlet (1) and 4 (effluent). 
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included 6 pharmaceuticals (diazepam (DZP), carbamazepine (CBZ), 
DCF, IBU, lorazepam (LZP) and OXA), 2 organophosphate flame re-
tardants (tributyl phosphate (TBPh) and tri-(2-chloroethyl) phosphate 
(TCEP)), 3 fragrances (galaxolide (HHCB), tonalide (AHTN) and methyl 
dihydrojasmonate (MDHJ), 1 insect repellent (N,N-diethyl-toluamide 
(DEET)) and 1 surfactant (2,4,7,9-tetramethyl-5-decyne-4,7-diol, also 
known as Surfynol-104 (TMDD)). Further information on their 
physico-chemical characteristic are given in Table S1 of Supplementary 
Material. Analytical standards for all the compounds were purchased 
from Sigma–Aldrich (Steinheim, Germany), including the deuterated 
compounds atrazine-d5, mecoprop-d3, tonalide-d3 and dihydroCBZ. 
Trimethylsulfonium hydroxide (TMSH) was obtained from Fluka 
(Buchs, Switzerland). Strata-X polymeric cartridges (200 mg) were 
purchased from Phenomenex (Torrance, CA, USA). The 1–2 μm glass 
fiber filters (∅ 47 mm) and 0.45 μm PVDF membrane filters were ob-
tained from Whatman (Maidstone, UK) and (Millipore, USA), 
respectively. 

2.3.2.1. GC-MS-MS analysis. For the determination of the different 
target analytes, samples were analyzed by gas chromatography coupled 
to mass spectrometry (GC-MS/MS), adapting the methodology by Mat-
amoros and Bayona (2006). For both influent and effluent water sam-
ples, 100 mL were preconcentrated using a previously activated 
polymeric solid-phase extraction cartridge (200 mg Strata X, Phenom-
enex, US). Further information on pretreatment and GC-MS/MS meth-
odology validation and application is given elsewhere (Margenat et al., 
2017; Matamoros and Bayona, 2006). 

2.4. Environmental risk assessment 

In order to evaluate the potential ecotoxicological risk of those CECs 
still present in the PBR effluent, hazard quotients (HQ) have been esti-
mated as indicated in equation (1). 

[1]:  

HQ=
MEC
PNEC

(1)  

where MEC is the measured environmental concentration, and PNEC is 
the predicted-no effect concentration. When PNEC data are not avail-
able, alternative PNECs can be derived by dividing the toxicity endpoint 
values found in the literature (EC50 or LC50) by an uncertainty factor of 
up to 1000 (Sanderson et al., 2004). HQ values < 0.1 mean that no 
adverse effects are expected. When 0.1<HQ<1, the risk is low but it 
should not be neglected; when 1<HQ<10, a moderate risk is implied, 
and HQ > 10 meanS a relevant ecological hazard (EMEA, 2006). 

Eventually, for the purpose of evaluating the overall ecotoxicity risk 
of the PBR effluent, cumulative HQs were calculated for each trophic 
level considered, adding all HQs calculated for each individual CEC 
detected in the effluent. 

3. Results 

3.1. Water quality parameters 

On-line measurements of temperature, DO and pH are given in the 
Supplementary Material (Figure S1). The photosynthetic activity of 
microalgae caused daily variations of DO and pH, characteristic of these 
systems, with DO ranging from 8 to 14 mg L-1 and pH from 8 to 10.5. 
The mixed liquor temperature increased during daylight, reaching 
values up to 41 ◦C, due to the high solar radiation and ambient tem-
perature. At night, the mixed liquor was cooled, decreasing to approx-
imately 24 ◦C. 

Data on the performance of the PBR were already published else-
where (Vassalle et al., 2020b), and are included in the Supplementary 
Material (Table S2). Briefly, the average biomass productivity in the PBR 

was low (6.9 ± 0.7 g VSS m− 2 d− 1) due probably to the low concen-
tration of total inorganic nitrogen (TIN), N–NH4

+ and phosphate (P-PO4
3-) 

in the PBR feed water. Average VSS concentration in the PBR effluent 
(mixed liquor) was 215 mg L− 1, corresponding to a 74% of the TSS, 
which is in accordance with the values generally observed in 
microalgae-based systems (García-Galán et al., 2018; Gutiérrez et al., 
2016). The registered pH values > 8 promoted precipitation of inorganic 

Fig. 3. Box plots of the concentrations of pharmaceuticals and fragrances (A) 
and other contaminants of emerging concern (B) in rural run-off (influent) and 
effluent samples of the PBR. Marked compounds have been zoomed in graph C’. 
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salts of different nature, leading to an increase of the VSS/TSS ratio. 
COD concentration increased a 16% during PBR treatment, which is 

generally linked to the release of a fraction of the carbon fixed during 
photosynthesis as dissolved organic carbon (DOC) by microalgae (Arbib 
et al., 2013; García-Galán et al., 2018; García et al., 2006). 

3.2. Occurrence of contaminants of emerging concern in the irrigation 
water 

3.2.1. Pharmaceuticals 
The six targeted pharmaceuticals, 4 psychiatric drugs and 2 non- 

steroidal anti-inflammatory drugs (NSAIDs), were detected in the PBR 
feed water all the sampling days (Fig. 3A). CBZ was the most abundant 
psychiatric drug (660–830 ng L− 1), followed by LZP, OXA and DZP. The 
concentration of CBZ was in agreement with that found in previous 
studies on the same site (García-Galán et al., 2018) and in the Baix 
Llobregat area (Margenat et al., 2017). The ubiquity of this anticon-
vulsant in the aquatic environment has been frequently demonstrated, 
being currently considered as one of the most reliable anthropogenic 
pollution tracers given its resilience to biodegradation during conven-
tional wastewater treatment (WWT), and also to photodegradation (Guo 
and Krasner, 2009; Hai et al., 2018). Its presence in agricultural run-off 
waters has also been reported by Pedersen et al. (2005), who detected 
CBZ in agricultural run-off from crop fields irrigated with effluent 
wastewater in California, at levels between 320 and 440 ng L− 1. Lower 
concentrations were reported in rural run-off in Mexico (1–35 ng L− 1) 
(Moeder et al., 2017) and also by Tran et al. (2019) in both urban and 
agricultural run-off. LZP was present at average concentration of 511 ng 
L− 1, slightly higher than levels previously detected in irrigation water in 
the same area by Margenat et al. (2017) and in the Llobregat river by 
Proia et al. (2013), probably due to the mixing of the irrigation water 
with the septic tank wastewater. DZP was detected at much lower levels 
(5.3–8.1 ng L− 1), similar to those reported by Proia et al. (2013). OXA 
was detected at concentrations between 216 ng L− 1 and 371 ng L− 1. This 
psychiatric drug is also the final degradation product of DZP and LZP 
aforementioned, which are amongst the most highly consumed 
anti-depressants worldwide (Kosjek et al., 2012). It has been detected at 
similar levels other irrigation channels near our study site, also fed with 
reclaimed wastewater (178 ng L− 1), but also in irrigation channels fed 
with surface water (25–36 ng L− 1) and groundwater (<2 ng L− 1) 
(Margenat et al., 2017). It was also present in surface water influenced 
by agricultural run-off in the UK (White et al., 2019), and frequently 
detected in WWTP effluents all over Europe (81 out of the 90 effluent 
samples analyzed in 18 countries) at average concentration of 162 ng 
L− 1 (Loos et al., 2013). Regarding the NSAIDs evaluated, DCF was pre-
sent at levels in the range 860–1306.8 ng L− 1, higher than concentra-
tions reported in a previous campaign on the same site (García-Galán 
et al., 2018) (similarly to LZP, it is probably due to the mix with the 
water from the septic tank, which could have had residual DCF). and 

also higher than those found in rural run-off in Mexico or Singapore 
(Moeder et al., 2017; Tran et al., 2019). IBU was also detected at con-
centrations in the range 321–512 ng L− 1, data which is in agreement 
with that detected in the aforementioned work by Moeder et al. (2017). 
Similar levels were detected by White et al. (2019) in surface waters 
receiving rural run-off in the UK. 

3.2.2. Personal care products 
Two of the three fragrances investigated, HHCB and AHTN, were 

detected at average concentrations of 191 ng L− 1 and 127 ng L− 1, similar 
levels to those detected in a previous sampling campaign in the same 
location (García-Galán et al., 2018). Their presence in surface waters is 
frequent and usually attributed to wastewater effluent discharges and 
not to agricultural run-off (Blum et al., 2018; Celeiro et al., 2019; Cor-
ada-Fernández et al., 2017; Gómez et al., 2012). The insect repellent 
DEET was present at concentrations ranging from 502 to 698 ng L− 1, 
higher than those found by Margenat et al. (2017) in other irrigation 
channels nearby. This high levels were due to the marked seasonal 
variability associated to this compound, as its usage is much higher 
during summer and mosquitoes proliferation (Merel et al., 2015). 
Despite it is clearly a compound of domestic application and, therefore, 
from wastewater origin (Gago-ferrero et al., 2017; Launay et al., 2016), 
its environmental ubiquity has been demonstrated in several studies, 
including stormwater run-off, surface waters and groundwaters 
(Brausch and Rand, 2011; Burant et al., 2018; Rehrl et al., 2020), and 
also in agricultural run-off and at similar levels than those observed in 
this study (Tran et al., 2019). 

3.2.3. Organophosphate flame retardants and surfactants 
The organophosphate flame retardants TBP and TCEP were present 

at average values of 34.8 ng L− 1 and 284 ng L− 1 respectively (Fig. 3B), 
levels slightly higher than those detected in other irrigation channels 
(Margenat et al., 2017). These compounds have been detected in basi-
cally all the environmental compartments due to their broad range of 
applications (pesticides solvents, detergents antifoaming, additives, 
etc.) and their extensive use in industrial activities, as well as the pro-
gressive disuse of polybrominated flame retardants (Yang et al., 2017). 
Different authors have also found both TBP and TCEP in stormwater 
run-off at similar or higher concentration ranges, and also in precipita-
tion water (rain and snow) (Burant et al., 2018; Regnery and Püttmann, 
2010). These authors stated that, when used as additives, these com-
pounds do not bind to the matrix and so they can be released to the 
environment by volatilization and dissolution. Precipitation wash-off 
and dry deposition, together with WWTPs effluents discharges, are 
their main entry pathways. The surfactant and anti-foaming TMDD, 
known with the commercial name of Surfynol 104®, was present at 
concentrations ranging from 205 ng L− 1 to 325 ng L− 1. TMDD is used in 
the industry to reduce the surface tension of coatings, adhesives, paints 
and printing inks, but it is also used in pesticide formulations and in 

Table 1 
Maximum, median and average concentrations (±SDV) detected for the different CECs evaluated, and removal efficiency (R%) after PBR treatment.  

FAMILY NAME Maximum (ng L− 1) Median (ng L− 1) Average (ng L− 1) Removal (R%) 

PHARMACEUTICALS Carbamazepine (CBZ) 833 702 717 ± 59 11 ± 8 
Diclofenac (DCF) 1307 1107 1106 ± 111 52 ± 6 
Ibuprofen (IBU) 512 395 406 ± 138 70 ± 12 
Lorazepam (LZP) 615 560 511 ± 113 83 ± 6 
Oxazepam (OXA) 371 277 284 ± 60 71 ± 7 
Diazepam (DZP) 8 7 7 ± 1 94 ± 5 

PERSONAL CARE PRODUCTS Galaxolide (HHCB) 238 195 191 ± 27 45 ± 14 
Tonalide (AHTN) 136 127 126 ± 6 20 ± 5 
N,N-diethyl-m-toluamide (DEET) 1328 574 699 ± 90 - 4 ± 12 

ORGANOPHOSPHATE FLAME RETARDANTS Tributyl phosphate (TBP) 81 50 54 ± 4 43 ± 7 
Tris(2-chloroethyl) phosphate (TCEP) 325 286 284 ± 29 - 4 ± 5 

SURFACTANTS Surfinol 104 (TMDD) 325 256 256 ± 42 33 ± 7  
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toilet and kitchen paper in the domestic context (Guedez and Püttmann, 
2014). It has been detected in surface waters impacted by WWTPs ef-
fluents, in concentrations ranging from 16 to 240 ng L− 1 (Blum et al., 
2018), and up to the μg L− 1 level in rivers impacted by industrial ac-
tivities (Guedez and Püttmann, 2014). 

3.3. Removal of CECs during PBR treatment 

3.3.1. Pharmaceuticals 
The pharmaceuticals entering the PBR have been classified according 

to their removal efficiency (RE%): efficiently removed (>70%) namely 
IBU, DZP, LZP and OXA; moderately removed (35–50%), namely DCF, 
and poorly removed (<25%), namely CBZ (Table 1). 

The good removal of DZP (94% ± 5) is significant, as it is usually 
inefficiently removed during conventional WWTs. Indeed, many studies 
have reported RE% ranging from negative eliminations to barely a 18% 
(García-Galán et al., 2016; Mamo et al., 2018; Rodriguez-Mozaz et al., 
2015), although also better removals have been observed (30–60%) 
(Gros et al., 2012; Mira et al., 2019). West and Rowland (2012) studied 
direct and indirect photodegradation of DZP (also OXA) and concluded 
that the presence of humic substances increased its photodegradation 
rate; in the case of our PBR, both the humic acids present in the open 
channel and the carbon exudates from the microalgae within the reactor 
could have enhanced the photodegradation of this drug. On the con-
trary, the aforementioned authors also observed that humic substances 
seemed to slow down the photodegradation of OXA. This drug is highly 
resilient to both aerobic and anaerobic biodegradation and also to 
photodegradation (Kosjek et al., 2012; Calisto et al., 2011; Loos et al., 
2013), and some authors have indicated that it is likely to persist in 
water for decades (Klaminder et al. (2015). Considering its high log Kow 
(3.3), adsorption onto the microalgae biomass seems to be the main 
removal pathway within the PBR, despite its recalcitrance during con-
ventional WWTs. In a previous study by Gojkovic et al. (2019), removals 
in the range 2–27% were obtained in a laboratory-scale flat panel PBR, 
using different microalgae species. In that study, OXA was indeed 
detected in the biomass (37% maximum). To the author’s knowledge, 
there are no previous studies on the elimination of OXA in full scale 
microalgae systems. Last of all, it should be regarded that both DZP and 
OXA (and other benzodiazepines) can persist in soils long enough after 
irrigation to be uptaken by different crops, as demonstrated by Carter 
et al. (2018) with radish and silverbeet. The excellent removals obtained 
in the present study highlight the feasibility of microalgae-based treat-
ment to remove these drugs before water reclamation. 

Regarding LZP (83% ± 5 removal), given its low solubility and high 
log Kow, it seems that microalgae uptake is the most likely removal 
pathway, although photodegradation cannot be neglected either (Cal-
isto et al., 2011). Lower removals (30–57%) were obtained by Hom-Diaz 
et al. (2017) in a smallers cale closed PBR operating as secondary 
treatment, with a similar TSS concentration than the PBR in this work, 
but with higher HRT (8–12 h). LZP is also incompletely removed during 
conventional WWTs (<50%) (Dolar et al., 2012; Mira et al., 2019). 

For IBU (RE% of 70% ± 12), the results obtained in the present study 
agree with those obtained in removals in HRAPs operating as secondary 
treatments (García-Galán et al., 2020a; Villar-Navarro et al., 2018). 
These authors attributed its removal mostly to aerobic biodegradation, 
as adsorption onto biomass was very low. Indeed, despite its high log 
Kow (3.97), IBU is charged negatively at the pH of the PBR (pKa = 5.3), 
being repelled by the negative charge of the microalgae cell walls 
(Matamoros et al., 2016). Ding et al. (2017) obtained lower removals for 
IBU (20%–60%) in laboratory batch experiments with the fresh-water 
diatom Navicula sp. The higher initial concentrations (1–50 mg L-1) 
could be responsible of these lower eliminations due to toxicity events 
against the diatom. In a different study, IBU removal in the presence of 
microalgae was attributed to indirect photodegradation rather than to 
sorption, due to the presence of dissolved organic matter acting as a 
photocatalyst of the reaction (de Wilt et al., 2016). 

CBZ was poorly removed (11% ± 8). Different studies have also re-
ported low removals in HRAPs operating as secondary treatments, 
ranging from no removal (García-Galán et al., 2020a) to eliminations in 
the range of 9–23% with HRT of 6 d (Villar-Navarro et al., 2018). 
Matamoros et al. (2015) obtained removals of 46% (4 d of HRT) and 
62% (8 d HRT) also during the warm season, highlighting that even 
under the best conditions for microalgae-based treatment efficiency 
(summer campaigns), CBZ is highly stable towards photodegradation 
and aerobic biodegradation. Díaz-Garduño et al. (2017) obtained similar 
results in laboratory scale experiments (RE% in the range 0–23%); re-
movals in the range of 10–30% have been obtained with different spe-
cies of green algae (Chlorella sp., Scenedesmus sp., Coelastrum 
astroideum and Chlamydomonas mexicana (de Wilt et al., 2016; Goj-
kovic et al., 2019; Matamoros et al., 2016; Xiong et al., 2016). These 
authors reached the conclusion that bioadsorption and/or bio-
accumulation were negligible, being biodegradation the main elimina-
tion mechanism. On the contrary, García-Galán et al. (2020a) observed 
concentrations of CBZ in the biomass equivalent to the 39% of the initial 
concentration in the influent, but yet it was not eliminated in the system, 
but still present in the effluent and at higher than those in the influent. 
These results indicated a clear bioaccumulation in the biomass of this 
drug. Some authors also point out that glucuronide moieties of CBZ have 
never been included in monitoring studies (due to the lack of commer-
cial standards), and demonstrated the presence and cleavage of these 
metabolites during conventional wastewater treatments (Vieno et al., 
2007). Bahlmann et al. (2014) even suggested a concentration increase 
of CBZ of nearly 100% during wastewater treatment due to this 
cleavage. 

DCF was removed by a 52% ± 6 on average. These results agree with 
those obtained in previous studies in HRAPs acting as secondary treat-
ment, with removals of 55% (Vassalle et al., 2020a), 39–74% (Villar--
Navarro et al., 2018) and 51–55% (García-Galán et al., 2020a). The 
latter pointed out that bioadsorption/bioaccumulation played a relevant 
role in its removal from the aqueous phase (log Kow = 4.5), given the 
high concentrations detected in the biomass (267.9 ng g-1), whereas 
biodegradation was low. On the other hand, de Wilt et al. (2016) 
attributed the removal of DCF in different types of wastewater (40–60%) 
to phototransformation, as they observed its elimination in laboratory 
batches without microalgae inoculum. Photodegradation of DCF in 
surface waters has been previously reported (Kunkel and Radke, 2012; 
Zhang et al., 2008). In HRAPs, Matamoros et al. (2015) observed that the 
removal of this drug was considerably higher during the warm/summer 
season (82–92%) compared to the cold season (21–29%). Other factors 
such as the transparency of the plastic material of the tubes in the PBR 
(Harris et al., 2013) may also reduce the light penetration and the 
photodegradation rates of photosensitive compounds, compared to 
those observed in open systems. 

3.3.2. Personal care products 
The fragrances HHCB and AHTN were only partially removed, with 

average RE% of 45% and 20%, respectively. These results are lower than 
those obtained in a previous campaign in the same location 
(García-Galán et al., 2018), and also to those obtained in open systems 
operating as secondary treatments (51% ± 12 for HHCB and 46% ± 7 for 
AHTN) (Matamoros et al., 2015). Laboratory scale assays also yielded 
higher removals (near 100%) after 7–10 d (Díaz-Garduño et al., 2017; 
Matamoros et al., 2016). Both compounds have high log Kow (>5) and 
log Koc (>3.7) and a very low biodegradability, being biomass adsorp-
tion the most probable removal pathway. Regarding DEET, an average 
negative removal was obtained for DEET. Díaz-Garduño et al. (2017) 
obtained removal efficiencies for DEET ranging from negative values (n 
= 2) to 55% (n = 1) in laboratory scale batch reactors. 

3.3.3. Organophosphate flame retardants and surfactants 
TBP was removed by a 43% ± 7, whereas TCEP concentrations in the 

effluent of the PBR were similar than those of the influent. This is 
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probably due to the plastic components of the PBR system, which may 
release TCEP to the aqueous phase during treatment, as already sug-
gested by (Rodil et al., 2012, 2009) in conventional WWTPs facilities. In 
a previous sampling campaign in the same location, TCEP was removed 
only in a 20% (García-Galán et al., 2018). In open systems acting as 
secondary treatments, Matamoros et al. (2015) obtained RE% in the 
range 15–39% for TCEP and 24–82% for TBP under HRT of 4 d, reaching 
better results with longer HRTs (8 d). High Henry constant for TBP (KH 
of 0.3 atm m3 mol− 1) may be indicative of volatilization events and its 
partial removal in HRAPs, and also in the open tanks of the semi-closed 
PBR. Indeed, aerated batch reactors at laboratory scale confirmed the 
recalcitrance of TCEP, which was removed <20% after 10 d, whereas 
that TBP was more efficiently removed (Matamoros et al., 2016). TCEP 

is a highly hydrophilic compound (log kow = 1.44) so it is not likely to be 
adsorbed onto the biomass either, contrary to TBP (log kow = 4). 
Furthermore, TCEP is a highly stable molecule, not prone to biodegra-
dation, which, together with its high solubility, makes it a highly mobile 
and persistent pollutant once discharged into environmental waters 
(Blum et al., 2018; Reemtsma et al., 2008; Rodil et al., 2012). Last of all, 
the surfactant TMDD was removed by a 33% in the PBR, and considering 
its low solubility and high log Kow, adsorption onto biomass seems a 
feasible removal pathway within the system. Conventional WWT is 
generally quite inefficient in removing this surfactant, with barely no 
elimination (Blum et al., 2018, 2017; Guedez and Püttmann, 2014). 

3.4. Environmental risk assessment 

As indicated in section 2.5, hazard quotients (HQs) were calculated 
for those CECs not fully removed during PBR treatment, following 
equation [1]. To estimate the PNEC, toxicity data for different standard 
test species covering different trophic levels were obtained from the 
ECOTOX database of the Environmental Protection Agency (EPA). 
Chronic exposure indicators (NOEC) would be preferable in the case of 
CECs, as non-target species are exposed to low concentrations of these 
contaminants during long periods of time, so unexpected long-term ef-
fects could eventually appear. However, as chronic toxicity data are 
frequently unavailable, PNECs were calculated using EC50 and LC50 as 
indicators of acute toxicity (regarding immobilization and mortality, 
respectively). These values were divided by an uncertainty factor (1000) 
to become more representative values of the real situation under envi-
ronmental conditions (longer periods of exposure) (Sanderson et al., 
2004; Valcárcel et al., 2011). HQs were estimated for green algae, in-
vertebrates, crustaceans and fish (standard test species, see Table 2). In 
order to establish a worst case scenario, when different toxicity end-
points were available for a given compound, the lowest toxicity value 
was used (Table S3 in Supplementary Material). Given their homoge-
neity, the average measured concentrations in the PBR effluent for each 
CEC were used. HQ values are shown in Table 2. Calculations were 

Table 2 
Average PBR effluent concentrations (ng L− 1) (used as measured environmental concentrations, MEC), ecotoxicity endpoints used for the different trophic levels 
considered (mg L− 1) and hazard quotients (HQ) estimated.    

Average 
MEC (ng 
L− 1) 

TOXICITY ENDPOINTS (mg L− 1) HQ (effluent) 

Green 
algae 

Invertebrate Crustaceans 
(Daphnia 
magna) 

Fish Green 
algae 

Invertebrate Crustaceans Fish 

PHARMACEUTICALS Diazepam (DZP) 0.38 ±
0.07 

– 47.35* 4.36 0.39* – 8.2E-06 9.2E-05 1.4E- 
03 

Carbamazepine (CBZ) 665.1 ±
27.5 

742 0.45 13.86 54.29 8.9E- 
03 

1.8 4.8E-02 1.2E- 
02 

Ibuprofen (IBU) 101.4 ±
68.6 

3152 – >456 0.77* 3.2E- 
04 

– 2.2E-03 1.5E- 
01 

Diclofenac (DCF) 555.9 ±
90.4 

722 – 28.16 7110* 7.7E- 
03 

– 1.9E-02 7.8E- 
03 

PERSONAL CARE 
PRODUCTS 

Galaxolide (HHCB) 109.2 ±
22.8 

0.71 0.34* 2.76 3.69* 1.5E- 
01 

3.8E-01 4.1E-02 7.8E- 
01 

Tonalide (AHTN) 101.1 ±
8.5 

0.51 0.54* 0.26 0.17* 2.2E- 
01 

2.2E-01 4.1E-01 1.01 

N,N-diethyl- 
toluamide (DEET) 

544.6 ±
54.6 

– – 16 71.28* – 7.8E-02 5.4E-01 7.6E- 
03 

ORGANOPHOSPHATE 
FLAME 
RETARDANTS 

Tributyl phosphate 
(TBP) 

28.2 ± 6.3 1.12 12.55 356 1.37* 2.6E- 
02 

2.2E-03 8.1E-04 2.8E- 
02 

Tris-(2-chloroethyl) 
phosphate (TCEP) 

308.9 ±
23.5 

512 – 3306 3.79* 6.1E- 
03 

– 9.4E-04 8.2E- 
02 

SURFACTANTS 2,4,7,9-Tetramethyl- 
5-decyne-4,7-diol 
(TMDD) 

167.2 ± 20   916 36   2.2E-03 5.5E- 
03 

1- Pseudokirchneriella subcapicata; 2-Desmodesmus subspicatus; 3: Tetrahymena pyriformis: 4:Chironomus riparius; 5: Brachionus calyciflorus: 6- Daphnia magna 7: 
Pimephales promelas. 8: Oncorhynchus mykiss. 9: Danio rerio. 10- Cyprinus carpio 
*: LC50 values (the other toxicity endpoints are EC50 values). 
Values for TMDD are taken from Guedez and Puttman (2014). 
Green algae and crustaceans endpoint values for TCEP are taken from Cristale et al., (2013). 

Fig. 4. Cumulative HQs for each of the thropic levels considered in the feed 
water of the PBR (first column) and effluent (second column). For all the 
compounds, HQs were available for at least 3 of the 4 trophic levels considered, 
with the exception of TMDD (only crustaceans and fish). 
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subjected to the availability of the toxicity data; in consequence, risk 
evaluation for LZP and OXA could not be done. However, both drugs 
have a similar low solubility and high log Kow-Koc values that indicate a 
high tendency to adsorb onto biomass and bioaccumulate, as demon-
strated in previous studies (García-Galan et al., 2017; Lagesson et al., 
2016). Amongst the different CECs still present in the PBR effluent, HQ 
values between 1 and 10 were obtained only for AHTN (fish) and CBZ 
(invertebrates), implying a moderate hazard in the receiving water 
body. HQ values between 0.1 and 1 (low risk) were obtained for the 
fragrances AHTN and HHCB in most cases, for IBU against fish and for 
DEET against crustaceans. Nevertheless, the majority of the compounds 
yielded HQs <0.1, meaning that no environmental risk would be derived 
from their discharge on the PBR effluent. Given the results obtained, and 
considering the cumulative HQs in the effluent, the sensitivity of the 
different trophic levels would be as follows: invertebrates > fish >
crustaceans > green algae (Fig. 4). Despite the overall good removal 
efficiency of the PBR for the different CECs studied, the decrease of the 
derived ecotoxicity risk was only moderate, with a 38% reduction for 
fish, 15% for invertebrates, 16% for crustaceans and only a 3% for green 
algae. The low removals of CBZ or AHTN would lead to a higher impact 
against different species, which are mostly unaffected by the presence of 
the other CECs. Indeed, different authors have reported a moderate to 
high environmental risk derived from the CBZ presence in European 
surface waters (Palma et al., 2020; Zhou et al., 2019), and Díaz-Garduño 
et al. (2017) obtained HQ>1 for AHTN and green algae after microalgae 
treatment. In the prioritization study for pharmaceuticals performed by 
Zhou et al. (2019) in different European countries, DCF, IBU and CBZ 
posed the highest risk to aquatic ecosystems. However, the levels ob-
tained after microalgae treatment in the present study yielded HQ<0.1 
for all of them (except for CBZ against invertebrates). It should be 
considered that PBR effluent concentrations will be subjected to further 
dilution once discharged in the receiving water bodies. Therefore, the 
estimated risk derived from exposure would be considerably lower. On 
the contrary, the number of CECs potentially present in the water 
analyzed is much higher than the 15 compounds considered in the 
present study. Furthermore, it should be taken into account that con-
ventional risk assessment of CECs is usually based on this concentration 
addition for estimating the mixture toxicity (European Comission, 
2009), ignoring toxicity derived from synergies, additive effects or 
antagonistic effects (Baek et al., 2019). Likewise, addition of HQs of 
pharmaceuticals with similar modes of action (i.e. psychiatric drugs or 
anti-inflammatories) could result in the overestimation of adverse ef-
fects. Mixture toxicity is out of the scope of the present study, but it is 
actually a hot topic within the scientific community, which is currently 
devoting a huge effort to discern and evaluate more realistic toxicity 
scenarios. 

4. Conclusions 

The capacity of a semi-closed, tubular horizontal PBR to remove 13 
contaminants of emerging concern (CECs) detected in water from an 
agricultural irrigation channel was evaluated. Removal efficiencies 
ranged from efficiently removed (>70%) for IBU, DZP, LZP and OXA; 
moderately removed (35–70%), for DCF, HHCB, TBP and TMDD; and 
poorly removed (<35%) for AHTN, CBZ, TCEP and DEET. Nevertheless, 
for most of the compounds their removal were comparable to those 
obtained in conventional WWTPs. On the other hand, very good elimi-
nation efficiencies were obtained for the benzodiazepines OXA (highly 
recalcitrant) and DZP, which are generally barely removed in conven-
tional treatment systems. An environmental toxicity evaluation has been 
performed to fathom out the impact of the PBR effluent in the receiving 
water body. Despite most of the compounds have an HQ <0.1, implying 
no risks associated, the cumulative assessment highlighted a low to 
moderate risk (1<HQ<3.5) for the different trophic levels except for 
green algae. The PBR treatment reduced the environmental risk between 
a 3% (green algae) and 38% (fish). Overall, the good treatment 

efficiency of the PBR, together with the related low O&M costs and 
sustainability, makes this treatment approach a feasible alternative to 
conventional treatment. Removal data from large scale systems oper-
ating under real conditions is still scarce, especially in closed or semi- 
closed systems, as studies under laboratory controlled conditions are 
predominant. On the other hand, research usually does not consider the 
adsorbed concentration of the target CECs in the biomass, which would 
contribute to discern the main removal mechanisms in these systems. 
Therefore, future research should focus on the role of biomass adsorp-
tion in the elimination of these (and other) CECs, contributing to 
establish complete mass balances in microalgae systems. Thus, biomass 
analysis should be performed to obtain actual adsorbed concentrations 
on it. Furthermore, other potentially influencing parameters, such as 
temperature, pH or the presence of other living organisms or substances 
such as protozoa and/or heavy metals, should not be neglected in future 
studies. 
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