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Electronic structure of cylindrical simple-metal nanowires in the stabilized jellium model

N. Zabala*
Elektrika eta Elektronika Saila, UPV-EHU 644 P.K., 48080 Bilbo, Spain

M. J. Puska and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 15 June 1998!

The ground-state electronic structures of cylindrical quantum wires are studied within the stabilized jellium
model and using the spin-dependent density-functional theory. The subband structure is shown to affect the
cohesive properties, causing an oscillating structure in the force needed to elongate the wire. Because the steps
in the quantized conductance reflect also the subband structure a correlation between the force oscillations and
conductance steps is established. The model also predicts magnetic solutions commensurate with the subband
structure and consequently additional steps in the conductance.@S0163-1829~99!02719-8#
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I. INTRODUCTION

The jellium model, treated within the density function
theory~DFT!, has provided the basic physical understand
of the electronic structures of simple metal surfaces,1 vacan-
cies and voids inside metals,2 and finite clusters of simple
metal atoms.3 The scheme simplifies the electron-ion inte
action by smearing the ions to a rigid positive backgrou
charge of constant density. However, the electron-elec
interactions are treated more carefully using, for exam
the local-density approximation for electron exchange a
correlation effects.4 The effect of the actual crystal structu
in stabilizing the metal to a certain density can be taken i
account by adding a simple correction to the external po
tial. In the so-calledstabilized jelliummodel5 this correction
is just a constant in the region of the positive backgrou
charge. The stabilized jellium model can often give, besi
qualitative understanding and trends, also results of qua
tative significance.

In this paper we apply the stabilized jellium model to g
insight into the electronic and cohesive properties of
tremely thin metallic wires of nanometer dimensio
~nanowires!.6–8 The physical properties of nanowires refle
the quantum-mechanical phenomena due to the confinem
of the valence-electron wave functions in the plane perp
dicular to the wire axis. For example, the electrical cond
tance will be quantized.9 Recently, it has been realized th
the characteristic electronic structure has also a direct in
ence on the ionic structure of the nanowire, and it is
possible to separate cohesive properties
conductance.10–13

Experimentally, metallic nanowires can be produced
several different ways. The simplest scheme is to put
metallic protrusions in contact and then pull them from ea
other over atomic distances: a nanowire is produced, wh
upon pulling is elongated and narrowed, until it eventua
breaks. This basic mechanism is employed, for example
the scanning tunneling microscopy~STM! studies of
nanowires.14 Breaking of macroscopic wires produces al
nanowires. The breaking can be done using the sophistic
mechanically controllable break-junctions technique,7 but
PRB 590163-1829/99/59~19!/12652~9!/$15.00
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even simpler arrangements are sufficient.15,16 An interesting
possibility is to produce nanowires by filling carbon or oth
kinds of nanotubes.17 In the experiments the conductance
usually monitored as a function of the elongation of t
nanowire. Moreover, in the atomic force microscope~AFM!
experiments by Rubio, Agraı¨t, and Vieira,18 the conductance
and the force during the formation and rupture of Au co
tacts have been measured simultaneously. A clear correla
between the force oscillations and the conductance steps
ing the elongation of the nanowire was seen.

Modeling of the formation of metallic nanowires in
STM experiment was first done by molecular-dynam
simulations in which the atomic structure was solved us
many-atom-type interaction potentials.19,20 The simulations
showed that the elongation takes place through succes
stress accumulation and relief stages. The calculated s
tures were then used to determine electric conductance
counting the available conductive channels. The weaknes
this procedure is that the direct correspondence between
cohesive and conduction properties through the valence e
tron structure is broken. The first-principles molecula
dynamics simulations based on solving the self-consis
electron structures remedy this deficiency.8,21 Indeed, this
kind of simulation8,22shows that the atomic geometries at t
neck can be derived from those of isolated small atomic c
ters, the stability of which derives from the closed-sh
structures of valence electrons. The role of the valen
electron structure is emphasized in jellium-type models,10–13

which completely ignore the detailed ionic structure. In the
calculations the confinement of the valence electrons in
direction perpendicular to the wire results in an electro
level structure, the subbands of which are gradually emp
as the wire elongates or its radius decreases. As a re
cohesive properties, such as the elongation force will sh
oscillations as the radius of the wire reduces. Moreover,
cause the subbands constitute the conductance channel
conductance shows simultaneously a steplike behavio
correlation with the force oscillations.

We calculate electronic properties of cylindrical wires
stabilized jellium. The electron structures are solved s
consistently using DFT, within the local spin density~LSD!
12 652 ©1999 The American Physical Society
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approximation for electron exchange and correlation.4 The
results help us to understand several properties of met
nanowires and to predict new phenomena. For example
have previously shown that simple metal quantum wires m
have spontaneous magnetization for certain radii.23 In this
paper we report systematically on the cohesive propertie
the stabilized jellium wires. Here our experiment is a dire
continuation of that by Yannouleas and Landman.10 They
solved the electronic structures of Na-jellium wires using
so-called shell-correction method, which uses non-s
consistent electronic structures from an extended Thom
Fermi theory, but takes the single-electron shell struct
into account as a correction. Moreover, switching from
jellium to the stabilized jellium model enables us also t
study of the trends between different simple metals, i.e.,
function of the average bulk valence-electron density. T
next step towards a more realistic description of the ac
nanowires is to consider a jellium wire with variable cro
section, i.e., a wire with a narrow neck region. As a matte
fact, Yannouleaset al.24 have made this step with their com
putationally efficient shell correction method. One of th
main conclusions is that the cohesive and transport pro
ties of the wires are determined to a large extent by
electronic structure at the narrowest part of the wire. T
conclusion justifies the use of model with a constant rad
as a first approach to the problem.

The rest of the paper is organized as follows. In Sec. II
describe the practical features of the model used to calcu
the electronic ground-state configurations. In Sec. III we d
cuss the results for the electronic structure and cohe
properties. In Sec. IV we study the appearance of magn
solutions and rationalize the findings by using the Sto
criterium for ferromagnetism. Section V contains the conc
sions.

II. THEORY

In this section we describe the application of the sta
lized jellium model to calculate the electronic structures
quantum wires. We use atomic units throughout the text: T
length and energy are given in the unitsa05\/me2 and 1
Hartree5 me4/\2, respectively. We consider infinitely lon
jellium cylinders so that the two parameters completely
fining the systems are the equilibrium bulk valence-elect
density given in terms of the usualr s parameter and the
radius R of the cylinder. The rigid positive-backgroun
charge density is

n1~r !5n̄u~R2r !, ~2.1!

wheren̄53/(4pr s
3) andu(r ) is the Heaviside step function

The number of electrons per unit lengthNz5n̄pR2 neutral-
izes the positive-background charge so that the electron
sity has a radial distributionn2(r ).

The ground-state electron structure is obtained within
DFT theory by solving self-consistently the Kohn-Sha
equations, thereby minimizing the total ener
E@n2

↑ (r ),n2
↓ (r )# as a functional of the spin densitiesn2

↑ (r )
andn2

↓ (r ).4 Within the LSD, the equations read as
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1Ve f f

s ~r !J C i
s~r !5e i

sC i
s~r !, ~2.2!

n2~r !5(
s

(
i

occ

uC i
s~r !u2, ~2.3!

and

Ve f f
s ~r !5vc~r !1vxc

s @n2
↑ ~r !,n2

↓ ~r !#2n̄
d~ t01exc!

dn̄
u~R2r !.

~2.4!

Above, s 5 ↑ or ↓ for spin-up and spin-down electrons
respectively. The indexi stands for orbital quantum num
bers, and the summation to calculate the density runs ove
occupied states. In the effective potentialVe f f

s (r ) the first
term vc on the right-hand side includes the Coulomb inte
action with the total electron densityn2(r )5n2

↑ (r )
1n2

↓ (r ) and with the positive background, i.e.,

vc~r !5E n2~r 8!2n1~r 8!

ur2r8u
dr8. ~2.5!

The second termvxc gives the exchange-correlation potent
within the LSD, for which we use the Perdew-Zung
parametrization25 of the exchange-correlation data by Cepe
ley and Alder.26 The last term is the stabilization potentia5

containing terms due to the bulk kinetic (t0) and exchange-
correlation (exc) energies per electron.

The Kohn-Sham eigenfunctionsC i
s(r ) for the infinite cy-

lindrical geometry are written as

Cmnkz
s ~r ,f,z!5

eikzz

AL

eimf

A2p
Rmn

s ~r !, ~2.6!

where m50,61,62,... is the azimuthal quantum numbe
andn51,2,3,... is the radial quantum number related to
number of radial nodes (n21) of the radial wave function
Rmn

s (r ). Further,kz is the wave vector associated to the ax
z direction along which the electrons have no restriction
move, andL is the normalization length along thez axis. It is
useful to do the substitutionUmn

s (r )5r 1/2Rmn
s (r ), so that the

one-particle Schro¨dinger equation~2.2! leads to the differen-
tial equation

d2Umn
s ~r !

dr2
1S 2@emn

s 2Ve f f
s ~r !#2

~m221/4!

r 2 D Umn
s ~r !50.

~2.7!

This is of the same form as the radial equation studied
spherically symmetric problems. We obtain the radial wa
functions Umn

s (r ) and the eigenvaluesemn
s by solving the

differential equation with a point-and-shoot method in a
dial point mesh. Different types of methods for the cylind
cal symmetry were employed, e.g., by Proetto27 and Östling
et al.28 The eigenenergies,

emnkz
s 5

kz
2

2
1emn

s , ~2.8!
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correspond to parabolic subbands with the bottoms at
energiesemn

s .
In the infinite cylindrical geometry the spin densities re

as

n2
s ~r !5

1

2p2 (
m,n

es
mn<eF

uRmn
s u2A2~eF2emn

s !. ~2.9!

Above, the Fermi energyeF is obtained self-consistentl
from the neutrality condition

Nz5
1

p (
s

(
m,n

emn
s <eF

A2~eF2emn
s !. ~2.10!

The Coulomb potential arising from the total charge dens
n21n1 is calculated using the Green’s function29 corre-
sponding to Poisson equation in the cylindrical geometry

vc~r !52E
r

`

2pr 8@n2~r 8!1n1~r 8!# lnS R0

r 8
D dr8

12 lnS R0

r D E
0

r

2pr 8@n2~r 8!1n1~r 8!#dr8.

~2.11!

Above,R0 is an arbitrary finite radius. In practice, the Co
lomb potential is zero beyond a radius at which the elect
density is vanishingly small.

III. RESULTS

In this section we present results for stabilized jelliu
wires corresponding to Al, Na, and Cs metals. The stabili
jellium correction is small for Na because the bulk electr
gas is stable at a density close tor s53.93, which we use for
Na. The correction is essential for Al (r s52.07 a0) and Cs
(r s55.62 a0), which in the plain jellium model would ex
pand or shrink in volume, respectively. The stabilized j
lium will give for these metals physically meaningful surfa
energies and elongation forces without losing the simplic
of the uniform background model.

A. Electronic ground-state configuration

Figure 1 shows the exchange-correlation, Coulomb,
total effective potentials as a function of the distance fr
the cylinder axis for a Na wire having the radiusR57.8 a0.
The ground state of this wire is spontaneously spin polari
and the effective potentials for the spin-up and spin-do
electrons differ slightly from each other. The potential w
is mainly due to the exchange-correlation contribution. In
electrostatic potential the surface-dipole barrier is abou
eV, i.e., of the same order as the barrier for a pla
surface.30 The bottom energies of the first (umu,n) subbands
below the Fermi level and the Fermi level itself are a
given. The two lowest subbands are split as a result of
spin polarization. Figure 2 gives the total electron dens
n2
↑ (r )1n2

↓ (r ) and the spin densityn2
↑ (r )2n2

↓ (r ) corre-
sponding to the wire in Fig. 1. The spin moment per u
length for this system is about 0.1mB per conduction elec-
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tron, i.e., per Na atom. The spin density and spin mom
derive mainly from the highest subband, which is totally sp
polarized. The contributions from the lower spin-splitte
subbands are small~see also Fig. 6, below!. The electron
density has its maximum around the middle of the axis a
the edge of the positive-background charge. The elec
density spills out from the region of positive charge a fe
atomic units. The spin density has its maximum value aw
from the cylinder axis near the jellium edge. This tenden
would be even stronger for spin polarized wires of larg
radii, because in them the polarization results from subba
with higher umu values.

The energy eigenvalues obtained for narrow Na wires
considered in Fig. 3, giving the bottoms of the filled su
bands and the positions of the Fermi level as a function
the cylinder radiusR. As the wire becomes wider, new sub
bands dive below the Fermi level and attain occupancy. T
subbands are filled in the sequence (umu,n)5 ~0,1!, ~1,1!,
~2,1!, ~0,2!, ~3,1! . . . , giving for the degeneracy ratios th
sequence of 1, 2, 2, 1, 2, . . . . This sequence was first pre
dicted by Bogacheket al.32 and it has been seen in the co
ductance steps measured for Na nanowires.7 The Fermi-level

FIG. 1. Na stabilized-jellium wire (r s 5 3.93 a0 andR57.8 a0).
The Coulomb potentialvc ~dash-dotted line!, the exchange-
correlation potentialvxc ~dotted line!, and the effective potentia
~solid line! are given as a function of the distance from the cylind
axis. The bottoms of the filled-energy subbands labeled (umu,n)
~solid lines! and the Fermi level~dashed line! are shown as well.

FIG. 2. Na stabilized-jellium wire (r s53.93 a0 andR57.8 a0).
The total electron densityn2

↑ (r )1n2
↓ (r ) ~dashed line!, the spin

density n2
↑ (r )2n2

↓ (r ) ~dash-dotted line!, and the positive back-
ground chargen1 ~solid line! are given as a function of the distanc
from the cylinder axis.



tim
ur
in
t
li
t

ca
he
ev

th
fo
-

nd
su
in

n
lu
s

af

re
gt

ec
r

n
s

th

and
nd.
ur-
en-

e
in
r-

ded
-

ing

(

e
io
on

l are
e

PRB 59 12 655ELECTRONIC STRUCTURE OF CYLINDRICAL SIMPLE- . . .
position shows oscillations so that a peak appears each
a new subband starts to be populated. Another feat
shown in the figure with black dots, is the existence of sp
polarized configurations. They appear in intervals associa
with the openings of new subbands. For small radii, the sp
ting of the subbands occupied by both spin species and
lowering of the bottom of the totally spin-polarized~highest
occupied! subband with respect to the spin-compensated
culation, marked with a dashed line, are clearly seen. W
the spin-compensated state is recovered the Fermi l
jumps downwards.

The electron work function, i.e., the distance between
Fermi level and vacuum, can be directly read from Fig. 3
cylindrical stabilized jellium wires with different radii, be
cause the energy zero coincides with the vacuum level~see
Fig. 1!. The work function oscillates due to the subba
structure and has sharp minima at the opening of a new
band and discontinuities at transitions between sp
compensated and spin-polarized states. As the radiusR in-
creases the work function approaches that for a pla
surface. Apart from the effects due to spin-polarized so
tions the present work function results agree well with tho
obtained by Yannouleas and Landman10 with the shell cor-
rection method. For Na the stabilized-jellium correction
fects only slightly the electronic structure.

B. Surface energy and elongation force

The surface energy of a cylindrical stabilized-jellium wi
can be determined from the total energy per unit len
E@n2

↑ ,n2
↓ #/L as

s5
1

2pR H Etot@n2
↑ ,n2

↓ #/L2pR2n̄F3

5
eF~ n̄!1exc~ n̄!G J .

~3.1!

Above,eF(n̄) is the Fermi energy of the homogeneous el
tron gas measured with respect to the bottom of the ene
bands. The surface energy is plotted in Fig. 4 as a functio
the wire radiusR for Al, Na, and Cs nanowires. The curve
for the different metals are rather similar when the radiiR are
scaled withr s . The surface energies exhibit oscillations wi

FIG. 3. Energy eigenvalues of Na stabilized-jellium wiresr s

53.93 a0). The bottoms of different subbands~thin solid lines! and
the Fermi level~thick solid line! are given as a function of the wir
radius. The eigenvalues corresponding to spin-polarized solut
~black circles! as well as to unstable spin-compensated soluti
~dashed lines! are shown separately.
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minima slightly before the occurrence of new subbands
maxima at a small finite occupancy of the highest subba
The spin polarization, when stable, lowers slightly the s
face energy. When the wire radius increases the surface
ergies approach the values of the planar surfaces,31 which are
16.15 meVa0

22 for Al, 3.14 meV a0
22 for Na, and 1.055

meV a0
22 for Cs. We want to underline at this point th

importance of using the stabilized jellium model: the pla
jellium model would predict negative values for the Al su
face energy.

The dash-dotted lines in Fig. 4 correspond to an exten
liquid-drop model31 in which the surface energy of a cylin
drical wire is

s~R!5splanar1
g

4R
1

d

4p~2R!2 1O~1/R3!. ~3.2!

Above, splanar is the surface energy for a planar surface,g
is the curvature energy taking into account the break

ns
s

FIG. 4. Surface energy for Al~a!, Na ~b!, and Cs~c! stabilized-
jellium wires as a function of the wire radius~solid lines!. The
values corresponding to spin-polarized solutions~black circles! as
well as to unstable spin-compensated solutions~dashed lines! are
shown separately. The results of the extended liquid-drop mode
also given~dash-dotted lines!. When the wire radii increase th
surface energies approach those~Ref. 31! for planar stabilized-
jellium surfaces~thick horizontal lines!.
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~forming! of lateral bonds on a convex~concave! surface,
andd is an additional fitting parameter. All three paramete
have been determined in Ref. 31 using the stabilized jelli
model for voids in bulk Al, Na, and Cs. In order to obta
Eq. ~3.2! from the corresponding equation for a void one h
to change the sign of the curvature~energy! and substitute
the curvature of a void, i.e., the inverse of the void radius,
(1/R11/̀ )/251/(2R). HereR and` are the two principal
curvature radii of the cylindrical surface. We see that
extended liquid-drop model gives nicely the descend
trend, undressed from the oscillations due to the subb
structure. Moreover, the model shows quantitatively h
slowly the cylinder surface energies approach those of pla
surfaces.

In order to discuss the stability of the jellium wires w
consider deformations that conserve the volume of a l
wire with lengthL and radiusR. The wires corresponding to
minima in the total energy per unit volume are then~meta!
stable and their radii play a similar role as the magic nu
bers discussed in the context of small atomic clusters.3 Wires
with slightly larger~smaller! radii would in this model with-
out any external support spontaneously lengthen~shorten!.
The corresponding force is called the elongation force
cause, when negative, it will oppose the increase of
length of the wire. In terms of the surface energy, the el
gation force is given as a function of the wire radius as

F52
dE

dL
52

d~2pRLs!

dL
52pRs1pR2

ds

dR
. ~3.3!

The first term on the right-hand side is due to the increas
the surface area when the wire elongates. The second te
nonzero because of the dependence of the surface ener
the wire radius. It has components due to the change of
curvature~energy! and due to the energy oscillations reflec
ing the subband structure.

The elongation force is shown in Fig. 5 for Al, Na, and C
wires. In the case of Na wires@Fig. 5~b!# we have given its
decomposition into two components corresponding to
two terms on the right-hand side of Eq.~3.3!. The first con-
tribution, due to the increase of the surface area, ha
slightly descending and moderately oscillating behavior
follows quite closely the force2pRsplanar ~the straight-
solid line!, derived by using the planar surface ener
splanar . In order to obtain this physically correct trend fo
all metals it is important to use the stabilized jellium mod
instead of the plain jellium model. The second contributi
to the total force, shown with the dash-dotted line, conta
the prominent oscillations of the amplitude, being of the
der of 0.8 nN. The oscillation amplitude scales appro
mately as eF(n̄)/lF(n̄), where lF(n̄) is the Fermi
wavelength.11 This results in a cubic dependence on the
verse ofr s , eF(n̄)/lF(n̄)59/16r s

3 , giving for Al, Na, and
Cs force oscillations of about 5.22, 0.76, and 0.26 nN,
spectively. The behavior of the total force for Na agrees w
with the results by the shell-corrected method.10

The AFM experiments show stress accumulation and
lief stages as the nanowire elongates. The measured mi
~maxima in the tensile stress! for gold samples18 correspond-
ing to the narrowest wires have a similar magnitude and
ascending trend as the wire lengthens as our prediction
s
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the Al (r s52.07 a0) wire. In our calculations, the energ
minima correspond to the zeroes in the force associated
positive slopes in Fig. 5. The decrease of the force fr
these points as the wire radius decreases would mean
accumution of stress as the wire is elongated. After the
lowing force minimum there would be a relief stage in whi
the magnitude of the force needed for elongation first
creases and then the wire would elongate spontaneously
without pulling. The experiments do not show the positi
parts of the force, but this kind of behavior has been s
also by Yannouleas and Landman10 in a jellium calculation,
which included similar energy terms as our calculation. A
function of the elongation, the energy minima occur just
ter a subband has been emptied. Then during the stres
cumulation stage the conductivity is predicted to be const
in accordance with the AFM experiment.18 The energy relief
stage associated with an emptying of the subband and a
like decrease in the conductance seems to be much long

FIG. 5. Elongation force for Al~a!, Na ~b!, and Cs ~c!
stabilized-jellium wires as a function of the wire radius~thick solid
lines!. The values corresponding to spin-polarized solutions~black
circles! as well as to unstable spin-compensated solutions~dashed
lines! are shown separately. The forces derived from the surf
energy of a planar surface (2pRsplanar) are shown for compari-
son ~narrow solid lines!. For Na wires, the contributions2pRs
~dotted line! andpR2 (ds/dR) ~dash-dotted line! are given.
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our model calculations than in the actual experiment. T
correlation of the force oscillations and the quantum str
ture of the conductance has been predicted in many jelli
type calculations.10–13

When comparing the theoretical and experimental res
one should bear in mind that the stabilized jellium mod
predicts cohesive properties merely qualitatively, due to
smearing of the actual ionic cores. For example, one can
to describe a linear atomic chain by a narrow stabilized
lium cylinder. In the case of a Na-atom chain only the fi
subband of the jellium wire should have occupancy. T
radius of the jellium wire corresponding to the energy mi
mum is then, according to Fig. 5~b!, ;4.2 a0 , which, by
considering the positive charge per unit length, correspo
to the interatomic distance of;4.6 a0. This is an unreason
ably short distance when comparing, e.g., with interatom
distances in bulk Na metal. Similarly, in the case of an A
atom chain the second subband~corresponding to valencep
electrons! should be the highest occupied subband. The
ergy minimum atR'3.6 a0 gives the short interatomic dis
tance of about 2.8 a0 . In spite of this deficiency one should
however, recognize that the stabilized jellium model d
scribes well the electronic properties of simple metal syste
if one constrains the shape of the background charge to
respond to the atomistic system in question.33

C. Magnetic solutions, Stoner criterion

As discussed above in the context of energy eigenva
~Fig. 3!, the cylindrical stabilized jellium wires have mag
netic ground-state solutions. They appear so that the high
energy subband is totally spin polarized when its occupa
is small enough. The spin polarization lowers the total
ergy and it affects the surface energy and the elonga
force as is indicated in Figs. 4 and 5 by the regions of bla
circles.

For small cylinder radii only the first subband is occupi
and for the smallest radii it is eventually spin polarized. T
kind of spontaneous spin polarization has been predicted
by Gold and Calmels34 for cylindrical wires using the
exchange-correlation energy of a quasi-one-dimensio
electron gas. When more than one subband is occupied
highest subband, when totally polarized, induces a magn
moment in the lower subbands, too. However, this induct
is weak so that the magnetic moment per electron decre
when the number of occupied subbands increases. Th
shown in Fig. 6 giving the magnetic moment per electron
Bohr magnetons as a function of the radius for a Na w
The moment decreases in order to recover the nonmag
character of the simple bulk metal for large cylinder rad
One can also notice that when a new subband starts t
occupied, the magnetic moment increases nearly linearly
til a maximum value, from which it falls abruptly to zero. I
the inset of Fig. 6 the maximum magnetic moment due to
totally polarized second subband is given as a function of
r s parameter, i.e., corresponding to the different simple m
als. The contributions of the first~0,1!, and the second~1,1!,
subbands are also plotted, showing that the main contribu
comes clearly from the upper subband. If this maximum s
moment is calculated per unit length it varies surprisin
weakly, namely, for 2,r s,6a0 it is nearly constant, 0.11
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60.01mB /a0 . The insensitivity is due to a cancellation e
fect: The radius corresponding to the maximum moment
creases roughly linearly withr s , decreasing the moment pe
unit length, but the spin polarization per electron, as sho
in the inset of Fig. 6, increases with increasingr s .

We can analyze the appearance of magnetic ground-s
solutions of simple metal nanowires by making use of
Stoner criterion of ferromagnetism in bulk metals. The o
currence of magnetic solutions in the beginning of the oc
pancy of each new subband would suggest the applicatio
Hund’s rules for finite systems. These rules have rece
been applied to account for the magnetic solutions in qu
tum dots.35 But the number of electron states in a subband
not limited in our case because a jellium wire is infinite
thez direction. From the viewpoint of an infinite system it
natural to ask if the appearance of the magnetism in
jellium wires could resemble that in bulk metallic system
i.e., if the Stoner criterion is applicable. According to th
criterion, ferromagnetism exists whenever the condition

ID̃ ~EF!.1, ~3.4!

is fulfilled. Above,D̃(EF) is the density of states~DOS! per
atom in a spin-compensated system at the Fermi level aI
is the Stoner parameter, an ‘‘exchange’’ integral, which
cludes also the electron-electron correlation effects.

The Stoner parameterI should, in principle, be calculate
using the wave functions of the system at the Fer
level.36,37However, for simplicity we use the result valid fo
the homogeneous electron gas and defineI per electron,

I 5
8@exc

F ~ n̄!2exc
P ~ n̄!#

9~24/322!
. ~3.5!

Above,exc
F (exc

P ) is the exchange-correlation energy per ele
tron in a totally spin-polarized~spin-compensated! electron
gas. For simple metals this equation gives nearly the sa
results as full band-structure calculations. As a matter of f

FIG. 6. Magnetic moment per electron~in Bohr magnetons! for
Na stabilized-jellium wires (r s 5 3.93 a0) as a function of the wire
radius. The inset shows the maximum magnetic moment per e
tron when the second subband is occupied as a function of
electron-density parameterr s . The contributions due to the~0,1!
~dotted line! and ~1,1! ~dash-dotted line! subbands are distin
guished.



e
t
e

er
e
t
re
by

e-

t

n
e
e
e

f
g
fo
ur
rg

in
ab
f
ti
e

nd.
xi-
rst
tual

f
the

ger

s-
ate

g-
(
xi-

imit
n is

ds.
ple
es.
etic

ility
ure
d,
as-
at

ano-
va-
er
de-
tic

lity
nic

f a

this
racy
ally

hat
r-
um-
ulk
-
ng
b-
y of
of
s is

of
of a
n-
. 5
ub-

f
in
,

12 658 PRB 59N. ZABALA, M. J. PUSKA, AND R. M. NIEMINEN
in them the dependence ofI on the parametrization of th
exchange-correlation energy is stronger than the effect of
jellium approximation. For example, the Perdew-Zung
parametrization25 of the exchange-correlation data by Cep
ley and Alder,26 which we use in this paper gives for Na th
value I 50.72 eV, whereas in the Gunnarsson-Lundqvis38

parametrizationI 50.94 eV, i.e., close to the band-structu
value of 0.91 eV calculated with this parametrization
Janak.36

The DOS per unit volume is calculated for the infinit
cylinder geometry as

DOS~E!5
1

pR2 (
s

(
m,n

1

pA2

1

AE2em,n
s

. ~3.6!

Thus, it is a superposition of the DOS’s corresponding
different one-dimensional subbands. The factor 1/pR2 in the
front changes the DOS per unit length to the DOS per u
volume. The DOS exhibits a strong peak whenever the
ergy is close to the bottom of a subband. With the abovI,
defined for the homogeneous electron gas, one has to us
D̃(EF) the DOS per electron. It is obtained from Eq.~3.6! by
multiplying by the volume per electron@(4pr s

3)/3# and by
taking the spin degeneracy into account,

D̃~EF!5
8r s

3

3A2pR2 (
m,n

1

AEF2em,n

. ~3.7!

This equation shows that a highr s value ~low-electron den-
sity! as well as a small wire radiusR increaseD̃(EF) and
favor the occurrence of ferromagnetism.

The productID̃ (EF) is plotted in Fig. 7 as a function o
the wire radiusR for stabilized jellium wires correspondin
to Al, Na, and Cs. The filled markers mean systems
which we have found in self-consistent electronic-struct
calculations stable magnetic solutions, i.e., the total ene
of a spin-polarized solution is lower than that of a sp
compensated one. The open markers denote then st
spin-compensated systems. The correlation between the
fillment of the Stoner criterion and the existence of magne
solutions is almost quantitative, especially when the mom

FIG. 7. Stoner criterion productID̃ for Al ~circles!, Na ~tri-
angles!, and Cs~squares! stabilized-jellium wires as a function o
the wire radius. The regions of stable magnetic and sp
compensated solutions are denoted by filled and open markers
spectively.
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is due to the polarization of the second or a higher subba
For the Al wire the Stoner criterion with the above appro
mations would predict that the total polarization of the fi
subband survives to much larger radii than it does in ac
calculations. In accordance with Eq.~3.7! the peaks become
narrower when the radiusR increases and the probability o
finding magnetic solutions decreases. One can also see
trend that the magnetic solutions reach to relatively lar
radii @to smaller values of theID̃ (EF) product# when r s in-
creases.

The above form of the Stoner criterion is valid for a sy
tem at zero temperature. The model gives also an estim
for the critical temperature39

Tc5Im/4kB , ~3.8!

wherem is the magnetic moment per electron in Bohr ma
netons andkB is the Boltzmann constant. For a Na wireI
50.72 eV! with the second subband polarized to the ma
mum moment of about 0.3mB , this gives 620 K for the
critical temperature. This can be considered as an upper-l
order-of-magnitude estimate, because the above equatio
known to overestimate critical temperatures for bulk soli
Anyway, the result predicts that magnetic moments of sim
metal nanowires could survive to high finite temperatur
As the wire radius increases, the decrease of the magn
moment per atom would lowerTc .

Thus far we have considered the appearance and stab
of the magnetic solutions by assuming that the ionic struct
or, in our model, the given shape of the jellium backgroun
is stable. Figure 5 shows that the magnetic solutions are
sociated with positive values of the elongation force, or
least they appear during the stress-relief stages if the n
wire is being pulled. This would speak against the obser
tion of magnetic states in AFM experiments. On the oth
hand, as discussed above, the stabilized jellium model
scribes the cohesive properties only qualitatively. Atomis
first-principles simulations are needed to clarify the stabi
of the magnetic solutions with respect to changes in the io
structure.33

During the elongation of a nanowire the appearance o
magnetic moment would mean a quantum step ofe2/h in the
conductance. The observation of conductance steps of
size might be hindered by a simultaneous orbital degene
of the highest occupied subband. The degeneracy actu
favors the magnetic solution. However, it is encouraging t
experimental evidence of this kind for magnetic ‘‘finge
prints’’ exists in the conductance measurements of quant
point contacts at the interface between two different b
semiconductors.40 Moreover, for the two-dimensional elec
tron gas in a ribbonlike geometry the calculations by Wa
and Berggren41 predict that systems with one or more su
bands may be magnetic, provided that the electron densit
the highest-occupied subband is low enough. Our finding
spontaneous magnetic moments in simple metal nanowire
also related to the prediction of Weberet al.42 that a vana-
dium atom chain will be ferromagnetic for any number
atoms in it. A second consequence of the appearance
magnetic moment would be that during the pulling a disco
tinuity appears in the elongation force. This is seen in Fig
most clearly when the occupancy of the first or second s

-
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band of Na or Cs wires is low. The discontinuity results fro
different slopes of the total energy in the spin-polarized a
spin-compensated solutions.23

In the present model we have assumed perfect transla
symmetry along the wire. A more realistic model would i
clude constrictions at which the wire radius locally decrea
~examples of that kind of models include Refs. 11! and 24!.
For a constriction geometry we expect our prediction
magnetic solutions also to be valid in the sense that thelocal
DOS at the Fermi level and at the constriction will for certa
radii be so high that the Stoner criterion is fulfilled.

IV. CONCLUSIONS

We have calculated electronic properties of infinitely lo
stabilized-jellium cylinders. The model, in contrast with t
plain-jellium model, is capable to mimic physically reaso
ably all simple metals, irrespective of their average valen
electron density. Thus, we have considered the whole ra
of electron densities by simulating Al, Na, and Cs nanowir
For Na our results agree well with those obtained by Y
nouleas and Landman10 in the plain jellium using the shell
correction method. The prominent feature of the electro
structures calculated are the subbands. They are due to
confinement perpendicular to the cylinder axis and influe
8

,

ie

in
d

on

s

f

-
-

ge
.
-

ic
the
e

the cohesive properties of the wires: There exist radii of e
hanced stability corresponding to the total-energy minim
and the elongation force oscillates as a function of the w
radius. The subband structure also affects other electro
properties, such as the quantization of the conductance
the oscillations of the electron work function. Thereby th
stabilized-jellium model can qualitatively account for th
correlation between the conductance steps and the force
cillations seen in the AFM experiments.

Our calculations predict the existence of stable magne
solutions for certain critical-wire radii, at which the occu
pancy of the highest subband below the Fermi level is sm
The existence of magnetism has been explained on the b
of the Stoner criterion for ferromagnetism of bulk metal
We have also discussed the stability of the magnetic so
tions and their possible detection in experiments.
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