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Electronic resonance states in metallic nanowires during the breaking process
simulated with the ultimate jellium model
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We investigate the elongation and breaking process of metallic nanowires using the ultimate jellium model
in self-consistent density-functional calculations of the electronic structure. In this model the positive back-
ground charge deforms to follow the electron density and the energy minimization determines the shape of the
system. However, we restrict the shape of the wires by assuming rotational invariance about the wire axis.
First, we study the stability of infinite wires and show that the quantum-mechanical shell structure stabilizes
the uniform cylindrical geometry at the given magic radii. Next, we focus on finite nanowires supported by
leads modeled by freezing the shape of a uniform wire outside the constriction volume. We calculate the
conductance during the elongation process using the adiabatic approximation and the WKB transmission
formula. We also observe the correlated oscillations of the elongation force. In different stages of the elonga-
tion process two kinds of electronic structures appear: one with extended states throughout the wire and one
with an atom-cluster-like unit in the constriction and with well-localized states. We discuss the origin of these
structures.
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I. INTRODUCTION

The miniaturization of the electronic components is
great importance in the development and improvemen
new devices for applications in a wide number of field
Although the laws of nature are the same for macrosco
and mesoscopic systems, the miniaturization proces
achieving the limit where the quantum behavior of mat
starts to play an important role.

If the size of the system under consideration is only a f
nanometers, the atomic character of matter emerges a
cannot be considered as a continuum. The regime of qu
tum behavior is reached also if one of the spatial dimensi
of the system is reduced down to the Fermi wavelength
the conducting electrons. Then, the confinement splits
continuous electronic band in this direction into a set of d
crete energy levels. In both cases, the behavior of the sys
changes from what is expected from the macroscopic cas
metallic nanowires the Fermi wavelength is of the same
der of magnitude as the atomic distance, and both atomic
electronic discrete character compete and/or couple, d
mining the properties of nanowires.

There are many experimental and theoretical works
have gone deep into the understanding of the main feat
of nanowires. Experimental studies have focused on the
vestigation of the mechanical and electronic properties, s
as force, atomic structures, and conductance, pointing ou
close relation between them. Among the experimental set
we want to emphasize the role of the scanning tunne
microscope1–3 ~STM! and the mechanically controllabl
break-junction ~MCBJ! techniques.4–6 In both techniques
metallic nanowires are produced by putting two protrusio
in contact and then pulling them away from each other o
0163-1829/2003/67~7!/075417~11!/$20.00 67 0754
f
f

.
ic
is
r

it
n-
s
f
e
-
m
In

r-
nd
er-

at
es
n-
ch
he
s,
g

s
r

atomic distances. In this process, a nanowire is produ
which upon pulling is elongated and narrowed until it eve
tually breaks. These methods have allowed the study
transport properties and stability of nanowires.

The MCBJ techniques have demonstrated the existenc
electronic and atomic shell structures,4–6 analogous to those
found in atomic clusters.7,8 In these experiments the condu
tance has been studied by building histograms of the cond
tance during the breaking process. The results show
there are conductance values that are much more prob
than others. Due to the relation between the conductance
the radius at the narrowest part of the nanowire, wh
means that there are magic radii with enhanced stab
while other radii are less stable, and therefore they app
less frequently in the conductance histograms. The ato
structures of nanowires in the last steps before breaking h
been also studied with these techniques.2,9–12

The experiments discussed above have been accompa
by supporting theoretical investigations that can be split
two groups. The first group includes classical andab initio
molecular-dynamics simulations, in which the atomic stru
ture of nanowires is taken into account. These investigati
have been successful in many aspects, e.g., showing the
mistic mechanisms of the narrowing process~appearance of
dislocations, order-disorder stages, etc.! and their link with
other measurable quantities such as the elongation forc
the conductance.13,14 Moreover, from the viewpoint of the
present work, we notice the predictions of special atom
arrangements in STM tips and nanowire necks.13,15–19The
second group of models is more related to the properties
to the confinement of electrons in reduced dimensions,
ignores the atomistic structure of matter. In these calcu
tions, analytic approximations as well as self-consist
electronic-structure models have been used, mainly wit
©2003 The American Physical Society17-1
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the jellium framework. The results obtained with these me
ods are also enlightening, explaining the cohesive and e
tronic transport properties of nanowires, especially in
case of alkali metals with strong free-electron character.20–24

The aim of this paper is to simulate the breaking
nanowires. For this purpose we choose the jellium model
the self-consistent electronic-structure calculations within
density-functional theory. In spite of their simplicity, jellium
models have provided a simple and transparent way to
derstand the physics of metallic nanowires. More spec
cally, we use the ultimate jellium~UJ! model. This model
was first proposed by Manninen25 to investigate the struc
tures of alkali-metal clusters. It has been used for the sa
purpose also in later studies.26,27 To our knowledge the
present work is the first time the UJ model is used to sim
late the nanowire breaking. In practice, we solve the ensu
Kohn-Sham equations in a real-space point grid using
powerful Rayleigh quotient multigrid28,29 ~RQMG! method
implemented in the program packageMIKA ~Multigrid In-
stead of K-spAce!.30

Within the UJ approach, the background positive cha
density is fully relaxed in shape and density so that it equ
at every point with the electron density. One can think t
this freedom of the positive background charge mimics
efficient rearrangement and diffusion of ions at temperatu
close to the melting point at which the shell- and supersh
structure studies by the MCBJ techniques have been
formed for alkali metals.4,5 In principle, there is no restric
tion for the geometry of the constriction. This is in contra
with the previous jellium calculations that introducedad hoc
shapes for the nanowire. In our model the electrons th
selves acquire self-consistently the shape, which minim
the Kohn-Sham energy functional, and carry along the p
tive background charge. However, in order to reduce com
tational demands and to highlight the important phenom
from the complexity of possible solutions, we restrict t
shapes of nanowires to the axial symmetry, i.e., rotatio
invariance with respect to an axis.

One of our main results is that in the narrowest part of
nanowire, electronic cluster derived structures13,19 ~CDS’s!
appear. This tendency of electrons to form embedded clus
in the jellium constrictions is analogous to the preferred cl
terlike arrangements of atoms in contacts, described by
first-principles atomistic calculations by Barnett a
Landman.13,19 CDS’s have later been reported also by oth
authors.15 The main difference is that in our jellium mode
the atomistic character of the previous works is lost and
electrons alone are responsible for the phenomenon.
single-electron states provided by the jellium model can
studied in order to gain insight into the localization effec
associated with the CDS. The conductance of the cons
tion can be estimated either by counting the bands cros
the Fermi level or by using the WKB formula.

The rest of the paper is organized as follows: in Sec.
we describe the practical features of the UJ model and
RQMG method to calculate the electronic structure dur
the elongation process. In Sec. III, we discuss the results
the electronic properties. As a starting point, we consider
results for infinite wires. Then we focus our attention on t
07541
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breaking process of a finite cylindrical UJ nanowire su
ported by leads. Section IV contains the conclusions.

II. THEORY

A. Jellium models

The jellium model has been widely used in self-consist
electronic-structure calculations of nanostructures. It sim
fies the problem by replacing the ions by a uniform rig
positive-charge-density background that globally neutrali
the electron negative charge. The effective potential of
Kohn-Sham31 equations is written as~atomic Hartree units
are used throughout this paper in the equations!

Veff~r !5E n2~r 8!2n1~r 8!

ur2r 8u
dr81Vxc@n2~r !#, ~1!

where the first term on the right-hand side includes
electron-electron and electron-positive background Coulo
interactions, and the second term gives the exchan
correlation potential within the local-densit
approximation.32,33

Different types of jellium approaches have been int
duced. The simple jellium~SJ! model has the problem tha
there is only one equilibrium charge density, atr s'4.18a0

@n253/(4pr s
3)#, corresponding approximately to the ave

age conduction-electron density in Na. This means that for s
values lower ~higher! than ;4.18a0, the jellium system
tends to expand~compress!. In the SJ model, the electro
density has the same mean value as the positive backgr
due to the electrostatic forces. The SJ model gives incor
values for properties such as the cohesive energy, sur
energy, and bulk modulus, due to the trend of the system
compress or expand. To improve the results, corrections
be added to the SJ model,34 e.g., using the so-called stab
lized jellium model introduced by Perdew co-workers35 and
Shore Rose.36

In this work, we use the UJ model, the philosophy
which differs from the stabilized jellium model in which
does not try to correct the above-mentioned deficiencies
the SJ model. The peculiarity of the UJ model is that t
positive-charge background is allowed to relax. The
model represents the ultimate limit in which the positi
background is completely deformed to have the same den
as the electrons locally at every point. In this way, the Co
lomb term in the potential always vanishes, and in Eq.~1!
only the exchange-correlation term survives. The total
ergy is then minimized in the interplay between t
exchange-correlation and the kinetic energies.

One limitation of the UJ model is that, as in the SJ mod
there is only one equilibrium charge density atr s'4.18a0.
But, the absence of electrostatic potential disables
mechanism to keep the electrons at a given density, and
side the UJ the mean electron density becomes equal to
equilibrium density. Another property of the UJ model, d
rived also from the absence of electrostatic potential, is t
the shape of the electron density is to a large extent unc
trollable, and it evolves until the ground state is achiev
This property has been used to study the most favora
7-2
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shapes of simple-metal-atom clusters.25–27,37 In the present
work, however, we have to deal with open systems and
have to impose certain controlling restrictions in order
model the pulling of the nanowires. The description of t
solutions to these requirements is postponed to Sec. III C

B. Numerical methods

In Sec. III A, infinite uniform cylindrical wires are stud
ied. Since these systems are translationally invariant al
the wire axis, the relaxation of the positive backgrou
charge and electron density is limited in the radial directi
Consequently, it is necessary to solve numerically only
radial part of the Schro¨dinger equation~see Zabalaet al.22

for technical details!.
For the systems studied in Secs. III B and III C, howev

the translational invariance is not required. But, in addit
to the rotational invariance, periodicity in the axial directio
is assumed with unit-cell lengthLcell . Thus, the wave func-
tions c are indexed by the quantum numbersm, n, andkz .
Here,m is the angular momentum quantum number andkz is
the Bloch wave vector along the wire axis. Withm and kz
given, n enumerates the orthogonal states in the order
increasing energy eigenvalue. The UJ system is solved
finding the self-consistent solution to the following set
equations:

cmkzn
~r ,z,f!5eimfUmkzn

~r ,z!, ~2!

Umkzn
~r ,z1Lcell!5eikzLcellUmkzn

~r ,z!. ~3!

2
1

2 S 1

r

]

]r
1

]2

]r 2
2

m2

r 2

]2

]z2
12Veff~r ,z!D Umkzn

~r ,z!

5«mkzn
Umkzn

~r ,z!. ~4!

n~r !52 (
mkzn

~22d0m! f mkzn
uUmkzn

~r !u2, ~5!

Veff~r ,z!5Vxc~r ,z!5
dExc@n~r ,z!#

dn~r ,z!
. ~6!

The effective potentialVeff(r ,z) equals the exchange
correlation potentialVxc(r ,z). The electron densityn(r ,z) is
obtained by summing single-electron densities with the
cupation numbersf mkzn

. The degeneracies of the states a

taken into account by the factor 2(22d0m), and the occupa-
tion numbersf mkzn

obey the Fermi-Dirac statistics with th

Fermi level (EF) so that the system is neutral. A finite tem
perature of 1200 K is used to stabilize the solution of the
of equations.

The Schro¨dinger equation~4! is discretized on a regula
two-dimensional (r ,z) point mesh. We use standard fourt
order central-difference discretizations for the first and
second derivatives. The grid is surrounded by aframe with
the thickness of two grid points. Theseghost pointsare nec-
essary for the evaluation of the derivatives near the edge
the computation volume. The wave functions are required
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vanish at the ghost points corresponding to the radial sur
of the cylindrical computation volume, whereas at the a
the values at ghost points can be evaluated by noting
U(2r ,z)5(21)mU(r ,z). The Bloch condition@Eq. ~3!#
gives the recipe for obtaining the values at the ghost po
of the periodic boundary.

The problem with standard real-space relaxation meth
for Eq. ~4! is the so-called critical slowing-down phenom
enon resulting from the fact that at a time they use inform
tion from a rather localized region of space. As a result of
locality, the high-frequency error, corresponding to t
length scale of the grid spacing, is reduced very rapidly
the relaxation. However, once the high-frequency error
been effectively removed, the very slow convergence of
low-frequency components dominates the overall error
duction rate, i.e., critical slowing down occurs. Multigri
methods avoid this problem by treating the low-frequen
components of the error on coarser grids, where their wa
length is comparable to the grid spacing.

Applying the multigrid methods to the Schro¨dinger equa-
tion is a fairly complicated task because one has to so
both the eigenvalue and the wave function simultaneousl
this makes the problem nonlinear. Also, one has to so
several wave functions simultaneously, avoiding the bot
neck of orthogonalizations as well as possible. The stand
methods based on the full-approximation-storage38 method
require that the wave functions are well representable on
coarsest grid used, implying severe limitations on the ac
eration obtained by the multigrid idea. We use the recen
developed generalization of the RQMG method28,29as imple-
mented in theMIKA package,30 which avoids the problems
described above. In short, one applies the Gauss-Se
method on the finest grid. On the coarser grids one app
coordinate relaxations on the functional

^cnuHucn&

^cnucn&
1 (

i 51

n21

qi

^c i ucn&u2

^c i uc i&^cnucn&
. ~7!

This functional, which is actually defined on the finest gr
is the sum of the Rayleigh quotient and a penalty function
which is introduced to ensure the orthogonality. Moreov
the relaxations are performed simultaneously for all wa
functions. See Heiskanenet al.29 for a more thorough discus
sion of technical details.

The Kohn-Sham equations have to be solved s
consistently. In other words, one has to iterate until the o
put potentialVeff obtained from Eq.~6! equals the input po-
tential Veff that is used in Eq.~4!. In typical cases of
electronic-structure calculations, to avoid divergence due
charge sloshing, one uses sophisticated strategies to cons
the input potential for the next iteration as an optimized m
ture of input and output potentials of previous iterations.39,40

In the UJ iterations, however, the output potential can
taken directly as the input potential of the next iteration
sulting in a rapid convergence. This is because of the abs
of the long-range Coulomb interaction, which is the cause
the charge sloshing phenomenon.
7-3
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III. RESULTS AND DISCUSSION

A. Infinite uniform cylindrical wires

The main results of this paper concerning the nanow
breaking process are discussed in Secs. III B and III C. A
preliminary work, and in order to gain insight into the U
model in comparison with the stabilized jellium model, w
study the stability of infinite uniform cylindrical UJ wires.

We calculate the surface energy of the nanowires and
oscillations in the energy per unit length as it was made
our previous work describing Al, Na, and Cs nanowir
within the stabilized jellium model.20,21 The results are
shown in Fig. 1 as a function of the wire radiusR. Here the
radius is defined as the radius of the positive backgro
charge in the SJ system withr s54.18a0 and the same
amount of charge per unit length. In order to separate
energy oscillation from the average behavior, the so-ca
liquid-drop model41 is used. In this model the energy of th
jellium system can be written as the sum of two terms—o
proportional to the volume and the other proportional to
surface area. For the first term, the energy/volume ratio
responds naturally to the homogeneous electron gas42 with
r s54.18a0. This view has been tested in clusters a
nanowires20–22 and it describes correctly the mean ener
i.e., without the characteristic oscillations due to the quant
confinement. We fit the self-consistently calculated total
ergy per unit length to a liquid-drop-model-type functio
Then, subtracting this smooth energy function from the to
energy we get the pure energy oscillations, which are sho
in the inset of Fig. 1. Note that there are radii for which t
energy is at minimum. They correspond to wires that
more stable than wires with slightly different radii and high
energies. The first magic radii areR54.3a0 , 7.3a0 , 10.3a0 ,
13.6a0 , 17.8a0, and 20.7a0. We use these radii for the initia
uniform wires in the nanowire breaking simulation in Se
III C. The shell and super shell structures studied in previ
calculations20,21 are also quite clear. In comparison with th
energy oscillations of Na, we observe that the beat positi

FIG. 1. Surface energy of infinite uniform cylindrical UJ nanow
ires as a function of the nominal wire radius~see text!. In the inset
the energy oscillations are shown and the first magic radii
marked.
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are shifted to higher radii. The reason is that the UJ poten
is softer at the surface than the stabilized jellium poten
for Na.20

B. Periodic systems

Now we change the scheme and allow the wire to defo
also in the axial direction. However, we impose period
boundary conditions with the unit-cell lengthLcell along the
wire axis.Lcell is thus the maximum perturbation waveleng
in our calculation. From the liquid-drop model point of view
neglecting the small contribution of the curvature energy,
liquid wire attempts to achieve the shape that minimizes
surface, and thereby the total energy. Under this assump
an infinite periodic liquid wire is a uniform cylinder fo
lengths Lcell,4.5R. For Lcell.4.5R, it deforms trying to
achieve the energetically most favorable state, an infin
chain of spheres. However, Kassubeket al.43 showed using a
semiclassical model and perturbation theory that due to
discreteness of electronic structure, the wires with magic
dii remain uniform also at largeLcell /R ratios. With this re-
sult they argued that in the narrowing process of an infin
wire, when the radius is crossing an unstable zone before
next stable radius is achieved, the wire would spontaneo
deform acquiring a wavy or deformed shape. We corrobor
these results nonperturbatively using the UJ model
follows.

We choose a certain radiusR and solve for the UJ elec
tronic ~and positive-charge density! structures imposing in-
creasingly longer supercell lengthsLcell by increasing the
number of electrons in the cell. Thereby we determine
critical supercell length~the wavelength of a perturbation! at
which the wire starts deforming. For magic wires we find
wavy solutions, the wires remain uniform. For example,
R57.3a0 the wire is still uniform atLcell /R'36. The wires
corresponding to the radii at the maxima of the energy os
lations in Fig. 1 are the most unstable ones. These wires
uniform up to a critical value ofLcell , but above it they
spontaneously deform to a wavy or nonuniform density p
file along the wire axis. As an example, Fig. 2 shows t
behavior of a wire with radiusR55.5a0 when the number of
electrons in the unit cell is 6, 7, 8, and 10 and the unit-c
lenghtLcell increases as 19.3a0 , 22.5a0 , 25.7a0, and 32.1a0,
respectively. The unit cell with eight electrons corresponds
a magic spherical cluster and that of ten electrons co
sponds to the pair of magic clusters of eight and two el
trons. The critical values for the unstable radii ofR
55.5a0 , 8.6a0 , 11.6a0, and 19a0 areLcell /R54.1, 3.2, 4.2,
and 4.8, respectively; i.e., we obtain values near the class
value of 4.5. At the unstable radius ofR515.5a0, the wire is
not deformed at least up toLcell /R510 ~the largest length we
have calculated!, probably due to the fact that this radius lie
in a beat of the supershell structure and it is actually re
tively stable. We start all the calculations with a converg
uniform potential profile along the wire axis~see Sec. III A!.
In this way we do not ‘‘add any energy’’ to the system wh
initiating the calculation. Therefore, if the wire starts to d
form in the iteration process the reason is the disappeara
of the local energy minimum.

e
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In addition, we narrow a stable uniform wire by increa
ing the lengthLcell of the periodic cell and maintaining th
number of electrons constant. Each elongation step is so
self-consistently until convergence is reached. We obse
that during the first steps the wire remains uniform, but
some point, before breaking into isolated clusters, the w
spontaneously deforms. Thus, we confirm self-consiste
and dynamically the hypothesis by Kassubeket al.43

C. Breaking of supported finite nanowires

In order to study the formation and evolution of nanoco
strictions between two supporting leads, we follow the n
procedure. First, we fix the number of electrons in the p
odic supercell and solve self-consistently for the electro
structure of a uniform UJ wire having a stable magic radi
Then, the potential at both ends of the periodic cell is ‘‘fr
zen.’’ This means that, although the Kohn-Sham equati
are solved in the whole wire, in these regions the potentia
not updated in the self-consistency process. The functio
this ‘‘frozen’’ part is to emulate the lead parts where io
rearrangement does not occur as efficiently as at the cons
tion. In our calculation, these leads serve as handles to
the UJ and pull it. The rest of the wire, the UJ at the mid
part of the supercell, is the place where the wire will stret
A sketch of the configuration is shown in Fig. 3. A sha
change in the potential between the constriction and the le
turned out to cause difficulties in numerical calculation
Therefore, we smooth out the potential at the left edge us
the form

F~z2zedge
l !Vfrozen1F~zedge

l 2z!VUJ, ~8!

whereF is a Fermi function with half-width of 0.5a0 , Vfrozen
is the ‘‘frozen’’ potential, andVUJ is the self-consistent UJ
potential. For the right edge an analogous mixing is us
The main properties of the nanowire will not depend on

FIG. 2. Periodic infinite UJ wire with the nominal radius ofR
55.5a0 and 6~a!, 7 ~b!, 8 ~c!, and 10~d! electrons in the periodic
unit cell. The figures show the electron density of one unit cell. T
contour spacing is 0.15 times the UJ bulk density value.
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particular choice of this matching because the physi
features are determined by the narrowest part of the c
striction.

We perform simulations starting with radii between 7.3a0
and 20.7a0, and changing the number of electrons initially
the constriction. The elongation of the wire is made in ste
of about 1a0, and always starting from the previous con
verged density, so that the grid spacing of the point mes
increased to enlarge the cell. In order to overcome the in
actions between the constriction and its periodic replica44

we choose the length of the lead part to be 6 or more Fe
wavelengths (lF513.7a0). Throughout the rest of
the paper we will useDL for the elongation;DL50 for the
first step.

In Fig. 4, we show snapshots of the electronic density
a wire with the starting radius of 10.7a0. The UJ part corre-

e

FIG. 3. Schematic view of the model system for simulations
breaking of finite nanowires supported by two leads.

FIG. 4. Supported UJ wire. The UJ constriction contains eig
electrons. Density contour plots for four different elongatio
lengths:DL57.9a0 ~a!, 19.8a0 ~b!, 20.8a0 ~c!, and 25.8a0 ~d! are
shown. The snapshots in~b! and ~c! are from consecutive self-
consistent calculations and the snapshot~d! is the last step before
the nanowire breaking. The contour spacing is 0.15 times the m
UJ bulk density value.
7-5
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sponds to eight UJ electrons placed initially in the neck
gion. Electrons are free to move inside or outside the lea
depending on the requirements of the self-consistent s
tion. However, there are always about eight electrons in
constriction. Although this is one of the smallest wires w
have calculated, it shows all the main features obser
when simulating also larger wires.

If the breaking of an UJ nanowire would happen as
fluid between the leads, the electron density should evo
forming a catenoid-shaped surface. Similar shapes~such as
hyperbolic,45 parabolic,23 cosine,46 etc.! have been used be
fore to model the nanoconstriction in simple free-electron
jellium simulations. The main results, when the comparis
is possible, have been essentially the same irrespective o
actual shape. In Fig. 4~a!, the electron density is shown afte
the elongation ofDL57.9a0. The catenoidlike density pro
file appears as expected for a classical fluid. When we c
tinue elongating the nanowire the shape of the electron d
sity changes dramatically from the classical one. If t
distance between the leads is short, the electrons are stro
trapped at the narrowest part and they do not have m
freedom in the rearrangement process. When the lengt
the constriction is large enough, the electrons have m
space and freedom to achieve different types of energetic
preferred shapes. In Fig. 4~b!, DL519.8a0 and the electrons
in the constriction form a CDS. The electron density per u
length has two minima at both sides of the CDS and there
7.1 electrons between these narrowest cross sections.
embedded cluster reminds the closed-shell cluster of e
electrons, but there are some differences. There are
enough electrons and the symmetry is not exactly spher
It seems that thepz orbital (z along the cylinder axis! of the
cluster has disappeared. We will analyze the structure
more detail below. Figure 4~c! shows the next consecutiv
elongation step withDL520.8a0. Note that the CDS disap
pears and a sudden change in the mean radius happen
fact, the conductance changes simultaneously abruptly f
3G0 to 1G0 @see the inset in Fig. 5~a!#. At this point it is also
remarkable that the shape of the constriction is again
from the catenoid having a constant magic radius. Fig
4~d! is for DL525.8a0, the last step before the nanowi
breaks. Again a CDS appears during the elongation from
third to the fourth snapshot. There are 1.8 electrons betw
the two minimum cross sections at both sides of the CD
This CDS can be interpreted as an embedded two-elec
cluster. We observe that the radius of the constrictions
more or less constant with the same value as in the prev
snapshot in Fig. 4~c!.

At this point we want to focus on one characteristic pro
erty of UJ found when simulating the wire breaking: the
matter deforms very easily. This ability to deform allows t
formation of the cylinders of magic radii glued to the lead
The radius jumps from one magic radius to the next throu
an abrupt charge reorganization. The CDS’s of about two
eight electrons appear before the last charge reorganiza
and the wire breaking. If there is enough UJ between
leads, suspended long thin cylinders appear and in the
steps they alternate with chains of CDS’s producing a v
extended elongation process. Here we want to underline
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the CDS formation is a process different from the stability
a uniform cylindrical wire against the formation of a chain
spheres studied in Sec. III B. In that section, the quantu
mechanical shell structure may conserve the cylindri
structure that is not classically stable, whereas now
quantum-mechanical shell-structure effect destroys
classical catenoid type of solution producing a CDS in t
constriction.

In Fig. 5, we show the conductance, the effective radi
and the elongation force as a function of the elongation
two different wires. The main figures correspond to an init
configuration with the radius of 20.7a0 and 60 electrons in
the UJ constriction. The insets display the results for a w
with an initial radius of 10.7a0 and eight electrons in the

FIG. 5. Main figures: conductance, effective radius at the co
striction, and elongation force for a wire with initial radiusR
520.7a0 and about 60 UJ electrons in the constriction. Insets:
same quantities for the wire in Fig. 4 with initial radiusR510a0

and eight UJ electrons in the constriction. The arrows mark
points where the density has been plotted in Fig. 4 .
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FIG. 6. ~a! Electron band structure of the wire having eight UJ electrons and the elongation ofDL519.8a0 @Fig. 4~b!#. The difference
between the vertical dashed lines is one reciprocal lattice vector (2p/Lcell). The label for each branch represent the (m,n) subband for the
infinite wire. The energy eigenvalues are solved at twokz points: at the origin and at the zone boundary of the supercell Brillouin zone~b!
LDOS integrated between the two narrowest points of the electron density in Fig. 4~b! is displayed. The solid line represents the to
ILDOS, the dashed lines are the contributions to the ILDOS of the states withm50 ~long-dashed line! andm51 ~short-dashed line!. The
dotted lines show the DOS of hypothetical localized states. The states marked with squares in the band structure are the m
contributing to the ILDOS. In the inset, the analogous plot for the ILDOS in the constriction of Fig. 4~a! with DL57.9a0 is shown. The
origin of energy is the Fermi level.
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constriction. The electron density of the latter wire is plott
in Fig. 4 at certain elongation stages.

The conductance is calculated with the adiabatic a
semiclassical approximation used by Brandbygeet al.3 The
constriction is divided into transversal slices. Then for ea
slice a uniform wire with the radial extent of the slice is bu
and the energy eigenvalues of the subband bottoms are
culated for this slice. The subband bottoms give effect
potentials along the wire axis. If we look at the depende
of one of them on the position, we see that it raises at
constriction due to the strong confinement~see Fig. 8!. The
electrons in this subband at the Fermi energy of the le
have to overcome this barrier in order to carry current.
evaluate the transmission probability of the electrons at
Fermi level through the barrier, the semiclassical WKB f
mula is used.

The properties of the nanowires have been demonstr
to be dominated by the narrowest part of the constricti
Therefore we calculate an effective radius by evaluating
electron density per unit length at the middle of the wire. I
obtained with the value of the bulk electron density~corre-
sponding tor s54.176a0). Figure 5~b! shows the effective
radius as a function of the elongation of the wire. The p
teaus or shoulders are in good coincidence with the infi
wire magic radii of 10.3a0 , 7.3a0, and 4.3a0. For the larger
wire shown in Fig. 5~b! also a small kink can be seen
DL515.5a0, which corresponds to the magic radius
13.6a0. Wider magic radii do not appear because of the b
region of the supercell structure. In the inset at the end of
plateaus the effective radius increases when elongating
wire due to the CDS formation. The sudden decrease of
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effective radius, accompanied by a step in the conducta
is due to the sharp charge rearrangements in the constric

The elongation force, shown in Fig. 5~c!, is evaluated as
the negative derivative of the total energy with respect to
elongation. The rearrangement of the wire charge lead
discontinuous upward steps in the force, while if the rad
changes smoothly the force draws a continuous buck
curve. At this point we want to point out the superiority
the UJ model in the force calculation over other jelliu
models.22–24 In contrast with the experiments,1,2 the latter
show a continuous behavior of the force without any ste
Moreover, for narrow constrictions positive values are o
tained when the wire crosses an unstable zone. Note th
our model the force is always negative, as observed in
experiments1,2 and in atomistic simulations.3,13,14,47Figure 5
shows clearly that the transport, geometrical, and mechan
properties of the nanowires under elongation are related

D. Electronic cluster-derived structures

Let us now analyze more closely the CDS appearing
Fig. 4~b!. In order to enlighten the origin of this structure, w
plot in Fig. 6~a! the single-particle energy spectrum of th
wire. The extended zone scheme is used for clarity. The
bels on the left of each branch represent the correspon
(umu,n) subbands for the infinite wire. In practice,n is ob-
tained by calculating the number of radial nodes at the
boundaries~see Fig. 3!. The branches have the characteris
parabolic shapes, but they show two different stages. In
lower part of the parabolic subbands the eigenvalues fo
flat plateaus withoutkz dispersion. These states correspo
7-7
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FIG. 7. ~a!, ~b!, and~c!: Selected single-electron states in the wire having eight UJ electrons and the elongation ofDL519.8a0 @Figs. 4~b!
and 6#. Contour and profile plots~along the wire through the maximum value! of the squared moduli of the wavefunctions are shown. P
~a! corresponds to am50 resonance state at the low-energy peak in the ILDOS~Fig. 6!. Plot ~b! corresponds to am51 resonance state a
high energy. Plot~c! is an extended state of them50 subband at the energy of them51 peak in the ILDOS. Plot~d! is a localized state with
m50 corresponding to the elongation ofDL525.8a0 @Fig. 4~c!#. The contour spacing is one-tenth of the maximum value. Thekz vector is
given in reciprocal-lattice vector units (2p/Lcell).
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to the wave functions localized at the leads and they van
at the center of the constriction. Therefore the~0,2! and~2,1!
subbands cannot carry current through the constriction
they are closed channels. On the other hand, the states o
upper part of the~0,1! and~1,1! branches are extended alon
the whole wire and they form a continuous band~with the
exception of small band gaps!. The conductance of the wir
is thus 3G0 due to the extended states of the (0,1) and (1
open channels at Fermi energy. This conclusion is in ac
dance with the value obtained with the WKB approach.

In Fig. 6~b!, we plot the integrated local density of stat
~ILDOS! in the constriction for the band structure of Fi
6~a!. It is calculated by integrating the local density of sta
~LDOS! over the space between the two narrowest part
the electron density in Fig. 4~b!. The LDOS itself is obtained
by substituting the discrete energy levels with Lorenzians
07541
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full width at half maximum of 0.4 eV and weighting them b
the local probability amplitudes of the states in question. T
ILDOS has two clear peaks, and while decomposing it
can see that the lower and the higher peak have them50
andm51 character, respectively. The contribution of them
52 states is negligible. The two ILDOS peaks can be fit
by two energy levels convoluted with the same Lorenzian
the eigenlevels in the LDOS calculation. The resulting re
nance peaks are shown in Fig. 6~b! by dotted lines. The
positions and the heights of these peaks have been fi
manually. The coincidence between the fit and the true
DOS is remarkable. In the inset of Fig. 6~b!, we plot the
LDOS integrated between the leads for the electron den
showed in Fig. 4~a! having no CDS. We observe that th
ILDOS is much smoother and it is similar to the DOS of
infinite wire with delocalized states. The differentm contri-
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FIG. 8. Effective z-dependent potentials fo
the different (m,n) channels. The wire has eigh
UJ electrons and the elongation ofDL519.8a0

@Figs. 4~b! and 6#. The dashed lines in the poten
tial wells are drawn at the energies of the res
nance states. The lowest line is the bare Koh
Sham potential atR50.
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butions cannot be fitted by single resonance peaks as sh
by the dotted peak for them50 and m51 contributions.
Moreover, the inset shows that them-decomposed peaks ar
slightly asymmetric with a tail on the high-energy sid
These tails, which are not observable in the main figure
which the CDS appears, are due to theAe dependence of the
subband peaks in the DOS for infinite wires.

The ILDOS analysis suggests that in the energy subba
or branches, at the transition points from states localize
the leads to states extended across the whole wire@see Fig.
6~a!#, rather localized resonance states appear in the cons
tion. To clarify this point, we plot selected states at the
DOS peak energies in Fig. 7. Figures. 7~a! and 7~b! show
clearly the localized character of the wave functions in
constriction at these energies. The state in Fig. 7~a! can be
identified as the 1s orbital of an eight-electron cluster. Th
second well-localized state@Fig. 7~b!#, hasm51. Therefore
it is doubly degenerate and it is identified as thepxy orbital.
At about the energy of thispxy orbital, apz orbital ~directed
along the wire axis! should appear in them50 branch in
order to complete the eight-electron cluster. However, we
not find such a state with a strong localization in the co
striction. As shown in Fig. 7~c!, the pz-type states are muc
more delocalized than thepxy resonance states. The diffe
ence reflects the fact that due to the orientation the inte
tion of the clusterpz orbital with the lead states is muc
stronger than that of thepxy orbital. The absence of a well
localizedpz orbital explains the clearly nonspherical sha
of the embedded cluster in the electron density plot of F
4~b!, and also the finding that there are only 7.1 electrons
the constriction between the two narrowest cross section

Figure 7~d! shows a well-localized state for the wire wit
eight UJ electrons at the elongation ofDL525.8a0 @Fig.
4~d!#. The state can be identified as the 1s orbital of a two-
electron cluster glued to the leads. There are 1.8 elect
between the two narrowest cross sections of the constric
supporting the assumption that this state is related to a t
electron cluster.

The states in Fig. 7 have always a wavy, nondecay
background. This is a characteristic of resonance states;
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localized states would decay exponentially. The wavy ba
ground corresponds to the wave function of the leads~plane
wave! at the energy that matches with that of the clus
state. To check this assumption we realize that the wa
length of the plane-wave background corresponds to thekz
quantum number in the extended zone scheme. There
indeed two maxima in the modulus of the wave function p
every Brillouin-zone unit ofkz ~see the labels of each wav
function!.

The existence of resonance states is related to the sha
the self-consistent potential having a small potential well
the nanoconstriction. To point out how this potential can a
mit a resonance state, we show in Fig. 8 the effective po
tial for states with different (m,n) quantum numbers, calcu
lated within the adiabatic approximation for the wire wi
eight UJ electrons and the elongation ofDL519.8a0 @Fig.
4~b!#. We see that electrons at the constriction feel the e
tence of a potential well. We plot the energies correspond
to the ILDOS peaks with dashed lines and note that they
exactly in the potential wells, where the resonances situat
is also evident that an occupied resonantpz state does not
occur because its energy eigenvalue should be well above
effective potential of the (0,1) branch and because the
tential well of the (0,2) branch is above the Fermi level.
addition, by the help of Fig. 8 we can explain the differe
parts of the electron energy bands in Fig. 6~a!. The states
with energies above the effective potential maxima are
tended along the whole wire. These are the current-carry
states of each branch. The states below the potential m
mum of the constriction are trapped in the leads, correspo
ing to flat plateaus in the lower part of the energy branc
@Fig. 6~a!#. Finally, between the potential maxima and t
local minimum in the center we find resonant states that
enhanced at the constriction although they continue as p
waves in the leads.

IV. CONCLUSIONS

We studied the stability of nanowires and the nanow
breaking process performing self-consistent calculati
7-9
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within the ultimate jellium model. In the model, electron
and positive background charge acquire the optimal den
minimizing the total energy. The model enables thus stud
of shape-dependent properties of nanoscopic systems su
quantum dots or, as in the present work, quantum wires.
model advocates the idea that the electronic structure d
mines, via the shell structure, the geometry and ionic str
ture also in a partially confined system.

First, we analyzed the stability of infinite periodic qua
tum wires pointing out the ability of the electronic ban
structure to stabilize the nanowires at magic radii, i.e., a
small deformation of the nanowire along thez axis always
increases the energy. At the unstable radii correspondin
maximum values of the energy oscillations, the wire is u
form up to a critical value of the unit-cell length. The critic
values found are close to the classical value ofLcell /R
54.5. Above this limit the local energy minimum disappea
and a deformation of the wire lowers the total energy.

Then we investigated the elongation process of fin
nanowires supported by leads. The elongation force, con
tance, and effective radius of the constriction were calcula
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simultaneously. The importance of the charge relaxation
order to obtain results in agreement with the experime
was shown, e.g., in the case of the elongation force. T
ability of the ultimate jellium~electron density! to acquire
the optimal shape allows the formation of CDS’s showi
the importance of electron states in the formation of th
structures. The related resonance states and their origin
also shown. We found CDS’s that can be linked with t
eight- and two-electron free-standing clusters.
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