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Using low-temperature scanning tunneling spectroscopy at 5 and 50 K, we studied the linewidth of unoc-
cupied quantum-well states in ultrathin Pb islands, grown on Si�111� on two different Pb/Si interfaces. A
quantitative analysis of the differential conductance spectra allowed us to determine the electron-electron �e-e�,
electron-phonon �e-ph� and the interface and defect contributions to the lifetime. Layer-dependent ab initio
calculations of the e-ph linewidth contribution are in excellent agreement with the data. Importantly, the sum
of the calculated e-e and e-ph lifetime broadening follows the experimentally observed quadratic energy
dependence.
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Understanding the basic processes governing the decay of
elementary electronic excitations in metals and at metal sur-
faces is important because these excitations play a major role
in a large variety of chemical and physical phenomena, in-
cluding chemical reactions or catalysis at surfaces, molecule-
surface interactions and transport properties. A clear picture
of the decay mechanisms occurring in several types of bulk
metals �simple, noble, paramagnetic and some ferromagnetic
transition metals� has been obtained.1 The analysis of the
dynamics of surface and image potential states �SS and IPS�
also clarified the decay processes at the surface of various
metals.1

Thin metal films are interesting from a fundamental point
of view and for technological applications. In a thin metal
film electrons occupy discrete eigenstates with a quantized
wave vector perpendicular to the surface, known as
quantum-well states �QWS�.2–4 These states, forming two-
dimensional �2D� bands, are intermediate between bulk
states and SS. Due to technical limitations, few studies have
reported so far detailed contributions to the QWS lifetime.
For example, photoemission �PES�, two-photon PES �2PPE�
and time-resolved 2PPE �TR-2PPE� require homogeneous
films over macroscopic areas. Nevertheless, the electron-
electron �e-e� contribution �e-e was determined in Ag/
Fe�100� by PES and TR-2PPE �Refs. 5 and 6� and in
Pb/Si�111�.7 The electron-phonon �e-ph� contribution �e-ph
was extracted by PES in Ag/Fe�100� �Ref. 5� and in
Ag/Cu�111�.8 Layer-dependent or electronic structure depen-
dent e-ph contributions were also reported.9–12

Scanning tunneling spectroscopy �STS� benefits from be-
ing a local probe but suffers from the lack of k resolution.
However, detailed quantitative lifetime studies were
achieved for SS �Refs. 13–16� and IPS.17 Up to now only
one STS study reported a quantitative linewidth analysis of a
QWS metal system, Yb�111�/W�110�.18 A quadratic energy
dependence of the linewidth was found, in agreement with

three-dimensional �3D� Fermi-liquid �FL� theory, and a large
e-ph coupling constant. Both results were subsequently ques-
tioned by a TR-2PPE study on bulk Yb.19 These controver-
sial results illustrate the difficulties and limits encountered in
STS experiments to retrieve reliable quantitative QWS life-
time data.

In this Rapid Communication we present a detailed low-
temperature STS study of the linewidth of unoccupied QWS
in Pb islands of thicknesses 7–22 monolayers �MLs� grown
on Si�111�. Using a simple model with tunneling allowed
through a trapezoidal barrier for a set of discrete QWS, a
quantitative analysis of the differential conductance dI /dV
spectra allows us to determine the QWS lifetime broadening
as a function of energy, and the e-ph contribution between 5
and 50 K. The interface and defect scattering contribution to
the QWS linewidth from the disordered Pb /Si�111�-7�7
�hereafter 7�7� interface is 90 meV larger than the one from
the crystalline Pb-�3� �3 /Si�111� �in short Pb�3� interface.
Layer-dependent ab initio calculations of �e-ph were per-
formed for 4–10 ML free-standing Pb�111� films, taking full
account of the quantum-size effects on the electron and pho-
non band structures and on the e-ph coupling.20,21 The theo-
retical results are in very good agreement with the experi-
mental findings. �e-e was estimated from ab initio calculation
of �e-e for the parent bulk band dispersing along �-L.20 The
calculated �e-ph+�e-e is convincingly fitted by a quadratic
equation in agreement with the experimental results. The ef-
fect of spin-orbit coupling �SOC� on the electronic band en-
ergies and on �e-e is small in the probed energy range. The
e-ph coupling constant calculated for the unoccupied QWS,
��1.45–1.60, is generally larger than � calculated at the
Fermi energy �EF� for the corresponding films.21

The measurements were performed in a homebuilt scan-
ning tunneling microscope �STM� operated at 50 and 5 K in
ultrahigh vacuum using cut PtIr tips.22 dI /dV spectra were
measured using currents of 200� I�500 pA, with open
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feedback loop via lock-in technique with a modulation am-
plitude of 10 mVpp at a frequency of 1.4 kHz. Pb was ther-
mally evaporated on the Si�111�-7�7 or on the Pb�3 sub-
strate kept at room temperature favoring the growth of Pb
single crystals with their �111� axis perpendicular to the
surface.23,24 All dI /dV measurements were performed on
large Pb islands far from steps or island boundaries to avoid
additional broadening of the QWS linewidths.

Figure 1 shows Pb islands grown on 7�7 �a�–�c� and
Pb�3 �d�–�f�. Thicknesses given in ML include the WL.
Large islands of several hundreds of nm are formed. Figure
1�c� reveals the buried Si-7�7 interface superimposed with
the atomic resolution of the Pb lattice indicating that the
island surface is atomically flat.25,26 As shown in Fig. 1�b�
the Pb WL formed on Si-7�7 is disordered. In contrast, a
crystalline topography is observed both on the island and on
the WL on Pb�3 �see Figs. 1�d�–1�f��. The WL displays a
striped-incommensurate superstructure �see Fig. 1�e�� corre-
sponding to a saturated Pb phase.27,28 Figure 1�f� shows a
Moiré pattern on a 8 ML island, caused by interfacial strain
due to the difference between the Si and Pb lattice constant.29

Figure 2 presents single dI /dV spectra obtained at 5 K on
Pb islands of selected thickness. Remarkably, the spectra
consist of prominent maxima located at the QWS energies.
Previous STS studies of QWS in Pb/Si�111�,25 in
Yb/W�110�,18 and of lanthanide SS �Ref. 30� suggested that
this line shape results from a high effective mass near the 2D
subbands onset, which was confirmed by PES for
Pb/Si�111�.31 The measured QWS energies are similar for

both interfaces, with larger dispersion on the disordered
one.32 If the WL thickness is assumed to be 1 ML, agreement
occurs between calculated QWS energies for free-standing
films33 and our experimental data for thicknesses
�17 ML.32 At smaller thickness a systematic deviation ex-
ists, increasing with decreasing thickness. A comparison be-
tween the spectra shown in Figs. 2�a� and 2�b� reveals a
considerable narrowing of the QWS linewidths on the Pb�3
interface with respect to the ones on 7�7.

To extract the intrinsic QWS linewidth, dI /dV is modeled
based on a 1D WKB approach with a trapezoidal potential
barrier.25,34 Figure 2�c� depicts the schematic energy diagram
of the junction. The Pb island density of states �DOS� �s is
simulated as a series of Lorentzian peaks, whereas the tip
DOS �t is assumed to be constant. As a function of bias
voltage V, I is written35

IWKB�V� = �
−�

� ��s����t�� − eV��f��� − f�� − eV��exp	−
2

	
�

0

z0

Re
�2m�
 − � + 	1 −
z

z0
�eV�dz��d� . �1�

FIG. 1. �Color� STM images showing typical features of Pb
islands grown on Si�111�-7�7 �a�–�c� and on Pb-�3
� �3 /Si�111� �d�–�f�. �a� and �d� Large scale overview. The indi-
cated island thickness includes the wetting layer �WL�. �b� Disor-
dered WL �1 ML high. �c� Atomic resolution of the surface Pb
lattice. Buried 7�7 interface seen through a 8ML island. �e� High
resolution of the crystalline Pb WL, a saturated Pb ML. �f� Moiré
pattern on a 8 ML island.

FIG. 2. �Color online� Experimental �dots� and calculated �full
line� dI /dV spectra measured at 5 K by tunneling to a large atomi-
cally flat Pb island of selected thickness grown on �a� Si�111�-7
�7 and �b� Pb-�3� �3 /Si�111�. The arrow indicates negative dif-
ferential conductance. �c� Schematic energy diagram of the tunnel
junction used to model the experiment. CBM: conductance band
minimum, VBM: valence-band maximum, d: film thickness, z0:
vacuum gap. EF,s�EF,t�: sample �tip� Fermi level. Evac,s�Evac,t�:
sample �tip� vacuum level. 
�z�: vacuum potential drop between tip
and sample. V: tip-sample bias voltage.
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The nonzero conductance observed between the QWS is
modeled by an additional exponential term. This analysis
describes convincingly the STS data �see Figs. 2�a� and
2�b��.

Possible causes of extrinsic broadening are the transmis-
sion to the substrate, the QWS lateral dispersion and the ac
voltage modulation. The latter contributes a few mV. Follow-
ing Ref. 5, the reflectivity of both Pb/Si interfaces was found
to be very close to one in the studied voltage range, contrib-
uting to negligible broadening. As symmetric QWS peaks are
observed on both interfaces, tunneling of electrons with finite
k� should contribute less than 10 meV to the linewidth.18,30

Consequently, extrinsic linewidth contributions were ne-
glected in the following analysis. ��T ,E� was further decom-
posed as follows:

��T,E� = �0 + �e-e�E� + �e-ph�E,T� , �2�

where T is the temperature and E is the QWS energy. �e-e�E�
is the e-e interaction term and �e-ph�E ,T� reflects the e-ph
scattering. �0, independent of T and E, describes interface
and defects scattering.

Figure 3�a� shows that our calculated QWS energies are
almost lying on the parent bulk band. The calculated effec-
tive masses are very close to the free electron mass. Figure
3�b� shows �e-e�E� computed for bulk band energy equal to
the QWS energy with and without SOC. A quadratic depen-
dence �e-e=��E−EF�2 is found, leading to �=0.023 eV−1

with SOC �0.021 without�, which are very close to �
=0.02 eV−1 obtained when treating bulk Pb as a free elec-
tron gas �rs=2.30 a.u�. Hence, in the probed energy range,
the SOC effect on band �QWS� energies and on �e-e is small.
Figure 3�b� shows �e-ph versus QWS energy calculated for 5
and 50 K. It varies with QWS energy, but the difference
between the averaged �e-ph’s �dashed lines�, ��e-ph
=�e-ph�50K�−�e-ph�5K�, remains nearly constant, increasing

from 23 meV close to EF to 26 meV at higher energies. Since
the energy dependence of �e-e is much stronger than that of
�e-ph, their sum �e-e+�e-ph, is fitted reasonably well by a
quadratic equation with �=0.025 eV−1 �0.026� at 50 �5� K
�see Fig. 4�.

Figure 4 shows � versus energy measured at 50 and 5 K
on Pb�3 with the theoretical �e-e+�e-ph. Both experimental
data sets are well fitted by 3D FL theory: ��E�=��E−EF�2,
yielding the same value �=0.033 eV−1. The difference
��e-ph�25 meV between the 50 and 5 K fit to the experi-
mental data yields an estimate of the average e-ph contribu-
tion to the QWS lifetime in excellent agreement with the
theoretical ��e-ph�23–26 meV. A similar analysis was
conducted on the 7�7 interface, which showed a larger line-
width dispersion due to disorder at this interface. In contrast
to the crystalline Pb�3, the linewidths increase with decreas-
ing thickness ��20 meV from 22 to 7 ML�. This linewidth
variation was taken into account before �e-e, �e-ph, and �0
were extracted. �0 is found to be about 90 meV larger on
7�7 �see Fig. 2�. �=0.028 eV−1 at 50 K �0.037 at 5 K�,
��e-ph�26 meV, which is consistent with the values ob-
tained on Pb�3 and with the theoretical results.

The large ��e-ph measured on both interfaces reflect a
strong e-ph coupling of the QWS in Pb thin films. A Debye
model36 with �bulk=1.55 yields ��e-ph=23 meV, which is
close to the measured averaged ��e-ph. The present ab initio
calculations yield for most QWS 1.45���1.6. These val-
ues are larger than those computed for Pb thin films at EF
�Ref. 21� but close to �bulk at EF.36 The excellent agreement
between theoretical and experimental e-ph coupling terms

FIG. 3. �Color online� �a� Calculated dispersion of the electronic
band crossing EF along �-L for bulk Pb without spin-orbit coupling
�with SOC�: dashed �solid� line. Dots: computed QWS energies. �b�
Calculated �e-e and �e-ph for unoccupied QWS as a function of
energy. �e−e without SOC �with SOC�: open �full� triangles. �e-ph at
5 K �50 K�: dots �squares� with their fit. In nm�n=4, . . . ,10; m
=1,2�n is the film number of monolayers, and m is the QWS num-
ber counted from EF.

FIG. 4. �Color online� Linewidth versus energy of unoccupied
QWS in Pb islands grown on Pb-�3� �3 /Si�111� measured at 5
�50� K: full dots �full squares�. The data are fitted according to 3D
Fermi-liquid theory �continuous lines�. Theoretical linewidth �e-e

+�e-ph at 5 �50� K: open dots �open squares� with corresponding fits
�dashed lines�. For easier comparison the theoretical data have been
shifted up so that the theoretical fits coincide with the experimental
ones at low energy. The linewidth difference ��e-ph�25 meV be-
tween the 50 and 5 K fit to the experimental data agrees very well
with the corresponding calculated difference, yielding the QWS
e-ph coupling constant ��1.45–1.60. Silicon conduction band
minimum is indicated.
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allows us to discriminate among the three contributions of
Eq. �2�. For 7–22 ML films the resulting electronic mean free
path at EF, vF0��0=	 /0� can be estimated for both inter-
faces, yielding 3–4 nm for 7�7 and 11 nm for Pb�3 �Fermi
velocities vF are determined from the reconstructed band dis-
persion along �-L �Ref. 32��.

In a previous Yb/W�110� QWS linewidth study by STS,
the neglect of the interface and defect scattering term in the
low-energy residual linewidth and a lack of temperature-
dependent measurements, led to a strong e-ph coupling con-
stant ��1.6–2.8.18 In contrast, TR-2PPE measurements of
the parent d band in bulk Yb found ��0.4.19 Moreover TR-
2PPE results together with ab initio calculations reported a
linewidth energy dependence far from being quadratic.19

In conclusion, the combination of high-accuracy
temperature-dependent STS experiments with ab initio cal-

culations allowed us to identify individual QWS in single
ultrathin metal islands, to separate consistently the different
decay mechanisms of these electronic excitations and to de-
termine the QWS electron-phonon coupling strength. These
achievements open up an avenue toward detailed investiga-
tions of the decay processes of electronic excitations on a
local scale, e.g., of individual supported molecules, clusters
or other nanostructures.
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