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I. INTRODUCTION

Many developments in quantum many-body physics re-
quire the efficient computation of matrix elements of
fermionic operators between Slater determinant states. In
many relevant cases, the matrix elements should be computed
between Slater determinant states which are not based on the
same set of single-body fermionic states. An early example
of this kind of calculation can be found in the seminal paper
by the Swedish physicist Löwdin [1] who developed in 1955 a
very smart strategy, based on a careful application of the prop-
erties of the determinant. The strategy was developed in full
for the case of two and four fermionic operators, and required
the overlap matrix between the two Slater determinants to
be nonsingular [1]. Further developments, aimed to simplify
the original complexity of the formulas and to facilitate their
use in the framework of the valence bond theory, can be
found in the literature [2,3]. There are many applications in
quantum chemistry requiring overlaps of operators between
Slater determinant including configuration interaction (CI)
and symmetry restoration methods (see Refs. [4–9] as an
example). More recently, Brouder [10] proposed a method
to reduce the combinatorial complexity of Wick’s theorem
to a more manageable algebraic complexity. As applications
of the method, formulas for the overlap of a general prod-
uct of creation and annihilation operators between arbitrary
Slater determinants were proposed and used to compute, for
instance, the generating function of the Green function or k-
density correlation operators. The method uses general ideas
coming from the world of quantum groups and Hopf algebras
but leads to rather involved expressions. Slater determinants
are also used to expand the wave functions of the fractional
quantum Hall effect (FQHE) as discussed in Ref. [11]. In
lattice QCD the study of physical systems involving several
hadrons [12], as is the case in the description of collisions
[13] or when the hadrons aggregate to form atomic nuclei
[14–16], requires the evaluation of matrix elements involving
the product of (3N )2 (N is the number of hadrons) creation
or annihilation operators coming from the quark fields. If the
matrix elements are computed in terms of Wick contractions

(see below), the required number of terms grows exponen-
tially fast with N [12]. General overlaps of Slater determinants
are also required in nuclear physics, in the framework of the
Monte Carlo shell model (MCSM) [17,18], the in-medium
similarity renormalization group [19], configuration interac-
tion [20], or in the field of symmetry restored quasiparticle
excitations [21,22].

In all the above situations the matrix elements can be com-
puted with the help of Wick’s theorem or its generalizations,
but the number of contractions to consider grows with the
factorial of the number of operators involved and therefore
it becomes unmanageable very soon.

In this work we extend Löwdin’s results to the case of
a generic number of fermionic operators in order to obtain
compact and easily handled expressions prone to an efficient
evaluation in a computer. In addition, the evaluation of hun-
dred of thousands, if not millions, of operator overlaps calls
for robust evaluation methods capable of handling the cases of
zero or nearly zero overlaps of the Slater determinants where
Löwdin’s method becomes ill defined. In our derivation we
will use a second quantization formalism from the beginning,
which makes calculations more transparent.

This article is organized as follows. Our generalized ver-
sion of Löwdin’s theorem is described and proved in Sec. II.
The case of zero overlap between both Slater determinants
is discussed in Sec. III. A numerical application is provided
in Sec. IV, where our approach is used to estimate the
entanglement of a block for a linear combination of Slater
determinants. The article finishes with some conclusions and
our proposals for further work.

II. GENERALIZED LÖWDIN’S THEOREM

To start with, let us consider two generic Slater determi-
nants,

|A〉 =a†
i1

· · · a†
iN

|−〉, (1)

|B〉 =b†
j1

· · · b†
jN

|−〉, (2)
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of N particles. The a†
i and b†

j are arbitrary creation operators
with quantum numbers denoted by i and j, respectively. Their
Hermitian conjugate annihilates the true Fock vacuum |−〉:

ai|−〉 = b j |−〉 = 0, (3)

such that

{a†
i , b j} = S∗

i j, (4)

{ai, b†
j} = Si j, (5)

as well as

{a†
i , b†

j} = 0. (6)

The overlap matrix is defined by Si j = 〈ai|b j〉 = 〈−|aib
†
j |−〉.

The overlap between both states, 〈A|B〉, is evaluated in a
recursive way:

〈A|B〉 = 〈−|aN · · · a1b†
1 · · · b†

N |−〉
= − 〈−|aN · · · a2b†

1a1b†
2 · · · b†

N |−〉
+ S11〈−|aN · · · a2b†

2 · · · b†
N |−〉 (7)

by jumping with the b†
1 creation operator over the a1 annihi-

lation one. The notation has been also simplified by replacing
indexes i1, . . . by 1, . . .. Let us now introduce the quantity

〈A|B〉[11] = 〈−|aN · · · a2b†
2 · · · b†

N |−〉, (8)

that corresponds to the overlap of the two Slater determinants,
but “removing the a1b†

1 pair from 〈A|B〉.” Then,

〈A|B〉 = S11〈A|B〉[11] − S21〈A|B〉[21] + · · ·
+ (−1)N+1SN1〈A|B〉[N1], (9)

and the expansion ends after N jumps because 〈−|b†
1 = 0. We

easily recognize in 〈A|B〉[11] the minor of S with respect to the
matrix element (1,1), i.e., S11. Viewed from this perspective,
the expression of 〈A|B〉 given in Eq. (9) becomes the minor
expansion of the determinant of S by the first row, i.e.,

〈A|B〉 = det(S). (10)

Let us now expand a†
i and b†

j in terms of a common basis

{c†
k , k = 1, . . . , NB}

a†
i =

NB∑
k=1

Akic
†
k , (11)

b†
j =

NB∑
k=1

Bk jc
†
k . (12)

Then the N×N overlap matrix S becomes the product of the
two expansion matrices, A and B, of dimension NB×N

Si j =
∑

k

A∗
kiBk j = (A†B)i j . (13)

The previous result can be easily generalized to the calculation
of a general overlap

〈A| fM · · · f1g†
1 · · · g†

M |B〉, (14)

where the fl and g†
p are arbitrary annihilation and creation

operators expressed in the c† basis as

fl =
NB∑

k=1

Fklck, (15)

g†
p =

NB∑
k=1

Gkpc†
k , (16)

in terms of the F and G matrices of dimension NB×N .
These kind of overlaps appear when considering a system of
N + M = N ′ particles where M of them play a different role
than the remaining N ones and therefore require a different
set of orbitals. For instance, this is the case for unrestricted
molecular orbitals [23]. We could also accommodate the
situation where the N orbitals are considered as an inert core
and only the M orbitals are active. As the f ’s anticonmute with
the a’s and the g†’s with the b†, we can repeat verbatim the
previous considerations for 〈A|B〉. We only have to be careful
and define four partial overlap matrices:

(Sfg)i j = 〈−| fig
†
j |−〉 (M×M ), (17)

(Sag)l j = 〈−|alg
†
j |−〉 (N×M ), (18)

(Sfb)ip = 〈−| fib
†
p|−〉 (M×N ), (19)

(Sab)l p = 〈−|alb
†
p|−〉 (N×N ), (20)

to arrive at the formula

〈A| fM · · · f1g†
1 · · · g†

M |B〉 = det

(
Sfg Sfb

Sag Sab

)
, (21)

which is the general result for the overlap of Eq. (14). In order
to disentangle the contributions from each set of orbitals it is
convenient to use the well known formula for the determinant
of a partitioned matrix based on the concept of the Schur
complement [24]:

det

(
P Q

R S

)
= det P det(S − RP−1Q)

= det S det(P − QS−1R). (22)

Therefore,

det

(
Sfg Sfb

Sag Sab

)
= det Sab det

(
Sfg − SfbS−1

ab Sag
)
, (23)

which we can call generalized Löwdin’s theorem (GLT). It
requires the evaluation of the determinant of one M×M
matrix and the determinant and inverse of N×N matri-
ces. This formula is also advantageous over Eq. (21) when
N � M � 1 as only one costly matrix inversion is required.
The expression above for the determinant is similar to the
one used in the proof of Sylverster’s theorem discussed in
Ref. [25]. A similar expression has been obtained for the more
general kind of product wave functions of the Hartree-Fock-
Bogoliubov (HFB) type [26] using Pfaffians [27].

In the right-hand side of Eq. (23) a potential source of
problems is identified in the inverse of Sab. If the inverse
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exists, then det Sab �= 0 and it is possible to write

〈A| fM · · · f1g†
1 · · · g†

M |B〉
〈A|B〉 = det

(
Sfg − SfbS−1

ab Sag
)
, (24)

which is the canonical form of the GLT where the sum of
(2M − 1)!! contractions is replaced by the evaluation of the
determinant of a M×M matrix which can be carried out
efficiently in O(M3) operations. On the other hand, the result
of Eq. (23) is required to resolve the implicit indeterminacy
when det Sab = 0 and Sab is not invertible (see below).

The above derivation assumes that the f and g† are in
normal order. If this is not the case, operators can always
be brought to normal order using commutation relations of
fermion operators. To illustrate the procedure and to obtain
a compact expression we evaluate now the overlap of a one-
body operator Q̂

〈A| fM · · · f1Q̂g†
1 · · · g†

M |B〉, (25)

where Q̂ is written in terms of fermion operators r†
m and tn as

Q̂ =
∑
m,n

Qmnr†
mtn. (26)

The matrix element 〈A| fM · · · f1r†
mtng†

1 · · · g†
M |B〉 is evaluated

by using the commutation relation r†
mtn = −tnr†

m + (Str )nm as

〈A| fM · · · f1r†
mtng†

1 · · · g†
M |B〉

= (Str )mn det

(
Sfg Sfb

Sag Sab

)
−det

⎛
⎜⎝Str Stg Stb

Sfr Sfg Sfb

Sar Sag Sab

⎞
⎟⎠. (27)

Please note that in this case the n and m are specific indices
and therefore Str is a 1×1 matrix with a single element
corresponding to the overlap 〈−|tnr†

m|−〉. With obvious no-
tation, we introduce the row St,gb and column Sfa,r vectors
as well as the matrix Sfa,gb to be able to use property (22).
Straightforward manipulations lead to the final expression

〈A| fM · · · f1r†
mtng†

1 · · · g†
M |B〉 = St,gbS−1

fa,gbSfa,r det(Sfa,gb). (28)

For the evaluation of the overlap of a two body operator the
matrix element

〈A| fM · · · f1r†
m1

r†
m2

tn1tn2 g†
1 · · · g†

M |B〉 (29)

is required. As in the previous case the commutation relations
are used to move the r† operators to the right of the t operators
to use (21). Further application of Eq. (22) and after a few
manipulations that require the expression of det(A − B) we
obtain

〈A| fM · · · f1r†
m1

r†
m2

tn1tn2 g†
1 · · · g†

M |B〉
= det

(
St,gbS−1

fa,gbSfa,r
)

det(Sfa,gb), (30)

where St,gb and Sfa,r are now matrices with dimensions
2×(M + N ) and (M + N )×2, respectively. The matrix el-
ement is given by the product of det(Sfa,gb) times the de-
terminant of a 2×2 matrix with entries corresponding to
the “elementary contractions.” The generalization to more
general k-particle, k-hole matrix elements is straightforward

and leads to the determinant of a k×k matrix of contractions
involving matrices St,gb and Sfa,r of dimensions k×(M + N )
and (M + N )×k, respectively. The combinatorial increase in
the number of terms as k increases is thus hidden in the form
of a determinant of low dimensionality that can be evaluated
efficiently using standard numerical analysis techniques. This
result is the generalization of Eq. (51) of [28].

To finish this section let us consider a common situation
concerning symmetry restoration where the overlap includes
a multiparticle unitary operator T̂ in the form of an exponenti-
ated one-body operator. Typical examples are the rotation and
translation operator. Then the operator b†

m generating the |B〉
configuration is transformed to b̃†

m given by

T̂ b†
mT̂ † = b̃†

m =
∑

n

(Tb)nmb†
n. (31)

The overlap becomes

〈A| fM · · · f1g†
1 · · · g†

M T̂ |B〉 = det

(
Sfg Sfb̃

Sag Sab̃

)
, (32)

where the only modification with respect to Eq. (21) is in the
overlaps Sfb̃ and Sab̃, which have to be computed with the b̃†

m
of Eq. (31).

An important issue in the application of the above for-
mulas is the scaling of the computational cost with the
number of particles N ′, the dimension of the Hilbert space,
NB, and the order of the involved operators, k. The naive
evaluation of a generic k-body operator in the basis of the
particle orbitals requires computing O(N2k

B ) determinant of
a (N ′ + k)×(N ′ + k) matrix, which amounts to a computer
time of order O(N2k

B (N ′ + k)3). Using the generalized Löwdin
expression, Eq. (30), we can precalculate the inverse of Sfa,gb,
which takes O(N3) operations, we can also precalculate the
two matrix multiplications for all possible values of the m
and n indices, which takes O(NBN ′2) operations, and finally
evaluate only N2k

B determinants of k×k, matrices, with a cost
O(N2k

B k3). In terms of amortized cost, this route is much more
convenient when N ′ � k and NB � k.

III. CASE OF ZERO OVERLAP

Let us study how to apply the GLT of Eq. (23) when
the overlap between the states |A〉 and |B〉 is zero. The
methodology used can be used straightforwardly for the other
form of Löwdin’s theorem, Eq. (30). When 〈A|B〉 = 0, Sab

is a singular matrix and Eq. (23) becomes indeterminate. To
avoid the problem one can always use the full determinant
in Eq. (21), of order (N + M )×(N + M ), but this comes at
a higher cost than just using (23). In addition, resolving the
indeterminacy explicitly is always beneficial in order to avoid
numerical artifacts that could eventually appear. To this end,
we introduce the singular value decomposition (SVD) of S

Sab = U�V †, (33)
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where U and V are orthogonal matrices (U †U = I) and � is
diagonal. If Sab is near singular, it can be expressed as

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. . .
σN−k

ε1

. . .
εk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

�R

E

)
,

(34)
with εi a set of k small numbers, while E is the k×k diagonal
matrix with εi in the diagonal. Using this decomposition we
arrive at

det Sab = f det �, (35)

where f = eiϕUV ≡ det U det V †. One also has

S−1
ab = V �−1U †. (36)

Let us define now SV
fb ≡ SfbV and SU

ag ≡ U †Sag, and decom-
pose them in a regular (R) and a singular (S) part, according
to the decomposition in Eq. (34):

SV
fb =

(
S̄V,R

fb S̄V,S
fb

) }
M︸︷︷︸ ︸︷︷︸

N – k k
(37)

and

SU
ag =

(
S̄U,R

ag

S̄U,S
ag

) } N-k

} k
. (38)

︸︷︷︸
M

Using this decomposition we can write

det

(
Sfg Sfb

Sag Sab

)
= f det � det

(
Sfg − SV

fb�
−1SU

ag

)
, (39)

with

SV
fb�

−1SU
ag =S̄V,R

fb (�R)−1S̄U,R
ag + S̄V,S

fb E−1S̄U,S
ag . (40)

Let us now introduce the M×M matrix

C ≡ Sfg − S̄V,R
fb (�R)−1S̄U,R

ag , (41)

and consider the determinant

det
(
C − S̄V,S

fb E−1S̄U,S
ag

)
. (42)

It can be computed using the Woodbury formula for the
determinant (see, for instance, Ref. [29])

det(A + UWV †) = det(W −1 + V †A−1U ) det W det A (43)

to obtain

det

(
Sfg Sfb

Sag Sab

)
= f det �R det E det

(
E − S̄U,S

ag C−1S̄V,S
fb

)
× 1

det E
det C. (44)

Simplifying this expression we get

det

(
Sfg Sfb

Sag Sab

)
= f det �R det

(−S̄U,S
ag C−1S̄V,S

fb

)
det C,

(45)

which is a finite quantity when εi → 0. This quantity requires
the SVD of Sab to get �R and the U and V matrices. For large
values of N this can be a costly operation of order N3. The
inverse of the diagonal �R is also required, as well as the
construction of the SU

ag and SV
fb matrices. Once we have all

the ingredients, the evaluation of the determinants in Eq. (45)
require little extra work due to the low dimensionality of
the matrices involved (k×k and M×M). Please note that the
dimensionality of the different matrices appearing in Eq. (45)
is not the same [�R is (N − k)×(N − k), S̄U,S

ag C−1S̄V,S
fb is k×k,

and C is M×M] and therefore the formula for the product of
a determinant does not apply here.

Note that the derivation above can also be extended to the
case where the matrix Sab is ill conditioned and has a very
small (but nonzero) determinant. A blind use of the traditional
formulas may contaminate the final results due to numerical
artifacts consequence of the finite representation of floating
point numbers in computer’s arithmetic.

The zero overlap case has also been considered for one and
two body operators in [2–4] using the LDU decomposition
of the overlap matrix Sab. We prefer our approach as it is
independent of the type of operator at stake and uses the SVD
which is an always defined decomposition.

In terms of computational cost, the analysis of the previous
section still holds. Indeed, we can precompute the SVD of the
N×N matrix Sa,b, with a cost O(N3), and then evaluate N2k

B
small determinants of order k×k.

IV. NUMERICAL EXPERIMENTS

In this section we put the extended Löwdin approach
to the test, characterizing the fluctuations in the number of
particles in a block of a fermionic state described by a linear
combination of two Slater determinants. Our motivation to
consider these fluctuations is that they are known to constitute
a witness of entanglement [30], as we will briefly discuss.

Given any pure state for a quantum system |�〉 and a
subsystem A, we can define the associated reduced den-
sity matrix, ρA = TrA|�〉〈�|, where TrA denotes the partial
trace over A. Also, we can define the entanglement entropy
associated with A,

SA = −Tr(ρA ln ρA). (46)

Entanglement entropy often follows the area law, i.e., the
entanglement entropy of A is proportional to the measure
of its boundary, SA ∝ |∂A| [31]. For a Slater determinant,
the entanglement entropy of any block can be efficiently
computed in polynomial time with the number of sites [32].
Unfortunately, those techniques cannot be extended even to
linear combinations of Slater determinants.

Moreover, let us also define the variance of the number of
particles in A,

σ 2
N ≡ 〈

n2
A

〉 − 〈nA〉2, (47)

where the operator nA is defined through

nA ≡
∑
i∈A

ni =
∑
i∈A

c†
i ci. (48)
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m : −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

FIG. 1. Illustration of the rainbow ground state in the small α

limit: a valence bond solid with concentric bonds around the center
of the chain. Notice that the entanglement entropy of a left block
is proportional to the block size, i.e., a volumetric growth of the
entropy.

There is a very interesting connection between the fluctuations
in the number of particles and the entanglement entropy for a
block within a Slater determinant [30],

SA � 4 ln 2σ 2
N , (49)

which sets a lower bound on the entanglement entropy of a
block provided by the variance of the number of particles.
Hence our claim that σ 2

N is an entanglement witness.

A. Rainbow system

As our physical system, we have chosen the rainbow sys-
tem [33–35], a 1D inhomogeneous fermionic hopping system
which violates strongly the area law, presenting volumetric
entanglement, SA ∝ |A|. It can be described on an open chain
through the following Hamiltonian:

H = −
L−1∑

m=−L+1

Jmc†
mcm+1 + H.c., (50)

with hopping amplitudes given by

Jm =
{

α2m+1 if m �= 0,

1 otherwise,
(51)

in terms of an inhomogeneity parameter α ∈ (0, 1]. For
α = 1, the system reduces to the homogeneous case. For small
α, the ground state (GS) of Hamiltonian (50) becomes approx-
imately a valence bond solid with concentric bonds around
the center; see Fig. 1. The entanglement entropy of a block
A in a valence bond solid can be shown to be proportional to
the number of bonds connecting it to its environment [34,35].
Thus the entanglement between the left and right halves is
proportional to the number of sites in the chain, and hence
volumetric.

B. Fluctuations in the number of particles

Let us consider an arbitrary linear combination of the
ground state and first excited states of Hamiltonian (50), both
within the half-filling sector, i.e., with N/2 particles:

|�〉 = η0|0〉 + η1|1〉. (52)

Let us use Eq. (47) to compute the fluctuations in the number
of particles in a block A. The expected value of the number of

particles is given by

〈nA〉 =
∑
i∈A

〈�|ni|�〉 =
∑
i∈A

[|η0|2〈0|ni|0〉 + |η1|2〈1|ni|1〉

+ 2 Re η̄0η1〈0|ni|1〉]. (53)

The first two terms are easily obtained, because they refer to
a single Slater determinant. The third, notwithstanding, must
be found using the (generalized) Löwdin tricks described:

〈0|ni|1〉 = 〈0|c†
i ci|1〉 = 〈0|1〉 − 〈0|cic

†
i |1〉. (54)

The quadratic term is more involved:〈
n2

A

〉 =
∑
i, j∈A

[|η0|2〈0|nin j |0〉 + |η1|2〈1|nin j |1〉

+ 2 Re η̄0η1〈0|nin j |1〉]. (55)

Again, the first two terms are straightforward to obtain. Let
CA,0 be the submatrix of the correlation matrix corresponding
to block A on state |0〉; then

〈0|nin j |0〉 = Tr(CA,0)2 + Tr[CA,0(I − CA,0)]. (56)

The last term of Eq. (55) is the most involved one, because we
cannot assume Wick’s theorem. We find

〈0|nin j |1〉 = 〈0|(1 − cic
†
i )(1 − c jc

†
j )|1〉

= 〈0|1〉 − 〈0|c jc
†
j |1〉 − 〈0|cic

†
i |1〉

+ δi j〈0|cic
†
j |1〉 − 〈0|cic jc

†
i c†

j |1〉. (57)

C. Numerical experiments

For concreteness, let η0 = √
x and η1 = √

1 − x for x ∈
[0, 1] in Eq. (52). Thus our state will be given by

|�〉 = √
x|0〉 + √

1 − x|1〉. (58)

Let us notice that the first excitation is obtained from the
ground state by performing a parity transformation on the
Fermi level [35]. By construction 〈0|1〉 = 0, thus forcing us
to make all our computations in the zero overlap case.

In the top panel of Fig. 2 we show the variance σ 2
N of the

number of particles in the left half of the rainbow system
with N = 8, for different values of α. Notice that only in
the α → 0+ limit the variance is the same for x = 0 and
x = 1, i.e., the GS and the first excited. This variance has
been computed in two different ways: the dots correspond
to the exact calculation, with the full Slater determinant, and
the continuous line corresponds to the computation performed
with the generalized Löwdin formulas derived in this article.
The agreement is complete, and the computational time is
enormously reduced.

In the α → 0+ limit, the left half of the rainbow system
becomes an infinite temperature mixed state. Thus the fluctu-
ations in the particle number are easy to obtain, following a
binomial distribution, σN = √

N/8, that we can readily check
in Fig. 2. Also, the entanglement entropy will grow up to its
maximal possible value, (N ln 2)/2. The lower panel of Fig. 2
shows the von Neumann entropy for the same blocks as the
top panel, which could only be evaluated through expression
(46), taking an exponential time.
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FIG. 2. Top: deviation of the number of particles in the left half
of state (58) with N = 8 sites and various values of α, computed
with the full Slater determinants and with our generalized Löwdin
scheme. The theoretical value in the α → 0+ limit is σN = 1. Bot-
tom: entanglement of the left half of state (58), computed with the
full Slater determinants. The theoretical value in the α → 0+ limit is
4 ln 2 ≈ 2.77.

Figure 3 shows σN in the same system, using N = 40
sites. The entanglement entropy calculations are now out of
our computational reach, but the variance of the number of
particles, σN , can be efficiently computed in polynomial time.
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FIG. 3. Same observable as in the top panel of Fig. 2 for a
rainbow system with N = 40. The theoretical value for the deviation
of the particle number of the left half in the α → 0+ limit is√

N/8 = √
5 ≈ 2.23.

D. Computational cost

As it was discussed at the end of Sec. II, the total cost
of evaluating the variance is the sum of the evaluation of the
SVD, O(N3), and O(N2) determinants [less than the expected
value for two-body operators, which is O(N4)], whose cost
is bounded. Thus we obtain that the final cost is bounded by
O(N3). Avoiding the use of the generalized Löwdin theorem
would lead to an order O(N5) cost [O(N2) determinants of
N×N matrices, each O(N3)].

E. Generalized Löwdin C + + code

We have uploaded our C + + libraries to compute matrix
elements of Slater determinants using the generalized Löwdin
approach to the repository github as free software [36]. The
same material can also be downloaded from the Supplemental
Material section of the electronic version of the journal [37],
briefly described in the Appendix.

V. CONCLUSIONS AND FURTHER WORK

We have extended the seminal results of Löwdin to obtain
efficiently the matrix elements of an arbitrarily large product
of fermionic operators between arbitrary Slater determinants.
Our results are still applicable when the overlap matrix be-
tween the orbitals of the Slater determinants is singular, i.e.,
when the corresponding states are orthogonal.

Efficient computation of matrix elements in nonorthogonal
Slater determinants will open a very interesting possibility:
the creation of Ansätze including Slater determinants obtained
from different procedures and, therefore, using different
orbitals.

As proposals for future work, we would like to mention
the extension of the previous calculations to the full reduced
density matrix, combining our results with those of [32] for
the reduced density matrix of a block of a single Slater
determinant.
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APPENDIX: GENERALIZED LÖWDIN CODE

The reader can find a C + + library at [36] which im-
plements the computational framework for the evaluation of
matrix elements of k-body operators between different Slater
determinants. This Appendix is devoted to a brief description
of this library. The library is based on HVB, a multipurpose
scientific library built on BLAS and LAPACK (more informa-
tion in [36]).

The class structure is simple. A class Lowdin is defined,
whose constructor takes two arguments: the (complex) matri-
ces whose columns contain the occupied in the left and right
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Slater determinants. Thus their dimension must be NB×N . It
precomputes the inverse of the Sa,b matrix if it is possible, or
the SVD when it is not, using an internal flag (transparent to
the user) to determine which route was needed in this case.
Then, it implements two basic methods: Lowdin::Elem takes
two integers i and j as arguments and returning 〈U |c†

i c j |V 〉.
Lowdin::NiNj returns the expected value of 〈U |nin j |V 〉. The

reader can extend easily these methods to other higher-order
operators.

The repository contains the example code used to obtain
Figs. 2 and 3, called xfluctrb.cc. A suitable Makefile is
provided, assuming that BLAS and LAPACK are correctly
installed in the system. Other HVB functions are used, and
the reader can find documentation in [38].
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